WO2018040853A1 - 设置微波雷达和超声波传感器的汽车盲区探测系统及方法 - Google Patents

设置微波雷达和超声波传感器的汽车盲区探测系统及方法 Download PDF

Info

Publication number
WO2018040853A1
WO2018040853A1 PCT/CN2017/096209 CN2017096209W WO2018040853A1 WO 2018040853 A1 WO2018040853 A1 WO 2018040853A1 CN 2017096209 W CN2017096209 W CN 2017096209W WO 2018040853 A1 WO2018040853 A1 WO 2018040853A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
detection
car
blind
blind spot
Prior art date
Application number
PCT/CN2017/096209
Other languages
English (en)
French (fr)
Inventor
陈武强
Original Assignee
陈武强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈武强 filed Critical 陈武强
Publication of WO2018040853A1 publication Critical patent/WO2018040853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the invention belongs to the field of automotive electronic equipment, and in particular relates to a vehicle blind spot detection system and a detection method comprising a single microwave radar sensor and a plurality of ultrasonic sensors.
  • the current car blind spot detection system also known as blind spot monitoring system, blind spot assist system, etc.
  • most models use the vehicle-mounted microwave radar sensor.
  • the system passes the microwave radar sensor installed on the left and right sides of the rear end of the car.
  • Target objects usually referred to as vehicles
  • vehicles within the blind area of the rear-view mirrors of the adjacent lanes on the left and right sides of the vehicle are detected.
  • FIG. 1 is a schematic diagram of the original detection of the microwave radar blind zone detection system. Take the left side detection description as an example (symmetric right side and left side).
  • the microwave radar sensor 150 is arranged on the left side of the rear bumper of the automobile (referred to as the rear protection), and the detection direction is toward the side rear side, so that the radar sensor covers the left side adjacent lane of the vehicle, the rear side mirror blind front end BQ1L, and the blind end rear end BQ2L area.
  • the system in order to cover the partial visible area SQL behind the BQ2L at the back end of the blind spot, the system usually uses short-range microwave radar sensors (such as 24G short-range millimeter wave radar), and the ranging range (range radius Rra) is 30-50 meters, the sensor The detection angle ⁇ 1 is 150 degrees. Due to the characteristics of microwave radar, the detection range is long, the reaction speed is fast, and the angle and relative speed detection and judgment ability are available. Therefore, the radar sensor can accurately scan and cover the area to be detected.
  • short-range microwave radar sensors such as 24G short-range millimeter wave radar
  • the ranging range range radius Rra
  • Rra range radius Rra
  • the sensor The detection angle ⁇ 1 is 150 degrees. Due to the characteristics of microwave radar, the detection range is long, the reaction speed is fast, and the angle and relative speed detection and judgment ability are available. Therefore, the radar sensor can accurately scan and cover the area to be detected.
  • the blind area of the exterior mirror of the car taking the left side as an example, according to the conventional standard definition, see Figure 1, the left blind zone is BQ1L and BQ2L, the BQ1L, BQ2L width (left and right direction, X direction) is 3 meters, BQ1L front and rear direction (Y The length of the direction is the distance from the rear end of the car to the rear view mirror of the car, usually about 3 meters. The length of the front and rear of the BQ2L is 3 meters behind the rear end of the car.
  • the left blind zone BQhL includes BQ1L and BQ2L, which includes the left blind zone front end BQ1L and the left blind end back end BQ2L.
  • the blind area on the right side of the car is symmetric with the blind area on the left side, that is, the BQhR on the right side of the blind area includes the BQ1R of the right blind spot and the BQ2R of the right blind end.
  • the microwave radar blind spot detection system In addition to covering the blind areas BQhL and BQhR, the microwave radar blind spot detection system usually extends to cover a part of the visible area SQL and SQR behind the blind area.
  • the effective blind zone detection range of the left microwave radar sensor 150 is TQaL, which covers the entire part of the left side of the left side of the vehicle, the rear view mirror blind zone BQhL, and the rear of the blind zone.
  • Area SQL the effective blind area detection range of the right microwave radar sensor 160 is TQaR, which covers the entire portion of the rear view mirror blind area BQhR of the right adjacent lane of the vehicle, and the visible area SQR behind the blind area.
  • the farthest detection distance L-TQ (the distance from the rear of the rear of the vehicle to the lowest end of the TQaL/TQaR area) is set to 10-30 meters, and some are 30-50 meters. The farther the distance is, the system feedback The earlier the reminder time, the more reaction time left to the driver, the higher the safety performance of the system, especially when the car is driving at high speed.
  • the car blind spot detection system of a few models adopts ultrasonic detection technology, which is an ultrasonic blind zone detection system.
  • ultrasonic detection technology which is an ultrasonic blind zone detection system.
  • the system is installed on the left and right sides of the rear end of the car to the left and right side adjacent lane exterior mirrors. Target objects in the blind zone are detected.
  • FIG. 3 is a schematic diagram of the original detection of the ultrasonic blind spot detection system.
  • the system is usually equipped with four ultrasonic sensors.
  • the sensors 110 and 120 are blind zone detection sensors for detecting coverage in the blind zone.
  • the sensors 130 and 140 are auxiliary detection sensors, such as determining the vehicle and the target.
  • the relative movement direction of the object opposite to the car, overtaking, etc.
  • the road runs along the isolation belt (green belt). Due to the inherent characteristics, the ultrasonic sensor has a limited detection angle. As can be seen from Fig.
  • the detection range of the ultrasonic sensor 110 (the lower left sector) cannot completely cover the blind zone BQhL, the upper part of the blind front BQ1L and the lower end of the blind end BQ2L, and the sensor 110 is difficult to cover.
  • the detection angle is also affected by the speed of the vehicle, which further leads to insufficient coverage.
  • the effective blind zone detection range of the ultrasonic sensor 110 is TQbL
  • the effective blind zone detection range of the ultrasonic sensor 120 is TQbR
  • the auxiliary determination detection range of the ultrasonic sensor 130 is TFbL
  • the ultrasonic sensor 140 is auxiliary judgment.
  • the detection range is TFbR. It can be seen from the figure that the traditional ultrasonic blind spot detection system covers the entire area of the blind area outside the rear view mirror of the adjacent lane on the left and right sides of the vehicle, and does not cover the visible area behind the blind spot.
  • the detection range (range) of the ultrasonic blind spot detection system is too small, and there are serious deficiencies.
  • the farthest detection distance is difficult to exceed ten meters.
  • the detection distance is greatly increased, and the detection response speed of the ultrasonic sensor is also significantly reduced. Therefore, with the microwave radar Compared with the blind zone system, the detection performance of the ultrasonic blind zone system still has a significant gap.
  • the cost of a single ultrasonic sensor is less than one-tenth that of a single microwave radar sensor, so an ultrasonic blind spot detection system equipped with four ultrasonic sensors is less costly than the microwave radar blind spot detection system equipped with two microwave radar sensors.
  • the current semi-automatic parking (automatic parking) system uses ultrasonic detection technology, and ultrasonic sensors are used in the same part. Therefore, models with semi-automatic parking systems are equipped with an ultrasonic blind spot detection system; or models with an ultrasonic blind spot detection system are provided with an increased semi-automatic parking system, and the added cost of the entire vehicle is lower. Therefore, the ultrasonic blind zone system has a great cost advantage over the microwave radar blind zone system, so it is used in some models.
  • an object of the present invention is to provide a vehicle blind spot detection system with an improved structure of a microwave radar sensor and an ultrasonic sensor, and another object of the present invention is to provide a microwave for implementing the detection system.
  • Vehicle blind zone detection method for radar sensors and ultrasonic sensors is provided.
  • the present invention provides a vehicle blind spot detection system for a microwave radar sensor and an ultrasonic sensor, comprising a microwave radar sensor disposed at an intermediate portion of the rear end of the vehicle, and a plurality of ultrasonic sensors symmetrically disposed on both sides of the vehicle, wherein the microwave radar
  • the detection range of the sensor covers the rear end of the blind spot of the rear view mirror outside the adjacent lane of the car and a part of the visible area behind the rear end of the blind spot;
  • the detection range of several ultrasonic sensors covers the front end of the blind spot of the rear view mirror of the adjacent lane of the car;
  • the detection range of the radar sensor and several ultrasonic sensors integrally covers the blind area of the exterior mirror of the automobile, the rear end extension of the blind area, and the extended detection area of the tail of the vehicle.
