WO2018042890A1 - 接合体およびこれを用いた半導体装置 - Google Patents

接合体およびこれを用いた半導体装置 Download PDF

Info

Publication number
WO2018042890A1
WO2018042890A1 PCT/JP2017/025213 JP2017025213W WO2018042890A1 WO 2018042890 A1 WO2018042890 A1 WO 2018042890A1 JP 2017025213 W JP2017025213 W JP 2017025213W WO 2018042890 A1 WO2018042890 A1 WO 2018042890A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous metal
melting point
low melting
metal
metal body
Prior art date
Application number
PCT/JP2017/025213
Other languages
English (en)
French (fr)
Inventor
剛司 谷垣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017559621A priority Critical patent/JPWO2018042890A1/ja
Publication of WO2018042890A1 publication Critical patent/WO2018042890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29239Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29247Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29255Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2926Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29263Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29266Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29395Base material with a principal constituent of the material being a gas not provided for in groups H01L2224/293 - H01L2224/29391
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29575Plural coating layers
    • H01L2224/2958Plural coating layers being stacked
    • H01L2224/29582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/296Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29699Material of the matrix
    • H01L2224/297Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29798Fillers
    • H01L2224/29799Base material
    • H01L2224/298Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29817Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29818Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29798Fillers
    • H01L2224/29799Base material
    • H01L2224/298Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29817Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29824Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering

