WO2018042877A1 - 気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント - Google Patents

気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント Download PDF

Info

Publication number
WO2018042877A1
WO2018042877A1 PCT/JP2017/024822 JP2017024822W WO2018042877A1 WO 2018042877 A1 WO2018042877 A1 WO 2018042877A1 JP 2017024822 W JP2017024822 W JP 2017024822W WO 2018042877 A1 WO2018042877 A1 WO 2018042877A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase growth
growth apparatus
attachment
cap
vapor phase
Prior art date
Application number
PCT/JP2017/024822
Other languages
English (en)
French (fr)
Inventor
大西 理
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201780054111.2A priority Critical patent/CN109661716B/zh
Priority to JP2018536990A priority patent/JP6628065B2/ja
Priority to US16/325,360 priority patent/US10665460B2/en
Priority to KR1020197006234A priority patent/KR102301873B1/ko
Publication of WO2018042877A1 publication Critical patent/WO2018042877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a vapor phase growth apparatus, an epitaxial wafer manufacturing method, and an attachment for a vapor phase growth apparatus.
  • the pattern formed on the semiconductor substrate that is the basis of the semiconductor integrated circuit is miniaturized, and the quality required for the semiconductor substrate is becoming more severe.
  • the demand for flatness is particularly high.
  • the epitaxial wafer used for various uses among semiconductor substrates it is a subject to make the flatness of a substrate and the flatness of an epitaxial layer compatible.
  • the flatness of the epitaxial layer greatly depends on the film thickness distribution of the epitaxial layer. Therefore, in order to satisfy the required flatness of the epitaxial layer, it is necessary to improve the uniformity of the film thickness distribution of the epitaxial layer.
  • a single wafer type vapor phase growth apparatus is used.
  • a mechanism for supplying a source gas for growing an epitaxial layer on the substrate, a reactor for growing an epitaxial layer on the substrate by the supplied source gas, and a mechanism for discharging the gas in the reactor It is roughly composed of
  • the mechanism for supplying the raw material gas includes an injection cap (hereinafter referred to as “cap”), a baffle, and an injection insert (hereinafter referred to as “insert”) in order from the upstream side of the raw material gas.
  • the cap has a space through which the source gas passes when the source gas is introduced into the reaction furnace.
  • the baffle is a plate-like member positioned between the cap and the insert, and has a plurality of through holes that guide the raw material gas in the cap to the insert. The flow of the raw material gas toward the insert is adjusted by this through hole.
  • the insert has a plurality of flow paths that guide the raw material gas that has passed through the through holes of the baffle to the inlet to the reaction furnace. The raw material gas is guided to the reaction furnace through these members.
  • the reactor to which the source gas is guided has an inlet through which the source gas flowing from the upstream through the reactor enters, an outlet located above the inlet and on the side of the reactor from the inlet to the reactor, and an inlet and an outlet. And a step portion located in the passage.
  • the raw material gas introduced from the insert to the inlet of the reactor is guided into the reactor through the step in the passage leading to the reactor.
  • An epitaxial layer is grown on the substrate by reacting the introduced source gas on the substrate.
  • the gas generated by the reaction of the source gas in the reaction furnace and the unreacted source gas are discharged out of the reaction furnace by a mechanism for discharging the gas.
  • the flow of the material gas subdivided via the baffle passes through the insert and is guided onto the substrate, the flow of the material gas depends on the number of flow paths of the insert. Therefore, for example, 10 speed irregularities corresponding to the number of flow paths of the insert are formed in the raw material gas flowing in the in-plane direction of the substrate, and the velocity distribution of the raw material gas introduced onto the substrate is determined by the eventuality. ing. Further, the raw material gas introduced into the inlet of the reaction furnace is guided to the reaction furnace over the stepped part in the passage leading to the inside of the reaction furnace, thereby being influenced by the shape of the stepped part.
  • the step portion positioned in the passage is curved from the first surface facing the inlet of the passage by being curved in an arc around the axis extending in the vertical direction on the reactor side, and from the upper end of the first surface.
  • a second surface extends to the exit of the passage.
  • the shape of the top dome which is a component constituting the ceiling of the reactor, has been optimized.
  • This optimization resulted in an overall improvement in the film thickness distribution in the epitaxial layer grown on the substrate.
  • a plurality of unevenness corresponding to the flow path of the insert is still formed in the velocity of the raw material gas introduced in the in-plane direction of the substrate by the insert.
  • the film thickness of the epitaxial layer is concentrically corresponding to the uneven speed of the source gas. Unevenness occurs.
  • An epitaxial wafer in which such unevenness has occurred cannot satisfy the required flatness, and therefore it is necessary to make the variation in the speed of the source gas supplied onto the substrate uniform.
  • Patent Documents 2 and 3 disclose using a quartz member that is relatively easy to process as a member for introducing the raw material gas into the reactor.
  • Patent Documents 2 and 3 since the flow path of the raw material gas for supplying the raw material gas to the reaction furnace is not formed in a tournament shape, the unevenness in speed between the raw material gases supplied into the reaction furnace is effective. It cannot be improved.
  • An object of the present invention is to provide a vapor phase growth apparatus, a method for manufacturing an epitaxial wafer, and an attachment for a vapor phase growth apparatus that enable cost-effective uniformity of the thickness of an epitaxial layer grown on a substrate. Is to provide.
  • the vapor phase growth apparatus of the present invention is A reactor having an inlet through which a source gas is introduced and growing an epitaxial layer on the substrate with the source gas; A plurality of flow paths extending from the inlet to the outside of the inlet to guide the raw material gas to the reactor, An injection cap having an introduction path for introducing a raw material gas toward a plurality of flow paths; A quartz attachment that has a connection path that can be connected to the introduction path and is attached to the injection cap; With The connection path is connected to the introduction path in a state where the attachment is attached to the injection cap, and is branched from the introduction path side toward the downstream side of the raw material gas so as to correspond to the plurality of flow paths. It is the flow path connected to.
  • the speed can be increased between the raw material gases flowing through each branched flow path. It can be made uniform effectively. Therefore, the speed of the source gas introduced into the substrate is made uniform, and the uniformity of the film thickness of the epitaxial layer grown on the substrate can be improved. Since the attachment attached to the injection cap is made of quartz, for example, the cost can be reduced as compared with the case where a tournament-like flow path is formed in the stainless steel injection cap itself. Therefore, it is possible to make the uniformity of the film thickness of the epitaxial layer grown on the substrate favorable cost-effectively.
  • “tournament shape” refers to, for example, each point located from the top to the bottom of the bottom of a complete bifurcated tournament table (equivalent single-ignition tournament table). This means the overall shape of the branched line.
  • the injection cap is made of stainless steel.
  • the injection cap and the attachment are made of different materials, and the production cost of the constituent members in the vapor phase growth apparatus can be reduced.
  • the plurality of flow paths has a total number of powers of 2.
  • the source gas flowing through each flow path The speed can be effectively equalized between each other. Therefore, the speed between the source gases introduced into the substrate is made uniform, and the uniformity of the film thickness of the epitaxial layer grown on the substrate can be improved.