  • the automobile is provided with two ultrasonic sensors, which are symmetrically disposed on two sides of the tail of the automobile, and the detection ranges of the two ultrasonic sensors cover the blind areas of the adjacent rear view mirrors.
  • the automobile is provided with four ultrasonic sensors, and a pair of the ultrasonic sensors are symmetrically disposed on both sides of the tail of the automobile, and the detection range covers the blind areas of the adjacent rear view mirrors; A pair of said ultrasonic sensors are symmetrically arranged for use in the auxiliary judgment of the driving environment of the automobile.
  • the vehicle is provided with six or more ultrasonic sensors, and a pair of the ultrasonic sensors are symmetrically disposed on both sides of the tail of the automobile, and the detection range covers the blind area of the adjacent lane outer mirror; the automobile Both sides of the head A pair of said ultrasonic sensors are symmetrically disposed for auxiliary judgment of the driving environment of the automobile; the remaining ultrasonic sensors are disposed in the middle of the vehicle body.
  • the microwave radar sensor is disposed at an intermediate portion of the rear bumper of the automobile.
  • the microwave radar sensor has a ranging range of 10-50 meters, a detection angle ⁇ 1 of 130-150 degrees, and a detection direction toward the rear of the vehicle, and the detection range is a sector-shaped area TSa that is symmetrical with respect to the longitudinal center axis of the automobile.
  • the ultrasonic sensor symmetrically disposed on both sides of the tail of the automobile has a detection distance of 3-4 meters, and the detection angle ⁇ 2 is 50-120 degrees, and the detection direction is toward the side of the automobile.
  • the ultrasonic sensor symmetrically disposed on both sides of the automobile head has a detection distance of 3-4 meters, a detection angle ⁇ 2 of 50-120 degrees, and a detection direction toward a side of the automobile.
  • microwave radar sensor is used as a rear-end warning sensor for automobiles.
  • a method for detecting a blind spot of a vehicle using a microwave radar sensor and an ultrasonic sensor for implementing a detection system specifically:
  • the microwave radar sensor detects the area starting from the rear end of the car L-BC, and the detection area covers the rear end of the blind area of the outer mirror and the visible part behind the rear end of the blind area. ;
  • Ultrasonic sensors installed on both sides of the rear of the car, detecting the side area of the car starting from the position of the rear end of the car L-BC and ending with the position of the front and outer mirrors.
  • the detection range covers the adjacent lane of the car.
  • the superimposed superimposed microwave radar sensor and the detection range of several ultrasonic sensors form a wide-area detection area covering a blind area of the rear-view mirror and a part of the visible area behind the blind area.
  • the detecting method is specifically:
  • the microwave radar sensor and several ultrasonic sensors are used to detect the left and right driving environment of the car, and it is determined whether the car is in the side lane and runs along the isolation belt;
  • Left side detecting the range between the left longitudinal edge of the car in the CL area and the BL area and the isolation zone;
  • the car is not driving along the isolation belt in the side lane, through the microwave radar sensor and several ultrasonic sensors to the adjacent car Road detection;
  • Left side detect the adjacent lane CL, BL, AL area on the left side;
  • Right side detect the CR, BR, and AR areas of the adjacent lane on the right side;
  • the target objects are first detected in the BL and BR zones.
  • the target objects on the left and right adjacent lanes are not from the front of the car or from the back of the car, but directly from the side of the car into the blind spot of the car;
  • the system determines that it is a possible side collision dangerous situation, proceed to step 12;
  • the target area is not detected first in the BL area and the CL area.
  • the target area is first detected in the AL area, and it is judged whether the speed of the target object leaving the AL area to enter the BL area is faster;
  • the target area is not detected first in the BR area and the CR area, and the target area is first detected in the AR area, and it is judged whether the speed of the target object leaving the AR area to enter the BR area is faster;
  • the target object enters the BL area and the CL area at a faster speed through the AL area;
  • the target object enters the BR area and the CR area at a faster speed via the AR area;
  • the system determines that the target object and the car are in a reverse driving situation; or the vehicle overtakes at a relatively fast speed and exceeds the target object;
  • the system is determined to be a security situation, proceed to step 13;
  • the target object enters the BL zone at a slower speed via the AL zone, the target object either stays in the BL zone, or then leaves the BL zone at a slower speed into the CL zone; the right side: the target object is slower via the AR zone The speed enters the BR zone, the target object either stays in the BR zone, or then exits the BR zone at a slower speed into the CR zone;
  • the system determines that the vehicle is overtaking the target object at a very low relative speed and completing the overtaking, or for the overtaking is not completed,
  • the target object travels in the blind zone of the car at a speed similar to that of the car;
  • step 14 the system performs a warning level alarm prompt and proceeds to step 14.
  • step 14 the system performs an information level alarm prompt, and proceeds to step 14;
  • the information level prompt is a blind spot warning light
  • the warning level alarm prompt is a blind spot warning light flashing and a buzzer sound alarm prompt.
  • the invention comprises a single microwave radar sensor and a plurality of ultrasonic sensors for the vehicle blind spot detection system, which effectively ensures or even improves the detection performance of the blind zone detection system, and at the same time effectively reduces the cost of the system, and the system has good function expansion. It is a preferred solution.
  • Figure 1 is a schematic diagram of the original detection of the microwave radar blind zone detection system
  • FIG. 2 is a schematic diagram of effective detection of a microwave radar blind zone detection system
  • FIG. 3 is a schematic diagram of an original detection of an ultrasonic blind spot detection system
  • FIG. 5 is a schematic diagram of original detection of a microwave radar and an ultrasonic blind spot detection system according to the present invention
  • FIG. 6 is a schematic exploded view of a microwave radar and an ultrasonic blind spot detection system according to the present invention.
  • FIG. 7 is a schematic diagram of effective detection of a microwave radar and an ultrasonic blind spot detection system according to the present invention.
  • FIG. 8 is a flow chart showing the detection work of the microwave radar and the ultrasonic blind spot detection system of the present invention.
  • FIG. 9 is a schematic diagram of the detection of the rear-end warning function of the vehicle behind the blind spot detection system of the present invention.
  • spatial relative terms such as “up”, “down”, “left” and “right” can be used here to say The relationship of one element or feature shown in the drawings to another element or feature. It will be understood that the spatial terms are intended to encompass different orientations of the device in use or operation. For example, elements in the “a” or “an” Thus, the exemplary term “lower” can encompass both an s.
  • the device may be otherwise positioned (rotated 90 degrees or at other orientations), and the relative description of the space used herein may be interpreted accordingly.
  • the vehicle blind spot detection system of the present invention includes a microwave radar sensor and an ultrasonic sensor, and includes a microwave radar sensor disposed at an intermediate portion of the rear end of the automobile, and a plurality of ultrasonic sensors symmetrically disposed on both sides of the automobile.
  • the detection range of the microwave radar sensor covers the rear end of the blind spot of the rear view mirror of the adjacent lane of the automobile and a partial visible area behind the rear end of the blind zone; the detection range of the plurality of ultrasonic sensors covers the blind area of the rear view mirror of the adjacent lane of the automobile.
  • the front end; the detection range of a microwave radar sensor and a plurality of ultrasonic sensors integrally covers the blind area of the exterior mirror of the automobile, the rear end extension of the blind area, and the extended detection area of the tail of the vehicle.
  • a microwave radar sensor 50 is disposed adjacent to the middle portion of the automobile rear bumper (the rear bumper of the automobile), and an ultrasonic sensor 10 is disposed at the rear end of the automobile, and an ultrasonic sensor 30 and a right automobile are disposed at the front end of the automobile.
  • An ultrasonic sensor 20 is disposed at the rear end, and an ultrasonic sensor 40 is disposed at the front end of the automobile, that is, the system includes a microwave radar sensor and four ultrasonic sensors.
  • FIG. 5 is a schematic diagram of the original detection of the blind spot detection system of the present invention.
  • the microwave radar sensor 50 is disposed in the center of the rear of the car, the ranging range (range radius Rra) is 10-50 meters, the sensor detection angle ⁇ 1 is 130-150 degrees, the detection direction is directly behind the car, and the detection range is in the longitudinal direction of the car.
  • a sector-shaped region TSa that is symmetric about the central axis.
  • the radar sensor can detect the distance of the target object located within its detection range, and detect the angle of the target object in the horizontal plane direction and its relative speed with the target object.
