WO2017154125A1 - 合成開口レーダ信号処理装置 - Google Patents

合成開口レーダ信号処理装置 Download PDF

Info

Publication number
WO2017154125A1
WO2017154125A1 PCT/JP2016/057290 JP2016057290W WO2017154125A1 WO 2017154125 A1 WO2017154125 A1 WO 2017154125A1 JP 2016057290 W JP2016057290 W JP 2016057290W WO 2017154125 A1 WO2017154125 A1 WO 2017154125A1
Authority
WO
WIPO (PCT)
Prior art keywords
curvature
interpolation processing
processing unit
point
synthetic aperture
Prior art date
Application number
PCT/JP2016/057290
Other languages
English (en)
French (fr)
Inventor
哲朗 古田
高橋 勝己
尾崎 敦夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/057290 priority Critical patent/WO2017154125A1/ja
Priority to JP2017549349A priority patent/JP6261839B1/ja
Priority to EP16893457.8A priority patent/EP3418770B1/en
Priority to US16/071,760 priority patent/US10921441B2/en
Priority to CA3015743A priority patent/CA3015743C/en
Publication of WO2017154125A1 publication Critical patent/WO2017154125A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9094Theoretical aspects

Definitions

  • the present invention relates to a synthetic aperture radar signal processing apparatus that is mounted on a mobile platform such as an aircraft or an artificial satellite and reproduces a synthetic aperture radar (SAR) image that is a high resolution image of the ground surface or the sea surface.
  • a synthetic aperture radar (SAR) image that is a high resolution image of the ground surface or the sea surface.
  • a synthetic aperture radar signal processing apparatus mounted on a mobile platform such as an aircraft or an artificial satellite includes a SAR sensor having an antenna.
  • the SAR sensor receives a reflected echo of the electromagnetic wave reflected by the target while repeatedly radiating the electromagnetic wave while the mobile platform is moving.
  • the synthetic aperture radar signal processing device obtains a two-dimensional SAR image by performing signal processing on the received signal of the SAR sensor.
  • the process of obtaining a two-dimensional SAR image from the received signal of the SAR sensor is called an image reproduction process, and the processing method of the image reproduction process is called an image reproduction algorithm.
  • the image reproduction algorithm there is a back projection algorithm disclosed in Non-Patent Document 1 below.
  • This back projection algorithm is a method for obtaining a SAR image by calculating a distance between a platform-mounted SAR sensor and a target point where an electromagnetic wave is reflected, and extracting and integrating a signal corresponding to this distance. .
  • Non-Patent Document 1 in order to reduce the calculation amount of the above distance calculation and integration processing, the signal is integrated using a polar coordinate format grid and finally converted into a Cartesian coordinate format by two-dimensional interpolation processing. There is a description about a method for obtaining a stable SAR image.
  • Patent Document 1 describes a technique for summarizing discrete data sequentially generated at fixed time intervals to reduce the amount of information and record it. This method does not store all generated discrete data in a storage means such as RAM or hardware, but expresses the discrete data point group with an approximate expression with high accuracy and stores the coefficient part of the approximate expression in the storage means. This is a technology that reduces the amount of information.
  • Patent Document 1 describes a method of switching an approximate expression in accordance with the magnitude of curvature of discrete data.
  • the curvature calculation method described in Patent Document 1 has a large amount of calculation, and even if an interpolation method optimal for both the calculation amount of interpolation processing and the interpolation accuracy can be selected, when switching between interpolations is determined.
  • the amount of computation becomes a bottleneck.
  • the present invention has been made to solve the above-described problem, and a synthetic aperture radar signal capable of reducing the amount of calculation of curvature in SAR image reproduction processing in which interpolation processing is switched according to the curvature of discrete data.
  • An object is to obtain a processing apparatus.
  • a synthetic aperture radar signal processing device includes a low-precision interpolation processing unit that interpolates discrete data obtained from a received signal of a synthetic aperture radar, and a high-precision interpolating process of discrete data with higher accuracy than the low-precision interpolation processing unit.
  • An accuracy interpolation processing unit a curvature determination unit that selects either a high-precision interpolation processing unit or a low-precision interpolation processing unit according to a first curvature that is a curvature of discrete data in a target region of the interpolation process, and a curvature determination
  • An image reproduction processing unit that reproduces an image using the result of the interpolation processing selected by the unit, and the curvature determination unit includes discrete data A point, B point, and C point arranged adjacent to each other in a predetermined direction in the vicinity of the target region.
  • a line segment connecting point A and point B is (AB + BC): Synthetic aperture radar signal processing for determining the first curvature based on the distance ⁇ f 1R between the point divided externally to BC and point C Device (however, AB is The distance between the point and the point B, BC is the distance between the points B and C.).
  • the present invention provides a synthetic aperture radar signal processing for selecting an interpolation processing method based on the curvature of discrete data in a region to be interpolated when interpolating discrete data obtained from a received signal of a synthetic aperture radar to reproduce a SAR image.
  • the present invention relates to an apparatus, and in particular, is characterized by calculating curvature with a small amount of calculation.
  • FIG. 1 is a functional configuration diagram showing an example of the configuration of a synthetic aperture radar signal processing device 100 according to Embodiment 1 of the present invention.
  • the synthetic aperture radar signal processing apparatus 100 processes the reception data of the SAR sensor 1 read from the reception data storage unit 2 and reproduces the SAR image.
  • the synthetic aperture radar signal processing apparatus 100 includes an image reproduction processing unit 3, a curvature determination unit 4, a low-precision interpolation processing unit 5, a high-precision interpolation processing unit 6, and a SAR image storage unit 7.
  • a configuration in which the SAR sensor 1 and the reception data storage unit 2 are provided outside the synthetic aperture radar signal processing apparatus 100 will be described.
  • the apparatus 100 may be configured to include the SAR sensor 1 and the reception data storage unit 2 inside.
  • the apparatus 100 may be configured to include the SAR sensor 1 and the reception data storage unit 2 inside.
  • a configuration in which the SAR image storage unit 7 is provided inside the synthetic aperture radar signal processing device 100 will be described.
  • a configuration provided outside the synthetic aperture radar signal processing device 100 may be used.
  • the SAR sensor 1 includes, for example, an antenna, a transmitter, a receiver (all not shown), and is mounted on a mobile platform such as an aircraft or an artificial satellite.
  • the SAR sensor 1 radiates the high frequency pulse signal generated by the transmitter from the antenna to the space, and receives the echo signal of the high frequency pulse signal reflected by the observation target by the antenna.
  • the receiver amplifies the received signal received by the antenna, converts the frequency of the amplified received signal into an intermediate frequency, converts the received signal into digital received data, and outputs the data.
  • the SAR sensor 1 is also referred to as a synthetic aperture radar.
  • the reception data storage unit 2 is a recording device such as a RAM (Random Access Memory) or a hard disk, and stores the reception data acquired by the SAR sensor 1.
  • the image reproduction processing unit 3 includes, for example, a semiconductor integrated circuit on which a CPU (Central Processing Unit) is mounted, a one-chip microcomputer, or the like.
  • the image reproduction processing unit 3 reproduces the SAR image by performing an image reproduction process on the reception data stored in the reception data storage unit 2. Since various reflected signals from a plurality of target points overlap each other, the received data can be imaged by compression processing to obtain a SAR image. Detailed image reproduction processing will be described later.
  • the curvature determination unit 4 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like.
  • the curvature determination unit 4 determines the curvature using the azimuth-compressed data obtained from the image reproduction processing unit 3, and based on the curvature determination result, either the low-precision interpolation processing unit 5 or the high-precision interpolation processing unit 6 is used. Select one.
  • the image reproduction processing unit 3 reproduces the SAR image using the interpolation processing result of the interpolation processing unit selected by the curvature determination unit 4. A detailed curvature determination method and interpolation processing selection method will be described later.
  • the low-precision interpolation processing unit 5 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer.
  • the curvature determination unit 4 selects the low-precision interpolation processing unit 5
  • low-precision interpolation processing is performed on the azimuth-compressed data obtained from the image reproduction processing unit 3, and the interpolation processing result is sent to the image reproduction processing unit 3. hand over.
  • the high-precision interpolation processing unit 6 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer.
  • the curvature determination unit 4 selects the high-precision interpolation processing unit 6
  • high-precision interpolation processing is performed on the azimuth-compressed data obtained from the image reproduction processing unit 3, and the interpolation processing result is sent to the image reproduction processing unit 3. hand over.
  • the SAR image storage unit 7 is a recording device such as a RAM or a hard disk, and stores the SAR image reproduced by the image reproduction processing unit 3.
  • the image reproduction processing unit 3, the curvature determination unit 4, the low-precision interpolation processing unit 5, the high-precision interpolation processing unit 6, and the SAR image storage unit 7 that are components of the synthetic aperture radar signal processing device are respectively
  • a configuration realized by dedicated hardware is assumed, the configuration is not limited to this, and a configuration realized by a computer may be used.
  • FIG. 2 is a hardware configuration diagram when the synthetic aperture radar signal processing apparatus 100 is configured by a computer.
  • the synthetic aperture radar signal processing apparatus 100 When the synthetic aperture radar signal processing apparatus 100 is configured by a computer, the synthetic aperture radar signal processing describing the processing contents of the image reproduction processing unit 3, the curvature determination unit 4, the low precision interpolation processing unit 5, and the high precision interpolation processing unit 6 is described.
  • the program is stored in the memory 11 of the computer.
  • a processor 12 such as a CPU of the computer implements each process by executing a synthetic aperture radar signal program stored in the memory 11.
  • the SAR image storage unit 7 may be realized by a recording device 13 such as a hard disk, or may be realized by an external recording device that can read and write data from the synthetic aperture radar signal processing device 100.
  • FIG. 3 is a flowchart showing the operation of the synthetic aperture radar signal processing apparatus 100 in the present embodiment, and shows a series of processes for generating a SAR image from the reception data of the SAR sensor 1.
  • the SAR sensor 1 radiates a high-frequency pulse signal generated by a transmitter from an antenna to space.
  • the antenna of the SAR sensor 1 receives the echo signal.
  • the receiver of the SAR sensor 1 amplifies the received signal of the antenna, converts the frequency of the amplified received signal to an intermediate frequency, and then A / D converts the received signal of the intermediate frequency to convert digital received data. Generate and output to the received data storage unit 2.
  • the image reproduction processing unit 3 reads out the received data from the received data storage unit 2 and inputs it (step ST21).
  • the image reproduction processing unit 3 performs range compression on the received data in order to increase the resolution in the range direction of the received data (step ST22).
  • the range compression processing of received data is a processing technique that realizes high resolution in the range direction by performing Fourier transform and multiplying the received data and the range reference function in the range direction.
  • the traveling direction of the platform on which the SAR sensor 1 is mounted is referred to as the azimuth direction, and the traveling direction of the radio wave beam emitted from the SAR sensor 1 is referred to as the range direction.
  • the range compression is performed in the range direction, and the azimuth compression is performed in the azimuth direction.
  • the image reproduction processing unit 3 performs azimuth compression on the data after the range compression in order to increase the resolution in the azimuth direction (step ST23).
  • the data after azimuth compression is a complex signal, and an SAR image is obtained by representing this in absolute value.
  • the principle of azimuth compression processing is the same as that of range compression, but the specific processing contents of azimuth compression differ depending on the image reproduction algorithm method used.
  • a range Doppler algorithm that performs azimuth compression processing, or by modulating the chirp rate of the chirp signal in the frequency domain, scaling and Fourier Chirp scaling algorithm for imaging only by transformation, ⁇ -k algorithm for transforming angular frequency in the range direction into wave number of polar coordinates, and processing in the above-mentioned time space for data transformed into two-dimensional frequency domain
