WO2018042655A1 - 誘電体境界面推定装置 - Google Patents

誘電体境界面推定装置 Download PDF

Info

Publication number
WO2018042655A1
WO2018042655A1 PCT/JP2016/075981 JP2016075981W WO2018042655A1 WO 2018042655 A1 WO2018042655 A1 WO 2018042655A1 JP 2016075981 W JP2016075981 W JP 2016075981W WO 2018042655 A1 WO2018042655 A1 WO 2018042655A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
boundary surface
wave data
dielectric constant
constant side
Prior art date
Application number
PCT/JP2016/075981
Other languages
English (en)
French (fr)
Inventor
赳寛 星野
照幸 原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16915210.5A priority Critical patent/EP3486682B1/en
Priority to US16/318,081 priority patent/US10775163B2/en
Priority to PCT/JP2016/075981 priority patent/WO2018042655A1/ja
Priority to JP2018536662A priority patent/JP6440913B2/ja
Priority to SG11201900140RA priority patent/SG11201900140RA/en
Publication of WO2018042655A1 publication Critical patent/WO2018042655A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/08Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9011SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the present invention relates to a dielectric boundary surface estimation device that uses radio waves to estimate a boundary surface between dielectrics having different dielectric constants.
  • Dielectric interface estimator is used to measure the internal state of a dielectric by utilizing the property of radio waves that are transmitted through the dielectric. Contributes to diagnosis.
  • the cavity thickness exploration method described in Patent Document 1 below observes scattering from a dielectric boundary point by the S-transform processing, and it is limited to measurement of the boundary point, not the boundary surface of the dielectric.
  • the shape measurement of the dielectric material the ellipsoid is merely visually applied regardless of the S transform, and no contrivance has been made.
  • the cavity thickness exploration method described in Patent Document 1 has a problem that only the existence of a boundary point that is a part of the dielectric boundary surface can be grasped, and the boundary surface cannot be grasped. Moreover, in the above-mentioned Patent Document 1, since a method of applying an ellipsoid in an environment where synthetic aperture processing is not applied is adopted as a method of estimating the shape of the dielectric, the horizontal width of the dielectric boundary surface is adopted. There was also a problem that it was not possible to estimate accurately.
  • the present invention has been made to solve the above-described problems, and an object thereof is to accurately estimate the width and thickness of the dielectric interface.
  • a dielectric boundary surface estimation device includes a preprocessing unit that pre-processes wave data obtained by observing a dielectric by a radar device, and a three-dimensional synthetic aperture process that uses the wave data pre-processed by the preprocessing unit. 3D synthetic aperture processing unit and the 3D synthetic aperture processing unit 3D synthetic aperture processing to estimate the boundary surface with different dielectric constants and calculate the width and thickness of the boundary surface And a dielectric interface estimation unit.
  • the dielectric boundary surface is estimated using the wave data subjected to the three-dimensional synthetic aperture processing, the width and thickness of the dielectric boundary surface can be accurately estimated.
  • FIG. 1 is a functional configuration diagram showing a configuration example of a dielectric boundary surface estimation apparatus 100 according to Embodiment 1 of the present invention.
  • the dielectric boundary surface estimation apparatus 100 includes a wave data storage unit 200, a preprocessing unit 300, a three-dimensional synthetic aperture processing unit 400, a dielectric boundary surface estimation unit 500, and an output data storage unit 600. Yes.
  • FIG. 2 is a hardware configuration diagram showing a configuration example of the dielectric boundary surface estimation apparatus 100 according to Embodiment 1 of the present invention.
  • the wave data storage unit 200 in the dielectric boundary surface estimation apparatus 100 is the input storage device 11, and the output data storage unit 600 is the output storage device 14.
  • the input storage device 11, the output storage device 14, and the memory 13 to be described later include a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), a flash memory, an SSD (Solid State Drive), and the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • flash memory an SSD (Solid State Drive)
  • SSD Solid State Drive
  • the functions of the preprocessing unit 300, the three-dimensional synthetic aperture processing unit 400, and the dielectric boundary surface estimation unit 500 in the dielectric interface estimation device 100 are realized by a processing circuit. That is, the dielectric interface estimation apparatus 100 reads the wave data stored in the input storage device 11, preprocesses the wave data, performs a three-dimensional synthetic aperture process on the preprocessed wave data, and performs a three-dimensional synthesis.
  • a processing circuit for estimating the boundary surface of the dielectric using the wave data subjected to the opening processing, calculating the width and thickness of the boundary surface, and storing the calculation result in the output storage device 14 is provided.
  • the processing circuit is a processor 12 that executes a program stored in the memory 13.
  • the processor 12 is also referred to as a CPU (Central Processing Unit), an arithmetic device, a microprocessor, or a microcomputer.
  • CPU Central Processing Unit
  • Each function of the pre-processing unit 300, the three-dimensional synthetic aperture processing unit 400, and the dielectric interface estimation unit 500 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 13.
  • the processor 12 reads out and executes the program stored in the memory 13, thereby realizing the function of each unit. That is, the dielectric boundary surface estimation device 100 includes a memory 13 for storing a program that, when executed by the processor 12, results in the steps shown in FIGS. Prepare. This program can also be said to cause a computer to execute the procedures or methods of the preprocessing unit 300, the three-dimensional synthetic aperture processing unit 400, and the dielectric interface estimation unit 500.
  • FIG. 3 is a flowchart showing the processing of the preprocessing unit 300.
  • FIG. 4 is a flowchart showing processing of the three-dimensional synthetic aperture processing unit 400.
  • FIG. 5 is a flowchart showing the processing of the dielectric interface estimation unit 500.
  • FIG. 6 is a diagram illustrating a situation when the wave data stored in the wave data storage unit 200 is observed.
  • the observation target dielectric is a space 31 having a dielectric constant ⁇ r, 1 .
  • the space 31 includes a space 32 having a relatively low dielectric constant ⁇ r, 2 ( ⁇ r, 2 ⁇ r, 1 ).
  • the transceivers 21 to 24 of the radar apparatus are arranged in a space 30 having a dielectric constant ⁇ r, 0 ( ⁇ r, 0 ⁇ r, 1 ) lower than the dielectric constant ⁇ r, 1 of the space 31.
  • the transceivers 21 to 24 transmit pulsed radio waves 25 to 28 toward the space 31.
  • the transmitted radio waves 25 to 28 are scattered on the dielectric interface 33 which is the boundary between the spaces 30 and 31 having different dielectric constants and the dielectric interface 34 which is the boundary between the spaces 31 and 32 having different dielectric constants.
  • the transceivers 21 to 24 receive the radio waves 25 to 28 scattered by the dielectric boundary surfaces 33 and 34.
  • the radar apparatus converts the scattering information of the radio waves from the dielectric boundary surfaces 33 and 34 into three-dimensional voxel data and outputs it to the dielectric boundary surface estimation apparatus 100. Observation may be performed using a plurality of transceivers 21 to 24, or observation may be performed while one transceiver is moved to the position of the transceivers 21 to 24.
  • the scattering information obtained by the radar device observing the inside of the dielectric is referred to as wave data s (x, y, t).
  • x ⁇ [ ⁇ L x / 2, L x / 2] is defined as the azimuth direction
  • y ⁇ [ ⁇ L y / 2, L y / 2] is defined as the elevation direction
  • t ⁇ [0, T PRI ] is defined as the slant range direction. Is done.
  • L x is the opening length in the azimuth direction
  • L y is the opening length in the elevation direction
  • T PRI is the pulse repetition period.
  • the wave data storage unit 200 receives and stores wave data obtained by the radar device observing the inside of the dielectric.
  • the wave data stored in the wave data storage unit 200 is transferred to the preprocessing unit 300.
  • the preprocessing unit 300 performs preprocessing of steps ST301 to ST303, which will be described in detail below, on the wave data transferred from the wave data storage unit 200, and then converts the processed wave data to the three-dimensional synthetic aperture processing unit 400. Output to.