  • the plurality of flow paths is 32 or more.
  • an epitaxial layer is grown on a substrate using the vapor phase growth apparatus described above.
  • an epitaxial wafer having a good film thickness uniformity can be manufactured cost-effectively.
  • the attachment for the vapor phase growth apparatus of the present invention is: A reactor having an inlet through which a source gas is introduced and growing an epitaxial layer on the substrate with the source gas; A plurality of flow paths extending from the inlet to the outside of the inlet to guide the raw material gas to the reactor, An injection cap having an introduction path for introducing a raw material gas toward a plurality of flow paths; An attachment for a vapor phase growth apparatus attached to an injection cap of a vapor phase growth apparatus comprising: The attachment is made of quartz, Connection with the attachment attached to the injection cap and connection to the introduction path, and branching from the introduction path side to the downstream side of the raw material gas in a tournament shape corresponding to the plurality of flow paths to connect to the plurality of flow paths A road is provided.
  • the uniformity of the film thickness of the epitaxial layer grown on the substrate can be improved cost-effectively as described above.
  • FIG. 1 is a schematic cross-sectional view showing a part of a vapor phase growth apparatus as an example of the present invention.
  • FIG. 1B is a schematic plan view showing a member through which a gas passes toward the substrate of the vapor phase growth apparatus of FIG. 1A.
  • the schematic cross section which shows the injection cap of FIG. 1B.
  • the schematic cross section which shows the attachment of FIG. 1B.
  • FIG. 2B is a schematic cross-sectional view in which the attachment of FIG. 2B is attached to the injection cap of FIG. 2A.
  • the schematic front view which shows the injection insert of FIG. 1B. 3B is a schematic cross-sectional view of IIIB-IIIB in FIG. 3A.
  • the schematic cross section corresponding to FIG. 1B which shows an example of the vapor phase growth apparatus in a comparative example.
  • the graph which shows the film thickness distribution of the epitaxial wafer measured in the Example.
  • the graph which shows the film thickness distribution of the epitaxial wafer measured by the comparative
  • FIG. 1A shows a single wafer type vapor phase growth apparatus 1 which is an example of the present invention.
  • the epitaxial layer is vapor-phase grown on the substrate W by the vapor phase growth apparatus 1, and an epitaxial wafer is manufactured.
  • the vapor phase growth apparatus 1 includes a reaction furnace 2 that accommodates a substrate W.
  • the reaction furnace 2 is formed in a container shape.
  • the reactor 2 has a cylindrical or annular base ring 3, an upper dome 4 that covers the base ring 3 from the upper side and forms the ceiling of the reactor 2, and a base ring 3 that is covered from the lower side.
  • Rowardome 5 constituting the bottom side of the furnace 2.
  • the reaction furnace 2 is provided with the support
  • the support column P extends toward the outside of the reaction furnace 2.
  • the base ring 3 is a member that serves as a base constituting the reaction furnace 2.
  • the base ring 3 includes an introduction port 3 a for introducing gas into the base ring 3 and a discharge port 3 b for discharging the gas inside the base ring 3 to the outside of the base ring 3.
  • the introduction port 3a and the discharge port 3b are formed as a center line of the base ring 3, for example, an opening having a curved surface with an axis O extending in the vertical direction as an axis, that is, an opening formed in an arch shape. .
  • the introduction port 3a and the introduction passage 8 described later are perpendicular to both the gas flow direction on the surface of the substrate W (the left-right direction on the paper surface in FIG. 1A) and the axis O (the vertical direction on the paper surface in FIG.
  • the width in one direction is not less than the diameter of the substrate W and not more than the outer diameter of the preheat ring 12 described later.
  • the upper liner 6 and the lower liner 7 are located inside the base ring 3.
  • the upper liner 6 and the lower liner 7 include an introduction passage 8 for introducing the gas introduced from the introduction port 3a into the reaction furnace 2 and a discharge passage 9 for guiding the gas in the reaction furnace 2 to the discharge port 3b for discharging the gas inside the reaction furnace 2 to the outside. And a member for forming.
  • the upper liner 6 is formed in an annular shape that can be fitted into the inner periphery of the base ring 3.
  • the upper liner 6 is positioned on the upper dome 4 side in a state of being fitted inside the base ring 3.
  • the lower liner 7 is formed in an annular shape that can be fitted inside the base ring 3.
  • the lower liner 7 is placed on the lower ward 5 while being fitted inside the base ring 3.
  • the introduction passage 8 formed by the upper liner 6 and the lower liner 7 includes an inlet 8a that communicates with the reactor 2, and an outlet 8b that is located above the inlet 8a and closer to the reactor 2 than the inlet 8a and reaches the reactor 2. And a passage connecting the inlet 8a and the outlet 8b.
  • the introduction passage 8 includes a step portion 8c located in the passage connecting the inlet 8a and the outlet 8b.
  • the inlet 8 a is formed in an arcuate curved opening with the axis O as an axis so as to correspond to the inlet 3 a of the base ring 3.
  • the step portion 8c includes a first surface 8c1 facing the inlet 8a and a second surface 8c2 extending from the upper end of the first surface 8c1 to the outlet 8b.
  • the first surface 8c1 is an arcuate curved surface with the axis O as an axis
  • the second surface 8c2 is a horizontal plane. Since the discharge passage 9 formed by the upper liner 6 and the lower liner 7 is the same as the introduction passage 8, description thereof is omitted.
  • a susceptor 10 on which the substrate W is placed, a support portion 11 that supports the susceptor 10, and a preheat ring 12 that is surrounded by the susceptor 10 are provided.
  • the support portion 11 can be rotated around the axis O by driving means (not shown).
  • Lamps 13 serving as heating sources are arranged above and below the reaction furnace 2 in FIG. 1A, and a mechanism for supplying gas into the reaction furnace 2 and gas inside the reaction furnace 2 are arranged on the left and right sides outside the reaction furnace 2.
  • a discharging mechanism is located. In FIG. 1A, a part of a mechanism for supplying gas and a part for discharging gas are omitted.
  • FIG. 1B is a schematic diagram for explaining a mechanism for supplying various gases for growing an epitaxial layer on the substrate W.
  • FIG. FIG. 1B is a schematic plan view showing each member through which gas toward the substrate W passes.
  • the gas to be supplied includes an injection cap 14 (hereinafter referred to as “cap 14”), an attachment 15, an injection insert 16 (hereinafter referred to as “insert 16”), a lower liner 7 and a preheat in FIG. 1B.
  • the ring 12 and the susceptor 10 are passed through each member in this order to reach the substrate W.
  • the substrate W, the susceptor 10, the preheat ring 12, and the lower liner 7 are illustrated in a semicircular shape.
  • the cap 14 is a member into which a gas supplied to the substrate W is introduced through a mass flow controller (not shown), and the gas introduced into the cap 14 is guided from the cap 14 to the attachment 15.
  • the cap 14 is made of stainless steel and is a commercially available genuine injection cap. As shown in FIG. 2A, the cap 14 includes an introduction path 14a into which a gas supplied by the mass flow controller is introduced, and an attachment portion 14b to which a part of the attachment 15 is fitted and attached.
  • the attachment 15 shown in FIG. 2B is a quartz member that can be attached to and detached from the cap 14, and is connected to the branch path 15 a for distributing the gas introduced from the introduction path 14 a (FIG. 2A) and the cap 14 (FIG. 2A).
  • a mounting portion 15b to be attached is provided.
  • the branch path 15a is divided into three groups, and only the center group is configured as a tournament-shaped channel F having many branches once.
  • a branch channel B is located at the lowest point of the lowest stage in each tournament channel F.