  • FIG. 6 is a schematic exploded view of the blind spot detection system of the present invention. Taking the left side as an example, from FIG. 5 and FIG. 6, it is calculated that the left part of the fan-shaped area TSa of the microwave radar 50 covers the bottom of the rear-end BQ2L of the blind spot of the outer rearview mirror. Part of the BQ2L2 and its rear (below) part of the visible area SQL. It can be seen that in the front-rear (up and down) direction (Y direction), the distance L-BC of the BQ2L1 and BQ2L2 boundary line from the rear end of the car is about one meter.
  • the ultrasonic sensor 10 for detecting the blind area on the left side of the car has a detection distance of 3-4 meters, and covers the farthest left side of the adjacent left lane.
  • the sensor detection angle ⁇ 2 is 50-120 degrees, and the detection direction is toward the left of the vehicle. Side, see Fig. 5, Fig. 6, the ultrasonic sensor 10 detection range covers the blind front end BQ1L, and the blind portion rear end BQ2L upper portion BQ2L1.
  • the ultrasonic sensor 30 for detecting the detection of the front end of the left side of the vehicle has a detection distance of 3-4 meters, and the farthest coverage to the leftmost side of the adjacent left lane, the sensor detection angle ⁇ 3 is 50-120 degrees, and the detection direction is toward the left of the vehicle.
  • Side as shown in Fig. 5, the detection range of the ultrasonic sensor 30 covers the area above the front end BQ1L of the blind spot, and the ultrasonic sensor 30 does not use the side dead zone detection, and only uses the auxiliary judgment to judge the relative movement direction of the car and the target object (opposite to the car, Overtaking, etc.), to determine whether the car is in the side lane along the isolation belt (green belt) and so on.
  • the microwave radar sensor 50, the ultrasonic sensor 10, and the ultrasonic sensor 30 describe the coverage of the adjacent lane on the left side of the vehicle.
  • the microwave radar sensor 50, the ultrasonic sensor 20, and the ultrasonic sensor 40 detect the adjacent lanes on the right side of the vehicle, similar to the left side, and the left and right sides correspond to a symmetrical relationship, and the description will not be repeated here.
  • the blind spot detection system of the present invention is directed to the left lane, the microwave radar sensor 50 and the ultrasonic sensor 10
  • the detection coverage is sufficient, and there is no dead zone dead zone.
  • the microwave radar sensor 50 and the ultrasonic sensor 20 have sufficient coverage for the entire portion of the BQhR of the blind area BQhR of the adjacent lane of the right side of the vehicle and the visible area behind the blind area, and there is no dead zone dead zone. It is as large as the area covered by a conventional blind spot detection system configured with two microwave radar sensors. In this way, it is ensured that the basic detection performance of the blind spot detection system of the present invention is the same as that of the conventional blind spot detection system in which two microwave radar sensors are configured.
  • the cost of a single ultrasonic sensor is less than one tenth of that of a single microwave radar sensor.
  • the blind spot detection system of the present invention is equipped with a microwave radar sensor and four ultrasonic sensors, and the conventional two microwave radar sensors are conventionally arranged.
  • the cost of the blind spot detection system of the present invention is greatly reduced, with a drop of 30%.
  • the current semi-automatic parking system uses ultrasonic detection technology, and the same parts of the front and rear sides of the vehicle are provided with the common ultrasonic sensors required by the blind zone system of the present invention. Therefore, the model with the semi-automatic parking system is increased in settings.
  • the invention of the blind spot detection system (or the vehicle with the blind spot detection system of the present invention, the installation of the semi-automatic parking system) further increases the cost for the entire vehicle. Therefore, the present invention contains a single microwave radar sensor and a plurality of ultrasonic sensor blind zone detection systems, which has a very significant cost advantage.
  • the microwave radar sensor is suitable for long-distance detection, and its detection range is long and the reaction speed is fast, but its shortcoming is poor proximity detection performance (large blind zone, low-range detection accuracy and low accuracy).
  • the traditional blind spot detection system equipped with two microwave radar sensors is prone to leaking alarms (undetectable, tracking failure) for target objects close to automobiles, such as bicycles; for example, when the car is in the side lane along the metal guardrail, the system It is easy to cause false alarms on the metal guardrail; when the car is driving in the tunnel, it is easy to generate false alarms, etc.; these are caused by defects inherent in the microwave radar sensor.
  • the above application situation is the advantage of the ultrasonic sensor.
  • the ultrasonic sensor has high precision and stability in the short-range detection, and the blind zone is small. Therefore, the microwave radar and the ultrasonic blind spot detection system of the present invention do not have the above defects of the conventional two-microwave radar blind spot detection system.
  • the blind zone detection system based on the invention has two detection modes of microwave radar and ultrasonic wave, so that it is more conducive to the system to make an accurate judgment on the driving environment of the automobile (for example, the judgment of whether the car travels along the isolation belt), thereby The system's false alarm rate and missed alarm rate are greatly reduced; this is not the traditional blind spot detection system that uses only microwave radar sensors or only ultrasonic sensors.
  • the blind spot detection system of the present invention not only has the performance advantage, but also has the cost advantage and has a very high sex ratio.
  • a method for detecting a blind spot of a vehicle using a microwave radar sensor and an ultrasonic sensor for implementing a detection system specifically:
  • the microwave radar sensor detects the area starting from the rear end of the car L-BC, and the detection area covers the rear end of the blind area of the outer mirror and the visible part behind the rear end of the blind area. ;
  • the superimposed superimposed microwave radar sensor and the detection range of several ultrasonic sensors form a wide-area detection area covering a blind area of the rear-view mirror and a part of the visible area behind the blind area.
  • FIG. 7 is a schematic diagram of effective detection of the blind spot detection system of the present invention.
  • the front and rear directions (Y direction) of the left side of the automobile 200 are from the rear of the vehicle to the front of the vehicle, and the detection areas of the system are CL, BL, and AL, respectively, and the detection area of the microwave radar sensor 50 is CL.
  • CL2 which includes CL2, CL1 two parts, see Figure 6, CL2 covers the visible area SQL behind the left lane blind area, CL1 covers the lower part of the left lane blind area back BQ2L BQ2L2.
  • the detection area of the ultrasonic sensor 10 is BL, covering the front end BQ1L of the left lane blind area and the upper part BQ2L1 of the blind end rear end BQ2L.
  • the ultrasonic sensor 30 detects the area as AL, and covers a partial area above the front end BQ1L of the left lane blind area, and is used as a system-assisted judgment.
  • the front and rear directions of the right side of the car 200 are from the rear of the vehicle to the front of the vehicle.
  • the detection areas of the system are CR, BR, and AR.
  • the detection area of the microwave radar sensor 50 is CR, which includes CR2 and CR1, and CR2 covers the right side.
  • the visible area SQR, CR1 behind the blind zone of the lane covers the lower part BQ2R2 of the rear end BQ2R of the blind lane of the right lane.
  • the ultrasonic sensor 20 detects the area as BR, covering the front side BQ1R of the right lane blind area and the upper part BQ2R1 of the blind area back end BQ2R.
  • the ultrasonic sensor 40 detects the area as AR, and covers a partial area above the front end BQ1R of the right lane blind area, and is used as a system auxiliary judgment.
  • the detection method of the target object by the blind spot detection system of the present invention is shown in FIG. 8.
  • the C area, the B area, and the A area are respectively the CL area, the BL area, the AL area, or the CR area, respectively.
  • the following takes the left side as an example (the right side detection form is the same, omitting the description of the right side detection), and the detection method is as follows:
  • step 1
  • a single microwave radar sensor 50 in the middle of the rear of the vehicle detects the area of the left adjacent lane from the position of the rear end of the car L-BC (about one meter), and the detection area is CL, the detection range covers the rear end of the blind area of the outer mirror adjacent to the left adjacent lane and the partial visible area behind the rear end of the blind area;
  • the left rear end ultrasonic sensor 10 of the automobile detects the area of the left adjacent lane from the position of the rear end of the car L-BC (about one meter) and the position of the front and outer mirrors is terminated.
  • the detection area is BL.
  • the detection range covers a blind zone of the adjacent left lane that is not covered by the microwave radar sensor 50;
  • the front end ultrasonic sensor 30 on the left side of the vehicle has a detection area of AL, and the detection range covers an area near the front end of the front end of the blind area of the left adjacent lane;
  • the system detects the left side driving environment of the automobile through the microwave radar sensor 50, the ultrasonic sensor 10, and the ultrasonic sensor 30, and determines whether the automobile (left side) is in the side lane along the isolation belt (green belt);
  • the system detects the range between the left longitudinal edge line of the automobile in the CL area and the BL area and the isolation belt, and determines whether there is a target object (such as a motorcycle) that is quickly approaching from the rear;
  • the car is not driving along the isolation belt in the side lane, the system passes the microwave radar sensor 50 and the ultrasonic sensor 10, super
  • the acoustic wave sensor 30 detects a target object (usually another vehicle) in the adjacent lane CL, BL, and AL areas on the left side, and detects which area first detects the target object;
  • the BL area first detects the target object, representing the adjacent lane on the left side.