  • the preprocessing unit 300 removes the DC component in the range direction from the wave data. Specifically, the pre-processing unit 300 considers the case where the wave data s (x, y, t) transferred from the wave data storage unit 200 is fixed-point type data or the like, and the range direction DC component s 0, t (X, y, t) is estimated as in equation (1). Subsequently, the preprocessing unit 300 uses the equation (2) to remove the range direction DC component s 0, t (x, y, t) from the wave data s (x, y, t), and the range direction DC component. The removed wave data s DC, t (x, y, t) is obtained.
  • the preprocessing unit 300 removes the DC component in the azimuth direction from the wave data. Specifically, the pre-processing unit 300 considers the case where the wave data s (x, y, t) transferred from the wave data storage unit 200 is fixed-point type data or the like, and the azimuth direction DC component s 0, t , X (x, y, t) are estimated as in equation (3). Subsequently, the preprocessing unit 300 uses the equation (4) to calculate the azimuth direction DC component s 0, t, x (x, x ) from the wave data s DC, t (x, y, t) after the range direction DC component has been removed. The wave data s DC, t, x (x, y, t) from which the azimuth and range DC components are removed is obtained by removing y, t).
  • the preprocessing unit 300 corrects the attenuation of the wave when the radio wave is transmitted through the dielectric by performing contrast correction on the wave data. Specifically, the pre-processing unit 300 attenuates the wave as shown in Expression (5) with respect to the wave data s DC, t, x (x, y, t) from which the DC components in the azimuth direction and the range direction are removed.
  • a contrast correction function s CNT, t, x (x, y, t) taking into account is defined.
  • the preprocessing unit 300 performs contrast correction of the wave data s DC, t, x (x, y, t) using Expression (6), and the wave data s PRE (x, y, t after the contrast correction).
  • the preprocessing unit 300 outputs the preprocessed wave data s PRE (x, y, t) to the three-dimensional synthetic aperture processing unit 400.
  • the three-dimensional synthetic aperture processing unit 400 performs the three-dimensional synthetic aperture processing of steps ST401 to ST403, which will be described in detail below, on the preprocessed wave data output from the preprocessing unit 300, and then the post-processed wave data. Is output to the dielectric interface estimation unit 500.
  • step ST401 the three-dimensional synthetic aperture processing unit 400 performs a three-dimensional Fourier transform that converts the pre-processed wave data into frequency space wave data.
  • the three-dimensional synthetic aperture processing unit 400 uses the equation (7) to perform the three-dimensional fast Fourier transform on the preprocessed wave data s PRE (x, y, t) received from the preprocessing unit 300.
  • Conversion (FFT) is performed to convert the wave data S PRE (k x , k y , k) in the frequency space.
  • the three-dimensional synthetic aperture processing unit 400 performs azimuth batch compression that compensates the wavefront of the wave data in a spherical shape on the frequency space. Specifically, the three-dimensional synthetic aperture processing unit 400 performs azimuth batch compression by performing the calculation of Expression (8) on the wave data S PRE (k x , k y , k) after the three-dimensional FFT.
  • the wave data S BULK (k x , k y , k) is obtained by aligning the wave fronts of the wave data S PRE (k x , k y , k) and focusing the image of the wave data.
  • R 0 is a focus distance, and is defined by, for example, Expression (9-1).
  • K z is the wave number defined by the equation (9-2).
  • the three-dimensional synthetic aperture processing unit 400 performs Stolt interpolation that makes the wave transmission direction 2k of the wave data orthogonal to the x-axis and the y-axis.
  • the direction of the wave vector means the wave front and the wave transmission direction.
  • the wave vector 2k normally observed by the radar apparatus can be orthogonally decomposed into wave vectors (k x , k y , k z ). This indicates that the above equation (9-3) holds from the three-square theorem.
  • the wave vectors k z and k y can be defined immediately orthogonal to each other on the antenna surface, whereas k z in the above equation (9-2) cannot be observed directly, and (k x , k y , 2k) It can be observed only as a function of. From (k x , k y , 2k) to (k x , k y , k z ), the above equation is used to make the observed and definable wave numbers (k x , k y , 2k) orthogonal.
  • the process of interpolating using (9-2) is the Stolt interpolation process.
  • the three-dimensional synthetic aperture processing unit 400 converts the wave number space (k x , k y , k) to (k x , k y , k) for the wave data S BULK (k x , k y , k) after azimuth batch compression. k y, conducted Sutoruto interpolation for converting the k z), obtaining wave data S SAR after three dimensional synthetic aperture processing (k x, k y, k z).
  • the three-dimensional synthetic aperture processing unit 400 outputs the wave data S SAR (k x , k y , k z ) after the three-dimensional synthetic aperture processing to the dielectric boundary surface estimation unit 500.
  • FIG. 7 is a diagram illustrating the wave data 40 after the three-dimensional synthetic aperture processing unit 400 performs the three-dimensional synthetic aperture processing, that is, the wave data S SAR (k x , k y , k z ).
  • the high dielectric constant side boundary 41 in the wave data 40 after the three-dimensional synthetic aperture processing corresponds to the dielectric boundary surface 33 in the observation system 20 shown in FIG.
  • the low dielectric constant side boundary 42 in the wave data 40 after the three-dimensional synthetic aperture processing corresponds to the dielectric boundary surface 34 in the observation system 20 shown in FIG.
  • the three-dimensional synthetic aperture processing performed by the three-dimensional synthetic aperture processing unit 400 is a technique known as the Omega-me method.
  • Stolt interpolation is exemplified as the interpolation method in step ST403, for example, sinc interpolation or cubic interpolation may be used.
  • the dielectric boundary surface estimation unit 500 performs the dielectric boundary surface estimation processing in steps ST501 to ST509 described in detail below on the wave data after the 3D synthetic aperture processing output from the 3D synthetic aperture processing unit 400.
  • the width and thickness of the dielectric boundary surface are calculated, and the calculation result is output to the output data storage unit 600.
  • step ST501 the dielectric boundary surface estimation unit 500 divides the wave data after the three-dimensional synthetic aperture processing into observation units from a plurality of phase centers, thereby decomposing the dielectric boundary surface into dielectric boundary point groups.
  • the process of step ST501 is referred to as aperture division.
  • the dielectric interface estimator 500 uses the equation (10) to obtain the wave data S SAR (k x , k y , after three-dimensional synthetic aperture processing received from the three-dimensional synthetic aperture processor 400.
  • the azimuth direction is divided into N and the elevation direction is divided into M, and aperture-peripheral wave data S SAR, n, m (k x , k y , k z ) is obtained.
  • K Bcut, x is the effective bandwidth in the azimuth direction after aperture division
  • K Bcut, y is the effective bandwidth in the elevation direction after aperture division
  • .Delta.k x is the step size of the aperture divided in the azimuth direction
  • .delta.k y is the step size of the aperture divided in the elevation direction.
  • the dielectric interface estimator 500 performs a three-dimensional inverse Fourier transform that transforms the wave data for each aperture obtained by dividing the aperture from the frequency domain to the spatial domain. Specifically, the dielectric interface estimator 500 uses the equation (12) to perform a three-dimensional inverse fast Fourier transform on the per-aperture wave data S SAR, n, m (k x , k y , k z ). (IFFT) is performed and converted into aperture-specific wave data I SAR, n, m (x, y, z) in the spatial domain.
  • FIG. 8 is a diagram illustrating the wave data 50 after the dielectric boundary surface estimation unit 500 performs the aperture division and the three-dimensional IFFF.
  • the portion of the high dielectric constant side boundary 41 in the wave data 40 after the three-dimensional synthetic aperture processing shown in FIG. 7 is as per-aperture wave data 51A to 51G shown in FIG. It is divided into a plurality of local small areas.
  • the per-aperture wave data 51A to 51G can be said to be a dielectric boundary point group obtained by disassembling the dielectric boundary surface 33.
  • the wave 7 includes a plurality of local wave data 52A to 52D shown in FIG. Divided into small areas.
  • the per-aperture wave data 52A to 52D can be said to be a dielectric boundary point group obtained by decomposing the dielectric boundary surface 34.
  • the portions other than the per-aperture wave data 51A to 51G and 52A to 52D in the wave data 50 are also locally similar to the per-aperture wave data 51A to 51G and 52A to 52D. Divided into a plurality of small areas.
  • dielectric boundary surface estimation section 500 extracts a high dielectric constant side boundary point that exceeds a predetermined threshold value from the per-aperture wave data.
  • dielectric boundary surface estimation section 500 records the extracted high dielectric constant side boundary point group as a high dielectric constant side boundary point locus.