  • the branch flow path B is a power of 2 (32 lines) in the entire branch path 15a. As shown in FIG.
  • the attachment portion 15 b is a portion for attaching the attachment 15 to the cap 14, and the attachment portion 15 b is fitted into the attachment portion 14 b and the attachment 15 is attached to the cap 14.
  • the introduction path 14 a of the cap 14 is connected to the upstream side of the branch path 15 a (flow path located at the uppermost stage of the tournament), and gas flows from the cap 14 to the attachment 15. It becomes possible.
  • the attachment 15 attached to the cap 14 can be detached from the cap 14.
  • the branch path 15a corresponds to the “connection path” of the present invention.
  • FIG. 3A and 3B are schematic views of the insert 16.
  • the insert 16 has a pair of flat plates P1 and P2 each having an arcuate side S1 and an opposing side S2 facing the side S1.
  • Each of the plates P1 and P2 includes a plurality of flow paths 16a penetrating linearly from the opposite side S2 toward the side S1.
  • the same number of channels 16a are formed in each of the plates P1 and P2.
  • the plates P1 and P2 are arranged with a gap between each other, and as shown in FIG. 1B, the column P extends from the reaction furnace 2 toward the gap between the pair of plates P1 and P2 and is formed between the pair of flow paths 16a. It is located so as to be sandwiched between.
  • the plurality of flow paths 16a in total of the two plates P1 and P2 are formed in a number corresponding to the branch flow paths B shown in FIG. 2C, and one end communicates with the corresponding branch flow path B, while the other end is connected. As shown in FIG. 1A, it communicates with the inlet 8 a of the introduction passage 8. Each flow path 16a extends in the horizontal direction from the inlet 8a of the introduction passage 8 toward the outside of the inlet 8a (outside of the reaction furnace 2). At least a part of the insert 16 is inserted into the introduction port 3 a and attached to the reaction furnace 2. Further, as shown in FIG. 1B, the plurality of flow paths 16a are arranged in parallel along the horizontal plane.
  • the gas After passing through the cap 14, the attachment 15, and the insert 16, the gas is supplied to the substrate W via the lower liner 7, the preheat ring 12, and the susceptor 10.
  • vapor phase growth gas is supplied into the reaction furnace 2 during vapor phase growth.
  • a raw material gas that is a raw material of the silicon single crystal film
  • a carrier gas that dilutes the raw material gas and a dopant gas that imparts conductivity to the single crystal film are provided.
  • the vapor phase growth apparatus 1 has been described above.
  • the substrate W is placed on the susceptor 10 of the reaction furnace 2.
  • a vapor growth gas whose flow rate is controlled by a mass flow controller (not shown) is supplied toward the reaction furnace 2.
  • the vapor phase growth gas is guided to the uppermost stage of each tournament-shaped flow path F divided into three sets of attachments 15 through the introduction path 14a of the cap 14 shown in FIG. Vapor growth gas is distributed toward the path B.
  • the vapor phase growth gas is divided into 32 flows (branch channel B) and introduced into each of the 32 channels 16a in the insert 16 shown in FIG.
  • the vapor growth gas that has passed through the flow path 16a is supplied into the reaction furnace 2 from the introduction passage 8 of FIG. 1A.
  • the silicon single crystal thin film is vapor-grown on the substrate W by the vapor growth gas supplied in this way, and a silicon epitaxial wafer is manufactured.
  • the branch passage 15a of FIG. 2C in which the vapor growth gas flows from the upstream side to the downstream side of the vapor growth gas branches into 32 branch passages B in a tournament form the plurality of flow paths 16a of the insert 16 are connected. Therefore, the velocity between the vapor phase growth gases flowing through the plurality of flow paths 16a can be effectively made uniform. Therefore, the speed of the vapor phase growth gas introduced into the substrate W is made uniform, and the uniformity of the film thickness of the epitaxial layer grown on the substrate W can be improved. Further, since the attachment 15 attached to the cap 14 is made of quartz, the cost is reduced to about a quarter of the case where a tournament-like flow path such as the attachment 15 is formed in the stainless cap 14 itself.
  • the present invention to vapor phase growth on a substrate W having a diameter of 200 mm or more.
  • an epitaxial wafer was produced by the vapor phase growth apparatus 1 using a silicon single crystal substrate having a diameter of 300 mm and a crystal plane orientation (100), and the film thickness distribution of the produced epitaxial wafer was measured.
  • the film thickness at 33 measurement points was measured along the diameter direction of the wafer, excluding an area of 5 mm from the edge of the produced wafer.
  • the film thickness uniformity (%) and film thickness variation (%) shown below were calculated from each measured film thickness, and the film thickness distribution of the epitaxial wafer was obtained.
  • the film thickness uniformity (%) is obtained by subtracting the minimum film thickness from the maximum film thickness based on the maximum film thickness and minimum film thickness obtained by measurement.
  • a value obtained by dividing 100 by the value obtained by dividing by the value obtained by adding is used as a value indicating the uniformity (%) of the film thickness.
  • the film thickness variation (%) was set to the following value. Specifically, a value obtained by multiplying 100 by a value obtained by subtracting 1 from the value obtained by dividing the film thickness at one measured measurement point by the average value of the film thickness at 33 measurement points was calculated. And the value which further subtracted 100 from the calculated value was made into the value which shows the dispersion
  • an epitaxial wafer was produced in the same manner as in the example except that the conventional vapor phase growth apparatus 101 shown in FIG. 4 was used, and the film thickness distribution of the epitaxial wafer was measured.
  • the vapor phase growth apparatus 101 will be specifically described.
  • the same components as those in the vapor phase growth apparatus 1 are denoted by the same reference numerals and description thereof is omitted.
  • the vapor phase growth apparatus 101 uses an injection cap 114 (hereinafter referred to as “cap 114”), a baffle BP, and an injection insert 116 (hereinafter referred to as “insert 116”) instead of the cap 14, the attachment 15, and the insert 16. ) And a partition plate 117.
  • the cap 114 has a space (not shown) through which the vapor growth gas passes when the vapor growth gas is introduced into the reaction furnace 2.
  • the baffle BA is a plate-like member located between the cap 114 and the insert 116 and has a plurality of through holes H that guide the vapor growth gas in the cap 114 to the insert 116. The flow of the vapor growth gas toward the insert 116 is adjusted by the through hole H.
  • the insert 116 is formed as two flat plates P11 and P12 having an arcuate side S1 and an opposing side S2 facing the side S1.
  • the insert 116 includes a plurality of flow paths 116a penetrating from the facing side S2 toward the side S1.
  • the support column P is positioned so as to extend from the reaction furnace 2 toward the gap between the flat plates P11 and P12 and be sandwiched between the pair of flow paths 116a.
  • the partition plates 117 are plate-like members that sort the gas flow from the insert 116 toward the reaction furnace 2, and four partition plates 117 are arranged.
  • a vapor phase growth apparatus 101 similar to the vapor phase growth apparatus 1 was used except for the above configuration.
  • the uniformity of film thickness and the variation in film thickness are as shown in FIG. 5A. It became good. Specifically, the film thickness uniformity was 0.55. In addition, the variation in film thickness was smoothed.
  • the conventional vapor phase growth apparatus 101 that does not guide the vapor phase growth gas supplied to the substrate W to the substrate W by being branched into a tournament as in the comparative example is used, as shown in FIG. Thickness uniformity and film thickness variation did not improve. Specifically, the film thickness uniformity was 1.07, and the film thickness variation was not sufficiently smoothed. Therefore, in the example, the uniformity of the film thickness distribution could be improved to about half that of the comparative example.