Definitions

  • the present invention relates to a joined body for joining a semiconductor element to a substrate and a semiconductor device using the joined body.
  • the conventional joining method using a foam metal has a structure in which two objects to be joined as described in Patent Document 1 are coated with a low melting point metal and the foam metal body is inserted between the low melting point metals. From this state, the melting point of the melting point of the low melting point metal is heated, and the melted low melting point metal is filled into the pores by applying pressure to crush the pores of the foam metal body. .
  • lead-free solder is impregnated into a porous metal body and heated to melt the lead-free solder, and the lead-free solder is immersed in the pores of the porous metal body.
  • a joining method in which an intermetallic compound is formed and joined is disclosed.
  • the joining method which improved the joining reliability by filling the space
  • JP 2014-097529 A (paragraph 0042, FIG. 1) JP 2012-035291 (paragraph 0030, FIG. 1) JP 2008-200728 (paragraph 0020, FIG. 2)
  • Patent Document 1 it is necessary to apply or form a low melting point metal such as Sn in advance on the surfaces to be joined.
  • Device products such as semiconductor chips already have an electrode structure, and may not be usable with a general electrode structure.
  • the porous metal body has a low porosity, so that it does not penetrate into the inside of the porous body, and a fragile low melting point metal layer is formed around the porous metal. It becomes easier to create voids inside the body. Therefore, when heat and stress, such as a thermal shock test, are applied to the bonding layer, there is a problem that cracks are likely to propagate, leading to a reduction in product life.
  • Patent Document 3 aims to hold lead-free solder with a network of porous metal bodies. However, in order to leave lead-free solder intentionally, heat resistance is reduced under a use environment of 200 ° C. or higher. There was a problem.
  • the present invention has been made to solve the above-described problems.
  • the joined body of the present invention includes a porous metal body that has a large number of pores and does not melt at the time of joining, and a low melting point metal that covers the porous metal body to the inside and melts at the time of joining.
  • the low melting point metal and the porous metal body are metals capable of alloy growth.
  • a semiconductor device of the present invention includes a part of the porous metal body between a semiconductor element, an insulating substrate, and a porous metal network based on the porous metal body formed by using the joined body. And a bonding layer that is filled with an intermetallic compound formed of the low melting point gold and that bonds the semiconductor element and the insulating substrate.
  • a porous metal network is formed by processing in a reducing atmosphere by forming a bonding layer using a bonded body having a porous metal body provided with pores at a predetermined volume ratio.
  • the network of porous metal supports the brittleness of intermetallic compounds that can be left, and it can suppress the generation of cracks and increase the bonding reliability life, and also has excellent high temperature durability and high bonding reliability.
  • a semiconductor device having the characteristics can be obtained.
  • FIG. 1 is a cross-sectional view showing a configuration of a semiconductor device 100 using a joined body according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the joined body before joining.
  • a semiconductor device 100 covers an insulating substrate 14 which is a non-bonded body, a semiconductor element 11 bonded on the insulating substrate 14, and a gold thin film 13 formed on the bonding surface of the semiconductor element 11.
  • the back electrode 41 made of the refractory electrode metal 12 and the insulating substrate 14 are joined to each other.
  • the joining layer 51 is composed of the porous metal 30 and the intermetallic compound 10, and is formed by heating and pressurizing the joined body 50 before joining shown in FIG.
  • the joined body 50 includes the porous metal body 3 and the low melting point metal 1 that covers the porous metal body 3.
  • the general melting point temperature range of the low melting point metal is 210 to 250 ° C.
  • the porous metal body 3 is characterized by being a metal having a melting point of 300 ° C. or higher, such as Ni, Ag, Cu, stainless steel (SUS), or Ti.
  • the inside of the porous metal body 3 has a structure having a large number of pores 2.
  • the pores 2 are preferably large, and are preferably 65% or more and 90% or less in volume ratio. If it is less than 65%, metals cannot be bonded efficiently under a reducing atmosphere. If it exceeds 90%, the low-melting-point metal 1 and the porous metal body 3 react completely, and the porous metal body 3 does not remain and all become an intermetallic compound.
  • the low melting point metal 1 is a metal composed of 90% or more of Sn using Sn as a matrix element.
  • the bonded body 50 formed using these materials is inserted between the semiconductor element 11 and the insulating substrate 14 or between other members to be bonded, and heated / pressurized to form the bonding layer 51.
  • Such a joining method in which heat is applied to the low melting point metal 1 to form a liquid phase to form an intermetallic compound 10 with a surrounding metal and the joined body 50 has heat resistance is called liquid phase diffusion joining.
  • the liquid phase diffusion bonding needs to be performed at a heating temperature higher than the melting point of the low melting point metal 1, and is preferably performed at 100 to 400 ° C. and an applied pressure of 0.1 MPa or more.
  • the porous metal body 3 is crushed in the pressurizing direction by heating and pressurization, and the low melting point metals 1 above and below the pores 2 are brought into close contact with each other to react to form an intermetallic compound 10.
  • the voids 2 between the metal bodies 3 are filled to form the bonding layer 51.
  • the alloy growth rate in the bonded body 50 is desirably 1E-10 cm 2 / s or less at 300 ° C.
  • the bonded body 50 there may be mentioned one using Ni as the porous metal body 3 and Sn as the low melting point metal 1.
  • the heating / pressurizing atmosphere is most preferably a reducing atmosphere typified by formic acid or hydrogen.
  • a non-oxidizing atmosphere typified by a nitrogen atmosphere is desirable. Even in an atmosphere other than these, which is an oxidizing atmosphere, bonding is possible if pressure can be applied to break the oxide film of the molten metal.
  • Other unique methods include covering the low melting point metal surface with a low viscosity flux, causing a reduction reaction at 200 ° C. and then applying heating and pressurizing, or bonding materials exposed to a hydrogen radical atmosphere within one day The method of joining in air
  • atmosphere is mentioned.
  • the bonded body 50 exposed to a hydrogen radical atmosphere is characterized in that the surface is covered with a thin reduced film and has an oxidation suppressing effect for a certain period of time.
  • FIG. 3 is a flowchart for manufacturing the semiconductor device 100 using the bonded body 50.
  • a joined body 50 made of a porous metal body 3 coated with a low melting point metal 1 is sandwiched between the semiconductor element 11 and the insulating substrate 14. At this time, it is desirable that the joined body 50 has a small gap and does not transmit light in the thickness direction. When light is transmitted, through-holes are formed in the bonding material, which causes voids after bonding and is regarded as a cause of initial bonding failure.
  • the low melting point metal 1 is uniformly spread on the back surface of the semiconductor element 11 and the surface of the insulating substrate 14, and the metal It forms as the joining layer 51, forming the intermetallic compound 10.
  • the porous metal body 3 is grown so as to form an intermetallic compound 10 until the low melting point metal 1 is consumed.
  • the low melting point metal 1 is mainly composed of Sn and the porous metal body 3 is Ni, Ni 3 Sn 4 is mainly formed as the intermetallic compound 10.
  • the semiconductor device 100 is formed in which the semiconductor element 11 and the insulating substrate 14 are bonded by the bonding layer 51 made of the porous metal 30 and the intermetallic compound 10.