  • the dielectric interface estimator 500 has a high permittivity side interface candidate ⁇ x + , y +
  • T is a predetermined threshold value, which is a value corresponding to the signal power of radio waves scattered on the dielectric interface 33 on the high dielectric constant side. is there.
  • dielectric boundary surface estimation section 500 extracts a low dielectric constant side boundary point that is less than a predetermined threshold value from the per-aperture wave data.
  • dielectric boundary surface estimation section 500 records the extracted low dielectric constant side boundary point group as a low dielectric constant side boundary point locus.
  • the dielectric interface estimator 500 uses the low-permittivity-side interface candidate ⁇ x ⁇ , y ⁇
  • a point locus ( xbtm, n, m , ybtm, n, m , zbtm, n, m ) is obtained.
  • FIG. 9 is a diagram showing the high dielectric constant side boundary point locus 51 and the low dielectric constant side boundary point locus 52 calculated by the dielectric boundary surface estimation unit 500.
  • the high dielectric constant side boundary point locus 51 is a set of local maximum points of wave data 51A to 51G on the high dielectric constant side exceeding the threshold value.
  • the low dielectric constant side boundary point locus 52 is a set of local minimum values of wave data 52A to 52D on the low dielectric constant side that are less than the threshold value.
  • the local maximum points of the per-aperture wave data 51A to 51G and the local minimum points of the per-aperture wave data 52A to 52D are indicated by intersections of “x” marks.
  • the dielectric boundary surface estimation unit 500 calculates the width of the dielectric boundary surface using the obtained high dielectric constant side boundary point locus 51. Specifically, the dielectric boundary surface estimation unit 500 calculates the width ( ⁇ x, ⁇ y) of the dielectric boundary surface from the high dielectric constant side boundary point locus 51 using the equations (15) and (16). .
  • dielectric boundary surface estimation section 500 calculates the thickness between the dielectric boundary surfaces using the obtained high dielectric constant side boundary point locus 51 and low dielectric constant side boundary point locus 52. Specifically, the dielectric interface estimator 500 calculates the distance from the center of the high dielectric constant side boundary point locus 51 to the center of the low dielectric constant side boundary point locus 52 using Equation (17), The calculated distance is defined as a thickness ⁇ z between the dielectric boundary surfaces.
  • FIG. 10 is a diagram showing the width ( ⁇ x, ⁇ y) and the thickness ⁇ z of the dielectric interface calculated by the dielectric interface estimation unit 500.
  • the width ( ⁇ x, ⁇ y) of the dielectric boundary surface indicated by the arrow in FIG. 10 is the dielectric that is the boundary between the space 31 that is the dielectric to be observed and the space 32 included in the space 31 in FIG. This corresponds to the width of the boundary surface 34.
  • the thickness ⁇ z between the dielectric boundary surfaces indicated by arrows in FIG. 10 corresponds to the thickness of the space 31 from the dielectric boundary surface 33 to the dielectric boundary surface 34 in FIG.
  • step ST509 the dielectric interface estimation unit 500 records the calculation results of the width and thickness of the dielectric interface. Further, the dielectric interface estimation unit 500 transfers the recorded calculation result to the output data storage unit 600.
  • the output data storage unit 600 receives and stores the calculation result of the width and thickness of the dielectric interface transferred from the dielectric interface estimation unit 500 and the wave data after the three-dimensional synthetic aperture processing.
  • the output data storage unit 600 can output stored calculation results and wave data to the outside.
  • the output data storage unit 600 may directly receive the wave data S SAR (k x , k y , k z ) after the three-dimensional synthetic aperture processing from the three-dimensional synthetic aperture processing unit 400 or estimate the dielectric boundary surface. You may receive via the part 500.
  • the dielectric boundary surface estimation apparatus 100 includes the preprocessing unit 300 that preprocesses the wave data obtained by the radar apparatus observing the dielectric, and the preprocessing.
  • the dielectric constant of the dielectric is determined using the three-dimensional synthetic aperture processing unit 400 that performs the three-dimensional synthetic aperture processing on the wave data preprocessed by the unit 300 and the wave data that the three-dimensional synthetic aperture processing unit 400 performs the three-dimensional synthetic aperture processing.
  • It is configured to include a dielectric boundary surface estimation unit 500 that estimates different boundary surfaces and calculates the width and thickness of the boundary surfaces. Since the position of the dielectric boundary surface is estimated using the wave data subjected to the three-dimensional synthetic aperture processing, the width and thickness of the dielectric boundary surface can be accurately estimated.
  • the dielectric boundary surface estimation unit 500 divides the wave data obtained by the three-dimensional synthetic aperture processing unit 400 into the azimuth direction and the elevation direction, and the divided wave
  • the data is subjected to three-dimensional inverse Fourier transform, and from the divided wave data obtained by the three-dimensional inverse Fourier transform, the low dielectric constant side boundary point locus 52 corresponding to the dielectric interface 34 on the low dielectric constant side and the high dielectric constant side
  • the high dielectric constant side boundary point locus 51 corresponding to the dielectric boundary surface 33 is extracted, the width of the dielectric boundary surface 34 on the low dielectric constant side is calculated from the high dielectric constant side boundary point locus 51, and the high dielectric constant side boundary
  • the thickness from the dielectric boundary surface 33 on the high dielectric constant side to the dielectric boundary surface 34 on the low dielectric constant side is calculated from the distance between the center of the point locus 51 and the center of the low dielectric constant side boundary point locus 52. is there.
  • the position estimation accuracy of the dielectric boundary surface can be further improved by
  • the space 31 including the space 32 having a low dielectric constant is an object to be observed.
  • the dielectric interface estimation is performed.
  • the apparatus 100 can be used.
  • the dielectric constant of the space 32 is higher than the dielectric constant of the space 31, that is, even when ⁇ r, 0 ⁇ r, 1 ⁇ r, 2
  • the dielectric boundary surface estimation apparatus 100 is shown in FIGS. By performing the process shown, the width and thickness of the dielectric interface can be calculated.
  • steps ST503 to ST508 “high dielectric constant side” is read as “low dielectric constant side”, “low dielectric constant side” is read as “high dielectric constant side”, and “maximum point” is changed to “minimum”. Read “Point” and “Minimum point” as “Maximum point”. Therefore, when the dielectric constant of the space 32 is higher than the dielectric constant of the space 31, the dielectric interface 33 in FIG. 6 is on the low dielectric constant side, and the dielectric interface 34 is on the high dielectric constant side.
  • the dielectric boundary surface estimation unit 500 is a set of local minimum points of wave data for each aperture that is less than the threshold value, that is, A low dielectric constant side boundary point locus is used.
  • the three-dimensional synthetic aperture processing unit 400 performs three-dimensional Fourier transform on the wave data preprocessed by the preprocessing unit 300, and aligns the wavefront with the wave data obtained by the three-dimensional Fourier transform.
  • interpolation is performed to make the wave transmission directions orthogonal.
  • the preprocessing unit 300 removes the DC component in the range direction and the DC component in the azimuth direction from the wave data obtained by the radar device observing the dielectric, and transmits the dielectric. It is the structure which correct
  • the position estimation accuracy of the dielectric boundary surface can be further improved by removing the DC component of the wave data and correcting the contrast.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the dielectric boundary surface estimation apparatus 100 includes the wave data storage unit 200 and the output data storage unit 600, but the wave data storage unit 200 and the output data storage unit 600 are indispensable configurations. It is not an element. That is, the dielectric interface estimation apparatus 100 may be configured to receive wave data from the outside, calculate the width and thickness of the dielectric interface, and output the calculation results to the outside.
  • the dielectric boundary surface estimation apparatus calculates the width and thickness of the dielectric boundary surface using the wave data subjected to the three-dimensional synthetic aperture processing, cancer detection and structural material deterioration diagnosis It is suitable for a dielectric interface estimation device used for such as.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