  • ⁇ -k algorithm for transforming angular frequency in the range direction into wave number of polar coordinates
  • the image reproduction processing unit 3 performs interpolation processing on the azimuth-compressed data to generate a final SAR image.
  • the interpolation processing performed by the image reproduction processing unit 3 is intended for coordinate conversion, similar to the two-dimensional interpolation processing performed in Non-Patent Document 1.
  • FIG. 4 is an explanatory diagram schematically showing coordinate conversion by two-dimensional interpolation processing.
  • signal data that is equidistant from the distance between the SAR sensor 1 mounted on the platform and the target point that reflects the electromagnetic wave emitted by the SAR sensor 1 is extracted from the received data, and the extracted signal is extracted from the target point.
  • An SAR image is obtained by performing integration processing at the position.
  • the signal is integrated using a polar coordinate format grid and then converted into a Cartesian coordinate format from the polar coordinate format by two-dimensional interpolation processing.
  • the target unit for interpolation processing will be explained.
  • the target unit of the interpolation processing performed in the loop processing from step ST24 to step ST33 is a region whose side is a line segment connecting the data points after azimuth compression, and this region is called a target region.
  • the image reproduction processing unit 3 repeatedly executes a process of generating a final SAR image using the processing result of either the low precision interpolation processing unit 5 or the high precision interpolation processing unit 6 for each target region. That is, a loop process for the total number of target areas is performed.
  • the curvature determination unit 4 selects an interpolation process.
  • the curvature determination unit 4 determines the curvature of the azimuth-compressed data for each target region, and selects an interpolation process according to the curvature.
  • FIG. 5 is a diagram illustrating a target region for interpolation processing of azimuth-compressed data and types of interpolation processing.
  • the azimuth-compressed data is discrete data and is defined on a plane composed of the i-axis direction and the j-axis direction in the figure.
  • the f (i, j) axis represents the signal strength of the data after azimuth compression at the position (i, j).
  • the i-axis direction and the j-axis direction are arbitrary and the coordinate system is not limited, for example, it may be expressed in a polar coordinate format.
  • the data after azimuth compression is arranged at equal intervals in the i-axis direction and the j-axis direction, as indicated by the circles in the figure.
  • a broken line connecting the data after azimuth compression, which is discrete data, indicates the true value of the data after azimuth compression.
  • the target area of the interpolation process is an area having lines L1, L2, L3, and L4 connecting the four points of the adjacent azimuth-compressed data as sides (parts surrounded by thick solid lines in the figure), that is, four adjacent areas It is a lattice area having the data after azimuth compression as a vertex.
  • the curvature determination unit 4 determines the curvature of the data after azimuth compression for each target area, and selects an interpolation process according to the curvature.
  • the curvature is determined for each side constituting the target area, and the results are combined to obtain the curvature of the target area.
  • the region included in the range indicated by the dashed-dotted ellipse A1 has a large curvature
  • the region included in the range indicated by the dashed-dotted ellipse A2 has a small curvature.
  • An interpolation process with high accuracy is selected in an area with a large curvature
  • an interpolation process with low accuracy is selected in an area with a small curvature.
  • the curvature determination unit 4 selects the high-precision interpolation processing unit 6 in the region where the curvature is large, and selects the low-precision interpolation processing unit 5 in the region where the curvature is small.
  • step ST34 the image reproduction processing unit 3 selects a target region that has not been subjected to the interpolation process from the target regions configured by the azimuth-compressed data, and notifies the curvature determination unit 4 of the target region.
  • the curvature determination unit 4 determines the curvature of the azimuth-compressed data in the target region selected by the image reproduction processing unit 3. First, the curvature determination unit 4 selects one side that has not been subjected to curvature determination processing from the sides constituting the target region (step ST25).
  • the curvature determination unit 4 calculates the curvature of the signal strength of the azimuth-compressed data at the two signal positions at both ends of the selected side (step ST26).
  • the curvature at one signal position is the first curvature
  • the curvature at the other signal position is the second curvature. A method for calculating the curvature will be described later.
  • the curvature determination unit 4 compares the absolute values of the first and second curvatures with a reference value (also referred to as a threshold value) (step S27). As a result, when the absolute value of at least one of the curvatures is greater than or equal to the reference value, the curvature determination unit 4 determines that the curvature of the target region is large and selects the high-precision interpolation processing unit 6 (step S29). Further, when the absolute values of both curvatures are less than the reference value, the curvature determination unit 4 confirms whether or not the determination process of step ST27 has been performed on all sides constituting the target region ( Step ST28).
  • a reference value also referred to as a threshold value
  • the curvature determination unit 4 determines that the curvature of the target region is small and selects the low-precision interpolation processing unit 5 (Step ST30). If there is a side where the determination process of step ST27 is not performed, the process returns to step ST25. The curvature determination unit 4 selects a side that has not been subjected to the curvature determination process from the sides constituting the target area and continues the process.
  • FIG. 6 is an explanatory diagram showing interpolation coordinate points of the two-dimensional interpolation process. 4 points (x 1 , y 1 ), (x 1 , y 2 ), (x 2 , y 1 ), (x 2 , y 2 ) are coordinates of known points, (x, y) are coordinates of internal points Indicates. As shown in the equations (1) to (3), the value z (x, y) of the internal point can be calculated by performing interpolation in the x direction twice and interpolation in the y direction once.
  • Cubic spline interpolation will be described as an example of high-precision interpolation processing performed by the high-precision interpolation processing unit 6.
  • Spline interpolation is an interpolation method that creates a polynomial for each section and smoothly connects discrete data.
  • the equation for cubic spline interpolation is as follows. However, the subscript i indicates the i-th section. Since this equation has four unknown coefficients, it requires at least four discrete data.
  • 2D interpolation can be calculated by performing x-direction interpolation twice and y-direction interpolation once as in the case of linear interpolation.
  • the image reproduction processing unit 3 generates a final SAR image using the result of the interpolation processing selected by the curvature determining unit 4 out of the high-precision interpolation processing unit 6 or the low-precision interpolation processing unit 5 (step ST31). Thereafter, the image reproduction processing unit 3 determines whether or not interpolation processing has been performed on all target regions (step ST32). When the interpolation processing for all target regions is completed, the loop processing is terminated (step ST33), and the final SAR image is output to the SAR image storage unit 7 (step ST34). If there is a target area for which interpolation processing is not performed, the process returns to step ST25. The image reproduction processing unit 3 selects a target region for which interpolation processing is not performed and repeats the processing.
  • FIG. 7 is a diagram in which the azimuth-compressed data in the i-axis direction or j-axis direction in FIG. 5 are arranged in a one-dimensional direction.
  • the horizontal axis x is the i-axis direction
  • the vertical axis f (x) is the data after azimuth compression. Indicates the signal strength.
  • the positions in the horizontal axis direction of the azimuth-compressed data are equally spaced.
  • the curvature determination unit 4 calculates the curvature using four points after azimuth compression data arranged adjacent to each other in the predetermined direction in the vicinity of the target region.
  • the data A point, B point, C point, and D point arranged adjacent to each other in the i-axis direction in the vicinity of the target region are used, and the curvature of the side connecting the B point and the C point is expressed as follows.
  • a case of determination will be described.
  • a section between point B and point C is referred to as section BC.
  • the section AB and the section BC are collectively referred to as a section ABC.
  • the curvature determination unit 4 calculates the curvature at the position of point B.
  • the curvature at the position of the point B is obtained by calculating a distance ⁇ f 1R between the point X 1 and the point C that divides the line segment connecting the point A and the point B to 2: 1.
  • the curvature determination unit 4 calculates the curvature at the position of the point C.
  • the curvature at the position of the point C can be obtained by calculating a distance ⁇ f 2R between the point X 2 and the point D that divides the line connecting the point B and the point C to 2: 1. These calculations are equivalent to the calculation of the second derivative.
  • the distance ⁇ f 1R corresponds to the first curvature
  • the distance ⁇ f 2R corresponds to the second curvature.
  • the curvature determination unit 4 compares the calculated distances ⁇ f 1R and ⁇ f 2R with reference values. Since the distances ⁇ f 1R and ⁇ f 2R are proportional to the curvature, if at least one of the distances ⁇ f 1R and ⁇ f 2R is greater than or equal to the reference value, it is determined that the curvature of the section BC is large. Further, the curvature determination unit 4 determines that the curvature of the section BC is small if both the distances ⁇ f 1R and ⁇ f 2R are less than the reference value. In the example shown in the figure, the sections AB, BC, CD, and DE have a large curvature, so the high-precision interpolation processing unit 6 is selected. In the sections EF and FG, the curvature is small, and the low-precision interpolation processing unit 5 is selected. Show.
  • the curvature determination unit 4 performs the above-described process on all sides constituting the target area.
  • the target region is a lattice region indicated by bold lines in FIG. 5, the above processing is performed on the four sides L1, L2, L3, and L4.
  • the curvature of the target region is large. If it is determined that the curvature is small on all sides, it is determined that the curvature of the target area is small.
  • the curvatures at the positions of the points B and C are calculated, but the present invention is not limited to this. It is not a thing. For example, either one may determine the curvature of the section BC. However, if the determination results are different between two sections including the section BC, specifically, the section ABC and the section BCD, the two are in an equal relationship, so consider both determination results instead of one of them. There must be. Therefore, the curvature of the section BC can be determined more accurately by using the curvature calculated at the positions of the points B and C.
  • the curvature calculation of this embodiment is compared with the conventional curvature calculation.
  • the signal intensity at the point A is expressed as f (A).
  • the calculation formulas of the first and second curvatures of the present embodiment are as follows.
  • the amount of calculation increases.
  • the curvature can be calculated only by addition and subtraction, so that the calculation amount can be greatly reduced.
  • FIG. 9 is an explanatory diagram of an interpolation error associated with the interpolation processing of the present embodiment.
  • the broken line represents an ideal interpolation point that matches the true value, and the alternate long and short dash line represents an interpolation point obtained by actual interpolation processing.
  • the amount of deviation generated between the two corresponds to an error (interpolation error) associated with the interpolation process.
  • the reference value can be determined by relating the interpolation error and the image resolution.
  • FIG. 10 is a SAR image obtained when image reproduction processing is performed using an observation signal obtained by irradiating a single target with radio waves, and the horizontal axis indicates the range direction and the vertical axis indicates the azimuth direction.
  • FIG. 10A is a SAR image when all true interpolation points are obtained, that is, when no interpolation error occurs.
  • the signal intensity distribution is orthogonal in the azimuth direction and the range direction, and the signal intensity is Since it is symmetrical in the vertical and horizontal directions with the peak center as a reference, it indicates that a high-resolution SAR image is reproduced.
  • FIG. 10 is a SAR image obtained when image reproduction processing is performed using an observation signal obtained by irradiating a single target with radio waves, and the horizontal axis indicates the range direction and the vertical axis indicates the azimuth direction.
  • FIG. 10A is a SAR image when all true interpolation points are obtained, that is, when no interpolation error occurs.
  • the signal intensity distribution is
  • 10B is a SAR image when the interpolation processing accuracy is poor and the interpolation error is large, and the signal intensity distribution is not orthogonal in the azimuth direction and the range direction, and is asymmetric in the vertical and horizontal directions. This indicates that a low-resolution SAR image with a defocused image is reproduced.