Abstract

気相成長装置1は、反応炉2と、複数の流路16aと、キャップ14と、アタッチメント15と、を備える。反応炉2は、気相成長ガスが導入される入口8aを有して気相成長ガスにより基板Wにエピタキシャル層を成長する。複数の流路16aは、入口8aから入口8aの外側に延びて反応炉2に気相成長ガスを導く。キャップ14は、複数の流路16aに向けて原料ガスを導く導入路14aを有する。アタッチメント15は、導入路14aに接続可能な分岐路15aを有してキャップ14に装着される。分岐路15aは、アタッチメント15がキャップ14に装着された状態で導入路14aに接続し、導入路14a側から原料ガスの下流側に向けてトーナメント状に複数の流路16aに対応して分岐して複数の流路16aに接続する。これにより、基板上に成長させるエピタキシャル層の膜厚の均一性を費用対効果よく良好にすることが可能となる気相成長装置を提供する。

Description

気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント
 本発明は、気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメントに関する。
 半導体集積回路の微細化に伴い、半導体集積回路の元になる半導体基板に形成されるパターンが微細化され、半導体基板に求められる品質が一層厳しくなっている。半導体基板に求められる品質の中では、特に平坦度に対する要求が極めて高度になっている。そして、半導体基板の中でも多様な用途に用いられるエピタキシャルウェーハにおいては、基板の平坦度とエピタキシャル層の平坦度を両立させることが課題である。そして、このエピタキシャル層の平坦度は、エピタキシャル層の膜厚分布により大きく左右される。よって、要求されるエピタキシャル層の平坦度を満たすため、エピタキシャル層の膜厚分布の均一性をより良好にすることが必要である。
 現在、直径300mmのエピタキシャルウェーハを製造する場合には、枚葉式の気相成長装置が使用されている。このような気相成長装置では、基板にエピタキシャル層を成長させる原料ガスを供給する機構と、供給される原料ガスにより基板にエピタキシャル層を成長する反応炉と、反応炉内のガスを排出する機構と、により凡そ構成されている。原料ガスを供給する機構としては、原料ガスの上流側から順にインジェクションキャップ(以下、「キャップ」とする。)と、バッフルと、インジェクションインサート(以下、「インサート」とする。)が備わる。キャップは、原料ガスを反応炉内に導入する際に原料ガスが通過する空間を有する。バッフルは、キャップとインサートの間に挟まれて位置する板状部材であり、キャップ内の原料ガスをインサートに導く複数の貫通孔を有する。この貫通孔によりインサートに向かう原料ガスの流れが調整される。インサートは、バッフルの貫通孔を通過した原料ガスを反応炉への入口に導く複数本の流路を有する。これらの各部材を経由して反応炉に原料ガスが導かれる。原料ガスが導かれる反応炉は、反応炉内に通じて上流から流れる原料ガスが流入する入口と、入口の上方かつ入口より反応炉側に位置して反応炉内に至る出口と、入口と出口とを接続する通路と、通路内に位置する段部を有する。インサートから反応炉の入口に導かれた原料ガスは、反応炉内に至る通路内の段部を乗り越えて反応炉内に導かれる。このようにして導かれた原料ガスを、基板上で反応させることで基板上にエピタキシャル層を成長する。反応炉内で原料ガスが反応して生成されたガスと未反応に終わった原料ガスは、ガスを排出する機構により反応炉外に排出される。
 このような枚葉式の気相成長装置を用いて膜厚分布がより均一化されたエピタキシャル層を成長する場合には、反応炉内の基板の表面上に均一な原料ガスの流れを導くことが最重要である。現状の枚葉式の気相成長装置において、キャップに一旦導入された原料ガスの流れはバッフルで任意の流れにされ、インサートにおける複数本(例えば、10本)の流路に流入する。しかしながら、バッフルを経由して形成される原料ガスの流れ自体は、キャップ内での圧力バランスに支配されることからバッフルの貫通孔の径に対応した速度を得ることができない。更に、バッフルを経由して細分化された原料ガスの流れは、インサートを通過して基板上に導かれるため、原料ガスの流れがインサートの流路数に依存してしまう。よって、基板の面内方向に流れる原料ガスにインサートの流路数に対応する、例えば、10本の速度のムラが形成され、基板上に導入される原料ガスの速度分布は成り行きで決まってしまっている。また、反応炉の入口に導入された原料ガスは、反応炉内に通じる通路内の段部を乗り越えて反応炉内に導かれることで、段部の形状の影響を受けた流れとなる。具体的には、通路内に位置する段部は、反応炉側において鉛直方向に延びる軸線を中心として円弧状に湾曲して通路の入口に対向する第1面と、その第1面の上端から通路の出口に延びる第2面を有する。そのため、この通路に導かれた原料ガスの流れは、段部を乗り越えようとする際に第1面によって通路の幅方向の外側に寄せられてしまう。よって、反応炉の外で制御した原料ガスの速度分布が反応炉内に導入される前に変化してしまい、基板上に導入する原料ガスの速度分布を細かく制御することが困難になる。このような気相成長装置における構造的な制約と原料ガスの速度分布を制御する制御の困難性から、先端部品に用いられるエピタキシャルウェーハに求められるエピタキシャル層の膜厚分布の均一性を満たすことが困難になってきている。
 そこで、このような膜厚分布の均一性を満たすために、反応炉の天井を構成する部品であるトップドームの形状を最適化することが行われてきた。この最適化により基板上に成長するエピタキシャル層における膜厚分布の全体的な改善が見られた。しかし、インサートにより基板の面内方向に導入される原料ガスの速度には、インサートの流路に対応した複数本のムラが依然として形成される。このように速度のムラが生じた原料ガスにより、例えば、鉛直方向に延びる軸線周りに回転する基板にエピタキシャル層を成長すると、原料ガスの速度ムラに対応して同心円状にエピタキシャル層の膜厚にムラが生じてしまう。そして、このようなムラが生じたエピタキシャルウェーハは、要求される平坦度を満たすことができないため、基板上に供給される原料ガスの速度のばらつきを均一化することが必要となっている。
 そのため、キャップに形成される流路に改良を施すことで基板上に導入される原料ガスの速度を均一化させることが行われてきた。例えば、キャップの下流側(反応炉側)に位置する複数の出口に通じるキャップ内の流路を特許文献1のようにキャップの上流側に向けてトーナメント状に合流させた流路を採用する。これにより、キャップ内において原料ガスが上流側から下流側に向かうに連れて原料ガスが分配され、キャップの各出口から供給される原料ガスの相互間の速度のムラを改善することができる。その結果、基板上に成長するエピタキシャル層の膜厚分布を改善するのに効果がある。
 しかしながら、特許文献1のようなトーナメント状の流路が形成されたキャップを作製する場合は、ステンレス製の素材の削り出し及び拡散接合等といった高度な技術が必要となり、費用が高くなる。また、このようなキャップを用いる場合には、このようなキャップに対応する他の構成部品が必要となる。例えば、キャップのトーナメント状の流路に対応した数の流路を有するインサートが必要となる。また、このインサートから原料ガスが導入される反応炉内に通じる通路(段部を有する通路)を構成する部材の大規模改造が必要となる。そして、これらに対応させて反応炉の天井を構成する部材であるトップドームの改造が必要となるとともに、反応炉のベースとなる部材であるベースリングの改造が必要となる。加えて、このベースリングの改造の際には、ベースリングの上げ下ろしの人的な工数も必要になる。このようなことから、特許文献1のようなトーナメント状の流路を有するキャップを用いると、必要な部品の作製及び交換に大きな費用と労力を要することになる。また、稼働させる気相成長装置の中には、先端部品に用いられるような高品質のエピタキシャルウェーハを製造しないものもある。よって、このような大きな費用と労力を要するキャップを全ての気相成長装置に対して安易に展開することはできない。
 ところで、特許文献2及び3には、原料ガスを反応炉内に導くための部材に加工が比較的容易な石英製の部材を用いるものが開示されている。
特開2009-277730号公報 特開2007-12664号公報 特開2003-168650号公報
 しかし、特許文献2及び3では、反応炉に原料ガスを供給する原料ガスの流路はトーナメント状に形成されていないため、反応炉内に供給される原料ガス相互間における速度のムラを効果的に改善することはできない。
 本発明の課題は、基板上に成長させるエピタキシャル層の膜厚の均一性を費用対効果よく良好にすることが可能となる気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメントを提供することにある。
課題を解決するための手段及び発明の効果
 本発明の気相成長装置は、