誘電体境界面推定装置(100)は、レーダ装置が誘電体を観測して得た波動データを前処理する前処理部(300)と、前処理部(300)が前処理した波動データを三次元合成開口処理する三次元合成開口処理部(400)と、三次元合成開口処理部(400)が三次元合成開口処理した波動データを用いて、誘電体の誘電率が異なる境界面を推定し、境界面の幅および厚さを算出する誘電体境界面推定部(500)とを備える構成である。

Description

誘電体境界面推定装置
 この発明は、電波を利用して、誘電率が異なる誘電体同士の境界面を推定する誘電体境界面推定装置に関するものである。
 誘電体境界面推定装置は、電波の波動の性質である誘電体内部を透過する性質を利用して誘電体内部の状態を計測するために用いられており、がん検知および構造物の材質劣化診断などに資する。
 以下の特許文献1に記載された空洞厚探査方法は、Sトランスフォーム処理により誘電体境界点からの散乱を観測するというものであり、誘電体の境界面ではなく境界点の計測にとどまる。また、誘電体の形状計測については、Sトランスフォームに関係なく単に楕円体を目視で当てはめるのみであり、何ら工夫がされていなかった。
特開2015-197398号公報(図37)
 上記特許文献1に記載された空洞厚探査方法では、誘電体境界面のうちの一部である境界点の存在しか把握ができず、境界面の把握ができないという課題があった。また、上記特許文献1では、誘電体の形状を推定する方法として、合成開口処理を適用していない環境下で楕円体を当てはめる方法を採用しているため、誘電体境界面の水平方向の幅を精度よく推定できないという課題もあった。
 この発明は、上記のような課題を解決するためになされたもので、誘電体境界面の幅および厚さを精度よく推定することを目的とする。
 この発明に係る誘電体境界面推定装置は、レーダ装置が誘電体を観測して得た波動データを、前処理する前処理部と、前処理部が前処理した波動データを三次元合成開口処理する三次元合成開口処理部と、三次元合成開口処理部が三次元合成開口処理した波動データを用いて、誘電体の誘電率が異なる境界面を推定し、境界面の幅および厚さを算出する誘電体境界面推定部とを備えるものである。
 この発明によれば、三次元合成開口処理した波動データを用いて誘電体境界面を推定するようにしたので、誘電体境界面の幅および厚さを精度よく推定することができる。
この発明の実施の形態1に係る誘電体境界面推定装置の構成例を示す機能構成図である。 この発明の実施の形態1に係る誘電体境界面推定装置の構成例を示すハードウェア構成図である。 この発明の実施の形態1に係る誘電体境界面推定装置の前処理部が行う処理を示すフローチャートである。 この発明の実施の形態1に係る誘電体境界面推定装置の三次元合成開口処理部が行う処理を示すフローチャートである。 この発明の実施の形態1に係る誘電体境界面推定装置の誘電体境界面推定部が行う処理を示すフローチャートである。 この発明の実施の形態1に係る誘電体境界面推定装置の波動データ格納部に格納されている波動データが観測されたときの状況を示す図である。 この発明の実施の形態1に係る誘電体境界面推定装置の三次元合成開口処理部が三次元合成開口処理した後の波動データを示す図である。 この発明の実施の形態1に係る誘電体境界面推定装置の誘電体境界面推定部が開口分割および三次元逆高速フーリエ変換を実施した後の波動データを示す図である。 この発明の実施の形態1に係る誘電体境界面推定装置の誘電体境界面推定部が算出した高誘電率側境界点軌跡および低遊動率側境界点軌跡を示す図である。 この発明の実施の形態1に係る誘電体境界面推定装置の誘電体境界面推定部が算出した誘電体境界面の幅および厚さを示す図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る誘電体境界面推定装置100の構成例を示す機能構成図である。図示のように、誘電体境界面推定装置100は、波動データ格納部200、前処理部300、三次元合成開口処理部400、誘電体境界面推定部500、および出力データ格納部600を備えている。
 図2は、この発明の実施の形態1に係る誘電体境界面推定装置100の構成例を示すハードウェア構成図である。誘電体境界面推定装置100における波動データ格納部200は入力用記憶装置11であり、出力データ格納部600は出力用記憶装置14である。入力用記憶装置11、出力用記憶装置14、および後述するメモリ13は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、フラッシュメモリまたはSSD(Solid State Drive)等の不揮発性または揮発性の半導体素子メモリであってもよいし、ハードディスクまたはフレキシブルディスク等の磁気記憶媒体であってもよい。
 誘電体境界面推定装置100における前処理部300、三次元合成開口処理部400、および誘電体境界面推定部500の各機能は、処理回路により実現される。即ち、誘電体境界面推定装置100は、入力用記憶装置11に格納されている波動データを読み出し、この波動データを前処理し、前処理した波動データを三次元合成開口処理し、三次元合成開口処理した波動データを用いて誘電体の境界面を推定し、この境界面の幅および厚さを算出し、算出結果を出力用記憶装置14に格納するための処理回路を備える。処理回路は、メモリ13に格納されるプログラムを実行するプロセッサ12である。プロセッサ12は、CPU(Central Processing Unit)、演算装置、マイクロプロセッサまたはマイクロコンピュータ等ともいう。
 前処理部300、三次元合成開口処理部400、および誘電体境界面推定部500の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ13に格納される。プロセッサ12は、メモリ13に格納されたプログラムを読み出して実行することにより、各部の機能を実現する。即ち、誘電体境界面推定装置100は、プロセッサ12により実行されるときに、後述する図3~図5に示されるステップが結果的に実行されることになるプログラムを格納するためのメモリ13を備える。また、このプログラムは、前処理部300、三次元合成開口処理部400、および誘電体境界面推定部500の手順または方法をコンピュータに実行させるものであるともいえる。
 次に、この発明の実施の形態1に係る誘電体境界面推定装置100の動作を説明する。
 図3は前処理部300の処理を示すフローチャートである。図4は三次元合成開口処理部400の処理を示すフローチャートである。図5は誘電体境界面推定部500の処理を示すフローチャートである。
 図6は、波動データ格納部200に格納されている波動データが観測されたときの状況を示す図である。以下では、図6に示される状況で観測された波動データを用いて、誘電体境界面推定装置100の動作例を説明する。
 図6の観測系20において、観測対象の誘電体は、誘電率εr,1を有する空間31である。この空間31の内部には、相対的に低い誘電率εr,2(εr,2<εr,1)を有する空間32が包含されている。レーダ装置の送受信機21~24は、空間31の誘電率εr,1より低い誘電率εr,0(εr,0<εr,1)を有する空間30に配置される。
 送受信機21~24は、空間31へ向けてパルス状の電波25~28を送信する。送信された電波25~28は、誘電率が異なる空間30,31の境界である誘電体境界面33および誘電率が異なる空間31,32の境界である誘電体境界面34で散乱する。送受信機21~24は、誘電体境界面33,34で散乱した電波25~28を受信する。レーダ装置は、電波25~28の送受信結果に基づいて、誘電体境界面33,34からの電波の散乱情報を三次元のボクセルデータにし、誘電体境界面推定装置100へ出力する。
 複数の送受信機21~24を使用して観測してもよいし、あるいは、1つの送受信機を送受信機21~24の位置に移動させながら観測してもよい。
 以下では、レーダ装置が誘電体内部を観測して得た散乱情報を、波動データs(x,y,t)と称す。ただし、xΕ[-L/2,L/2]はアジマス方向、yΕ[-L/2,L/2]はエレベーション方向、tΕ[0,TPRI]はスラントレンジ方向と定義される。Lはアジマス方向の開口長、Lはエレベーション方向の開口長、TPRIはパルス繰り返し周期である。
 波動データ格納部200は、レーダ装置が誘電体内部を観測して得た波動データを受け取り、格納する。この波動データ格納部200に格納された波動データは、前処理部300に転送される。
 前処理部300は、波動データ格納部200から転送された波動データに対し、以下に詳述するステップST301~ST303の前処理を行った後、処理後の波動データを三次元合成開口処理部400へ出力する。
 ステップST301において、前処理部300は、波動データからレンジ方向のDC成分を除去する。具体的には、前処理部300は、波動データ格納部200から転送された波動データs(x,y,t)が固定小数点型データなどである場合を考慮したレンジ方向DC成分s0,t(x,y,t)を、式(1)の通り推定する。続いて前処理部300は、式(2)を用いて、波動データs(x,y,t)からレンジ方向DC成分s0,t(x,y,t)を除去し、レンジ方向DC成分除去済みの波動データsDC,t(x,y,t)を得る。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 ステップST302において、前処理部300は、波動データからアジマス方向のDC成分を除去する。具体的には、前処理部300は、波動データ格納部200から転送された波動データs(x,y,t)が固定小数点型データなどである場合を考慮したアジマス方向DC成分s0,t,x(x,y,t)を、式(3)の通り推定する。続いて前処理部300は、式(4)を用いて、レンジ方向DC成分除去済みの波動データsDC,t(x,y,t)からアジマス方向DC成分s0,t,x(x,y,t)を除去し、アジマス方向およびレンジ方向のDC成分を除去した波動データsDC,t,x(x,y,t)を得る。