  • the target object is not close to the car from the front of the car or from the back of the car, but directly enters the blind zone of the car from the side of the car;
  • the system determines that it is a possible side collision dangerous situation, proceed to step 12;
  • the system determines that the target vehicle is close to the overtaking vehicle, and determines whether the relative speed of the target object and the vehicle is high;
  • the target object In the BL area and the CL area, the target object is not detected first, then the target area is first detected in the AL area, and it is determined whether the speed of the target object leaving the AL area to enter the BL area is faster;
  • the target object enters the BL zone and the CL zone at a faster speed through the AL zone, and the system determines that the target object and the car are in reverse driving (opposing the car); or the car overtakes at a relatively fast speed, beyond the target object;
  • the system is determined to be a security situation, proceed to step 13;
  • the target object enters the BL zone at a slower speed via the AL zone, the target object either stays in the BL zone, or then exits the BL zone at a slower speed into the CL zone; the system determines that the vehicle is overtaking the target object at a very low relative speed. And complete the transcendence, or for the transcendence not completed, the target object travels in the blind zone of the car at a speed similar to that of the car;
  • step 14 the system performs a warning level alarm prompt and proceeds to step 14.
  • step 14 the system performs an information level alarm prompt, and proceeds to step 14;
  • the detection method of the blind spot detection system of the present invention analyzes the time sequence of each target area to the target object, analyzes the length of the target object, and compares the relative speed and direction of the target object in the area by the microwave radar sensor. Judgment analysis, etc., to ensure that the system accurately judges the basic driving environment of the car. For some special car driving environment conditions, the system has targeted judgment analysis and processing methods, which will not be elaborated here.
  • the system if the system detects that a target object with a relatively high relative velocity is close in the visible area behind the blind spot of the exterior mirror, or the system detects the relative velocity of the same direction in the blind zone of the vehicle during normal detection work.
  • the system prompts with information level alarms, usually the blind spot warning light illuminates.
  • the system will give a warning level alarm prompt, usually the blind spot warning light flashes and the buzzer sounds. Alarm prompt.
  • the warning level of the two prompts is different, which means that the degree of danger is different. In the specific application, it is not necessarily the alarm prompt mode of the invention. In some extreme dangerous situations, even if the system does not detect the turning light on.
  • the system can also be set with a warning level information prompt.
  • the method of the blind spot detection system of the present invention focuses on how the system accurately judges various driving environments and motion states, rather than accurately determining how to issue warning prompts.
  • the present invention comprises a single microwave radar sensor and a plurality of ultrasonic sensors for a vehicle blind spot detection system.
  • a general-purpose setting is adopted, that is, the system includes a microwave radar sensor and four ultrasonic sensors (cars). One at the front and the back of the left and right sides)).
  • the system When used in passenger cars, trucks and other vehicles with long lengths, the system usually consists of a microwave radar sensor and six or more ultrasonic sensors (three or more ultrasonic sensors on each side of the car).
  • the Ben Ming system is used in a particularly small vehicle, such as a motorcycle, the system is usually equipped with a microwave radar sensor and two ultrasonic sensors (one on each side of the vehicle). Different ultrasonic numbers are set according to the length and operation requirements of different models.