 原料ガスが導入される入口を有して原料ガスにより基板にエピタキシャル層を成長する反応炉と、
 入口から入口の外側に延びて反応炉に原料ガスを導く複数の流路と、
 複数の流路に向けて原料ガスを導く導入路を有するインジェクションキャップと、
 導入路に接続可能な接続路を有してインジェクションキャップに装着される石英製のアタッチメントと、
 を備え、
 接続路は、アタッチメントがインジェクションキャップに装着された状態で導入路に接続するとともに、導入路側から原料ガスの下流側に向けてトーナメント状に複数の流路に対応して分岐して複数の流路に接続する流路であることを特徴とする。
 本発明の気相成長装置によれば、アタッチメントの接続路により上流側から下流側に向けてトーナメント状に流路を分岐させることで、分岐した各流路を流れる原料ガスの相互間において速度を効果的に均一化することができる。よって、基板に導入される原料ガスの速度が均一化され、基板上に成長させるエピタキシャル層の膜厚の均一性を良好にすることが可能となる。そして、インジェクションキャップに装着されるアタッチメントが石英製であるため、例えば、ステンレス製のインジェクションキャップ自体にトーナメント状の流路を形成する場合よりも費用を抑えることができる。したがって、基板上に成長させるエピタキシャル層の膜厚の均一性を費用対効果よく良好にすることが可能となる。なお、本明細書において「トーナメント状」とは、例えば、完全二分岐構造のトーナメント表(均等なシングルイリミネーショントーナメント表)の最上段から最下段の最下点に位置するそれぞれの地点に向けて枝分かれした線の全体形状を意味する。
 本発明の実施態様では、インジェクションキャップは、ステンレス製である。
 これによれば、インジェクションキャップとアタッチメントとが異なる素材で作製され、気相成長装置における構成部材の作製費用を低減させることができる。
 本発明の実施態様では、複数の流路は、合計で2の累乗の本数である。
 これによれば、アタッチメントの接続路により上流側から下流側に向けてトーナメント状に流路を分岐させて合計で2の累乗の複数の流路とすることで、各流路を流れる原料ガスの相互間において速度を効果的に均一化することができる。そのため、基板に導入される原料ガスの相互間における速度が均一化され、基板上に成長させるエピタキシャル層の膜厚の均一性を良好にすることが可能となる。
 本発明の実施態様では、複数の流路は、32本以上である。
 これによれば、基板上に成長させるエピタキシャル層の膜厚の均一性をより良好にするのに効果的である。
 本発明の実施態様では、上記の気相成長装置を使用して基板にエピタキシャル層を成長させる。
 これによれば膜厚の均一性が良いエピタキシャルウェーハを費用対効果良く製造することが可能となる。
 また、本発明の気相成長装置用のアタッチメントは、
 原料ガスが導入される入口を有して原料ガスにより基板にエピタキシャル層を成長する反応炉と、
 入口から入口の外側に延びて反応炉に原料ガスを導く複数の流路と、
 複数の流路に向けて原料ガスを導く導入路を有するインジェクションキャップと、
 を備える気相成長装置のインジェクションキャップに装着される気相成長装置用のアタッチメントであって、
 アタッチメントは石英製であり、
 アタッチメントがインジェクションキャップに装着された状態で導入路に接続するとともに、導入路側から原料ガスの下流側に向けてトーナメント状に複数の流路に対応して分岐して複数の流路に接続する接続路を備えることを特徴とする。
 本発明の気相成長装置用のアタッチメントでは、上記と同様に基板上に成長させるエピタキシャル層の膜厚の均一性を費用対効果よく良好にすることが可能となる。
本発明の一例の気相成長装置の一部を示す模式断面図。 図1Aの気相成長装置の基板に向けてガスが通過する部材を示す平面的な模式図。 図1Bのインジェクションキャップを示す模式断面図。 図1Bのアタッチメントを示す模式断面図。 図2Aのインジェクションキャップに図2Bのアタッチメントを装着した模式断面図。 図1Bのインジェクションインサートを示す模式正面図。 図3AのIIIB-IIIB模式断面図。 比較例における気相成長装置の一例を示す図1Bに対応する模式断面図。 実施例で測定したエピタキシャルウェーハの膜厚分布を示すグラフ。 比較例で測定したエピタキシャルウェーハの膜厚分布を示すグラフ。
 図1Aは、本発明の一例である枚葉式の気相成長装置1を示す。気相成長装置1により基板Wにエピタキシャル層が気相成長され、エピタキシャルウェーハが製造される。
 気相成長装置1は、基板Wを収容する反応炉2を備える。反応炉2は、容器状に形成される。反応炉2は、円筒又は円環状のベースリング3と、ベースリング3を上側から蓋をして反応炉2の天井を構成するアッパードーム4と、ベースリング3を下側から蓋をして反応炉2の底側を構成するロワードーム5と、を備える。また、反応炉2は、図1Bに示すように反応炉2の強度を高める支柱部Pを備える。支柱部Pは、反応炉2の外側に向けて延びる。
 図1Aに戻って、ベースリング3は反応炉2を構成するベースとなる部材である。ベースリング3は、ベースリング3の内側にガスを導入する導入口3aと、ベースリング3の内側のガスをベースリング3の外に排出する排出口3bと、を備える。導入口3aと排出口3bは、ベースリング3の中心線となる、例えば、鉛直方向に延びる軸線Oを軸とする円弧の曲面状の開口、いわば、アーチ状に形成された開口として形成される。なお、導入口3a及び後述の導入通路8の、基板Wの表面でのガスの流れ方向(図1Aの紙面の左右方向)と軸線Oの方向(図1Aの紙面の上下方向)の両方に直角な方向(図1Aの紙面に直角な方向)における幅は、基板Wの直径以上、後述のプリヒートリング12の外径以下となっている。
 ベースリング3の内側には、アッパーライナー6とロワーライナー7が位置する。アッパーライナー6及びロワーライナー7は、導入口3aから導入するガスを反応炉2内に導く導入通路8と、反応炉2内のガスを反応炉2外に排出する排出口3bに導く排出通路9と、を形成するための部材である。
 アッパーライナー6は、ベースリング3の内周に嵌まり込むことが可能な円環状に形成される。アッパーライナー6は、ベースリング3の内側に嵌まり込んだ状態でアッパードーム4側に位置する。
 ロワーライナー7は、ベースリング3の内側に嵌まり込むことが可能な円環状に形成される。ロワーライナー7は、ベースリング3の内側に嵌り込んだ状態でロワードーム5上に載置される。
 アッパーライナー6とロワーライナー7により形成される導入通路8は、反応炉2内に通じる入口8aと、入口8aの上方かつ入口8aより反応炉2側に位置して反応炉2内に至る出口8bと、を備えて入口8aと出口8bを接続する通路である。また、導入通路8は、入口8aと出口8bを接続する通路内に位置する段部8cと、を備える。入口8aは、ベースリング3の導入口3aに対応するように軸線Oを軸とする円弧の曲面状の開口に形成される。段部8cは、入口8aに対向する第1面8c1と、第1面8c1の上端から出口8bに延びる第2面8c2を備える。第1面8c1は、軸線Oを軸とする円弧の曲面状であり、第2面8c2は、水平面となる。アッパーライナー6とロワーライナー7により形成される排出通路9は、導入通路8と同様であるため、説明を省略する。
 反応炉2の内部には、基板Wを載置するサセプタ10と、サセプタ10を支持する支持部11と、サセプタ10の囲むプリヒートリング12と、が備わる。支持部11は、図示しない駆動手段により軸線O回りに回転可能となる。
 図1Aの反応炉2の外側の上下には加熱源となるランプ13が配置され、反応炉2の外側の左右には反応炉2内にガスを供給する機構と、反応炉2内のガスを排出する機構が位置する。なお、図1Aでは、ガスを供給する機構とガスを排出する機構の一部が図示省略されている。
 図1Bは、基板Wにエピタキシャル層を成長させる各種ガスを供給する機構を説明する模式図である。図1Bは、基板Wに向かうガスが通過する各部材が平面的な模式図で示される。供給されるガスは、図1Bの下側のインジェクションキャップ14(以下、「キャップ14」とする。)、アタッチメント15、インジェクションインサート16(以下、「インサート16」とする。)、ロワーライナー7、プリヒートリング12、サセプタ10との順に各部材を通過して基板Wに到達する。なお、図1Bでは、基板W、サセプタ10、プリヒートリング12及びロワーライナー7が半円状に図示される。
 キャップ14は、図示しないマスフローコントローラーを通じて基板Wに供給されるガスが導入される部材であり、キャップ14に導入されたガスは、キャップ14からアタッチメント15に導かれる。キャップ14はステンレス製であり、市販される純正品のインジェクションキャップである。図2Aに示すようにキャップ14は、マスフローコントローラーにより供給されるガスが導入される導入路14aと、アタッチメント15の一部が嵌め込まれて取り付けられる取付部14bと、を備える。