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 ステップST303において、前処理部300は、波動データに対しコントラスト補正を行うことによって、誘電体内部を電波が透過した際の波動の減衰を補正する。具体的には、前処理部300は、アジマス方向およびレンジ方向のDC成分を除去した波動データsDC,t,x(x,y,t)に対し、式(5)のように波動の減衰を考慮したコントラスト補正関数sCNT,t,x(x,y,t)を定義する。続いて前処理部300は、式(6)を用いて波動データsDC,t,x(x,y,t)のコントラスト補正を行い、コントラスト補正後の波動データsPRE(x,y,t)を得る。前処理部300は、前処理後の波動データsPRE(x,y,t)を、三次元合成開口処理部400へ出力する。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 三次元合成開口処理部400は、前処理部300が出力した前処理後の波動データに対し、以下に詳述するステップST401~ST403の三次元合成開口処理を行った後、処理後の波動データを誘電体境界面推定部500へ出力する。
 ステップST401において、三次元合成開口処理部400は、前処理後の波動データを周波数空間の波動データに変換する、三次元フーリエ変換を実施する。具体的には、三次元合成開口処理部400は、式(7)を用いて、前処理部300から受け取った前処理後の波動データsPRE(x,y,t)に対し三次元高速フーリエ変換(FFT)を実施し、周波数空間の波動データSPRE(k,k,k)に変換する。
Figure JPOXMLDOC01-appb-I000007
 ステップST402において、三次元合成開口処理部400は、周波数空間上で波動データの波面を球面形状に補償する、アジマス一括圧縮を実施する。具体的には、三次元合成開口処理部400は、三次元FFT後の波動データSPRE(k,k,k)に対し式(8)の演算を実施することによってアジマス一括圧縮を行い、波動データSPRE(k,k,k)の波面をそろえて波動データの像をフォーカスさせた波動データSBULK(k,k,k)を得る。
Figure JPOXMLDOC01-appb-I000008
 ただし、式(8)において、Rはフォーカス距離であり、例えば式(9-1)で定義される。また、kは式(9-2)で定義される波数である。
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011
 ステップST403において、三次元合成開口処理部400は、波動データの波動伝達方向2kを、x軸およびy軸に直交化させるストルト補間を実施する。波数ベクトルの方向は波面および波動伝達方向を意味し、例えばレーダ装置が通常観測する波数ベクトル2kは、波数ベクトル(k,k,k)へと直交分解できる。これは、三平方の定理から上式(9-3)が成り立つことを示す。波数ベクトルkとkはアンテナ面上で直ちに互いに直交して定義できるのに対し、上式(9-2)のkは直接には観測できず、(k,k,2k)の関数としてしか観測できない。観測および定義可能な波数(k,k,2k)が直交している状態にするため、(k,k,2k)から(k,k,k)へと、上式(9-2)を用いて内挿する処理がストルト補間処理である。具体的には、三次元合成開口処理部400は、アジマス一括圧縮後の波動データSBULK(k,k,k)について、波数空間(k,k,k)を(k,k,k)へ変換するストルト補間を実施し、三次元合成開口処理後の波動データSSAR(k,k,k)を得る。三次元合成開口処理部400は、三次元合成開口処理後の波動データSSAR(k,k,k)を、誘電体境界面推定部500へ出力する。
 図7は、三次元合成開口処理部400が三次元合成開口処理した後の波動データ40、つまり波動データSSAR(k,k,k)を示す図である。三次元合成開口処理後の波動データ40における高誘電率側境界41は、図6に示された観測系20における誘電体境界面33に相当する。三次元合成開口処理後の波動データ40における低誘電率側境界42は、図6に示された観測系20における誘電体境界面34に相当する。
 なお、三次元合成開口処理部400が実施する三次元合成開口処理は、Omega-Κ方式として周知された技術である。
 また、ステップST403における補間方法としてストルト補間を例示したが、これ以外にも、例えばsinc補間またはキュービック補間でもよい。
 誘電体境界面推定部500は、三次元合成開口処理部400が出力した三次元合成開口処理後の波動データに対し、以下に詳述するステップST501~ST509の誘電体境界面推定処理を行って誘電体境界面の幅および厚さを算出し、算出結果を出力データ格納部600へ出力する。
 ステップST501において、誘電体境界面推定部500は、三次元合成開口処理後の波動データを複数の位相中心からの観測単位に分割することによって、誘電体境界面を誘電体境界点群に分解する。以下では、ステップST501の処理を開口分割と称する。具体的には、誘電体境界面推定部500は、式(10)を用いて、三次元合成開口処理部400から受け取った三次元合成開口処理後の波動データSSAR(k,k,k)に対し、アジマス方向をN分割およびエレベーション方向をM分割し、開口分割した開口毎波動データSSAR,n,m(k,k,k)を得る。
Figure JPOXMLDOC01-appb-I000012
 ただし、式(10)において、KBcut,xは開口分割後のアジマス方向の有効帯域幅であり、KBcut,yは開口分割後のエレベーション方向の有効帯域幅である。また、nΕ[0,N-1],mΕ[0,M-1]である。Δkはアジマス方向における開口分割の刻み幅であり、Δkはエレベーション方向における開口分割の刻み幅である。
 開口分割後の帯域幅をKB,x,KB,yとしたとき、KB,x,KB,y,KBcut,x,KBcut,yは式(11)の関係を有する。
Figure JPOXMLDOC01-appb-I000013
 ステップST502において、誘電体境界面推定部500は、開口分割した開口毎の波動データを周波数領域から空間領域へと変換する、三次元逆フーリエ変換を実施する。具体的には、誘電体境界面推定部500は、式(12)を用いて、開口毎波動データSSAR,n,m(k,k,k)に対し三次元逆高速フーリエ変換(IFFT)を実施し、空間領域の開口毎波動データISAR,n,m(x,y,z)に変換する。
Figure JPOXMLDOC01-appb-I000014
 図8は、誘電体境界面推定部500が開口分割および三次元IFFFを実施した後の波動データ50を示す図である。ステップST501およびステップST502の処理によって、図7に示された三次元合成開口処理後の波動データ40における高誘電率側境界41の部分は、図8に示される開口毎波動データ51A~51Gのような局所的な複数の小領域に分割される。開口毎波動データ51A~51Gは、誘電体境界面33を分解した誘電体境界点群と言える。同様に、図7に示された三次元合成開口処理後の波動データ40における低誘電率側境界42の部分は、図8に示される開口毎波動データ52A~52Dのような局所的な複数の小領域に分割される。開口毎波動データ52A~52Dは、誘電体境界面34を分解した誘電体境界点群と言える。
 なお、図8では図示を省略しているが、波動データ50における開口毎波動データ51A~51G,52A~52D以外の部分も、開口毎波動データ51A~51G,52A~52Dと同様に局所的な複数の小領域に分割される。
 ステップST503において、誘電体境界面推定部500は、開口毎波動データの中から、予め定められたしきい値を超える高誘電率側境界点を抽出する。続くステップST505において、誘電体境界面推定部500は、抽出した高誘電率側境界点群を高誘電率側境界点軌跡として記録する。
 具体的には、誘電体境界面推定部500は、開口毎波動データのうちのしきい値Tを超える高誘電率側境界面候補{x,y|Re[ISAR,n,m(x,y,z)]≧T}に対して、式(13)の演算を実施することで、しきい値Tを超える開口毎波動データの極大点の集合、つまり高誘電率側境界点軌跡(xtop,n,m,ytop,n,m,ztop,n,m)を得る。
 ただし、次式(13)および後述する式(14)において、Tは予め定められたしきい値であり、高誘電率側の誘電体境界面33で散乱する電波の信号電力に相当する値である。
Figure JPOXMLDOC01-appb-I000015
 ステップST504において、誘電体境界面推定部500は、開口毎波動データの中から、予め定められたしきい値未満である低誘電率側境界点を抽出する。続くステップST506において、誘電体境界面推定部500は、抽出した低誘電率側境界点群を低誘電率側境界点軌跡として記録する。
 具体的には、誘電体境界面推定部500は、開口毎波動データのうちのしきい値T未満となる低誘電率側境界面候補{x,y|Re[ISAR,n,m(x,y,z)]<T}に対して、式(14)の演算を実施することで、しきい値T未満となる開口毎波動データの極小点の集合、つまり低誘電率側境界点軌跡(xbtm,n,m,ybtm,n,m,zbtm,n,m)を得る。
Figure JPOXMLDOC01-appb-I000016
 図9は、誘電体境界面推定部500が算出した高誘電率側境界点軌跡51および低誘電率側境界点軌跡52を示す図である。高誘電率側境界点軌跡51は、しきい値を超える高誘電率側の開口毎波動データ51A~51Gの、各極大点の集合である。低誘電率側境界点軌跡52は、しきい値未満である低誘電率側の開口毎波動データ52A~52Dの、各極小値の集合である。
 なお、図9では、開口毎波動データ51A~51Gの極大点および開口毎波動データ52A~52Dの極小点を、「×」印の交点で示す。
 ステップST507において、誘電体境界面推定部500は、得られた高誘電率側境界点軌跡51を用いて誘電体境界面の幅を算出する。具体的には、誘電体境界面推定部500は、式(15)および式(16)を用いて、高誘電率側境界点軌跡51から誘電体境界面の幅(Δx,Δy)を算出する。
Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018
 ステップST508において、誘電体境界面推定部500は、得られた高誘電率側境界点軌跡51および低誘電率側境界点軌跡52を用いて、誘電体境界面間の厚さを算出する。具体的には、誘電体境界面推定部500は、式(17)を用いて、高誘電率側境界点軌跡51の中心から低誘電率側境界点軌跡52の中心までの距離を算出し、算出した距離を誘電体境界面間の厚さΔzとする。