  • FIG. 10A when attention is paid to the signal intensity distribution in the range direction or the azimuth direction with the target center as a reference, it matches the sinc function as shown in FIG. This sinc function is theoretically derived from the radio wave equation of the received signal.
  • FIG. 10B is a blurred SAR image because the signal intensity distribution is broken from the shape of the sinc function.
  • image resolution is used as one of the quantitative evaluation of the SAR image.
  • the image resolution is an index representing the fineness of the image, and the smaller the value, the easier it is to distinguish between objects and the clearer the image.
  • the image resolution generally means the length of a signal interval until the signal intensity is halved from the peak, and is defined in the range direction and the azimuth direction, respectively.
  • the signal intensity is expressed in decibels, as shown in FIG. 11, the peak value is 0 dB, and the half intensity is ⁇ 3 dB. Therefore, the image resolution is also called 3 dB width.
  • the theoretical value ⁇ sr of the image resolution in the slant range direction and the theoretical value ⁇ az of the image resolution in the azimuth direction are determined by the following equations (10) and (11).
  • FIG. 12 shows the observation geometry of SAR observation.
  • the radio wave beam is irradiated obliquely downward with respect to the traveling direction of the platform.
  • the azimuth direction is a platform traveling direction
  • the slant range direction is a direction in which a radio wave beam is irradiated from the platform.
  • the figure shows SAR observation in which the angle of the radio wave beam is fixed. In this case, the angle of the radio wave beam is equal to the synthetic aperture angle.
  • FIG. 10 is a SAR image formed when a single target is irradiated with radio waves.
  • image reproduction processing is performed by observing innumerable target reflections, terrain and vegetation commonly found in aerial photographs are generally shown.
  • a SAR image representing the distribution is obtained.
  • the threshold for curvature determination is obtained by associating the resolution of the SAR image with the interpolation error.
  • a reference value can be determined. That is, the relationship between the resolution and the interpolation error is examined in advance, and the interpolation error corresponding to the required resolution may be set as the reference value. For example, an interpolation error corresponding to a range in which the resolution falls within several percent of the theoretical value can be defined as the reference value.
  • the correspondence relationship between the resolution of the SAR image and the interpolation error is different in the range direction and the azimuth direction, the correspondence relationship can be obtained in each of the range direction and the azimuth direction.
  • the correspondence relationship between the resolution of the SAR image and the interpolation error will be described in detail with an example in the range direction.
  • the simulated signal data before the SAR image reproduction process is represented by a continuous function.
  • the function expression uses, for example, a received signal waveform represented by the following expression (12). In this signal waveform, the amplitude is 1, and the content of the exp function corresponds to the phase.
  • is the range time
  • S R ( ⁇ ) is the luminance value of the signal data at the range time ⁇
  • f 0 is the center frequency of the transmitted chirp pulse
  • ⁇ d is the round trip time of the radio wave to the point target
  • K r is the transmission Represents the chirp pulse chirp plate.
  • FIG. 13 is a diagram illustrating a signal waveform of simulated signal data.
  • FIG. 13A shows a signal waveform assumed to be an ideal interpolation processing result
  • FIGS. 13B and 13C show a signal waveform of the interpolation processing result obtained by reducing the amplitude value.
  • the amplitude value is decreased by d1.
  • the amplitude value is decreased by d2 (d2> d1). Tr represents the width of the transmitted chirp pulse.
  • the correspondence relationship with respect to the range direction has been described.
  • the correspondence relationship between the azimuth resolution and the interpolation error may be obtained using the reception signal waveform in the azimuth direction and the synthetic aperture time. Specifically, the difference is that a reception signal waveform in the azimuth direction corresponding to the synthetic aperture time is used instead of the reception signal waveform in the range direction corresponding to the transmission chirp pulse width Tr.
  • FIG. 14 is a diagram plotting the resolution obtained from the result of image reproduction processing of the three signal waveforms shown in FIG. 13, and is a diagram illustrating the relationship between the resolution of the SAR image and the interpolation error.
  • the horizontal axis corresponds to the amount by which the amplitude value is reduced from the ideal interpolation processing result, that is, the amount of deviation from the true value.
  • the vertical axis represents the error from the theoretical resolution value. From this relationship, an error from a theoretical value of resolution that can be tolerated in image reproduction is arbitrarily determined, and a deviation amount from a true value corresponding to the error is set as a reference value for curvature determination.
  • the low precision interpolation processing unit that interpolates discrete data obtained from the received signal of the synthetic aperture radar, and the low precision interpolation processing unit A high-precision interpolation processing unit that interpolates discrete data with higher accuracy, and either a high-precision interpolation processing unit or a low-precision interpolation processing unit depending on the first curvature that is the curvature of the discrete data in the target region of the interpolation processing A curvature determining unit for selecting one; and an image reproduction processing unit for reproducing an image using the result of the interpolation processing selected by the curvature determining unit.
  • the curvature determining unit is adjacent to the target region in a predetermined direction.
  • the discrete data A point, B point, and C point that are arranged are selected, and the first segment is based on the distance ⁇ f 1R between the point C and the point that divides the line segment connecting the point A and the point B to 2: 1. Determine the curvature.
  • the curvature of the signal strength of the azimuth-compressed data that is discrete data can be calculated only by addition or subtraction, the amount of calculation for curvature calculation can be suppressed.
  • the processing target region is a region having a line segment connecting discrete data as a side
  • the curvature determination unit is configured to detect the end of each side of each side.
  • the first curvature is determined by using discrete data as point B and point C, and either the high-precision interpolation processing unit or the low-precision interpolation processing unit is selected according to the first curvature determined for each side. And As a result, it is possible to reduce the amount of calculation required for the interpolation processing determination.
  • the curvature determining unit selects the high-precision interpolation process (for example, two-dimensional spline interpolation) when there is an edge where the absolute value of the first curvature exceeds the threshold, and otherwise, the low-precision interpolation process (for example, two-dimensional linear interpolation) is selected.
  • the high-precision interpolation processing is performed in a region with a large curvature
  • low-precision interpolation processing is performed in a region with a small curvature, so that a final SAR image having sufficient interpolation accuracy can be obtained while reducing the amount of calculation. Can do.
  • the curvature determination unit further selects discrete data points B, C, and D arranged adjacent to each other in a predetermined direction in the vicinity of the target region, The second curvature is determined based on the distance ⁇ f 2R between the point that divides the line connecting the B point and the C point by 2: 1 and the D point, and the first curvature and the second curvature are obtained.
  • the high-precision interpolation processing unit or the low-precision interpolation processing unit is selected. Thereby, the determination of the interpolation process can be performed with high accuracy.
  • interpolation formulas other than those described above may be used for the high-precision interpolation processing and the low-precision interpolation processing.
  • polynomial interpolation may be used for high-precision interpolation processing
  • nearest neighbor method may be used for low-precision interpolation processing. If the amount of calculation has a magnitude relationship, the type of interpolation processing is not limited.
  • the curvature determination unit 4 has described two types of determination, high-precision interpolation processing and low-precision interpolation processing. However, by increasing the number of determination criteria, the curvature determination unit 4 may be configured to select from three or more interpolation processes. Good.
  • the determination method of the two-dimensional interpolation process is taken as an example, but the determination of the one-dimensional or three-dimensional interpolation process may be performed by the determination method described above.
  • FIG. A synthetic aperture radar apparatus signal processing apparatus will be described.
  • the first embodiment the case where data after azimuth compression is arranged at equal intervals in the vertical direction or the horizontal direction has been described.
  • the present embodiment is different from the first embodiment in that the data after azimuth compression is arranged at non-equal intervals, that is, at arbitrary intervals.
  • this different point will be mainly described.
  • FIG. 15 is a diagram illustrating a method for calculating the curvature of discrete data arranged at unequal intervals.
  • the horizontal axis x indicates the arrangement position of the data after azimuth compression, which is discrete data
  • the vertical axis f (x) indicates the signal intensity of the data after azimuth compression.
  • a method of calculating the curvature at the position of the B ′ point will be described using the discrete data A ′, B ′, and C ′ points that are arranged at non-uniform intervals in the x direction.
  • the distance between the points A ′ and B ′ is A′B ′
  • the distance between the points B ′ and C ′ is B′C ′
  • the distance between the points A ′ and B ′ is x.
  • the distance in the direction is ⁇ X L
  • the distance in the x direction between the points B ′ and C ′ is ⁇ X R.
  • the curvature determination unit 4 uses the three points A ′, B ′, and C ′ to determine a line segment that connects the points A ′ and B ′ (A′B '+ B'C'): A distance ⁇ f 1R between the point X 1R 'and the point C' that is divided into B'C 'is calculated. Further, the distance ⁇ f 1L between the point X 1L ′ and the point A ′ that divides the line connecting the point B ′ and the point C ′ to A′B ′ :( A′B ′ + B′C ′) calculate.
  • the curvature determination unit 4 calculates the average of the distance ⁇ f 1R and the distance ⁇ f 1L, and determines the first curvature that is the curvature at the position of the point B ′ using the result. Similarly, the curvature determination unit 4 calculates the distance ⁇ f 2R and the distance ⁇ f 2L for the position of the C ′ point, and determines the second curvature that is the curvature at the position of the C ′ point using the average.
  • the distance ⁇ f 1R and the distance ⁇ f 1L are averaged, and the curvature is determined using the result.
  • the formula for calculating the first curvature is as follows.
  • the low precision interpolation processing unit that interpolates discrete data obtained from the received signal of the synthetic aperture radar, and the low precision interpolation processing unit.
  • One of a high-precision interpolation processing unit that interpolates discrete data with high accuracy and a high-precision interpolation processing unit or a low-precision interpolation processing unit according to the first curvature that is the curvature of the discrete data in the target region of the interpolation processing A curvature determination unit that selects the image and an image reproduction processing unit that reproduces an image using the result of the interpolation process selected by the curvature determination unit, and the curvature determination unit is arranged adjacent to the target region in a predetermined direction.
  • Discrete data A point, B point, and C point are selected, and the line segment connecting point A and point B is (AB + BC): the first is based on the distance ⁇ f 1R between the point divided externally to BC and point C Determine the curvature.
  • the curvature determination unit determines whether the line connecting the point B and the point C is divided into AB: (AB + BC) and the point A.
  • the first curvature is determined based on the distance ⁇ f 1L and the distance ⁇ f 1R .
  • the present invention can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment.
  • the synthetic aperture radar signal processing apparatus is suitable for a device that requires a high amount of calculation while ensuring sufficient calculation accuracy in the image reproduction processing when reproducing a SAR image of the ground surface or the sea surface. ing.
  • 1 SAR sensor synthetic aperture radar
  • 2 received data storage unit 3 image reproduction processing unit
  • 4 curvature determination unit 5 low accuracy interpolation processing unit
  • 6 high accuracy interpolation processing unit 7 SAR image storage unit
  • 11 memory 12 Processor, 13 recording device, 100 synthetic aperture radar signal processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本発明に係る合成開口レーダ信号処理装置は、合成開口レーダの受信信号から得られる離散データを補間処理する低精度補間処理部と、低精度補間処理部より高い精度で離散データを補間処理する高精度補間処理部と、補間処理の対象領域における離散データの曲率である第1の曲率に応じて高精度補間処理部または低精度補間処理部のいずれか一方を選択する曲率判定部と、曲率判定部で選択した補間処理の結果を用いて画像を再生する画像再生処理部とを備え、曲率判定部は、対象領域の近傍で所定方向に隣接して並ぶ離散データA点、B点、C点を選択し、A点とB点とを結ぶ線分を(AB+BC):BCに外分する点とC点との間の距離Δf1Rに基づいて第1の曲率を決定する合成開口レーダ信号処理装置である(ただし、ABはA点とB点との間の距離、BCはB点とC点との間の距離。)。これにより、離散データから曲率を計算する際の演算量を抑えることができる。