 図2Bに示すアタッチメント15は、キャップ14に着脱可能な石英製の部材であり、導入路14a(図2A)から導入されたガスを分配するための分岐路15aと、キャップ14(図2A)に取り付けられる装着部15bを備える。分岐路15aは、3つの組に分かれ、中央の組のみ1回分岐の多いトーナメント状の流路Fとして構成される。トーナメント状の各流路Fにおける最下段の最下点には分岐流路Bが位置する。分岐流路Bは、分岐路15a全体で2の累乗(32本)となる。装着部15bは、図2Cに示すようにアタッチメント15をキャップ14に取り付けるための部位であり、装着部15bが取付部14bに嵌め込まれてアタッチメント15がキャップ14に装着される。アタッチメント15がキャップ14に取り付けられた状態で、分岐路15aの上流側(トーナメント状の最上段に位置する流路)にキャップ14の導入路14aが接続し、キャップ14からアタッチメント15にガスが流通可能になる。なお、キャップ14に装着されたアタッチメント15は、キャップ14から取り外すことも可能である。分岐路15aが本発明の「接続路」に相当する。
 図3A及び図3Bはインサート16の模式図を示す。図3Bに示すようにインサート16は、円弧状の辺S1と辺S1に対向する対向辺S2を有する1組の平板状のプレートP1、P2を有する。各プレートP1、P2は、対向辺S2から辺S1に向かって直線状に貫通する複数の流路16aを備える。流路16aは、各プレートP1、P2にそれぞれ同じ数だけ形成される。各プレートP1、P2は、互いに隙間をおいて配置され、図1Bに示すように支柱部Pが反応炉2から1組のプレートP1、P2の隙間に向けて延びて一対の流路16aの間に挟まれるように位置する。2つのプレートP1、P2の合計で複数の流路16aは、図2Cに示す分岐流路Bに対応する数だけ形成されて一端が対応する分岐流路Bに連なって通じる一方で、他端が図1Aに示すように導入通路8の入口8aに連なって通じる。各流路16aは、導入通路8の入口8aから入口8aの外側(反応炉2の外側)に向けて水平方向に延びる。インサート16は、少なくとも一部が導入口3aに挿入されて反応炉2に取り付けられる。また、図1Bに示すように複数の流路16aは、水平面に沿ってそれぞれ並列に配置される。
 以上のキャップ14、アタッチメント15、インサート16を経由した後、ロワーライナー7、プリヒートリング12、サセプタ10を経て基板Wにガスが供給される。例えば、気相成長時には反応炉2内に気相成長ガスが供給される。気相成長ガスとしては、例えば、シリコン単結晶膜の原料となる原料ガスと、原料ガスを希釈するキャリアガスと、単結晶膜に導電型を付与するドーパントガスと、を備える。
 以上、気相成長装置1の主要な各部を説明した。気相成長装置1により基板Wにエピタキシャル層を成長してエピタキシャルウェーハを製造する場合には、先ず、反応炉2のサセプタ10に基板Wを載置させる。そして、図示省略するマスフローコントローラーにより流量が制御された気相成長ガスを反応炉2に向けて供給する。すると、図2Cに示すキャップ14の導入路14aを経由してアタッチメント15の3つの組に分かれたトーナメント状の各流路Fの最上段に気相成長ガスが導かれ、最上段から各分岐流路Bに向けて気相成長ガスが分配される。最終的には、気相成長ガスが32本の流れ(分岐流路B)に分けられ、図1Bに示すインサート16における32本の各流路16aに導入される。そして、流路16aを通過した気相成長ガスは、図1Aの導入通路8から反応炉2内に供給される。このように供給された気相成長ガスにより基板Wにシリコン単結晶薄膜が気相成長し、シリコンエピタキシャルウェーハが製造される。
 本発明の実施態様では、気相成長ガスの上流側から下流側に向けて気相成長ガスが流れる図2Cの分岐路15aがトーナメント状に32本の分岐流路Bに分岐し、図1Bのインサート16の複数の流路16aに繋がる。よって、複数の流路16aを流れる気相成長ガスの相互間の速度を効果的に均一化できる。そのため、基板Wに導入される気相成長ガスの速度が均一化され、基板W上に成長させるエピタキシャル層の膜厚の均一性を良好にすることが可能となる。また、キャップ14に装着されるアタッチメント15が石英製であるため、ステンレス製のキャップ14自体にアタッチメント15のようなトーナメント状の流路を形成する場合に比べて4分の1程度の費用にすることができる。したがって、基板W上に成長させるエピタキシャル層の膜厚の均一性を費用対効果よく良好にすることが可能となる。特に、下記実施例で示すように、直径200mm以上の基板Wに対する気相成長に本発明を適用すると好適である。
 本発明の効果を確認するために以下の実験を行った。以下、実施例及び比較例を挙げて本発明を具体的に説明するが、これらは本発明を限定するものではない。
(実施例)
 実施例では、直径300mm、結晶面方位(100)のシリコン単結晶基板を用いて気相成長装置1によりエピタキシャルウェーハを作製し、作製したエピタキシャルウェーハの膜厚分布を測定した。膜厚分布の測定に際しては、作製したウェーハの端から5mmの領域を除外してウェーハの直径方向に沿って33点の測定点の膜厚を測定した。そして、測定した各膜厚から以下に示す膜厚の均一性(%)と膜厚のばらつき(%)を算出し、エピタキシャルウェーハの膜厚分布を得た。膜厚の均一性(%)は、測定で得られた膜厚の最大膜厚と最小膜厚をもとに、最大膜厚から最小膜厚を減算した値を、最大膜厚と最小膜厚を加算した値で除法した値に、100を乗じた値を膜厚の均一性(%)を示す値とした。膜厚のばらつき(%)は、次に示す値とした。具体的には、測定した1つの測定点での膜厚を、33点の測定点における膜厚の平均値で除法した値から1を減算した値に、100を乗じた値を算出した。そして、算出した値から更に100を減算した値を膜厚のばらつき(%)を示す値とした。
(比較例)
 比較例では、図4に示す従来の気相成長装置101を用いる以外は、実施例と同様にエピタキシャルウェーハを作製し、エピタキシャルウェーハの膜厚分布を測定した。次に気相成長装置101について具体的に説明する。気相成長装置1と同様の構成について同じ符号を付して説明を省略する。気相成長装置101は、キャップ14、アタッチメント15、及びインサート16の代わりにインジェクションキャップ114(以下、「キャップ114」とする。)、バッフルBP、インジェクションインサート116(以下、「インサート116」とする。)及び仕切り板117を備える。キャップ114は、気相成長ガスを反応炉2に導入させる際に気相成長ガスが通過する図示しない空間を有する。バッフルBAは、キャップ114とインサート116の間に挟まれて位置する板状部材であり、キャップ114内の気相成長ガスをインサート116に導く複数の貫通孔Hを有する。貫通孔Hによりインサート116に向かう気相成長ガスの流れが調整される。インサート116は、円弧状の辺S1と辺S1に対向する対向辺S2を有する2つの平板P11、P12として形成される。インサート116は、対向辺S2から辺S1に向けて貫通する複数の流路116aを備える。各平板P11、P12にそれぞれ5本の流路116aが形成され、平板P11、P12は、互いに隙間をおいて配置される。支柱部Pが反応炉2から平板P11、P12の間の隙間に向けて延びて一対の流路116aの間に挟まれるように位置する。仕切り板117は、インサート116から反応炉2に向かうガスの流れを仕分ける板状部材であり、4つ配置される。比較例では、以上の構成以外は、気相成長装置1と同様の気相成長装置101を使用した。
 実施例のように基板Wに供給する気相成長ガスをトーナメント状に32本に分岐させて基板Wまで導いた場合には、図5Aに示すように膜厚の均一性及び膜厚のばらつきが良好となった。具体的には、膜厚の均一性は、0.55となった。また、膜厚のばらつきは、平滑化された。それに対し、比較例のように基板Wに供給する気相成長ガスをトーナメント状に分岐させて基板Wに導かない従来の気相成長装置101を使用した場合には、図5Bに示すように膜厚の均一性及び膜厚のばらつきが良好にならなかった。具体的には、膜厚の均一性は1.07となり、膜厚のばらつきは十分に平滑化されなかった。よって、実施例では膜厚分布の均一性を比較例の半分程度の値にまで改善できた。
 以上、本発明の実施例を説明したが、本発明はその具体的な記載に限定されることなく、例示した構成等を技術的に矛盾のない範囲で適宜組み合わせて実施することも可能であるし、またある要素、処理を周知の形態に置き換えて実施することもできる。
 1   気相成長装置        2   反応炉
 3   ベースリング        6   アッパーライナー
 7   ロワーライナー       8   導入通路(通路)
 8a  入口            8b  出口
 8c  段部            8c1 第1面
 8c2 第2面           10  サセプタ
 14  インジェクションキャップ  14a 導入路
 14b 取付部           15  アタッチメント
 15a 分岐路           15b 装着部
 16  インジェクションインサート 16a  流路
 W   基板