  • the bonded body 50 is obtained by directly coating the porous metal body 3 with the low melting point metal 1.
  • a porous metal body 3 may be used in which an alloy growth inhibiting metal 4 having a low reactivity with the low melting point metal 1 is coated in advance.
  • FIG. 4 is a cross-sectional view of a bonded body 50 in which a low-melting-point metal 1 is coated on a porous metal body 3 that has been previously coated with an alloy growth-inhibiting metal 4.
  • the porous metal body 3 is made of Ag and Cu, the low melting point metal 1 is coated with 90% or more of Sn, and the alloy growth suppressing metal 4 is coated with Ni. This is preferably applied when the alloy growth rate of the low melting point metal 1 on the porous metal body 3 is higher than 1E-10 cm 2 / s at 300 ° C.
  • the alloy growth inhibiting metal 4 is used, the alloy growth rate of the low melting point metal 1 on the porous metal body 3 is 1E-10 cm 2 / s or less at 300 ° C.
  • the film thickness of the alloy growth inhibiting metal 4 is 2 ⁇ m or more, and the porous metal body 3 needs to be coated.
  • the alloy growth-suppressing metal 4 does not completely diffuse during the heating and pressurizing time during bonding. Since the low melting point metal 1 and the alloy growth inhibiting metal 4 are poor in reaction, the alloy growth under heating and pressurization is inhibited. That is, the porous metal body 3 is prevented from melting into the low melting point metal 1 after the semiconductor element 11 and the insulating substrate 14 are joined by the manufacturing process described above.
  • the porous metal body 3 is easily alloyed with the low melting point metal 1 during heating and pressurization, the porous metal body 3 is coated with the alloy growth-inhibiting metal 4 in advance so that the alloy growth can be achieved.
  • the porous metal body 3 By suppressing and leaving the porous metal body 3, it is possible to maintain a metal network, reinforce an intermetallic compound having a characteristic that it is generally brittle, and suppress the occurrence of cracks.
  • the porous metal body 3 may be coated with a low melting point metal 1 containing an additive element 5 that inhibits alloy growth.
  • FIG. 5A is a cross-sectional view of a bonded body 50 in which a porous metal body 3 is coated with a low melting point metal 1 containing an additive element 5 that suppresses alloy growth, and FIG. It is an expanded sectional view of the area
  • the intermetallic compound 10 generally grows in the form of a resin or a scale, there are many grain boundaries in the intermetallic compound. Therefore, it is necessary to grow the alloy in layers.
  • the low melting point metal 1 is Sn and the porous metal body 3 is Ni
  • a low melting point metal 1 and additive element 5 dispersed in a solution are used.
  • a target containing a small amount of additive element 5 is used, and the additive element 5 is contained in the low melting point metal 1.
  • the brittleness of the intermetallic compound 10 itself can be reduced by reducing the grain boundaries between the intermetallic compounds 10. Thereby, the reliability of the joining layer 51 can be improved after heating and pressurization.
  • Table 1 shows the results of the crack growth rate in each example and comparative example.
  • the crack growth rate is a result of a predetermined number of cycles at an upper limit temperature of 200 ° C., a lower limit temperature of ⁇ 30 ° C., and a temperature difference ⁇ T of 230 ° C. in a heat cycle test.
  • FIG. 6 is a graph showing the results shown in Table 1.
  • Examples 1-2 and Comparative Examples 7-8 show the heat cycle test results of the joining samples in which Ni is used as the porous metal body, Sn is used as the low melting point metal, and the porosity is changed in the case of no additive element. ing.
  • Example 1 a porous metal body made of Ni having a porosity of 65 to 70% was used for the joined body. Sn was used for the low melting point metal. As can be seen from Table 1, in the semiconductor device using the joined body of Example 1, the result of the crack progress rate was a low value of 25%, and it was confirmed that the crack resistance was excellent. In Example 2, a porous metal body made of Ni having a porosity of 85 to 90% was used. Sn was used for the low melting point metal. As can be seen from Table 1, in the semiconductor device using the joined body of Example 2, the result of the crack progress rate was as low as 22%, and it was confirmed that the crack resistance was excellent.
  • the crack progress rate is 50%, and when the porosity is 92 to 95% as in Comparative Example 8, the crack progress rate is 41%. It was confirmed that the crack resistance could not be satisfied when the porosity of the body exceeded 90% or less than 65%.
  • the degree of crack propagation changes depending on the porosity, because if the porosity is low, the stress relaxation property is low, so that the crack progresses, and conversely if the porosity is too large, the metal network part is thin, It is considered that cracks have progressed because the number of network locations is reduced and the strength is reduced.
  • the optimal porosity of 65-90% is the result of this experiment.
  • the material of the porous metal body, the type of the low melting point metal, and the additive element can be changed.
  • the crack progress rate changes with the above, but the point that the porosity of 65 to 90% is suitable is not changed. This is because the stress applied to the joint in the heat cycle test where the temperature difference ⁇ T is 230 ° C. varies depending on the physical properties of the joint (tensile strength, elastic modulus, yield stress) and the joint structure. From the results of this experiment, the porosity of the porous metal body, which can greatly change the physical properties of the entire joined body, is more important than the type and composition of the metal type and low melting point metal of the porous metal body. Conceivable.
  • the porous metal body is not used, or the porous metal body is used as in Comparative Examples 4 to 6, the porous metal body is used.
  • the porosity of the body was less than 65%, it was confirmed that the crack resistance could not be satisfied.
  • Examples 9 to 10 and Comparative Examples 15 to 16 bonded samples were prepared using Ni as the porous metal body, Sn-3Ag-0.5Cu as the low melting point metal, and the porosity changed in the case of no additive element. The heat cycle test result is shown. As described above, it was confirmed that the porous metal body was excellent in crack resistance in the range of porosity of 65 to 90%.
  • Examples 11 to 12 and Comparative Examples 17 to 18 show the results of heat cycle tests of bonding samples in which Ag is used as the porous metal body, Sn is used as the low melting point metal, and the porosity is changed in the absence of the additive element. ing. As described above, it was confirmed that the porous metal body was excellent in crack resistance in the range of porosity of 65 to 90%.
  • Examples 15 to 16 and Comparative Examples 21 to 22 show the heat cycle test results of bonded samples in which Cu is used as the porous metal body, Sn is used as the low melting point metal, and the porosity is changed in the absence of the additive element. ing. As described above, it was confirmed that the porous metal body was excellent in crack resistance in the range of porosity of 65 to 90%.
  • the porous metal body 3 in which the voids 2 are provided in a volume ratio of 65% or more and 90% or less, Sn The porous metal 30 based on the porous metal body 3 formed using the joined body 50 including the low-melting-point metal 1 that covers the porous metal body 3 is used as a network.
  • the semiconductor element 11 is bonded to the insulating substrate 14 with a bonding layer filled with an intermetallic compound 10 formed of a part of the porous metal body 3 and the low melting point metal 1 between
  • the porous metal network can be left by processing in the atmosphere, and the brittle metal network supports the brittleness of the intermetallic compound, thereby suppressing the occurrence of cracks and increasing the bonding reliability life. But Kill. Further, by changing to an intermetallic compound having a high melting point without leaving an excessive low melting point metal phase after bonding, a semiconductor device having excellent high temperature durability and high bonding reliability can be obtained.