Description

合成開口レーダ信号処理装置
 この発明は、例えば、航空機や人工衛星などの移動プラットフォームに搭載されて、地表や海面などの高分解能画像である合成開口レーダ(SAR:Synthetic Aperture Radar)画像を再生する合成開口レーダ信号処理装置に関するものである。
 航空機や人工衛星などの移動プラットフォームに搭載される合成開口レーダ信号処理装置は、アンテナを有するSARセンサを備える。SARセンサは、移動プラットフォームの移動中に電磁波を繰り返し放射しながら、目標に反射された当該電磁波の反射エコーを受信する。合成開口レーダ信号処理装置は、SARセンサの受信信号に対する信号処理を実施することで、2次元のSAR画像を得る。SARセンサの受信信号から2次元のSAR画像を得る処理は画像再生処理と呼ばれ、その画像再生処理の処理方法は画像再生アルゴリズムと呼ばれる。画像再生アルゴリズムの一例として、以下の非特許文献1に開示されているバックプロジェクションアルゴリズムがある。
 このバックプロジェクションアルゴリズムは、プラットフォーム搭載のSARセンサと、電磁波が反射される目標点との間の距離を計算し、この距離に相当する信号を抽出して積分することでSAR画像を得る方法である。
 非特許文献1には、上記の距離計算と積分処理の演算量を削減するために、極座標形式グリッドを使用して信号を積分処理し、2次元補間処理によってデカルト座標形式にすることで最終的なSAR画像を得る手法に関する記載がある。
 2次元補間処理において、演算量が少ない補間手法(最近傍法、線形法など)を使用すると補間精度が低くなる。一方で、補間精度が高い補間手法(多項式補間)を用いると演算量が多くなる。このように、補間精度と演算量にはトレードオフの関係がある。
 そこで、補間の対象となる離散データの区間毎に低精度、高精度の補間処理手法を切り替えることによって、補間精度を保ちつつ、かつ補間処理の演算量を抑えられるような処理が実現できると考えられる。補間または近似処理の切り替え手法として、例えば、次に示す特許文献1の手法がある。
 特許文献1には、一定の時間毎に逐次的に発生する離散データを要約して情報量を削減し記録する手法について記載されている。この手法は、発生した全ての離散データをRAMやハードウェアなどの保存手段に格納するのではなく、離散データ点群を精度良く近似式で表し、近似式の係数部分を保存手段に格納することにより、情報量を削減する技術である。
国際公開WO2011/011387
L. M. H. Ulander, H. Hellsten, and G. Stenstrom, "Synthetic Aperture Radar Processing Using Fast Factorized Back-Projection," IEEE Transactions on Aerospace and electronic Systems, vol. 39, no. 3, pp.760-776, 2003.
 特許文献1には、離散データの曲率の大きさに応じて近似式を切り替える手法について記載されている。しかしながら、特許文献1に記載されている曲率の計算手法は演算量が多く、仮に補間処理の演算量と補間精度の双方にとって最適な補間手法が選択できたとしても、補間の切り替えを判定する際の演算量がボトルネックとなる。その結果、補間処理手法の切り替えによる補間処理時間の短縮効果が小さくなるという課題があった。
 この発明は、上記の課題を解決するためになされたもので、離散データの曲率に応じて補間処理を切り替えるSAR画像の再生処理において、曲率計算の演算量を削減することができる合成開口レーダ信号処理装置を得ることを目的とする。
 本発明に係る合成開口レーダ信号処理装置は、合成開口レーダの受信信号から得られる離散データを補間処理する低精度補間処理部と、低精度補間処理部より高い精度で離散データを補間処理する高精度補間処理部と、補間処理の対象領域における離散データの曲率である第1の曲率に応じて高精度補間処理部または低精度補間処理部のいずれか一方を選択する曲率判定部と、曲率判定部で選択した補間処理の結果を用いて画像を再生する画像再生処理部とを備え、曲率判定部は、対象領域の近傍で所定方向に隣接して並ぶ離散データA点、B点、C点を選択し、A点とB点とを結ぶ線分を(AB+BC):BCに外分する点とC点との間の距離Δf1Rに基づいて第1の曲率を決定する合成開口レーダ信号処理装置である(ただし、ABはA点とB点との間の距離、BCはB点とC点との間の距離。)。
 この発明によれば、記のように構成したことにより、離散データから曲率を計算する際の演算量を抑えることができる。
この発明の実施の形態1による合成開口レーダ信号処理装置の構成の一例を示す機能構成図である。 この発明の実施の形態1による合成開口レーダ信号処理装置のハードウェア構成の一例を示す図である。 この発明の実施の形態1による合成開口レーダ信号処理装置の処理の流れを示すフローチャートである。 2次元補間処理による座標変換を模式的に示す説明図である。 この発明の実施の形態1による合成開口レーダ信号処理装置の曲率判定の対象領域と曲率の判定結果を示す説明図である。 この発明の実施の形態1による合成開口レーダの2次元補間処理の補間座標点の説明図である。 この発明の実施の形態1による合成開口レーダ信号処理装置の曲率計算手法と補間処理の判定結果を示す説明図である。 従来の曲率計算手法を示す説明図である。 この発明の実施の形態1による合成開口レーダ信号処理装置の補間処理に伴う補間誤差を表す説明図である。 この発明の実施の形態1による合成開口レーダ信号処理装置の補間誤差とSAR画像の関係を示すイメージ図である。 この発明の実施の形態1による合成開口レーダ信号処理装置のSAR画像の画像分解能の説明図である。 この発明の実施の形態1による合成開口レーダの観測幾何の説明図である。 この発明の実施の形態1による合成開口レーダの模擬信号データの説明図である。 この発明の実施の形態1による合成開口レーダのSAR画像の分解能と補間誤差との関係を示す説明図である。 この発明の実施の形態2による合成開口レーダ信号処理装置の曲率計算の説明図である。
 本発明は、合成開口レーダの受信信号から得られる離散データを補間処理してSAR画像を再生する際に、補間対象領域の離散データの曲率に基づいて補間処理手法を選択する合成開口レーダ信号処理装置に関するものであり、特に、少ない演算量で曲率を計算することを特徴とするものである。以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
 実施の形態1.
 本実施の形態における合成開口レーダ信号処理装置100の構成について説明する。図1は、この発明の実施の形態1による合成開口レーダ信号処理装置100の構成の一例を示す機能構成図である。合成開口レーダ信号処理装置100は、受信データ格納部2から読み出したSARセンサ1の受信データを処理してSAR画像を再生する。また、合成開口レーダ信号処理装置100は、画像再生処理部3、曲率判定部4、低精度補間処理部5、高精度補間処理部6、SAR画像格納部7から構成される。なお、本実施の形態では、合成開口レーダ信号処理装置100の外部にSARセンサ1と受信データ格納部2とを設けた構成について説明するが、これに限定するものではなく、合成開口レーダ信号処理装置100の内部にSARセンサ1と受信データ格納部2とを備える構成であってもよい。また、本実施の形態では、合成開口レーダ信号処理装置100の内部にSAR画像格納部7を設けた構成について説明するが、合成開口レーダ信号処理装置100の外部に備える構成であってもよい。
 SARセンサ1は、例えば、アンテナ、送信機および受信機(いずれも図示せず)などから構成されており、航空機や人工衛星などの移動プラットフォームに搭載される。SARセンサ1は、送信機により生成された高周波パルス信号をアンテナから空間に放射する一方、観測目標によって反射された高周波パルス信号のエコー信号をアンテナで受信する。受信機は、アンテナで受信した受信信号を増幅し、増幅した受信信号の周波数を中間周波数に変換した後、デジタルの受信データに変換して出力する。なお、SARセンサ1は、合成開口レーダとも言う。
 受信データ格納部2は、例えば、RAM(Random Access Memory)やハードディスクなどの記録装置であり、SARセンサ1で取得した受信データを格納する。
 画像再生処理部3は、例えば、CPU(Central Processing Unit)を実装している半導体集積回路、あるいはワンチップマイコンなどから構成される。画像再生処理部3は、受信データ格納部2に格納される受信データに対して画像再生処理を実施することでSAR画像を再生する。受信データは、複数の目標点からの様々な反射信号が重なりあっているため、圧縮処理することで画像化し、SAR画像を得ることができる。詳細な画像再生処理については後述する。
 曲率判定部4は、例えば、CPUを実装している半導体集積回路、あるいはワンチップマイコンなどから構成される。曲率判定部4は、画像再生処理部3より得られるアジマス圧縮後データを用いて曲率を判定し、曲率の判定結果に基づいて、低精度補間処理部5または高精度補間処理部6のいずれか一方を選択する。画像再生処理部3は、曲率判定部4が選択した補間処理部の補間処理結果を用いてSAR画像を再生する。詳細な曲率の判別手法や補間処理の選択手法については後述する。
 低精度補間処理部5は、例えば、CPUを実装している半導体集積回路、あるいはワンチップマイコンなどから構成される。曲率判定部4が低精度補間処理部5を選択した場合には、画像再生処理部3より得られるアジマス圧縮後データに対して低精度補間処理を行い、補間処理結果を画像再生処理部3へ渡す。
 高精度補間処理部6は、例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成される。曲率判定部4が高精度補間処理部6を選択した場合には、画像再生処理部3より得られるアジマス圧縮後データに対して高精度補間処理を行い、補間処理結果を画像再生処理部3へ渡す。
 SAR画像格納部7は、例えば、RAMやハードディスクなどの記録装置であり、画像再生処理部3で再生されたSAR画像を格納する。
 以上の説明では、合成開口レーダ信号処理装置の構成要素である画像再生処理部3、曲率判定部4、低精度補間処理部5、高精度補間処理部6、およびSAR画像格納部7は、それぞれ専用のハードウェアで実現される構成を想定しているが、これに限定するものではなく、コンピュータで実現する構成でもよい。
 図2は、合成開口レーダ信号処理装置100がコンピュータで構成される場合のハードウェア構成図である。合成開口レーダ信号処理装置100がコンピュータで構成される場合、画像再生処理部3、曲率判定部4、低精度補間処理部5、高精度補間処理部6の処理内容を記述した合成開口レーダ信号処理プログラムがコンピュータのメモリ11に格納される。当該コンピュータのCPUなどのプロセッサ12は、メモリ11に格納されている合成開口レーダ信号プログラムを実行することにより、各処理を実現する。SAR画像格納部7は、ハードディスクなどの記録装置13で実現しても良いし、合成開口レーダ信号処理装置100からデータの読み書きが可能な外部の記録装置で実現しても良い。
 次に動作について説明する。図3は、本実施の形態における合成開口レーダ信号処理装置100の動作を示すフローチャートであり、SARセンサ1の受信データからSAR画像を生成する一連の処理を示している。
 SARセンサ1は、送信機により生成された高周波パルス信号をアンテナから空間に放射する。アンテナから空間に放射された高周波パルス信号が観測目標で反射され、その高周波パルス信号の反射であるエコー信号が戻ってくると、SARセンサ1のアンテナは、当該エコー信号を受信する。また、SARセンサ1の受信機は、アンテナの受信信号を増幅し、増幅した受信信号の周波数を中間周波数に変換した後、中間周波数の受信信号をA/D変換することでデジタルの受信データを生成し、受信データ格納部2へ出力する。
 画像再生処理部3は、受信データ格納部2から受信データを読み出して入力する(ステップST21)。画像再生処理部3は、受信データのレンジ方向の分解能を高めるため、受信データをレンジ圧縮する(ステップST22)。受信データのレンジ圧縮処理は、受信データとレンジ参照関数とをそれぞれレンジ方向にフーリエ変換し、乗算することでレンジ方向の高分解能化を実現する処理手法である。なお、SARセンサ1を搭載するプラットフォームの進行方向をアジマス方向、SARセンサ1から発せられる電波ビームの進行方向をレンジ方向という。レンジ方向に圧縮処理をするのがレンジ圧縮、アジマス方向に圧縮処理をするのがアジマス圧縮である。