Figure JPOXMLDOC01-appb-I000019
 図10は、誘電体境界面推定部500が算出した誘電体境界面の幅(Δx,Δy)および厚さΔzを示す図である。図10に矢印で示す誘電体境界面の幅(Δx,Δy)は、図6において、観測対象の誘電体である空間31と、この空間31に包含された空間32との境界である誘電体境界面34の幅に相当する。図10に矢印で示す誘電体境界面間の厚さΔzは、図6において、空間31の、誘電体境界面33から誘電体境界面34までの厚さに相当する。
 ステップST509において、誘電体境界面推定部500は、誘電体境界面の幅および厚さの算出結果を記録する。また、誘電体境界面推定部500は、記録した算出結果を、出力データ格納部600へ転送する。
 出力データ格納部600は、誘電体境界面推定部500から転送された誘電体境界面の幅および厚さの算出結果、ならびに三次元合成開口処理後の波動データを受け取り、格納する。出力データ格納部600は、格納している算出結果および波動データを、外部へ出力可能である。
 出力データ格納部600は、三次元合成開口処理後の波動データSSAR(k,k,k)を、三次元合成開口処理部400から直接受け取ってもよいし、誘電体境界面推定部500を経由して受け取ってもよい。
 以上で明らかなように、この実施の形態1によれば、誘電体境界面推定装置100は、レーダ装置が誘電体を観測して得た波動データを前処理する前処理部300と、前処理部300が前処理した波動データを三次元合成開口処理する三次元合成開口処理部400と、三次元合成開口処理部400が三次元合成開口処理した波動データを用いて、誘電体の誘電率が異なる境界面を推定し、境界面の幅および厚さを算出する誘電体境界面推定部500とを備える構成である。三次元合成開口処理した波動データを用いて誘電体境界面の位置を推定するようにしたので、誘電体境界面の幅および厚さを精度よく推定することができる。
 また、実施の形態1によれば、誘電体境界面推定部500は、三次元合成開口処理部400が三次元合成開口処理した波動データをアジマス方向およびエレベーション方向に分割し、分割後の波動データを三次元逆フーリエ変換し、三次元逆フーリエ変換した分割後の波動データの中から低誘電率側の誘電体境界面34に相当する低誘電率側境界点軌跡52および高誘電率側の誘電体境界面33に相当する高誘電率側境界点軌跡51を抽出し、高誘電率側境界点軌跡51から低誘電率側の誘電体境界面34の幅を算出し、高誘電率側境界点軌跡51の中心と低誘電率側境界点軌跡52の中心との距離から高誘電率側の誘電体境界面33から低誘電率側の誘電体境界面34までの厚さを算出する構成である。開口分割処理に基づいて誘電体境界面を点の軌跡に分割することで、誘電体境界面の位置推定精度をさらに向上させることができる。
 なお、実施の形態1では、内部に低い誘電率の空間32を包含した空間31が観測対象であったが、空間31の誘電率より空間32の誘電率が高い場合にも誘電体境界面推定装置100を用いることができる。
 空間31の誘電率より空間32の誘電率が高い場合、つまりεr,0<εr,1<εr,2であっても、誘電体境界面推定装置100は、図3~図5に示された処理を行うことにより誘電体境界面の幅および厚さを算出できる。その際、ステップST503~ST508において、「高誘電率側」を「低誘電率側」に読み替えると共に「低誘電率側」を「高誘電率側」に読み替え、かつ、「極大点」を「極小点」に読み替えると共に「極小点」を「極大点」に読み替える。
 そのため、空間31の誘電率より空間32の誘電率が高い場合、図6における誘電体境界面33は低誘電率側となり、誘電体境界面34は高誘電率側となる。そして、誘電体境界面推定部500は、空間31と空間32との境界である誘電体境界面34の幅を算出する際、しきい値未満となる開口毎波動データの極小点の集合、つまり低誘電率側境界点軌跡を用いる。
 また、実施の形態1によれば、三次元合成開口処理部400は、前処理部300が前処理した波動データを三次元フーリエ変換し、三次元フーリエ変換した波動データに対して波面をそろえるアジマス一括圧縮を実施した後、波動伝達方向を直交化させる補間を実施する構成である。三次元合成開口処理によって波動の局所性を向上させることで、誘電体境界面の位置推定精度をさらに向上させることができる。
 また、実施の形態1によれば、前処理部300は、レーダ装置が誘電体を観測して得た波動データに対し、レンジ方向のDC成分およびアジマス方向DC成分を除去し、誘電体を透過する際の波動の減衰を補正する構成である。波動データのDC成分除去およびコントラスト補正により、誘電体境界面の位置推定精度をさらに向上させることができる。
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。
 例えば、図1の構成例では、誘電体境界面推定装置100が波動データ格納部200および出力データ格納部600を備える構成であるが、波動データ格納部200および出力データ格納部600は必須の構成要素ではない。つまり、誘電体境界面推定装置100は、外部から波動データを受け取って誘電体境界面の幅および厚さを算出し、この算出結果を外部へ出力可能な構成であればよい。
 この発明に係る誘電体境界面推定装置は、三次元合成開口処理した波動データを用いて誘電体境界面の幅および厚さを算出するようにしたので、がん検知および構造物の材質劣化診断などに用いる誘電体境界面推定装置に適している。
 11 入力用記憶装置、12 プロセッサ、13 メモリ、14 出力用記憶装置、20 観測系、21~24 送受信機、25~28 電波、30~32 空間、33,34 誘電体境界面、40,50 波動データ、41 高誘電率側境界、42 低誘電率側境界、51 高誘電率側境界点軌跡、52 低誘電率側境界点軌跡、51A~51G,52A~52D 開口毎波動データ、100 誘電体境界面推定装置、200 波動データ格納部、300 前処理部、400 三次元合成開口処理部、500 誘電体境界面推定部、600 出力データ格納部。