Abstract

空孔2が体積比率で65%以上、90%以下で設けられた多孔質金属体3と、Snを主成分とし、多孔質金属体3を被覆する低融点金属1とを備える接合体50を用いて形成された多孔質金属体3に基づく多孔質金属30をネットワークとし、多孔質金属30のネットワークの間を、多孔質金属体3の一部と低融点金属1とで形成された金属間化合物10で埋められた接合層により、半導体素子11を絶縁基板14に接合することで、多孔質金属のネットワークによりクラック発生を抑制する。

Description

接合体およびこれを用いた半導体装置
 この発明は、半導体素子を基板に接合する接合体およびこれを用いた半導体装置に関するものである。
 従来の発泡体金属を用いた接合方法は、特許文献1にあるような2つの被接合体を低融点金属で被覆し、その低融点金属間に発泡金属体を挿入する構造を取っていた。この状態から低融点金属の溶融温度以上の加熱と、発泡金属体の空孔を潰すために加圧を加えることで溶融した低融点金属が空孔内に充填され、被接合体を接合してきた。特許文献2では、多孔質金属体に鉛フリーはんだを含浸させ、加熱することで鉛フリーはんだが溶融し、多孔質金属体の空孔に鉛フリーはんだが浸漬し、多孔質金属体表面で金属間化合物を形成させて接合する接合方法が開示されている。また、特許文献3では、多孔質金属体の空隙に鉛フリーはんだを充填させ、はんだ全てを金属間化合物にしないで、はんだを多孔質金属体で覆うことで接合信頼性向上させた接合方法が開示されている。
特開2014-097529号公報(段落0042、図1) 特開2012-035291号公報(段落0030、図1) 特開2008-200728号公報(段落0020、図2)
 しかしながら、特許文献1は、接合したい被接合面には事前にSnなどの低融点金属を塗布または成膜しなければならない。半導体チップなどのデバイス製品は既に電極構造が決まっており、一般的な電極構造では使用出来ない可能性がある。また、被接合面に低融点金属を被膜すると多孔質金属体の空孔率が低いために多孔質内部にまで浸透せず、脆弱な低融点金属層が多孔質金属周辺に形成され、多孔質体内部にボイドが出来易くなる。そのため、冷熱衝撃試験などの熱と応力を接合層に加えた場合、クラック進展し易く、製品寿命の低下に繋がるという問題があった。特許文献2の接合方法は、多孔質体の空孔率(面積20~30%)が低いため、低融点金属が多孔質金属から分離してしまう。そのため、鉛フリーはんだが多孔質金属体周囲に形成され、特許文献1と同様に冷熱衝撃試験などの熱と応力を接合層に加えた場合、クラック進展し易く、製品寿命の低下に繋がるという問題があった。特許文献3は、鉛フリーはんだを多孔質金属体のネットワークで保持することを狙いとしているが、鉛フリーはんだを意図的に残すために、200℃以上の使用環境下では耐熱性が低下するという問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、熱応力が加わってもクラックが発生せず、耐熱性や耐久性に優れる安定した接合体とこれを用いた半導体装置を提供することを目的とする。
 本発明の接合体は、多数の空孔を有し、接合時に溶融することの無い多孔質金属体と、前記多孔質金属体を内部まで被覆し、前記接合時に溶融する低融点金属とを備え、前記低融点金属と前記多孔質金属体が合金成長可能な金属同士であることを特徴とするものである。
 本発明の半導体装置は、半導体素子と、絶縁基板と、上記の接合体を用いて形成された前記多孔質金属体に基づく多孔質金属のネットワークの間を、前記多孔質金属体の一部と前記低融点金とで形成された金属間化合物で埋められた、前記半導体素子と前記絶縁基板とを接合する接合層とを備えたことを特徴とするものである。
 本発明によれば、所定の体積比率で空孔が設けられた多孔質金属体を有する接合体を用いて接合層を形成することで、還元雰囲気下で処理することにより多孔質金属のネットワークを残すことができ、金属間化合物の脆弱性を多孔質金属のネットワークが支持しすることで、クラック発生を抑制して接合信頼性寿命を高めることができとともに、高温耐久性に優れ、高い接合信頼性を有する半導体装置を得ることができる。
この発明の実施の形態1による接合体を用いた半導体装置の構成を示す断面図である。 この発明の実施の形態1による接合体の構成を示す断面図である。 この発明の実施の形態1による接合体を用いた半導体装置を製造するフロー図である。 この発明の実施の形態1による接合体の他の構成を示す断面図である。 この発明の実施の形態1による接合体の他の構成を示す断面図である。 この発明の実施の形態1による接合体の平均空孔率とクラック進展率の関係を示す図である。
実施の形態1.
 図1は、この発明の実施の形態1による接合体を用いた半導体装置100の構成を示す断面図である。図2は、接合前の接合体の断面図である。
 図1に示すように、半導体装置100は、非接合体である絶縁基板14、絶縁基板14の上に接合された半導体素子11、および半導体素子11の接合面に形成された金薄膜13を被覆した高融点電極金属12からなる裏面電極41と絶縁基板14とを接合する接合層51から構成される。
 接合層51は、多孔質金属30と金属間化合物10とからなるが、図2に示す接合前の接合体50を、加熱・加圧することにより形成される。接合体50は、多孔質金属体3と、多孔質金属体3を被覆する低融点金属1で構成される。なお、低融点金属の一般的な融点の温度範囲は、210~250℃である。
 多孔質金属体3は、NiやAg、Cu、ステンレス(SUS)、Tiなどの融点300℃以上の金属であることを特徴とする。多孔質金属体3の内部は空孔2を多数有する構造をしており、空孔2は大きい方が良く、体積比率で65%以上で、90%以下であることが望ましい。65%未満の場合、還元雰囲気下で効率よく金属同士を接合することができない。90%を超えると、低融点金属1と多孔質金属体3が完全に反応し、多孔質金属体3は残存しなくなり、すべて金属間化合物になってしまう。