 さらに、画像再生処理部3は、アジマス方向の分解能を高めるため、レンジ圧縮後のデータをアジマス圧縮する(ステップST23)。アジマス圧縮後のデータは複素の信号であり、これを絶対値で表したものがSAR画像となる。アジマス圧縮処理の原理はレンジ圧縮と同様であるが、使用する画像再生アルゴリズム方式によって具体的なアジマス圧縮の処理内容は異なる。例えば、周波数空間でレンジ圧縮後のデータとアジマス参照関数とを乗算することにより、アジマス圧縮処理をするレンジドップラー型アルゴリズムや、周波数領域でチャープ信号のチャープ率に変調をかけることで、スケーリングとフーリエ変換のみで画像化を行うチャープスケーリングアルゴリズムや、2次元の周波数領域に変換したデータに対し、レンジ方向の角周波数を極座標の波数に変換するω-kアルゴリズムや、上述した時間空間で処理をするバックプロジェクション型アルゴリズムなどがある。これらのアルゴリズムは公知の技術であるため、詳細な説明は省略する。
 次に、画像再生処理部3は、ステップST24からステップST33までのループ処理において、アジマス圧縮後データに対して補間処理を行い、最終的なSAR画像を生成する。画像再生処理部3が行う補間処理は、非特許文献1で行う2次元補間処理と同様、座標変換を目的とするものである。
 補間処理による座標変換について、図を参照して説明する。図4は、2次元補間処理による座標変換を模式的に示す説明図である。
 バックプロジェクションアルゴリズムでは、プラットフォームに搭載したSARセンサ1とSARセンサ1が放射する電磁波を反射する目標点との間の距離と等距離の信号データを受信データから抽出し、抽出した信号を目標点の位置で積分処理をすることでSAR画像を得る。
 これに対して、ファストバックプロジェクションでは、図4に示すように、極座標形式グリッドを使用して信号を積分処理した後、2次元補間処理によって極座標形式からデカルト座標形式に変換することで最終的なSAR画像を得る。このような手法を取り入れることで、距離計算と積分処理の演算量を削減することができる。
 補間処理の対象単位について説明する。ステップST24からステップST33のループ処理で行われる補間処理の対象単位は、アジマス圧縮後のデータ点間を結ぶ線分を辺とする領域とし、この領域を対象領域と呼ぶ。画像再生処理部3は、対象領域ごとに、低精度補間処理部5あるいは高精度補間処理部6のいずれか一方の処理結果を用いて最終的なSAR画像を生成する処理を繰り返し実行する。つまり、対象領域の総数分のループ処理が行われる。補間処理の選択は、曲率判定部4が行う。曲率判定部4は、対象領域ごとにアジマス圧縮後データの曲率を判定し、曲率に応じて補間処理を選択する。
 補間処理の選択方法について、図を参照して説明する。図5は、アジマス圧縮後データの補間処理の対象領域と、補間処理の種類分けを示す図である。アジマス圧縮後データは、離散データであり、図のi軸方向とj軸方向とで構成される平面上で定義される。f(i,j)軸は、位置(i,j)におけるアジマス圧縮後データの信号強度を表す。ここで、i軸方向やj軸方向は任意であり、座標系を問わないため、例えば、極座標形式で表しても構わない。アジマス圧縮後データは、図中に丸印で示すように、i軸方向、j軸方向にそれぞれ等間隔に配置される。離散データであるアジマス圧縮後データをつなぐ破線は、アジマス圧縮後データの真の値を示す。
 補間処理の対象領域は、隣接するアジマス圧縮後データの4点を結ぶ線分L1,L2,L3,L4を辺とする領域(図中の太い実線で囲まれる部分)、つまり、隣接する4つのアジマス圧縮後データを頂点とする格子領域である。
 曲率判定部4は、対象領域ごとにアジマス圧縮後データの曲率を判定し、曲率に応じて補間処理を選択する。曲率を判定する際には、まず、対象領域を構成する辺ごとに曲率を判定し、その結果を総合して対象領域の曲率とする。図に示す例では、一点鎖線の楕円A1で示す範囲に含まれる領域は曲率が大きく、一点鎖線の楕円A2で示す範囲に含まれる領域は曲率が小さい。曲率が大きい領域では、精度の高い補間処理が選択され、曲率が小さい領域では、精度の低い補間処理が選択される。具体的には、対象領域が曲面状の場合、つまり信号強度の変化が大きい場合には、線形補間のような低精度補間処理では正確に曲面を表現することが難しいため、多項式を用いた高精度補間処理が選択される。一方で、対象領域が平坦な場合、つまり信号強度の変化が小さい場合には、線形補間のような低精度補間処理が選択される。よって、曲率判定部4は、曲率が大きい領域では高精度補間処理部6を選択し、曲率が小さい領域では低精度補間処理部5を選択する。
 再び、フローチャートの説明に戻る。ステップST24からステップST33までのループ処理は、対象領域ごとに繰り返し行われる。よって、画像再生処理部3は、アジマス圧縮後データで構成される対象領域の中から、補間処理を行っていない対象領域を選択して曲率判定部4へ伝える。
 曲率判定部4は、画像再生処理部3で選択した対象領域におけるアジマス圧縮後データの曲率を判定する。まず、曲率判定部4は、対象領域を構成する辺の中から、曲率の判定処理を行っていない辺を1つ選択する(ステップST25)。
 次に、曲率判定部4は、選択した辺の両端にある2つの信号位置において、アジマス圧縮後データの信号強度の曲率を算出する(ステップST26)。一方の信号位置における曲率を第1の曲率、他方の信号位置における曲率を第2の曲率とする。曲率の算出手法については後述する。
 その後、曲率判定部4は、第1および第2の曲率の絶対値を基準値(閾値とも言う)と比較する(ステップS27)。その結果、少なくとも一方の曲率の絶対値が基準値以上となる場合には、曲率判定部4は、対象領域の曲率が大きいと判定して高精度補間処理部6を選択する(ステップS29)。また、両方の曲率の絶対値が基準値未満となる場合には、曲率判定部4は、対象領域を構成する全ての辺に対してステップST27の判定処理を実施したか否かを確認する(ステップST28)。全ての辺で実施済みの場合、つまり、曲率が基準値以上となる辺が存在しない場合には、曲率判定部4は、対象領域の曲率が小さいと判定して低精度補間処理部5を選択する(ステップST30)。ステップST27の判定処理を実施していない辺がある場合には、ステップST25へ戻る。曲率判定部4は、対象領域を構成する辺の中から、曲率の判定処理を行っていない辺を選択して処理を続ける。
 低精度補間処理部5が行う低精度補間処理の例として、線形補間について説明する。既知の4点が与えられたとき、その内部点(x,y)の値zを2次元補間処理で計算する場合を考える。図6は、2次元補間処理の補間座標点を示す説明図である。4点(x,y)、(x,y)、(x,y)、(x,y)は既知の点の座標、(x,y)は内部点の座標を示す。式(1)~(3)に示すように、内部点の値z(x,y)は、x方向の補間を2回、y方向の補間を1回実施することで計算できる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 高精度補間処理部6が行う高精度補間処理の例として、3次スプライン補間について説明する。スプライン補間は、区間毎に多項式を作り、滑らかに離散データを繋ぐ補間方式である。3次スプライン補間の式は以下のとおりである。ただし、添え字のiはi番目の区間であることを示す。なお、この式は未知数の係数が4個あるので、離散データを最低4つ必要とする。
Figure JPOXMLDOC01-appb-M000004
 2次元補間の計算は、線形補間の場合と同様に、x方向の補間を2回、y方向の補間を1回実施することで計算できる。
 画像再生処理部3は、高精度補間処理部6または低精度補間処理部5のうち、曲率判定部4が選択した補間処理の結果を用いて最終的なSAR画像を生成する(ステップST31)。その後、画像再生処理部3は、全ての対象領域に対して補間処理を実施したか否かを判断する(ステップST32)。全ての対象領域の補間処理が完了した場合には、ループ処理を終了し(ステップST33)、最終的なSAR画像をSAR画像格納部7へ出力する(ステップST34)。補間処理を実施していない対象領域がある場合には、ステップST25へ戻る。画像再生処理部3は、補間処理を行っていない対象領域を選択して処理を繰り返す。
 ここで、曲率の判定方法について、図を用いて詳しく説明する。図7は、図5のi軸方向あるいはj軸方向のアジマス圧縮後データを1次元方向に並べたものである。例えば、j軸方向の位置を固定し、i軸方向の位置を変化させて得られる信号を取り出した場合には、横軸xはi軸方向、縦軸f(x)はアジマス圧縮後データの信号強度を示す。また、図7では、アジマス圧縮後データの横軸方向の位置は等間隔とする。
 曲率判定部4は、対象領域の近傍で所定方向に隣接して並ぶアジマス圧縮後データを4点用いて曲率を算出する。ここでは、図に示すように、対象領域の近傍でi軸方向に隣接して並ぶデータA点、B点、C点、D点を使用し、B点とC点とを結ぶ辺の曲率を判定する場合について説明する。なお、以降の説明では、例えば、B点とC点との間の区間を区間BCと言う。また、区間ABと区間BCとをあわせて区間ABCと言う。
 まず、曲率判定部4は、B点の位置における曲率を算出する。B点の位置における曲率は、A点とB点とを結ぶ線分を2:1に外分するX点とC点との間の距離Δf1Rを計算することで求められる。同様に、曲率判定部4は、C点の位置における曲率を算出する。C点の位置における曲率は、B点とC点とを結ぶ線分を2:1に外分するX点とD点との間の距離Δf2Rを計算することで求められる。これらの計算は、2階微分の計算と等価である。距離Δf1Rが第1の曲率、距離Δf2Rが第2の曲率にそれぞれ対応する。
 次に、曲率判定部4は、算出した距離Δf1R,Δf2Rを基準値と比較する。距離Δf1R,Δf2Rは、曲率と比例関係にあることから、距離Δf1R,Δf2Rの少なくとも一方が基準値以上であれば、区間BCの曲率は大きいと判定する。また、曲率判定部4は、距離Δf1R,Δf2Rがともに基準値未満であれば、区間BCの曲率は小さいと判定する。図に示す例では、区間AB,BC,CD,DEは曲率が大きいため高精度補間処理部6が選択され、区間EF,FGは曲率が小さいため低精度補間処理部5が選択されることを示している。
 なお、曲率判定部4は、対象領域を構成する全ての辺に対して上記の処理を行う。対象領域が図5に太線で示す格子領域の場合、4本の辺L1,L2,L3,L4に対して上記の処理を行う。その結果、少なくとも1つの辺において曲率が大きいと判定された場合には、その対象領域の曲率は大きいと判断する。全ての辺において曲率が小さいと判定された場合には、その対象領域の曲率は小さいと判断する。
 また、本実施の形態においては、区間BCの曲率を判定するために、B点とC点の位置における曲率(第1の曲率と第2の曲率)を算出しているが、これに限定するものではない。例えば、いずれか一方で区間BCの曲率を判定してもよい。ただし、区間BCを含む2つの区間、具体的には、区間ABCと区間BCDとにおいて判定結果が異なる場合、両者は対等な関係にあるため、いずれか一方ではなく、両方の判定結果を考慮しなければならない。よって、B点とC点の位置において算出した曲率を用いることで、区間BCの曲率をより精度よく判定することができる。
 次に、本実施の形態の曲率計算と従来の曲率計算とを比較する。信号強度をfの関数で表すと、A点の信号強度はf(A)で表される。このとき、本実施の形態の第1および第2の曲率の計算式は、下記のとおりとなる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 一方、従来手法では、図8に示す離散データ3点(A点,B点,C点)の場合、式(7)~(9)に示すように、ベクトルABとベクトルBCとの規格化計算および内積計算により曲率が求められる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 このように、従来手法では、ベクトル規格化に伴う除算演算や平方根演算を用いるため、演算量が増大する。これに対して、本発明では、加算や減算のみで曲率が算出できるので、演算量を大幅に削減することができる。
 次に、曲率の判定に用いる基準値の決定方法について、図を参照して説明する。図9は、本実施の形態の補間処理に伴う補間誤差の説明図である。破線は、真値と一致する理想的な補間点、一点鎖線は、実際の補間処理によって得られる補間点を表す。両者の間に生じるずれ量は、補間処理に伴う誤差(補間誤差)に相当する。この補間誤差と画像分解能とを関係付けることにより、基準値の決定が可能になる。
 図10は、一点のターゲットに電波を照射して観測したときに得られる観測信号を用いて画像再生処理したときに得られるSAR画像であり、横軸はレンジ方向、縦軸はアジマス方向を示す。図10(a)は、全て真値の補間点が得られた場合、つまり、補間誤差が生じない場合のSAR画像で、信号の強度分布がアジマス方向とレンジ方向とで直交し、信号強度がピークとなる中央を基準として、上下左右方向に対称なことから、高分解能なSAR画像が再生されることを示している。一方、図10(b)は、補間処理の精度が悪く、補間誤差が大きい場合のSAR画像で、信号の強度分布がアジマス方向とレンジ方向とで直交しておらず、上下左右方向に非対称なことから、焦点がぼけた低分解能なSAR画像が再生されることを示している。