Claims (4)

  1.  レーダ装置が誘電体を観測して得た波動データを、前処理する前処理部と、
     前記前処理部が前処理した波動データを三次元合成開口処理する三次元合成開口処理部と、
     前記三次元合成開口処理部が三次元合成開口処理した波動データを用いて、前記誘電体の誘電率が異なる境界面を推定し、前記境界面の幅および厚さを算出する誘電体境界面推定部とを備える誘電体境界面推定装置。
  2.  前記誘電体境界面推定部は、前記三次元合成開口処理部が三次元合成開口処理した波動データをアジマス方向およびエレベーション方向に分割し、分割後の波動データを三次元逆フーリエ変換し、三次元逆フーリエ変換した分割後の波動データの中から低誘電率側境界面に相当する低誘電率側境界点の軌跡および高誘電率側境界面に相当する高誘電率側境界点の軌跡を抽出し、前記高誘電率側境界点の軌跡または前記低誘電率側境界点の軌跡から前記高誘電率側境界面の幅または前記低誘電率側境界面の幅を算出し、前記高誘電率側境界点の軌跡の中心と前記低誘電率側境界点の軌跡の中心との距離から前記高誘電率側境界面から前記低誘電率側境界面までの厚さを算出することを特徴とする請求項1記載の誘電体境界面推定装置。
  3.  前記三次元合成開口処理部は、前記前処理部が前処理した波動データを三次元フーリエ変換し、三次元フーリエ変換した波動データに対して波面をそろえるアジマス一括圧縮を実施した後、波動伝達方向を直交化させる補間を実施することを特徴とする請求項1記載の誘電体境界面推定装置。
  4.  前記前処理部は、レーダ装置が誘電体を観測して得た波動データに対し、レンジ方向のDC成分およびアジマス方向のDC成分を除去し、前記誘電体を透過する際の波動の減衰を補正することを特徴とする請求項1記載の誘電体境界面推定装置。
PCT/JP2016/075981 2016-09-05 2016-09-05 誘電体境界面推定装置 WO2018042655A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16915210.5A EP3486682B1 (en) 2016-09-05 2016-09-05 Dielectric boundary surface estimation device
US16/318,081 US10775163B2 (en) 2016-09-05 2016-09-05 Dielectric boundary surface estimation device
PCT/JP2016/075981 WO2018042655A1 (ja) 2016-09-05 2016-09-05 誘電体境界面推定装置
JP2018536662A JP6440913B2 (ja) 2016-09-05 2016-09-05 誘電体境界面推定装置
SG11201900140RA SG11201900140RA (en) 2016-09-05 2016-09-05 Dielectric boundary surface estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075981 WO2018042655A1 (ja) 2016-09-05 2016-09-05 誘電体境界面推定装置