 この体積比率は、低融点金属1を湿式めっきや、乾式めっき、含浸などの方法を用いて空孔2の内部にまで被膜するために必要である。ここで、低融点金属1は、Snをマトリックス元素として、90%以上のSnで構成された金属である。これらの材料を用いて形成した接合体50を半導体素子11と絶縁基板14の間やその他の被接合部材間に挿入し、加熱・加圧を実施して接合層51を作る。
 このような低融点金属1に熱を加えて液相状態にし、周囲の金属と金属間化合物10を形成し、接合体50に耐熱性を持たせるような接合方法を液相拡散接合という。液相拡散接合は、加熱温度を低融点金属1の融点よりも高くする必要があり、100~400℃、加圧力0.1MPa以上で実施することが望ましい。多孔質金属体3が加熱・加圧により、加圧方向に押しつぶされていき、空孔2の上下の低融点金属1同士が密着し、反応して金属間化合物10を形成することで多孔質金属体3間の空孔2を埋めて行き、接合層51を形成する。この時、接合体50での合金成長速度は、300℃で1E‐10cm/s以下であることが望ましい。
 接合体50の代表例として、多孔質金属体3としてNi、低融点金属1としてSnをもちいたものが挙げられる。加熱・加圧の雰囲気は、望ましくは蟻酸や水素に代表される還元雰囲気下が最も望ましい。次に望ましいのは窒素雰囲気に代表される非酸化雰囲気である。これら以外の酸化雰囲気である大気下であっても、加圧を加えてやり、溶融金属の酸化被膜を破ることが出来れば接合は可能である。上記以外の特異な方法としては、低融点金属表面を低粘度フラックスで覆い、200℃で還元反応を起こしてから加熱・加圧を加える方法や、水素ラジカル雰囲気に曝した接合材を1日以内に大気中で接合する方法が挙げられる。特に水素ラジカル雰囲気に曝した接合体50は表面を薄い還元被膜で覆われており、一定時間の酸化抑制効果を有することを特徴としている。この結果、多孔質金属体3の金属ネットワークを維持しながら、ネットワークの間を金属間化合物10で埋められた接合層51が形成される。
 次に、この発明の実施の形態1による接合体50を用いた半導体装置100の製造方法について説明する。図3は、接合体50を用いて半導体装置100を製造するためのフロー図である。
 最初に、図3(a)に示すように、低融点金属1が周囲にコーティングされた多孔質金属体3からなる接合体50を、半導体素子11と絶縁基板14の間で挟みこむ。この時、接合体50は隙間が少なく、厚み方向に光を透過しないことが望ましい。光が透過すると接合材に貫通穴が空いていることになるため、接合後に空隙(ボイド)の原因となり、初期接合不良の原因と見なされる。
 続いて、図3(b)に示すように、還元雰囲気下でA方向に加圧し加熱することにより、低融点金属1が半導体素子11の裏面と絶縁基板14の表面に均一に濡れ広がり、金属間化合物10を形成しながら接合層51として形成する。多孔質金属体3は、低融点金属1を消費するまで、金属間化合物10を形成するようにして成長させる。低融点金属1がSnを主成分とし、多孔質金属体3がNiである場合には、金属間化合物10としてNiSnが主として形成される。
 その後、図3(c)に示すように、半導体素子11と絶縁基板14とが多孔質金属30と金属間化合物10とからなる接合層51により接合された半導体装置100が形成される。
 本実施の形態では、接合体50は、多孔質金属体3に直接、低融点金属1をコーティングしたものを用いたが、低融点金属1と容易に合金成長する多孔質金属体3を用いる場合には、図4に示すように、多孔質金属体3に低融点金属1と反応性が乏しい合金成長抑制金属4を予め被膜したものを用いてもよい。図4は、予め合金成長抑制金属4を被膜した多孔質金属体3に低融点金属1をコーティングした接合体50の断面図である。
 例えば、多孔質金属体3をAg、Cuとし、低融点金属1を90%以上のSn、合金成長抑制金属4としてNiを被膜する。これは、多孔質金属体3への低融点金属1の合金成長速度が、300℃で1E-10cm/sより速い場合に適用することが望ましい。合金成長抑制金属4を用いた場合、多孔質金属体3への低融点金属1の合金成長速度は300℃で1E-10cm/s以下で合金成長する。合金成長抑制金属4の膜厚は2um以上で、多孔質金属体3が被膜されている必要がある。接合時に加熱・加圧する時間で、合金成長抑制金属4が拡散しきらないことが望ましい。低融点金属1と合金成長抑制金属4は反応に乏しいため、加熱・加圧での合金成長を抑制する。つまり、上記で示した製造プロセスで半導体素子11と絶縁基板14を接合した後、多孔質金属体3が低融点金属1に溶融するのを抑制する。
 これにより、加熱・加圧時に、低融点金属1と容易に合金成長する多孔質金属体3であっても、多孔質金属体3を合金成長抑制金属4で予め被膜することで、合金成長を抑制し、多孔質金属体3を残すことにより、金属ネットワークを維持し、一般的に脆いという特徴を有する金属間化合物を補強することができ、クラック発生を抑制することができる。
 また、合金成長抑制金属4で予め被膜する代わりに、図5に示すように、多孔質金属体3に合金成長を抑制する添加元素5を入れた低融点金属1をコーティングしてもよい。図5(a)は、合金成長を抑制する添加元素5を入れた低融点金属1を多孔質金属体3にコーティングした接合体50の断面図であり、図5(b)は、図5(a)の領域Sの拡大断面図である。
 金属間化合物10は、一般に、樹脂状、Scallap状に成長するため、金属間化合物に粒界が多数存在する。そのため、層状に合金成長させる必要がある。代表例として、低融点金属1がSn、多孔質金属体3がNiの場合には、添加元素5として、Al、またはZnなどを0.1wt%以下を添加することが望ましい。湿式めっきの場合は液中に低融点金属1と添加元素5を分散したものを用い、乾式めっきの場合は微量の添加元素5を含んだターゲットを用い、添加元素5を低融点金属1に含ませて、金属間化合物10間の粒界を少なくすることで金属間化合物10そのものの脆さを緩和させることができる。これにより、加熱・加圧の後、接合層51の信頼性を向上させることができる。
 以下、この発明の実施の形態1による接合体50を用いた半導体装置100について、実施例及び比較例を挙げて具体的に説明する。