Claims (6)

  1.  原料ガスが導入される入口を有して前記原料ガスにより基板にエピタキシャル層を成長する反応炉と、
     前記入口から前記入口の外側に延びて前記反応炉に前記原料ガスを導く複数の流路と、
     前記複数の流路に向けて前記原料ガスを導く導入路を有するインジェクションキャップと、
     前記導入路に接続可能な接続路を有して前記インジェクションキャップに装着される石英製のアタッチメントと、
     を備え、
     前記接続路は、前記アタッチメントが前記インジェクションキャップに装着された状態で前記導入路に接続するとともに、前記導入路側から前記原料ガスの下流側に向けてトーナメント状に前記複数の流路に対応して分岐して前記複数の流路に接続する流路であることを特徴とする気相成長装置。
  2.  前記インジェクションキャップは、ステンレス製である請求項1に記載の気相成長装置。
  3.  前記複数の流路は、合計で2の累乗の本数である請求項1又は2に記載の気相成長装置。
  4.  前記複数の流路は、32本以上である請求項1ないし3のいずれか1項に記載の気相成長装置。
  5.  請求項1ないし4のいずれか1項に記載の気相成長装置を使用して前記基板にエピタキシャル層を成長させるエピタキシャルウェーハの製造方法。
  6.  原料ガスが導入される入口を有して前記原料ガスにより基板にエピタキシャル層を成長する反応炉と、
     前記入口から前記入口の外側に延びて前記反応炉に前記原料ガスを導く複数の流路と、
     前記複数の流路に向けて前記原料ガスを導く導入路を有するインジェクションキャップと、
     を備える気相成長装置の前記インジェクションキャップに装着される気相成長装置用のアタッチメントであって、
     前記アタッチメントは石英製であり、
     前記アタッチメントが前記インジェクションキャップに装着された状態で前記導入路に接続するとともに、前記導入路側から前記原料ガスの下流側に向けてトーナメント状に前記複数の流路に対応して分岐して前記複数の流路に接続する接続路を備えることを特徴とする気相成長装置用のアタッチメント。
PCT/JP2017/024822 2016-09-05 2017-07-06 気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント WO2018042877A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780054111.2A CN109661716B (zh) 2016-09-05 2017-07-06 气相生长装置、外延晶片的制造方法及气相生长装置用附接件
JP2018536990A JP6628065B2 (ja) 2016-09-05 2017-07-06 気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント
US16/325,360 US10665460B2 (en) 2016-09-05 2017-07-06 Vapor phase growth apparatus, method of manufacturing epitaxial wafer, and attachment for vapor phase growth apparatus
KR1020197006234A KR102301873B1 (ko) 2016-09-05 2017-07-06 기상 성장 장치, 에피택셜 웨이퍼의 제조 방법 및 기상 성장 장치용의 어태치먼트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172803 2016-09-05
JP2016172803 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018042877A1 true WO2018042877A1 (ja) 2018-03-08