Publications (1)

Publication Number Publication Date
WO2018042655A1 true WO2018042655A1 (ja) 2018-03-08

Family

ID=61300330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075981 WO2018042655A1 (ja) 2016-09-05 2016-09-05 誘電体境界面推定装置

Country Status (5)

Country Link
US (1) US10775163B2 (ja)
EP (1) EP3486682B1 (ja)
JP (1) JP6440913B2 (ja)
SG (1) SG11201900140RA (ja)
WO (1) WO2018042655A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835054A (en) * 1996-03-01 1998-11-10 The Regents Of The University Of California Ultra wideband ground penetrating radar imaging of heterogeneous solids
JPH11271440A (ja) * 1998-03-25 1999-10-08 Osaka Gas Co Ltd 3次元探査方法及び装置
JP2004198195A (ja) * 2002-12-17 2004-07-15 Kawasaki Heavy Ind Ltd 地中の物体を探知する方法及び装置、並びに移動体
JP2004286461A (ja) * 2003-03-19 2004-10-14 Fujitsu Ltd 地中探知方法及び装置
JP2005233783A (ja) * 2004-02-19 2005-09-02 Shogo Tanaka 電磁波レーダを用いた位置の遠隔計測方法
JP2015021823A (ja) * 2013-07-18 2015-02-02 三菱電機株式会社 レーダ画像処理装置及びレーダ画像処理方法
JP2015197398A (ja) 2014-04-02 2015-11-09 ジオ・サーチ株式会社 空洞厚探査方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512175A (ja) * 2004-09-10 2008-04-24 インダストリアル・リサーチ・リミテッド イメージングシステム
JP2013113603A (ja) * 2011-11-25 2013-06-10 Kyushu Univ マイクロ波イメージングシステム及びイメージング処理方法
DE102012207186A1 (de) * 2012-03-29 2013-10-02 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Detektion von Strukturen in einem zu untersuchenden Objekt
US9439729B2 (en) * 2013-06-26 2016-09-13 Wisconsin Alumni Research Foundation System and method for monitoring thermal ablation using radiofrequency echoes
US10856740B2 (en) * 2014-03-03 2020-12-08 The Board Of Trustees Of The Leland Stanford Junior University Coherent frequency-domain microwave-induced thermoacoustic imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835054A (en) * 1996-03-01 1998-11-10 The Regents Of The University Of California Ultra wideband ground penetrating radar imaging of heterogeneous solids
JPH11271440A (ja) * 1998-03-25 1999-10-08 Osaka Gas Co Ltd 3次元探査方法及び装置
JP2004198195A (ja) * 2002-12-17 2004-07-15 Kawasaki Heavy Ind Ltd 地中の物体を探知する方法及び装置、並びに移動体
JP2004286461A (ja) * 2003-03-19 2004-10-14 Fujitsu Ltd 地中探知方法及び装置
JP2005233783A (ja) * 2004-02-19 2005-09-02 Shogo Tanaka 電磁波レーダを用いた位置の遠隔計測方法
JP2015021823A (ja) * 2013-07-18 2015-02-02 三菱電機株式会社 レーダ画像処理装置及びレーダ画像処理方法
JP2015197398A (ja) 2014-04-02 2015-11-09 ジオ・サーチ株式会社 空洞厚探査方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROAI ASAMI ET AL.: "SAR Gazo Saisei Shori no Kotei Shosu Tensu ni yoru Kairo Jisso Kogataka", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS B, vol. J97-B, no. 8, 1 August 2014 (2014-08-01), pages 660 - 668, XP009511907, ISSN: 0913-5715 *
KAZUO OUCHI, REMOTE SENSING NO TAMENO GOSEI KAIKO RADAR NO KISO, vol. 2, 20 June 2009 (2009-06-20), pages 91 - 93, 193-195, XP009511953, ISBN: 9784501327101 *
KYOJI DOI ET AL.: "A study on horizontal slice imaging of subsurface radar's output (SANE 97-75)", IEICE TECHNICAL REPORT. SANE, vol. 97, no. 377, 17 November 1997 (1997-11-17), pages 1 - 5, XP009511905 *
TAKEHIRO HOSHINO ET AL.: "A Feasibility Study for Detecting Crack of Concrete with Synthetic Aperture Radar", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 52, no. 6, 30 June 2016 (2016-06-30), pages 348 - 357, XP009511904, DOI: 10.9746/sicetr.52.348 *

Also Published As

Publication number Publication date
US10775163B2 (en) 2020-09-15
EP3486682A4 (en) 2019-07-17
SG11201900140RA (en) 2019-03-28
EP3486682B1 (en) 2021-03-31
EP3486682A1 (en) 2019-05-22
JPWO2018042655A1 (ja) 2018-12-20
JP6440913B2 (ja) 2018-12-19
US20200232791A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
CN111142105B (zh) 复杂运动目标isar成像方法
EP2802896B1 (en) Sar autofocus for ground penetration radar
Gorham et al. Scene size limits for polar format algorithm
US20140232590A1 (en) Sar image formation
Zhou et al. High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors
JP6080582B2 (ja) 画像レーダ装置
CN104730520A (zh) 基于子孔径合成的圆周sar后向投影自聚焦方法
JP6246338B2 (ja) 測角装置及び測角方法
WO2017154125A1 (ja) 合成開口レーダ信号処理装置
CN115166714A (zh) 单通道sar运动舰船二维速度估计与重定位方法及装置
CN104155653B (zh) 一种基于特征距离子空间的sar后向投影成像方法
JP2010127771A (ja) 合成開口ソーナー、合成開口ソーナーの位相誤差補正方法及びプログラム
JP6440913B2 (ja) 誘電体境界面推定装置
JP6289672B2 (ja) 合成開口レーダ信号処理装置及び合成開口レーダ信号処理プログラム
Shahrezaei et al. A monostatic forward-looking staring spotlight SAR raw data generation and hybrid-domain image formation modifications based on extended azimuth non-linear chirp scaling autofocusing
JP6529689B2 (ja) 観測装置および観測方法
EP2944265A1 (en) Ultrasonic diagnostic device
JP5460399B2 (ja) 画像レーダ装置
CN107450058B (zh) 基于FrFT和HT的雷达信号时频参数估计方法
Geng et al. An improved imaging algorithm for fixed-receiver bistatic SAR
CN103760561A (zh) 大斜视角sar成像模式下提高方位向非散焦长度的方法
JP2007263948A (ja) 画像レーダ装置
Jideani et al. Air-based synthetic aperture sonar tomography using compressive sensing
Zha et al. Maximum a posteriori estimation for radar angular super-resolution
US20220299633A1 (en) Signal processing device, signal processing method, and computer-readable storage medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018536662

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016915210

Country of ref document: EP

Effective date: 20190218

NENP Non-entry into the national phase

Ref country code: DE