 表1に、各実施例、および比較例におけるクラック進展率の結果を示す。クラック進展率は、ヒートサイクル試験による上限温度200℃、下限温度―30℃、温度差ΔTが230℃での所定サイクル数での結果になる。また、表1に示した結果をグラフで図示したものを図6に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~2、比較例7~8では、多孔質金属体としてNiを用いて、低融点金属としてSn、添加元素無しの場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。
 実施例1では、接合体に空孔率が65~70%のNiからなる多孔質金属体を用いた。低融点金属についてはSnを用いた。表1からわかるように、実施例1の接合体を用いた半導体装置においては、クラック進展率の結果は25%と低い値となっており、クラック耐性に優れていることが確認された。また、実施例2では、空孔率85~90%のNiからなる多孔質金属体を用いた。低融点金属についてはSnを用いた。表1からわかるように、実施例2の接合体を用いた半導体装置においては、クラック進展率の結果は22%と低い値となっており、クラック耐性に優れていることが確認された。一方、比較例7のように空孔率60~64%ではクラック進展率50%、比較例8のように空孔率92~95%ではクラック進展率41%と高い値を示し、多孔質金属体の空孔率が90%を超えた場合や、65%に満たない場合には、クラック耐性について満足することができないこと確認した。このように空孔率によって、クラック進展度が変わるのは、空孔率が低いと応力緩和性が低いため、クラックが進展し、逆に空孔率が大き過ぎると金属ネットワーク部が細く、またネットワーク箇所が少なくなってしまい、強度が低下するため、クラックが進展したと考えられる。なお、65~90%の空孔率が最適なのは、今回の実験にて明らかになった事であり、後述のように、多孔質金属体の材質、低融点金属の種類、添加元素を変えることでクラック進展率が変わるが、65~90%の空孔率という範囲が好適である点は変わらない。これは、温度差ΔTが230℃のヒートサイクル試験において接合部に加わる応力は接合部の物性値(引っ張り強度、弾性率、降伏応力)、接合構造によって変わる。今回の実験結果より、多孔質金属体の金属種や低融点金属の種類、組成よりも接合体全体の物性を大きく変えることができる多孔質金属体の空孔率がより重要な要素であると考えられる。
 また、比較例1~3のように低融点金属の種類を変えても、多孔質金属体を用いない場合や、比較例4~6のように多孔質金属体を用いても、多孔質金属体の空孔率が65%に満たない場合には、クラック耐性について満足することができないことを確認した。
 実施例3~4、比較例9~10では、多孔質金属体としてNiを用いて、低融点金属としてSn、添加元素Znを用いた場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例5~6、比較例11~12では、多孔質金属体としてNiを用いて、低融点金属としてSn、添加元素Alを用いた場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例7~8、比較例13~14では、多孔質金属体としてNiを用いて、低融点金属としてSn-0.75Cu、添加元素無しの場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例9~10、比較例15~16では、多孔質金属体としてNiを用いて、低融点金属としてSn-3Ag-0.5Cu、添加元素無しの場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例11~12、比較例17~18では、多孔質金属体としてAgを用いて、低融点金属としてSn、添加元素無しの場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例13~14、比較例19~20では、多孔質金属体としてAgを用いて、低融点金属としてSn、添加元素としてZnを用いた場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例15~16、比較例21~22では、多孔質金属体としてCuを用いて、低融点金属としてSn、添加元素無しの場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 実施例17~18、比較例23~24では、多孔質金属体としてCuを用いて、低融点金属としてSn、添加元素としてZnを用いた場合において空孔率を変えた接合サンプルのヒートサイクル試験結果を示している。上述のように、多孔質金属体の空孔率65~90%の範囲でクラック耐性に優れていることが確認された。
 以上のように、本発明の実施の形態1による接合体50を用いた半導体装置100では、空孔2が体積比率で65%以上、90%以下で設けられた多孔質金属体3と、Snを主成分とし、多孔質金属体3を被覆する低融点金属1とを備える接合体50を用いて形成された多孔質金属体3に基づく多孔質金属30をネットワークとし、多孔質金属30のネットワークの間を、多孔質金属体3の一部と低融点金属1とで形成された金属間化合物10で埋められた接合層により、半導体素子11を絶縁基板14に接合するようにしたので、還元雰囲気下で処理することで多孔質金属のネットワークを残すことができ、金属間化合物の脆弱性を多孔質金属のネットワークが支持しすることで、クラック発生を抑制して接合信頼性寿命を高めることができる。また、接合後に余計な低融点金属相を残さず、融点の高い金属間化合物に変えることで、高温耐久性に優れ、高い接合信頼性を有する半導体装置を得ることができる。
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
1 低融点金属、2 空孔、3 多孔質金属体、5 添加元素、11 半導体素子、14 絶縁基板、10 金属間化合物、30 多孔質金属、50 接合材、51 接合層、100 半導体装置