  • the microwave radar sensor of the blind zone system of the present invention is disposed in the middle position of the rear brake of the automobile, the detection direction is directly behind the automobile, so when the vehicle travels, the system can perform proper scanning detection and tracking on the rear of the automobile, so the system The rear-end warning function can be set as needed, that is, the microwave radar sensor is used as the rear-end warning sensor of the automobile.
  • the blind spot detection system of the present invention has more advantages and foundations to set up this function, because, as shown in FIG. 1, the conventional two-microwave radar sensor blind zone detection system, when the vehicle is running, two The microwave radar detects the rear of the car.
  • FIG. 9 is a schematic diagram of the detection of the rear-end warning function of the vehicle behind the blind spot detection system of the present invention.
  • the blind spot detection system of the present invention like the conventional blind spot detection system of the two microwave radar sensors, can also be provided with a parking alarm function on the rear side of the parking door. That is to say, the function of the blind spot detection system of the present invention is scalable, and will not be further explained herein.
  • the invention comprises a single microwave radar sensor and a plurality of ultrasonic sensors for a blind spot detection system, in addition to It can also be used in various types of tricycles, motorcycles, disabled cars, electric bicycles, and other vehicles of different sizes, such as the detection method and detection system of the present invention, which are all covered by the present invention. range.
  • the traditional ultrasonic sensor blind spot detection system has poor detection performance, but the cost advantage is obvious; while the conventional microwave radar sensor blind zone detection system uses two microwave sensors, although the detection performance is good, the cost is too high.
  • the blind spot detection system of the present invention using a microwave radar sensor and a plurality of ultrasonic sensors not only has good detection performance, but also effectively reduces the cost of the system, and the system has excellent function scalability. Therefore, the development and application of the blind spot detection system of the present invention has a very positive significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种设置微波雷达传感器(50)和超声波传感器(10、20、30、40)的汽车(200)盲区探测系统及方法,该系统包括设置于汽车(200)尾端中间部位的一个微波雷达传感器(50)、对称设置于汽车(200)两侧的若干个超声波传感器(10、20、30、40),其中,微波雷达传感器(50)的探测范围覆盖汽车(200)相邻车道外后视镜的盲区后端(BQ2L、BQ2R)及盲区后端(BQ2L、BQ2R)后方的部分可视区(SQL、SQR);若干个超声波传感器(10、20、30、40)的探测范围覆盖汽车(200)相邻车道外后视镜的盲区前端(BQ1L、BQ1R);一个微波雷达传感器(50)和若干个超声波传感器(10、20、30、40)的探测范围整体覆盖汽车(200)外后视镜的盲区(BQhL、BQhR)、盲区后端延伸区及汽车(200)尾部的延伸探测区域。该盲区探测系统及方法具有更好的探测性能,降低了成本。

Description

设置微波雷达和超声波传感器的汽车盲区探测系统及方法 技术领域
本发明属于汽车电子设备领域,尤其是涉及一种包含单个微波雷达传感器及若干个超声波传感器的汽车盲区探测系统及探测方法。
背景技术
目前的汽车盲区探测系统,也称盲区监测系统、盲点辅助系统等,大多数车型采用的是车载微波雷达传感器,在汽车行驶时,系统通过安装在汽车后端左右两侧的微波雷达传感器,对本车左右侧相邻车道外后视镜盲区范围内的目标物体(通常指车辆)进行探测。
图1为微波雷达盲区探测系统原始探测示意图。以左侧探测说明为例(右侧与左侧对称)。微波雷达传感器150布置于汽车后保险杠(简称后保)左侧,探测方向朝侧后方,为使雷达传感器覆盖本车左侧相邻车道汽车外后视镜盲区前端BQ1L、盲区后端BQ2L区域,同时为了较远的覆盖盲区后端BQ2L后方的部分可视区SQL,系统通常采用短程微波雷达传感器(如24G短程毫米波雷达),测距量程(量程半径Rra)为30-50米,传感器探测角度β1达150度。因微波雷达特性,其探测距离远,反应速度快,而且具有角度及相对速度检知判断能力,因此,雷达传感器可以准确的对所需探测的区域进行扫描覆盖。
汽车外后视镜盲区,以左侧为例,根据常规标准定义,见图1,左侧盲区为BQ1L及BQ2L,BQ1L、BQ2L宽度(左右方向,X方向)为3米,BQ1L前后方向(Y方向)长度为汽车后保后端到汽车外后视镜的距离,通常为3米左右,BQ2L前后方向长度为汽车后保后端往后3米。左侧盲区BQhL包含BQ1L及BQ2L,即包含左侧盲区前端BQ1L及左侧盲区后端BQ2L。汽车右侧盲区与左侧盲区对称,即右侧盲区BQhR包含右侧盲区前端BQ1R及右侧盲区后端BQ2R。
微波雷达盲区探测系统除了覆盖汽车盲区BQhL、BQhR外,通常往后延伸覆盖盲区后方的一部分可视区SQL、SQR。
图2为微波雷达盲区探测系统有效探测示意图,左侧微波雷达传感器150的有效盲区探测范围为TQaL,其覆盖本车左侧相邻车道外后视镜盲区BQhL整个部分,以及盲区后方的可视区SQL;右侧微波雷达传感器160的有效盲区探测范围为TQaR,其覆盖本车右侧相邻车道外后视镜盲区BQhR整个部分,以及盲区后方的可视区SQR。
通常微波雷达盲区系统,最远探测距离L-TQ(车后保后端至TQaL/TQaR区域最下端的距离)设为10-30米,部分为30-50米,测距越远,系统反馈提醒时间越早,留给驾驶员的反应时间越多,系统的安全性能就越高,特别是在汽车高速行驶时。
目前,少数部分车型的汽车盲区探测系统,采用超声波探测技术,为超声波盲区探测系统,系统在汽车行驶时通过安装在汽车后端左右两侧的超声波传感器对本车左右侧相邻车道外后视镜盲区内的目标物体进行探测。