 図10(a)において、ターゲット中心を基準として、レンジ方向、あるいはアジマス方向の信号強度分布に注目すると、図11に示すようなsinc関数と一致する。このsinc関数は、受信信号の電波の式から、理論的に導かれるものである。一方、図10(b)は、sinc関数の形状から崩れた信号強度分布となるため、ぼけたSAR画像となる。
 上記では、SAR画像の定性的な見方について示したが、SAR画像の定量的な評価の一つとして、画像分解能が用いられる。画像分解能は、画像のきめ細かさを表す指標であり、値が小さいほど対象物間の区別がしやすく鮮明な画像となる。
 画像分解能は、一般に信号強度がピークから半分になるまでの信号区間の長さを意味し、レンジ方向、アジマス方向でそれぞれ定義される。信号強度をデシベルで表すと、図11に示すように、ピーク値で0dB、半分の強度で-3dBとなるので、画像分解能を3dB幅とも言う。スラントレンジ方向の画像分解能の理論値δsrとアジマス方向の画像分解能の理論値δazは、以下の式(10)、(11)で決定される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ここで、Cは光速、Bは電波の送信帯域幅、λは電波の波長、θSAは合成開口角である。合成開口角とは、固定位置に対して、電波ビームの当たり始めから当たり終わりまでのプラットフォームと固定位置との角度のことを意味する。図12にSAR観測の観測幾何を示す。SAR観測では、図のように、プラットフォームの進行方向に対して斜め下方向に電波ビームを照射する。アジマス方向はプラットフォーム進行方向であり、スラントレンジ方向はプラットフォームから電波ビームを照射する方向である。図では、電波ビームの角度を固定するSAR観測を表しており、この場合、電波ビームの角度が合成開口角と等しくなる。
 図10は、1点のターゲットに電波を照射した際にできるSAR画像であるが、無数のターゲットの反射を観測して画像再生処理を行うと、一般に航空写真で良くみられるような地形や植生分布を表すSAR画像が得られる。
 SAR画像の分解能が、上記の分解能の理論値に一致するとき、理想的な再生画像となることが分かっているので、SAR画像の分解能と補間誤差とを対応づけることにより、曲率判定用の閾値である基準値を決定することができる。つまり、事前に分解能と補間誤差との関係を調べておき、必要とする分解能に相当する補間誤差を基準値として設定すればよい。例えば、分解能が理論値の数%以内に収まる範囲に相当する補間誤差を基準値として定義することができる。
 レンジ方向とアジマス方向では、SAR画像の分解能と補間誤差との対応関係が異なるので、レンジ方向とアジマス方向のそれぞれで対応関係を求めることができる。ここでは、SAR画像の分解能と補間誤差との対応関係について、レンジ方向の例を挙げて詳しく説明する。まず、SAR画像の再生処理前の模擬信号データを連続的な関数で表す。関数の式は、例えば、下記の式(12)で表される受信信号波形を使用する。この信号波形では、振幅が1、exp関数の中身が位相に相当する。
Figure JPOXMLDOC01-appb-M000012
 ここで、τはレンジ時間、S(τ)はレンジ時間τにおける信号データの輝度値、fは送信チャープパルスの中心周波数、τは点目標までの電波の往復時間、Kは送信チャープパルスのチャープレートを表す。
 式(12)で表される関数上でサンプリングした点を理想的な補間処理により得られる結果と仮定する。次に、理想的な補間処理結果に対し、振幅値を減少させる操作をする。振幅値の減少量は、時間の経過とともに変化させる。図13は、模擬信号データの信号波形を示す図である。図13(a)は理想的な補間処理結果と仮定した信号波形、図13(b)および図13(c)は振幅値を減少させた補間処理結果の信号波形を表す。図13(b)では、平均すると振幅値をd1減少させている。図13(c)では、平均すると振幅値をd2(d2>d1)減少させている。Trは送信チャープパルスの幅を表す。
 振幅値の減少量が大きいほど、SAR画像の再生処理後に計測される分解能は低下する。つまり、分解能の理論値から大きくずれる。よって、振幅値の操作量の大きさと分解能の理論値からの誤差との関係を求めることで、SAR画像の画素値の真値からのずれ量と、SAR画像の分解能の理論値からの誤差との関係を求めることができる。上記では、レンジ方向に関する対応関係を説明したが、アジマス方向に関しても同様に、アジマス方向の受信信号波形と合成開口時間とを用いて、アジマス分解能と補間誤差との対応関係を求めればよい。具体的には、送信チャープパルス幅Tr分のレンジ方向の受信信号波形の代わりに、合成開口時間分のアジマス方向の受信信号波形を用いる点が異なる。
 図14は、図13に示す3つの信号波形を画像再生処理した結果から得られる分解能をプロットした示した図であり、SAR画像の分解能と補間誤差との関係を示す図である。横軸は、理想的な補間処理結果から振幅値を減少させた量、つまり真値からのずれ量に対応する。縦軸は、分解能の理論値からの誤差を示す。この関係から、画像再生において許容できる分解能の理論値からの誤差を任意に決定し、その誤差に対応する真値からのずれ量を曲率判定の基準値として設定する。
 以上で明らかなように、実施の形態1の合成開口レーダ信号処理装置100によれば、合成開口レーダの受信信号から得られる離散データを補間処理する低精度補間処理部と、低精度補間処理部より高い精度で離散データを補間処理する高精度補間処理部と、補間処理の対象領域における離散データの曲率である第1の曲率に応じて高精度補間処理部または低精度補間処理部のいずれか一方を選択する曲率判定部と、曲率判定部で選択した補間処理の結果を用いて画像を再生する画像再生処理部とを備え、曲率判定部は、対象領域の近傍で所定方向に隣接して並ぶ離散データA点、B点、C点を選択し、A点とB点とを結ぶ線分を2:1に外分する点とC点との間の距離Δf1Rに基づいて第1の曲率を決定する。このように、離散データであるアジマス圧縮後データの信号強度の曲率を加算や減算のみで算出することができるので、曲率算出の演算量を抑制することができる。
 また、実施の形態1の合成開口レーダ信号処理装置100によれば、処理の対象領域は、離散データを結ぶ線分を辺とする領域であり、曲率判定部は、辺ごとに辺の両端の離散データを点B、点Cとして第1の曲率を決定し、辺ごとに決定した第1の曲率に応じて高精度補間処理部または低精度補間処理部のいずれか一方を選択することを特徴とする。これにより、補間処理の判定にかかる演算量を抑えることができる。
 さらに、曲率判定部は、第1の曲率の絶対値が閾値を超える辺が存在する場合には高精度補間処理(例えば2次元スプライン補間)を選択し、そうでない場合には低精度補間処理(例えば2次元線形補間)を選択する。これにより、曲率の大きい領域で高精度な補間処理を行い、曲率の小さい領域で低精度な補間処理を行うので、演算量を抑えるとともに、十分な補間精度をもつ最終的なSAR画像を得ることができる。
 また、実施の形態1の合成開口レーダ信号処理装置100によれば、曲率判定部は、さらに対象領域の近傍で所定方向に隣接して並ぶ離散データB点、C点、D点を選択し、B点とC点とを結ぶ線分を2:1に外分する点とD点との間の距離Δf2Rに基づいて第2の曲率を決定し、第1の曲率および第2の曲率に応じて高精度補間処理部または低精度補間処理部のいずれか一方を選択する。これにより、補間処理の判定を高精度に行うことができる。
 なお、高精度補間処理および低精度補間処理は、上述した以外の補間式を使用してもよい。例えば、高精度補間処理であれば多項式補間、低精度補間処理であれば最近傍法でもよい。演算量に大小関係があれば、補間処理の種類は問わない。
 また、曲率判定部4では、高精度補間処理あるいは低精度補間処理の2種類の判定について説明したが、判定基準の数を増やすことにより、3つ以上の補間処理の中から選択する構成としてもよい。
 なお、本実施の形態では、2次元補間処理の判定手法を例として挙げたが、1次元や3次元の補間処理の判定を上記で示した判定手法により実施してもよい。
 実施の形態2.
 本実施の形態における合成開口レーダ装置信号処理装置について説明する。実施の形態1では、アジマス圧縮後データが縦方向あるいは横方向に等間隔に配置される場合について説明した。本実施の形態では、アジマス圧縮後データが非等間隔、つまり、任意の間隔で配置される点が実施の形態1と異なる。実施の形態2では、この異なる点を中心に説明する。
 図15は、非等間隔に配置された離散データの曲率の算出手法を示す図である。横軸xは離散データであるアジマス圧縮後データの配置位置、縦軸f(x)はアジマス圧縮後データの信号強度を示す。ここでは、x方向に非等間隔に並ぶ離散データA’点、B’点、C’点を用いて、B’点の位置における曲率の算出方法を説明する。なお、A’点とB’点との間の距離をA’B’、B’点とC’点との間の距離をB’C’、A’点とB’点との間のx方向の距離をΔX、B’点とC’点との間のx方向の距離をΔXとする。
 まず、実施の形態1と同様に、曲率判定部4は、3点A’点、B’点、C’点を用いて、A’点とB’点とを結ぶ線分を(A’B’+B’C’):B’C’に外分するX1R’点とC’点との間の距離Δf1Rを計算する。また、B’点とC’点とを結ぶ線分をA’B’:(A’B’+B’C’)に外分するX1L’点とA’点との間の距離Δf1Lを計算する。さらに、曲率判定部4は、距離Δf1Rと距離Δf1Lとの平均を算出し、その結果を用いてB’点の位置における曲率である第1の曲率を判定する。曲率判定部4は、C’点の位置についても同様に、距離Δf2Rと距離Δf2Lを計算し、その平均を用いてC’点の位置における曲率である第2の曲率を判定する。
 距離Δf1Rと距離Δf1Lとの平均をとる理由について説明する。離散データが等間隔の場合には、距離Δf1Rと距離Δf1Lとは等しい。そのため、実施の形態1では距離Δf1Rのみ算出して曲率を判定した。一方、離散データが非等間隔の場合には、距離Δf1Rと距離Δf1LとがA’B’とB’C’との比で変わる。例えば、図15のようにB’点がA’点よりもC’点に近い場合、距離Δf1Rが小さくなり、曲率判定で過小評価される。この問題を回避するため、本実施の形態では、距離Δf1Rと距離Δf1Lとの平均をとり、その結果を用いて曲率を判定する。第1の曲率の計算式は、次式のようになる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 なお、実施の形態1のように離散データが等間隔の場合には、距離Δf1Rと距離Δf1Lは等しいため、距離Δf1Rの代わりに距離Δf1Lを使用して曲率判定してもよい。同様に、距離Δf2Rと距離Δf2Lも等しいため、距離Δf2Rの代わりに距離Δf2Lを使用して曲率判定してもよい。
 以上で明らかなように、実施の形態2の合成開口レーダ信号処理装置によれば、合成開口レーダの受信信号から得られる離散データを補間処理する低精度補間処理部と、低精度補間処理部より高い精度で離散データを補間処理する高精度補間処理部と、補間処理の対象領域における離散データの曲率である第1の曲率に応じて高精度補間処理部または低精度補間処理部のいずれか一方を選択する曲率判定部と、曲率判定部で選択した補間処理の結果を用いて画像を再生する画像再生処理部とを備え、曲率判定部は、対象領域の近傍で所定方向に隣接して並ぶ離散データA点、B点、C点を選択し、A点とB点とを結ぶ線分を(AB+BC):BCに外分する点とC点との間の距離Δf1Rに基づいて第1の曲率を決定する。このように、離散データであるアジマス圧縮後データが非等間隔の場合でも、従来と比較して少ない演算量で信号強度の曲率を求めることができる。
 また、実施の形態1の合成開口レーダ信号処理装置100によれば、曲率判定部は、B点とC点とを結ぶ線分をAB:(AB+BC)に外分する点とA点との間の距離Δf1Lおよび距離Δf1Rに基づいて第1の曲率を決定する。これにより、離散データであるアジマス圧縮後データが非等間隔の場合でも、補間処理の判定を高精度に行うことができる。
 本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る合成開口レーダ信号処理装置は、地表や海面等のSAR画像を再生する際、画像再生処理での十分な演算精度を確保しながら、演算量を削減する必要性が高いものに適している。
 1 SARセンサ(合成開口レーダ)、2 受信データ格納部、3 画像再生処理部、4 曲率判定部、5 低精度補間処理部、6 高精度補間処理部、7 SAR画像格納部、11 メモリ、12 プロセッサ、13 記録装置、100 合成開口レーダ信号処理装置。