Claims (9)

  1.  多数の空孔を有し、接合時に溶融することの無い多孔質金属体と、
     前記多孔質金属体を内部まで被覆し、前記接合時に溶融する低融点金属とを備え、
     前記低融点金属と前記多孔質金属体が合金成長可能な金属同士であることを特徴とする接合体。
  2. 前記低融点金属は、Snを主成分とすることを特徴とする請求項1に記載の接合体。
  3.  前記多孔質金属体の前記空孔の空孔率が、65%以上、90%以下であることを特徴とする請求項1または請求項2に記載の接合体。
  4.  前記低融点金属と前記多孔質金属体との金属間化合物成長速度が1E-10cm/s以下であること特徴とする請求項1から請求項3のいずれか1項に記載の接合体。
  5.  前記多孔質金属体は、Ni、Ag、Cuを主成分とすることを特徴とする請求項1から請求項4のいずれか1項に記載の接合体。
  6.  前記低融点金属は、合金成長を抑制する添加元素を含むことを特徴とする請求項1から請求項5のいずれか1項に記載の接合体。
  7.  前記合金成長を抑制する添加元素として、AlまたはZnを含むことを特徴とする請求項6に記載の接合体。
  8.  被接合体間の接合厚みが、0.03mm以下で形成されていることを特徴とする請求項1から請求項7のいずれか1項に記載の接合体。
  9.  半導体素子と、絶縁基板と、請求項1から請求項8のいずれか1項に記載の接合体を用いて形成された前記多孔質金属体に基づく多孔質金属のネットワークの間を、前記多孔質金属体の一部と前記低融点金属とで形成された金属間化合物で埋められた、前記半導体素子と前記絶縁基板とを接合する接合層とを備えたことを特徴とする半導体装置。
PCT/JP2017/025213 2016-08-31 2017-07-11 接合体およびこれを用いた半導体装置 WO2018042890A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017559621A JPWO2018042890A1 (ja) 2016-08-31 2017-07-11 接合体およびこれを用いた半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-168743 2016-08-31
JP2016168743 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018042890A1 true WO2018042890A1 (ja) 2018-03-08