图3为超声波盲区探测系统原始探测示意图,系统通常配置四个超声波传感器,传感器110、120为盲区探测传感器,对盲区进行探测覆盖;传感器130、140为辅助判断探测传感器,如判断本车与目标物体的相对运动方向(对面来车、被超车等),判断本车是否处于边车 道沿隔离带(绿化带)行驶等。因固有特性原因,超声波传感器探测角度有限,由图3可知,超声波传感器110的探测范围(左下扇形区域)不能完全覆盖盲区BQhL,盲区前端BQ1L的上部及盲区后端BQ2L的下部,传感器110难以覆盖到;而且,在汽车行驶过程中,其探测角度还会受到车速影响,进一步导致其覆盖不足。
图4为超声波盲区探测系统有效探测示意图,超声波传感器110的有效盲区探测范围为TQbL,超声波传感器120的有效盲区探测范围为TQbR,超声波传感器130的辅助判断探测范围为TFbL,超声波传感器140的辅助判断探测范围为TFbR。由图可知,传统超声波盲区探测系统覆盖不足本车左右侧相邻车道汽车外后视镜盲区整个部分,更覆盖不到盲区后方的可视区。超声波盲区探测系统探测距离(范围)过小,存在严重的不足。同时,即使目前大家正在努力开发远距离超声波盲区探测系统,但其最远探测距离也难以超过十米;而且,探测距离大幅增加,超声波传感器的探测反应速度也会显著降低,因此,与微波雷达盲区系统相比,超声波盲区系统的探测性能还是具有明显的差距。
但是,单个超声波传感器的成本不到单个微波雷达传感器的十分之一,所以配备四个超声波传感器的超声波盲区探测系统,成本也还不到配备两个微波雷达传感器的微波雷达盲区探测系统的四分之一。同时目前的汽车半自动泊车(自动泊车)系统均采用超声波探测技术,在相同部位运用有超声波传感器。因此,具有半自动泊车系统的车型,设置增加超声波盲区探测系统;或具有超声波盲区探测系统的车型,设置增加半自动泊车系统,整车所增加的成本较低。因此,超声波盲区系统相对微波雷达盲区系统具有极大的成本优势,因此在部分车型上有采用。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种结构经过改进的设置微波雷达传感器和超声波传感器的汽车盲区探测系统,本发明的另一目的是提供一种实施上探测系统的设置微波雷达传感器和超声波传感器的汽车盲区探测方法。
为实现上述目的,本发明设置微波雷达传感器和超声波传感器的汽车盲区探测系统,包括设置于汽车尾端中间部位的一个微波雷达传感器、对称设置于汽车两侧的若干个超声波传感器,其中,微波雷达传感器的探测范围覆盖汽车相邻车道外后视镜的盲区后端及盲区后端后方的部分可视区;若干个超声波传感器的探测范围覆盖汽车相邻车道外后视镜的盲区前端;一个微波雷达传感器和若干个超声波传感器的探测范围整体覆盖汽车外后视镜的盲区、盲区后端延伸区及汽车尾部的延伸探测区域。
进一步,所述汽车上设置有两个所述超声波传感器,其对称设置于汽车尾部的两侧,两个所述超声波传感器的探测范围覆盖相邻车道外后视镜盲区。
进一步,所述汽车上设置有四个所述超声波传感器,所述汽车尾部两侧对称设置有一对所述超声波传感器,其探测范围覆盖相邻车道外后视镜盲区;所述汽车头部两侧对称设置有一对所述超声波传感器,其用于汽车行驶环境的辅助判断。
进一步,所述汽车上设置有六个或六个以上所述超声波传感器,所述汽车尾部两侧对称设置有一对所述超声波传感器,其探测范围覆盖相邻车道外后视镜盲区;所述汽车头部两侧 对称设置有一对所述超声波传感器,其用于汽车行驶环境的辅助判断;其余的所述超声波传感器设置于车身的中部。
进一步,所述微波雷达传感器设置于汽车后保险杠的中间部位。
进一步,所述微波雷达传感器的测距量程为10-50米,探测角度β1为130-150度,探测方向朝汽车正后方,探测范围为以汽车纵向中轴线对称的扇形区域TSa。
进一步,对称设置于所述汽车尾部两侧的所述超声波传感器的探测距离为3-4米,探测角度β2为50-120度,探测方向朝汽车的侧部。
进一步,所述对称设置于所述汽车头部两侧的所述超声波传感器的探测距离为3-4米,探测角度β2为50-120度,探测方向朝汽车的侧部。
进一步,所述微波雷达传感器作为汽车的追尾预警传感器。
一种实施上探测系统的设置微波雷达传感器和超声波传感器的汽车盲区探测方法,具体为:
1)汽车行驶过程中,微波雷达传感器对离汽车车尾距离L-BC位置起始及往后的区域进行探测,探测区域覆盖外后视镜盲区后端及盲区后端后方的部分可视区;
2)设置于汽车尾部两侧的超声波传感器,对离汽车车尾距离L-BC位置起始及往前至外后视镜位置终止的汽车侧部区域进行探测,探测范围覆盖汽车相邻车道外后视镜的盲区前端。
3)整体叠加微波雷达传感器、若干个超声波传感器的探测范围,形成大范围的覆盖汽车相邻车道外后视镜盲区及盲区后方的部分可视区的探测区域。
进一步,所述探测方法,具体为:
1)步骤1:
设定微波雷达传感器对左侧的探测区域为CL、对右侧的探测区域为CR;
设定设置于汽车尾部的超声波传感器对左侧的探测区域为BL、对右侧的探测区域为BR;
设定设置于汽车头部的超声波传感器对左侧的探测区域为AL、对右侧的探测区域为AR;
2)步骤2:
通过微波雷达传感器及若干个超声波传感器对汽车左侧、右侧行驶环境进行探测,判断汽车是否是处于边车道沿隔离带行驶;
是,进入步骤3,
不是,进入步骤4;
3)步骤3:
通过微波雷达传感器及超声波传感器进行探测,
左侧:对CL区、BL区汽车左侧纵向边沿线与隔离带之间的范围进行探测;
右侧:对CR区、BR区汽车右侧纵向边沿线与隔离带之间的范围进行探测;
判断是否有从后方快速靠近穿行的目标物体;
有,进入步骤12,
没有,进入步骤13;
4)步骤4:
汽车不是在边车道沿隔离带行驶,通过微波雷达传感器及若干个超声波传感器对相邻车 道进行探测;
左侧:探测左侧相邻车道CL、BL、AL区域;
右侧:探测右侧相邻车道CR、BR、AR区域;
对区域内的目标物体进行探测,并检测哪个区域先测到目标物体;
判断BL、BR区是否先测到目标物体;
是,进入步骤5,
否,进入步骤6;
5)步骤5:
BL、BR区先测到目标物体,代表为:左侧、右侧相邻车道上的目标物体不是从汽车前面及或从汽车后面靠近汽车,而是从汽车的侧面直接进入汽车的盲区;
系统认定为此为可能侧撞危险情形,进入步骤12;
6)步骤6:
判断CL、CR区是否先测到目标物体;
是,进入步骤7,
否,进入步骤8;
7)步骤7:
监测后方有目标车辆靠近汽车,判断目标物体与汽车的相对车速是否是高速;
是,进入步骤12,
不是,进入步骤11;
8)步骤8:
左侧:BL区、CL区均没有先测到目标物体,AL区先测到目标物体,判断目标物体离开AL区进入BL区的速度是不是较快;
右侧:BR区、CR区均没有先测到目标物体,AR区先测到目标物体,判断目标物体离开AR区进入BR区的速度是不是较快;
是,进入步骤9,
不是,进入步骤10;
9)步骤9:
左侧:目标物体经由AL区以较快的速度进入BL区、CL区;
右侧:目标物体经由AR区以较快的速度进入BR区、CR区;
系统认定,或为目标物体与汽车为逆向行驶情形;或为汽车以相对较快的速度超车,超越目标物体;
系统认定为安全情形,进入步骤13;
10)步骤10:
左侧:目标物体经由AL区以较慢的速度进入BL区,目标物体或者停留在BL区,或者接着以较慢的速度离开BL区进入CL区;右侧:目标物体经由AR区以较慢的速度进入BR区,目标物体或者停留在BR区,或者接着以较慢的速度离开BR区进入CR区;
系统认定,或为汽车以很低相对速度超车目标物体并完成超越,或为超越没有完成,目 标物体以与汽车相近的速度行驶在汽车的盲区内;
进入步骤11;
11)步骤11:
判断目标物体是否处于汽车的盲区范围,
是,进入步骤12,
不是,进入步骤13;
12)步骤12:
判断车辆左侧转向灯、右侧转向灯是不是开启状态;
是,系统进行警告级报警提示,进入步骤14
不是,系统进行信息级报警提示,进入步骤14;
13)步骤13:
不提示;
14)步骤14:
结束监控。
进一步,所述步骤12中,信息级提示为盲点警示灯亮起提示,警告级报警提示为盲点警示灯闪烁及蜂鸣器声音报警提示。
本发明包含单个微波雷达传感器及若干个超声波传感器的汽车盲区探测系统,有效的确保甚至提高了盲区探测系统的探测性能,同时还有效的降低了系统的成本,并且,系统的功能扩展性好,是一种优选方案。
附图说明
图1为微波雷达盲区探测系统原始探测示意图;
图2为微波雷达盲区探测系统有效探测示意图;
图3为超声波盲区探测系统原始探测示意图;
图4为超声波盲区探测系统有效探测示意图;
图5为本发明微波雷达及超声波盲区探测系统原始探测示意图;
图6为本发明微波雷达及超声波盲区探测系统区域分解示意图;
图7为本发明微波雷达及超声波盲区探测系统有效探测示意图;
图8为本发明微波雷达及超声波盲区探测系统探测工作流程图;
图9为本发明盲区探测系统后方来车追尾预警功能探测示意图。
具体实施方式
下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
为了易于说明,在这里可以使用诸如“上”、“下”“左”“右”等空间相对术语,用于说 明图中示出的一个元件或特征相对于另一个元件或特征的关系。应该理解的是,除了图中示出的方位之外,空间术语意在于包括装置在使用或操作中的不同方位。例如,如果图中的装置被倒置,被叙述为位于其他元件或特征“下”的元件将定位在其他元件或特征“上”。因此,示例性术语“下”可以包含上和下方位两者。装置可以以其他方式定位(旋转90度或位于其他方位),这里所用的空间相对说明可相应地解释。
如图5至图8所示,本发明设置微波雷达传感器和超声波传感器的汽车盲区探测系统,包括设置于汽车尾端中间部位的一个微波雷达传感器、对称设置于汽车两侧的若干个超声波传感器,其中,微波雷达传感器的探测范围覆盖汽车相邻车道外后视镜的盲区后端及盲区后端后方的部分可视区;若干个超声波传感器的探测范围覆盖汽车相邻车道外后视镜的盲区前端;一个微波雷达传感器和若干个超声波传感器的探测范围整体覆盖汽车外后视镜的盲区、盲区后端延伸区及汽车尾部的延伸探测区域。