Claims (13)

  1.  合成開口レーダの受信信号から得られる離散データを補間処理する低精度補間処理部と、
     前記低精度補間処理部より高い精度で前記離散データを補間処理する高精度補間処理部と、
     補間処理の対象領域における前記離散データの曲率である第1の曲率に応じて前記高精度補間処理部または前記低精度補間処理部のいずれか一方を選択する曲率判定部と、
     前記曲率判定部で選択した補間処理の結果を用いて画像を再生する画像再生処理部と
    を備え、
     前記曲率判定部は、前記対象領域の近傍で所定方向に隣接して並ぶ離散データA点、B点、C点を選択し、前記A点と前記B点とを結ぶ線分を(AB+BC):BCに外分する点と前記C点との間の距離Δf1Rに基づいて前記第1の曲率を決定する合成開口レーダ信号処理装置。
    (ただし、ABはA点とB点との間の距離、BCはB点とC点との間の距離。)
  2.  前記曲率判定部は、前記B点と前記C点とを結ぶ線分をAB:(AB+BC)に外分する点と前記A点との間の距離Δf1Lおよび前記距離Δf1Rに基づいて前記第1の曲率を決定することを特徴とする請求項1に記載の合成開口レーダ信号処理装置。
  3.  前記曲率判定部は、距離Δf1Lと前記距離Δf1Rとの平均値を前記第1の曲率とすることを特徴とする請求項2に記載の合成開口レーダ信号処理装置。
  4.  前記曲率判定部は、前記第1の曲率の絶対値が閾値を超える場合には前記高精度補間処理部を選択し、そうでない場合には前記低精度補間処理部を選択することを特徴とする請求項1から請求項3のいずれか1項に記載の合成開口レーダ信号処理装置。
  5.  前記曲率判定部は、さらに前記対象領域の近傍で前記所定方向に隣接して並ぶ離散データB点、C点、D点を選択し、前記B点と前記C点とを結ぶ線分を(BC+CD):CDに外分する点と前記D点との間の距離Δf2Rに基づいて第2の曲率を決定し、前記第1の曲率および前記第2の曲率に応じて前記高精度補間処理部または前記低精度補間処理部のいずれか一方を選択することを特徴とする請求項1に記載の合成開口レーダ信号処理装置。
    (ただし、CDはC点とD点との間の距離。)
  6.  前記曲率判定部は、前記C点と前記D点とを結ぶ線分をBC:(BC+CD)に外分する点と前記D点との間の距離Δf2Lおよび前記距離Δf2Rに基づいて前記第2の曲率を決定することを特徴とする請求項5に記載の合成開口レーダ信号処理装置。
  7.  前記曲率判定部は、距離Δf2Lと前記距離Δf2Rとの平均値を前記第2の曲率とすることを特徴とする請求項6に記載の合成開口レーダ信号処理装置。
  8.  前記曲率判定部は、前記第1の曲率の絶対値および前記第2の曲率の絶対値の少なくとも一方が閾値を超える場合には前記高精度補間処理部を選択し、そうでない場合には前記低精度補間処理部を選択することを特徴とする請求項5から請求項7のいずれか1項に記載の合成開口レーダ信号処理装置。
  9.  前記対象領域は、前記離散データを結ぶ線分を辺とする領域であり、
     前記曲率判定部は、前記辺ごとに前記辺の両端の前記離散データを前記点B、前記点Cとして前記第1の曲率を決定し、前記辺ごとに決定した前記第1の曲率に応じて前記高精度補間処理部または前記低精度補間処理部のいずれか一方を選択することを特徴とする請求項1から請求項4のいずれか1項に記載の合成開口レーダ信号処理装置。
  10.  前記曲率判定部は、前記第1の曲率の絶対値が閾値を超える辺が存在する場合には前記高精度補間処理部を選択し、そうでない場合には前記低精度補間処理部を選択することを特徴とする請求項9に記載の合成開口レーダ信号処理装置。
  11.  前記曲率判定部は、前記離散データを結ぶ線分を辺とする領域により前記対象領域を規定し、前記辺ごとに前記辺の両端の前記離散データを前記点B、前記点Cとして前記第1の曲率および前記第2の曲率を決定し、前記辺ごとに決定した前記第1の曲率および前記第2の曲率に応じて前記高精度補間処理部または前記低精度補間処理部のいずれか一方を選択することを特徴とする請求項5から請求項8のいずれか1項に記載の合成開口レーダ信号処理装置。
  12.  前記曲率判定部は、前記第1の曲率の絶対値および前記第2の曲率の絶対値の少なくとも一方が閾値を超える辺が存在する場合には前記高精度補間処理部を選択し、そうでない場合には前記低精度補間処理部を選択することを特徴とする請求項11に記載の合成開口レーダ信号処理装置。
  13.  前記閾値は、前記画像の画素値の真値からのずれ量と、前記画像の分解能の理論値からの誤差との関係を予め求め、前記誤差が所定の値となるときの前記ずれ量を前記閾値とすることを特徴とする請求項4、請求項8、請求項10および請求項12のいずれか1項に記載の合成開口レーダ信号処理装置。
PCT/JP2016/057290 2016-03-09 2016-03-09 合成開口レーダ信号処理装置 WO2017154125A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/057290 WO2017154125A1 (ja) 2016-03-09 2016-03-09 合成開口レーダ信号処理装置
JP2017549349A JP6261839B1 (ja) 2016-03-09 2016-03-09 合成開口レーダ信号処理装置
EP16893457.8A EP3418770B1 (en) 2016-03-09 2016-03-09 Synthetic-aperture-radar signal processing device
US16/071,760 US10921441B2 (en) 2016-03-09 2016-03-09 Synthetic aperture radar signal processing device
CA3015743A CA3015743C (en) 2016-03-09 2016-03-09 Synthetic aperture radar signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057290 WO2017154125A1 (ja) 2016-03-09 2016-03-09 合成開口レーダ信号処理装置