Family

ID=61300724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025213 WO2018042890A1 (ja) 2016-08-31 2017-07-11 接合体およびこれを用いた半導体装置

Country Status (2)

Country Link
JP (1) JPWO2018042890A1 (ja)
WO (1) WO2018042890A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155766A (ja) * 2018-03-14 2019-09-19 セーレン株式会社 導電性接合シートおよびこれを用いた接合方法
WO2019207996A1 (ja) * 2018-04-23 2019-10-31 株式会社日立パワーデバイス 半導体装置およびその製造方法
CN112091474A (zh) * 2020-09-07 2020-12-18 中国电子科技集团公司第三十八研究所 Ni合金泡沫强化Sn基复合焊料的制备方法及制得的复合焊料
CN112192085A (zh) * 2020-10-14 2021-01-08 哈尔滨工业大学(深圳) 一种复合焊料预成型片及其制备方法、及封装方法
DE102022122186A1 (de) 2022-09-01 2024-03-07 Plasma Innovations GmbH Verfahren zur Herstellung einer Leiterplatte

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298962A (ja) * 2003-03-17 2004-10-28 Mitsubishi Materials Corp はんだ接合材及びこれを用いたパワーモジュール基板
JP2008200728A (ja) * 2007-02-21 2008-09-04 Mitsubishi Materials Corp はんだ接合材及びその製造方法並びにこれを用いたパワーモジュール基板
JP2012035291A (ja) * 2010-08-05 2012-02-23 Denso Corp 半導体装置接合材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298962A (ja) * 2003-03-17 2004-10-28 Mitsubishi Materials Corp はんだ接合材及びこれを用いたパワーモジュール基板
JP2008200728A (ja) * 2007-02-21 2008-09-04 Mitsubishi Materials Corp はんだ接合材及びその製造方法並びにこれを用いたパワーモジュール基板
JP2012035291A (ja) * 2010-08-05 2012-02-23 Denso Corp 半導体装置接合材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155766A (ja) * 2018-03-14 2019-09-19 セーレン株式会社 導電性接合シートおよびこれを用いた接合方法
JP7007221B2 (ja) 2018-03-14 2022-02-10 セーレン株式会社 導電性接合シートおよびこれを用いた接合方法
WO2019207996A1 (ja) * 2018-04-23 2019-10-31 株式会社日立パワーデバイス 半導体装置およびその製造方法
CN112091474A (zh) * 2020-09-07 2020-12-18 中国电子科技集团公司第三十八研究所 Ni合金泡沫强化Sn基复合焊料的制备方法及制得的复合焊料
CN112192085A (zh) * 2020-10-14 2021-01-08 哈尔滨工业大学(深圳) 一种复合焊料预成型片及其制备方法、及封装方法
DE102022122186A1 (de) 2022-09-01 2024-03-07 Plasma Innovations GmbH Verfahren zur Herstellung einer Leiterplatte

Also Published As

Publication number Publication date
JPWO2018042890A1 (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
WO2018042890A1 (ja) 接合体およびこれを用いた半導体装置
CN106493443B (zh) 一种复合中间层钎焊陶瓷或陶瓷基复合材料与金属的方法
KR101528515B1 (ko) 접합 방법, 접합 구조, 전자 장치, 전자 장치의 제조 방법 및 전자 부품
JP5943066B2 (ja) 接合方法および接合構造体の製造方法
JP4985129B2 (ja) 接合体および電子モジュールならびに接合方法
US20100096043A1 (en) High Temperature Solder Materials
JP5943065B2 (ja) 接合方法、電子装置の製造方法、および電子部品
EP2799181B1 (en) Sn-Cu-Al-Ti BASED LEAD-FREE SOLDER ALLOY
JP2018524250A (ja) 複合材料を製作するための方法
JP6460578B2 (ja) 接合材料、それを用いた接合方法、接合材料ペースト及び半導体装置
JP4959539B2 (ja) 積層はんだ材およびそれを用いたはんだ付方法ならびにはんだ接合部
JP5231727B2 (ja) 接合方法
JP4769469B2 (ja) Au−Sn系ろう材による接合方法
WO2021025081A1 (ja) はんだ-金属メッシュ複合材及びその製造方法
JP2018111111A (ja) 金属接合体及び半導体装置の製造方法
JP2015080812A (ja) 接合方法
JP4890221B2 (ja) ダイボンド材
Hata et al. Interfacial reactions in Sn-57Bi-1Ag solder joints with Cu and Au metallization
EP4098759A1 (en) High reliability lead-free solder alloy for electronic applications in extreme environments
JP2009039769A (ja) 接合シート
JP2007260695A (ja) 接合材料、接合方法及び接合体
WO2016068272A1 (ja) 封止用ペースト、ろう接合材とその製造方法、封止用蓋材とその製造方法、及びパッケージ封止方法
JP2018176175A (ja) PbフリーZn−Al系はんだ合金を用いた半導体素子と基板との接合方法
JP2007048787A (ja) はんだ接合方法
JP2017185520A (ja) Au−Sn系はんだ合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017559621

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845900

Country of ref document: EP

Kind code of ref document: A1