本实施例中,汽车后保(汽车后保险杠)内中间部位贴近后保设置一个微波雷达传感器50,汽车左侧后端设置一个超声波传感器10,汽车左侧前端设置一个超声波传感器30、汽车右侧后端设置一个超声波传感器20,汽车右侧前端设置一个超声波传感器40,即,系统包含一个微波雷达传感器及四个超声波传感器。
图5为本发明盲区探测系统原始探测示意图。设置在汽车后保内正中位置的微波雷达传感器50,测距量程(量程半径Rra)为10-50米,传感器探测角度β1为130-150度,探测方向朝汽车正后方,探测范围为以汽车纵向中轴线对称的扇形区域TSa。雷达传感器可探测判断位于其探测范围内目标物体的距离,并检知目标物体在水平面方向上的角度及其与目标物体的相对速度。
图6为本发明盲区探测系统区域分解示意图,以左侧为例,由图5、图6,并经计算可知,微波雷达50扇形区域TSa的左边部分覆盖外后视镜盲区后端BQ2L的下面部分BQ2L2及其后方(下方)的部分可视区SQL。并可知,在前后(上下)方向(Y方向),BQ2L1与BQ2L2分界线离汽车后保后端的距离L-BC为一米左右。
用于汽车左侧后端盲区探测的超声波传感器10,探测距离为3-4米,最远覆盖到左侧相邻车道最左侧,传感器探测角度β2为50-120度,探测方向朝汽车左侧,见图5,图6,超声波传感器10探测范围覆盖盲区前端BQ1L,以及盲区后端BQ2L的上面部分BQ2L1。
用于汽车左侧前端辅助判断探测的超声波传感器30,探测距离为3-4米,最远覆盖到左侧相邻车道最左侧,传感器探测角度β3为50-120度,探测方向朝汽车左侧,见图5,超声波传感器30探测范围覆盖盲区前端BQ1L上方区域,超声波传感器30不做侧道盲区探测使用,仅作辅助判断使用,判断汽车与目标物体的相对运动方向(对面来车、被超车等),判断汽车是否处于边车道沿隔离带(绿化带)行驶等。
以上为本实施例中,微波雷达传感器50及超声波传感器10、超声波传感器30对汽车左侧相邻车道探测覆盖的说明。对于右侧,微波雷达传感器50及超声波传感器20、超声波传感器40对汽车右侧相邻车道探测覆盖,与左侧类似,左右侧相当于对称关系,在此不再阐述说明。
由以上可知,本发明盲区探测系统对左侧车道,微波雷达传感器50及超声波传感器10 对汽车左侧相邻车道外后视镜盲区BQhL的整体及盲区后方的部分可视区SQL,探测覆盖充分,没有盲区死角。微波雷达传感器50及超声波传感器20对汽车右侧相邻车道外后视镜盲区BQhR的整体部分及盲区后方的部分可视区SQR,探测覆盖充分,没有盲区死角。其与配置两个微波雷达传感器的传统盲区探测系统所覆盖区域一样大。以此,确保了本发明盲区探测系统的基本探测性能与配置两个微波雷达传感器的传统盲区探测系统一样。
同时,单个超声波传感器的成本仅为不到单个微波雷达传感器的十分之一,如上实施例本发明盲区探测系统,配备一个微波雷达传感器及四个超声波传感器,相对配置两个微波雷达传感器的传统盲区探测系统,本发明盲区探测系统的成本大幅降低,降幅达30%。并且,目前的半自动泊车系统均采用超声波探测技术,其汽车两侧前后相同部位均设置有本发明盲区系统所需的可共用的超声波传感器,因此,具有半自动泊车系统的车型,设置增加本发明盲区探测系统(或具有本发明盲区探测系统的车型,设置增加半自动泊车系统),又进一步为汽车整车带来了成本降低。因此本发明含有单个微波雷达传感器及若干个超声波传感器的盲区探测系统,具有非常显著的成本优势。
此外,在实际运用上,微波雷达传感器适用于远距离探测,其探测距离远,反应速度快,但其缺点是近距离探测性能差(盲区大,近距离探测精度、准确度低)。譬如配备两个微波雷达传感器的传统盲区探测系统,对靠近汽车类如自行车的目标物体容易产生漏警(易探测不到、跟踪失败);又譬如,汽车处于边车道沿金属护栏行驶时,系统容易对金属护栏产生虚警;当汽车在隧道中行驶时,容易产生虚警等等;这些都是微波雷达传感器的固有特性缺陷导致的。但以上运用情形,正是超声波传感器的作用优势之处,超声波传感器在近距离探测精度高、稳定,盲区小。因此,本发明微波雷达及超声波盲区探测系统,不存在传统两微波雷达盲区探测系统的以上缺陷。同时,基于本发明盲区探测系统具有微波雷达及超声波两种探测方式,因此,更利于系统对汽车的行驶环境做出准确的判断(譬如对汽车是否沿隔离带行驶的检知判断),从而使系统的虚警率及漏警率大幅降低;这是传统仅采用微波雷达传感器或仅采用超声波传感器的盲区探测系统所不具备的。
由上可知,本发明盲区探测系统,不仅具有性能优势,而且具有成本优势,具有非常高的性比价。
一种实施上探测系统的设置微波雷达传感器和超声波传感器的汽车盲区探测方法,具体为:
1)汽车行驶过程中,微波雷达传感器对离汽车车尾距离L-BC位置起始及往后的区域进行探测,探测区域覆盖外后视镜盲区后端及盲区后端后方的部分可视区;
2)设置于汽车尾部两侧的若干个超声波传感器,对离汽车车尾距离L-BC位置起始及往前至外后视镜位置终止的汽车侧部区域进行探测,探测范围覆盖汽车相邻车道外后视镜的盲区前端。
3)整体叠加微波雷达传感器、若干个超声波传感器的探测范围,形成大范围的覆盖汽车相邻车道外后视镜盲区及盲区后方的部分可视区的探测区域。
图7为本发明盲区探测系统有效探测示意图,汽车200左侧前后方向(Y方向)由车后至车前,系统的探测区域分别为CL、BL、AL,微波雷达传感器50的探测区域为CL,其包括 CL2、CL1两部分,见图6,CL2覆盖左侧车道盲区后方的可视区SQL,CL1覆盖左侧车道盲区后端BQ2L的下面部分BQ2L2。
超声波传感器10探测区域为BL,覆盖左侧车道盲区前端BQ1L及盲区后端BQ2L的上面部分BQ2L1。
超声波传感器30探测区域为AL,覆盖左侧车道盲区前端BQ1L上面的部分区域,作为系统辅助判断使用。
汽车200右侧前后方向由车后至车前,系统的探测区域为CR、BR、AR,由图可知,微波雷达传感器50的探测区域为CR,其包括CR2、CR1两部分,CR2覆盖右侧车道盲区后方的可视区SQR,CR1覆盖右侧车道盲区后端BQ2R的下面部分BQ2R2。
超声波传感器20探测区域为BR,覆盖右侧车道盲区前端BQ1R及盲区后端BQ2R的上面部分BQ2R1。
超声波传感器40探测区域为AR,覆盖右侧车道盲区前端BQ1R上面的部分区域,作为系统辅助判断使用。
以下,为本发明盲区探测系统对目标物体的探测方法,探测工作流程见图8,流程图中C区、B区、A区分别为CL区、BL区、AL区,或分别为CR区、BR区、AR区。下面以左侧为例(右侧探测形式相同,省略右侧探测的描述),探测方法说明如下:
步骤1:
汽车行进,系统开始工作,车尾中间部位的单一微波雷达传感器50对左侧相邻车道离汽车车尾距离L-BC(约一米)位置起始及往后的区域进行探测,探测区域为CL,探测范围覆盖左侧相邻车道外后视镜盲区后端及盲区后端后方的部分可视区;
汽车左侧后端超声波传感器10,对左侧相邻车道离汽车车尾距离L-BC(约一米)位置起始及往前至外后视镜位置终止的区域进行探测,探测区域为BL,探测范围覆盖微波雷达传感器50覆盖不到的左侧相邻车道的盲区;
汽车左侧前端超声波传感器30,探测区域为AL,探测范围覆盖左侧相邻车道盲区前端上方车头附近的区域;
步骤2:
系统通过微波雷达传感器50及超声波传感器10、超声波传感器30,对汽车左侧行驶环境进行探测,判断汽车(左侧)是否是处于边车道沿隔离带(绿化带)行驶;
是,进入步骤3,
不是,进入步骤4;
步骤3:
系统通过微波雷达传感器50及超声波传感器10,对CL区、BL区汽车左侧纵向边沿线与隔离带之间的范围进行探测,判断是否有从后方快速靠近穿行的目标物体(如摩托车);
有,进入步骤12,
没有,进入步骤13;
步骤4:
汽车不是在边车道沿隔离带行驶,系统通过微波雷达传感器50及超声波传感器10、超 声波传感器30对左侧相邻车道CL、BL、AL区域的目标物体(通常为其它车辆)进行探测,并检测哪个区域先测到目标物体;
判断BL区是否先测到目标物体;
是,进入步骤5,
否,进入步骤6;
步骤5:
BL区先测到目标物体,代表左侧相邻车道,目标物体不是从汽车前面及或从汽车后面靠近汽车,而是从汽车的侧面直接进入汽车的盲区;
系统认定为此为可能侧撞危险情形,进入步骤12;
步骤6:
判断CL区是否先测到目标物体;
是,进入步骤7,
否,进入步骤8;
步骤7:
系统认定为后方有目标车辆靠近超越汽车,判断目标物体与汽车的相对车速是不是高;
是,进入步骤12,
不是,进入步骤11;
步骤8:
BL区、CL区皆没先测到目标物体,则AL区先测到目标物体,判断目标物体离开AL区进入BL区的速度是不是较快;
是,进入步骤9,
不是,进入步骤10;
步骤9:
目标物体经由AL区以较快的速度进入BL区、CL区,系统认定,或为目标物体与汽车为逆向行驶(对向会车)情形;或为汽车以相对较快的速度超车,超越目标物体;
系统认定为安全情形,进入步骤13;
步骤10:
目标物体经由AL区以较慢的速度进入BL区,目标物体或者停留在BL区,或者接着以较慢的速度离开BL区进入CL区;系统认定,或为汽车以很低相对速度超车目标物体并完成超越,或为超越没有完成,目标物体以与汽车相近的速度行驶在汽车的盲区内;
进入步骤11;
步骤11:
判断目标物体是否处于汽车的盲区范围,
是,进入步骤12,
不是,进入步骤13;
步骤12:
判断车辆左侧转向灯是不是开启状态;
是,系统进行警告级报警提示,进入步骤14
不是,系统进行信息级报警提示,进入步骤14;
步骤13:
不提示;
步骤14:
结束监控。