Family

ID=61300591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024822 WO2018042877A1 (ja) 2016-09-05 2017-07-06 気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント

Country Status (6)

Country Link
US (1) US10665460B2 (ja)
JP (1) JP6628065B2 (ja)
KR (1) KR102301873B1 (ja)
CN (1) CN109661716B (ja)
TW (1) TWI732910B (ja)
WO (1) WO2018042877A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862784B (zh) * 2021-09-27 2024-04-23 杭州中欣晶圆半导体股份有限公司 一种制备高平坦度外延片的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075692A (ja) * 2000-04-26 2002-03-15 Unaxis Balzer Ag プラズマ反応器
JP2004127853A (ja) * 2002-10-07 2004-04-22 Sekisui Chem Co Ltd プラズマ表面処理装置の電極構造
JP2005183511A (ja) * 2003-12-17 2005-07-07 Shin Etsu Handotai Co Ltd 気相成長装置およびエピタキシャルウェーハの製造方法
JP2005353775A (ja) * 2004-06-09 2005-12-22 Sumco Corp エピタキシャル装置
JP2011023563A (ja) * 2009-07-16 2011-02-03 Sumco Corp シリコンウェーハの処理装置
JP2011249448A (ja) * 2010-05-25 2011-12-08 Shin Etsu Handotai Co Ltd エピタキシャル成長装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756272A (en) * 1986-06-02 1988-07-12 Motorola, Inc. Multiple gas injection apparatus for LPCVD equipment
CH687258A5 (de) * 1993-04-22 1996-10-31 Balzers Hochvakuum Gaseinlassanordnung.
JP3501930B2 (ja) * 1997-12-01 2004-03-02 株式会社ルネサステクノロジ プラズマ処理方法
JP2000144383A (ja) * 1998-11-18 2000-05-26 Sony Corp 蒸着装置
JP3578398B2 (ja) * 2000-06-22 2004-10-20 古河スカイ株式会社 成膜用ガス分散プレート及びその製造方法
JP2003168650A (ja) 2001-11-30 2003-06-13 Shin Etsu Handotai Co Ltd 気相成長装置およびエピタキシャルウェーハの製造方法
JP4239520B2 (ja) * 2002-08-21 2009-03-18 ソニー株式会社 成膜装置およびその製造方法、並びにインジェクタ
KR100862658B1 (ko) * 2002-11-15 2008-10-10 삼성전자주식회사 반도체 처리 시스템의 가스 주입 장치
JP4581868B2 (ja) 2005-06-28 2010-11-17 株式会社Sumco エピタキシャル成長装置およびその製造方法
JP2007262540A (ja) * 2006-03-29 2007-10-11 Jfe Steel Kk 化学蒸着処理の原料ガス供給用ノズルと被膜形成方法および方向性電磁鋼板
JP5064132B2 (ja) * 2007-07-25 2012-10-31 シャープ株式会社 気相成長装置、及び半導体素子の製造方法
JP4978554B2 (ja) 2008-05-12 2012-07-18 信越半導体株式会社 薄膜の気相成長方法および気相成長装置
JP5520455B2 (ja) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 プラズマ処理装置
JP5268766B2 (ja) * 2009-04-23 2013-08-21 Sumco Techxiv株式会社 成膜反応装置及び成膜基板製造方法
US20140026816A1 (en) * 2012-07-27 2014-01-30 Applied Materials, Inc. Multi-zone quartz gas distribution apparatus
JP2014057047A (ja) * 2012-08-10 2014-03-27 Tokyo Electron Ltd 基板処理装置及びガス供給装置
US10760161B2 (en) * 2014-09-05 2020-09-01 Applied Materials, Inc. Inject insert for EPI chamber
KR102350588B1 (ko) * 2015-07-07 2022-01-14 삼성전자 주식회사 인젝터를 갖는 박막 형성 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075692A (ja) * 2000-04-26 2002-03-15 Unaxis Balzer Ag プラズマ反応器
JP2004127853A (ja) * 2002-10-07 2004-04-22 Sekisui Chem Co Ltd プラズマ表面処理装置の電極構造
JP2005183511A (ja) * 2003-12-17 2005-07-07 Shin Etsu Handotai Co Ltd 気相成長装置およびエピタキシャルウェーハの製造方法
JP2005353775A (ja) * 2004-06-09 2005-12-22 Sumco Corp エピタキシャル装置
JP2011023563A (ja) * 2009-07-16 2011-02-03 Sumco Corp シリコンウェーハの処理装置
JP2011249448A (ja) * 2010-05-25 2011-12-08 Shin Etsu Handotai Co Ltd エピタキシャル成長装置

Also Published As

Publication number Publication date
TW201812854A (zh) 2018-04-01
TWI732910B (zh) 2021-07-11
KR102301873B1 (ko) 2021-09-14
US20190206685A1 (en) 2019-07-04
JPWO2018042877A1 (ja) 2019-04-04
US10665460B2 (en) 2020-05-26
JP6628065B2 (ja) 2020-01-08
CN109661716A (zh) 2019-04-19
KR20190046827A (ko) 2019-05-07
CN109661716B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US20100272892A1 (en) Film formation reactive apparatus and method for producing film-formed substrate
TWI574306B (zh) Gas growth device
JP4978554B2 (ja) 薄膜の気相成長方法および気相成長装置
JP5413305B2 (ja) エピタキシャル成長装置
US20160194784A1 (en) Epitaxial reactor
WO2018042877A1 (ja) 気相成長装置、エピタキシャルウェーハの製造方法及び気相成長装置用のアタッチメント
US20160145766A1 (en) Epitaxial reactor
US20190062909A1 (en) Inject assembly for epitaxial deposition processes
JP4581868B2 (ja) エピタキシャル成長装置およびその製造方法
CN112687596A (zh) 晶舟、工艺腔室及半导体工艺设备
KR20150081536A (ko) 에피텍셜 반응기
JP6403106B2 (ja) 気相成長装置
JP2021532265A (ja) 堆積用のデュアルガス供給シャワーヘッド
KR101487411B1 (ko) 라이너 및 이를 포함하는 에피텍셜 반응기
CN115852337A (zh) 喷淋板、半导体器件的加工设备以及方法
JP5170056B2 (ja) エピタキシャル成長装置及びエピタキシャル成長方法
JP6573216B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
KR102352264B1 (ko) 태양전지용 단결정 실리콘 웨이퍼 제조용 대량생산 기반의 pecvd 장치
CN116411258A (zh) 一种薄膜处理装置及其方法
CN117468086A (zh) 一种外延反应室气流分配装置及外延设备
TW202245110A (zh) 用於磊晶和cvd腔室的氣體噴射器
JPH07142406A (ja) 半導体の気相成長方法及び装置
JP2012144386A (ja) 炭化珪素単結晶の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536990

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006234

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845887

Country of ref document: EP

Kind code of ref document: A1