Publications (1)

Publication Number Publication Date
WO2017154125A1 true WO2017154125A1 (ja) 2017-09-14

Family

ID=59789195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057290 WO2017154125A1 (ja) 2016-03-09 2016-03-09 合成開口レーダ信号処理装置

Country Status (5)

Country Link
US (1) US10921441B2 (ja)
EP (1) EP3418770B1 (ja)
JP (1) JP6261839B1 (ja)
CA (1) CA3015743C (ja)
WO (1) WO2017154125A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244907A (zh) * 2021-11-23 2022-03-25 华为技术有限公司 雷达数据的压缩方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338364B (zh) * 2019-11-21 2021-09-21 浙江大学 快速响应的高超声速飞行器轨迹优化高精度控制器
EP3913398B1 (en) * 2020-05-20 2022-11-16 Airbus Defence and Space GmbH Synthetic aperture radar data reduction for satellites
WO2022181778A1 (ja) * 2021-02-25 2022-09-01 三菱電機株式会社 データ処理装置およびレーダ装置
CN115564728B (zh) * 2022-09-30 2023-08-11 苏州大学 一种图像角点检测方法、装置、设备及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288166A (ja) * 1996-04-24 1997-11-04 Mitsubishi Electric Corp レーダ走査変換装置
JP2010286359A (ja) * 2009-06-11 2010-12-24 Furuno Electric Co Ltd 信号処理装置、この信号処理装置を備えるレーダ装置及びその信号処理装置の画素抜け検出方法
JP2015210125A (ja) * 2014-04-24 2015-11-24 三菱電機株式会社 画像レーダ装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243349A (en) * 1981-03-17 1993-09-07 Westinghouse Electric Corp. High resolution synthetic aperture radar having rectilinear output image format
US5179383A (en) * 1991-07-15 1993-01-12 Raney R K Synthetic aperture radar processor to handle large squint with high phase and geometric accuracy
US5365465A (en) * 1991-12-26 1994-11-15 Texas Instruments Incorporated Floating point to logarithm converter
JPH07195253A (ja) * 1993-11-24 1995-08-01 Hitachi Ltd 加工用camシステムの処理方法
US5623928A (en) * 1994-08-05 1997-04-29 Acuson Corporation Method and apparatus for coherent image formation
JP2001281529A (ja) * 2000-03-29 2001-10-10 Minolta Co Ltd デジタルカメラ
US7336820B2 (en) * 2005-02-04 2008-02-26 Kabushiki Kaisha Toshiba Method and apparatus for rapid shading in a raster image processor
JP4954032B2 (ja) * 2007-11-20 2012-06-13 三菱電機株式会社 合成開口レーダ画像再生装置、合成開口レーダ画像再生方法及び合成開口レーダ画像再生プログラム
US7532150B1 (en) * 2008-03-20 2009-05-12 Raytheon Company Restoration of signal to noise and spatial aperture in squint angles range migration algorithm for SAR
US9336628B2 (en) * 2008-05-08 2016-05-10 United Technologies Corporation Systems and methods involving surface fitting
US9075129B2 (en) * 2008-12-10 2015-07-07 The United States Of America As Represented By The Secretary Of The Army Method and system for forming images by comparing subsets of image data
WO2011018943A1 (ja) * 2009-08-12 2011-02-17 日本電気株式会社 データ要約システム、データ要約方法および記録媒体
JP5619544B2 (ja) * 2010-09-14 2014-11-05 三菱スペース・ソフトウエア株式会社 速度推定装置及びコンピュータプログラム及び速度推定方法
JP5731800B2 (ja) * 2010-11-19 2015-06-10 古野電気株式会社 物標探知方法、物標探知プログラム、物標探知装置、およびレーダ装置
JP5699621B2 (ja) * 2011-01-19 2015-04-15 株式会社リコー 画像処理装置、画素補間方法およびプログラム
US9976887B1 (en) * 2011-06-22 2018-05-22 Daniel T. Mudd Wider dynamic accuracy range for gas delivery devices
AU2012372427B2 (en) * 2012-03-07 2016-02-25 Nippon Steel Corporation Misalignment calculation system
JP6047968B2 (ja) * 2012-07-17 2016-12-21 セイコーエプソン株式会社 プロジェクター、及び、プロジェクターにおける発光制御方法
JP6080582B2 (ja) * 2013-02-07 2017-02-15 三菱電機株式会社 画像レーダ装置
US9179039B2 (en) * 2014-02-12 2015-11-03 Xerox Corporation Methods and systems for processing low resolution images via error diffusion
US10624612B2 (en) * 2014-06-05 2020-04-21 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
JP6493196B2 (ja) * 2015-12-17 2019-04-03 株式会社デンソー 制御装置、制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288166A (ja) * 1996-04-24 1997-11-04 Mitsubishi Electric Corp レーダ走査変換装置
JP2010286359A (ja) * 2009-06-11 2010-12-24 Furuno Electric Co Ltd 信号処理装置、この信号処理装置を備えるレーダ装置及びその信号処理装置の画素抜け検出方法
JP2015210125A (ja) * 2014-04-24 2015-11-24 三菱電機株式会社 画像レーダ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244907A (zh) * 2021-11-23 2022-03-25 华为技术有限公司 雷达数据的压缩方法和装置
CN114244907B (zh) * 2021-11-23 2024-01-16 华为技术有限公司 雷达数据的压缩方法和装置

Also Published As

Publication number Publication date
CA3015743C (en) 2020-05-26
US20200166635A1 (en) 2020-05-28
JPWO2017154125A1 (ja) 2018-03-15
EP3418770A4 (en) 2019-02-27
JP6261839B1 (ja) 2018-01-17
CA3015743A1 (en) 2017-09-14
US10921441B2 (en) 2021-02-16
EP3418770A1 (en) 2018-12-26
EP3418770B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6261839B1 (ja) 合成開口レーダ信号処理装置
US7397418B1 (en) SAR image formation with azimuth interpolation after azimuth transform
CN105842694B (zh) 一种基于ffbp sar成像的自聚焦方法
Gorham et al. Scene size limits for polar format algorithm
JP4749903B2 (ja) レーダ画像処理装置
WO2018025300A1 (ja) 合成開口レーダ装置
CN104914440B (zh) 一种融合动态孔径的压缩感知超声波束合成方法
CN115166714B (zh) 单通道sar运动舰船二维速度估计与重定位方法及装置
Cheng et al. Processing of airborne video SAR data using the modified back projection algorithm
JP2004198275A (ja) 合成開口レーダ装置および画像再生方法
JP6289672B2 (ja) 合成開口レーダ信号処理装置及び合成開口レーダ信号処理プログラム
KR20230090853A (ko) 합성개구레이다 영상으로부터 물체의 지표면 상의 전력 레벨 반사도를 산출하는 방법
CN112415512B (zh) 基于进退法和黄金分割法的sar运动目标聚焦方法
CN113608218A (zh) 一种基于后向投影原理的频域干涉相位稀疏重构方法
JP5664869B2 (ja) 測定装置、測定システム、測定方法、及びプログラム
Xingyu et al. Approach for ISAR imaging of near-field targets based on coordinate conversion and image interpolation
CN116794643A (zh) 一种基于声反射断层扫描成像的逆投影方法
Kim et al. Synthetic aperture imaging of dispersive targets
CN110632606B (zh) 一种基于空间重采样的二维快速傅里叶变换三维成像方法
CN112666625A (zh) 用于毫米波安检的快速成像设备及其方法
Wang et al. An accelerate FFBP algorithm of bistatic forward-looking SAR based on azimuth equidistant coordinates
JP6289388B2 (ja) 画像レーダ装置
WO2024150806A1 (ja) 信号処理装置、信号処理方法、及び記録媒体
WO2024150807A1 (ja) 信号処理装置、信号処理方法、及び記録媒体
CN112327299B (zh) 电磁涡旋前视目标三维成像方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017549349

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3015743

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016893457

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016893457

Country of ref document: EP

Effective date: 20180919

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893457

Country of ref document: EP

Kind code of ref document: A1