以上,本发明盲区探测系统探测方法,对各个探测区域对目标物体测到时间先后顺序不同的分析,对测到目标物体时间长短的分析,通过微波雷达传感器对区域内目标物体相对速度、运动方向的判断分析,等等,以确保系统对汽车基本行驶环境的准确判断。对于一些特殊的汽车行驶环境状态,系统有针对性的判断分析及处理方法,在此不一一阐述。
本发明盲区探测系统,在正常探测工作时,如果系统探测到外后视镜盲区后方的可视区内有相对速度较高的目标物体靠近,或者系统探测到汽车盲区内存在同向运动相对速度较低目标物体,系统以信息级报警提示,通常为盲点警示灯亮起提示,当检测到汽车相应侧转向灯开启时,系统则以警告级报警提示,通常为盲点警示灯闪烁及蜂鸣器声音报警提示。两者提示的警告级别不一样,代表危险程度不一样,在具体运用上,也不一定非为本发明方式的报警提示方式,在某些极端危险情况下,即使是系统未检测到转向灯开启,系统也可以设定以警告级信息提示。以上本发明盲区探测系统方法,重点是系统如何对各种行驶环境及运动状态的进行准确的判断,而非准确判断之后如何进行警告提示的方式。
此外,本发明包含单个微波雷达传感器及若干个超声波传感器的汽车盲区探测系统,运用于通常的汽车(轿车)时,采用通用典型的设置,即系统包含一个微波雷达传感器及四个超声波传感器(汽车左右侧前端后端各一个)。当运用于客车、卡车等车长较长的车时,系统通常设置包含一个微波雷达传感器及六个或六个以上超声波传感器(汽车两侧各设置三个或三个以上超声波传感器)。当本范明系统运用于特别小的车辆时,譬如摩托车,系统通常设置包含一个微波雷达传感器及两个超声波传感器(车两侧各一个)。根据不同车型长度及运用需要而设置不同的超声波个数。
此外,因为本发明盲区系统的微波雷达传感器设置在汽车后保内的中间位置,探测方向朝汽车正后方,因此在汽车行进时,系统可以对汽车后方来车进行恰当的扫描探测及跟踪,因此系统可以根据需要设置具有后方来车追尾预警功能,即:将微波雷达传感器作为汽车的追尾预警传感器。相对如图1的传统微波雷达盲区探测系统,本发明盲区探测系统更有优势、基础来设置具有此功能,因为,如图1,传统两微波雷达传感器盲区探测系统,在汽车行驶时,两个微波雷达对汽车后方的探测,交会之后在后保近距离处存在盲区BQr,因此在离车较近的距离,系统的后方来车追尾预警功能可能具有功能上的缺陷。而本发明微波雷达盲区探测系统,则不存在此问题,后方来车追尾预警功能可以完好、便利的且几乎不增加任何成本地实现。图9为本发明盲区探测系统后方来车追尾预警功能探测示意图。同时,本发明盲区探测系统,与两微波雷达传感器传统盲区探测系统一样,同样可以设置具有停车开门后侧来车报警功能。也就是说,本发明盲区探测系统的功能可扩展性好,在此不做进一步的阐述。
本发明包含单个微波雷达传感器及若干个超声波传感器的汽车盲区探测系统,除了可以 运用在通常所说的汽车上,也可以运用在各类三轮车、摩托车、残疾车、电动自行车等种类、大小不同的车辆上,如采用本发明探测方法及探测系统,都属于本发明涵盖的范围。
本发明创造的有益效果:
目前传统的超声波传感器盲区探测系统,探测性能差,但成本优势明显;而传统的微波雷达传感器盲区探测系统,因为采用两个微波传感器,虽探测性能好,但成本过高。而采用一个微波雷达传感器及若干个超声波传感器的本发明盲区探测系统,不但探测性能好,且有效的降低了系统的成本,并且系统的功能可扩展性又佳。因此本发明盲区探测系统的开发运用具有非常积极的意义。

Claims (12)

  1. 设置微波雷达传感器和超声波传感器的汽车盲区探测系统,其特征在于,该盲区探测系统包括设置于汽车尾端中间部位的一个微波雷达传感器、对称设置于汽车两侧的若干个超声波传感器,其中,微波雷达传感器的探测范围覆盖汽车相邻车道外后视镜的盲区后端及盲区后端后方的部分可视区;若干个超声波传感器的探测范围覆盖汽车相邻车道外后视镜的盲区前端;一个微波雷达传感器和若干个超声波传感器的探测范围整体覆盖汽车外后视镜的盲区、盲区后端延伸区及汽车尾部的延伸探测区域。
  2. 如权利要求1所述的盲区探测系统,其特征在于,该盲区探测系统所述汽车上设置有两个所述超声波传感器,其对称设置于汽车尾部的两侧,两个所述超声波传感器的探测范围覆盖相邻车道外后视镜盲区。
  3. 如权利要求1所述的盲区探测系统,其特征在于,所述汽车上设置有四个所述超声波传感器,所述汽车尾部两侧对称设置有一对所述超声波传感器,其探测范围覆盖相邻车道外后视镜盲区;所述汽车头部两侧对称设置有一对所述超声波传感器,其用于汽车行驶环境的辅助判断。
  4. 如权利要求1所述的盲区探测系统,其特征在于,所述汽车上设置有六个或六个以上所述超声波传感器,所述汽车尾部两侧对称设置有一对所述超声波传感器,其探测范围覆盖相邻车道后视镜盲区;所述汽车头部两侧对称设置有一对所述超声波传感器,其用于汽车行驶环境的辅助判断;其余的所述超声波传感器设置于车身的中部。
  5. 如权利要求1所述的盲区探测系统,其特征在于,所述微波雷达传感器设置于汽车后保险杠的中间部位。
  6. 如权利要求1所述的盲区探测系统,其特征在于,所述微波雷达传感器的测距量程为10-50米,探测角度β1为130-150度,探测方向朝汽车正后方,探测范围为以汽车纵向中轴线对称的扇形区域TSa。
  7. 如权利要求1所述的盲区探测系统,其特征在于,对称设置于所述汽车尾部两侧的所述超声波传感器的探测距离为3-4米,探测角度β2为50-120度,探测方向朝汽车的侧部。
  8. 如权利要求1所述的盲区探测系统,其特征在于,所述对称设置于所述汽车头部两侧的所述超声波传感器的探测距离为3-4米,探测角度β2为50-120度,探测方向朝汽车的侧部。
  9. 如权利要求1所述的盲区探测系统,其特征在于,所述微波雷达传感器作为汽车的追尾预警传感器。
  10. 设置微波雷达传感器和超声波传感器的汽车盲区探测方法,其特征在于,该盲区探测方法具体为:
    1)汽车行驶过程中,微波雷达传感器对离汽车车尾距离L-BC位置起始及往后的区域进行探测,探测区域覆盖外后视镜盲区后端及盲区后端后方的部分可视区;
    2)设置于汽车尾部两侧的超声波传感器,对离汽车车尾距离L-BC位置起始及往前至外后视镜位置终止的汽车侧部区域进行探测,探测范围覆盖汽车相邻车道外后视镜的盲区前端;
    3)整体叠加微波雷达传感器、若干个超声波传感器的探测范围,形成大范围的覆盖汽车相邻车道外后视镜盲区及盲区后方的部分可视区的探测区域。
  11. 如权利要求10所述的盲区探测方法,其特征在于,具体为:
    1)步骤1:
    设定微波雷达传感器对左侧的探测区域为CL、对右侧的探测区域为CR;
    设定设置于汽车尾部的超声波传感器对左侧的探测区域为BL、对右侧的探测区域为BR;
    设定设置于汽车头部的超声波传感器对左侧的探测区域为AL、对右侧的探测区域为AR;
    2)步骤2:
    通过微波雷达传感器及若干个超声波传感器对汽车左侧、右侧行驶环境进行探测,判断汽车是否是处于边车道沿隔离带行驶;
    是,进入步骤3,
    不是,进入步骤4;
    3)步骤3:
    通过微波雷达传感器及超声波传感器进行探测,
    左侧:对CL区、BL区汽车左侧纵向边沿线与隔离带之间的范围进行探测;
    右侧:对CR区、BR区汽车右侧纵向边沿线与隔离带之间的范围进行探测;
    判断是否有从后方快速靠近穿行的目标物体;
    有,进入步骤12,
    没有,进入步骤13;
    4)步骤4:
    汽车不是在边车道沿隔离带行驶,通过微波雷达传感器及若干个超声波传感器对相邻车道进行探测;
    左侧:探测左侧相邻车道CL、BL、AL区域;
    右侧:探测右侧相邻车道CR、BR、AR区域;
    对区域内的目标物体进行探测,并检测哪个区域先测到目标物体;
    判断BL、BR区是否先测到目标物体;
    是,进入步骤5,
    否,进入步骤6;
    5)步骤5:
    BL、BR区先测到目标物体,代表为:左侧、右侧相邻车道上的目标物体不是从汽车前面及或从汽车后面靠近汽车,而是从汽车的侧面直接进入汽车的盲区;
    系统认定为此为可能侧撞危险情形,进入步骤12;
    6)步骤6:
    判断CL、CR区是否先测到目标物体;
    是,进入步骤7,
    否,进入步骤8;
    7)步骤7:
    监测后方有目标车辆靠近汽车,判断目标物体与汽车的相对车速是否是高速;
    是,进入步骤12,
    不是,进入步骤11;
    8)步骤8:
    左侧:BL区、CL区均没有先测到目标物体,AL区先测到目标物体,判断目标物体离开AL区进入BL区的速度是不是较快;
    右侧:BR区、CR区均没有先测到目标物体,AR区先测到目标物体,判断目标物体离开AR区进入BR区的速度是不是较快;
    是,进入步骤9,
    不是,进入步骤10;
    9)步骤9:
    左侧:目标物体经由AL区以较快的速度进入BL区、CL区;
    右侧:目标物体经由AR区以较快的速度进入BR区、CR区;
    系统认定,或为目标物体与汽车为逆向行驶情形;或为汽车以相对较快的速度超车,超越目标物体;
    系统认定为安全情形,进入步骤13;
    10)步骤10:
    左侧:目标物体经由AL区以较慢的速度进入BL区,目标物体或者停留在BL区,或者接着以较慢的速度离开BL区进入CL区;右侧:目标物体经由AR区以较慢的速度进入BR区,目标物体或者停留在BR区,或者接着以较慢的速度离开BR区进入CR区;
    系统认定,或为汽车以很低相对速度超车目标物体并完成超越,或为超越没有完成,目标物体以与汽车相近的速度行驶在汽车的盲区内;
    进入步骤11;
    11)步骤11:
    判断目标物体是否处于汽车的盲区范围,
    是,进入步骤12,
    不是,进入步骤13;
    12)步骤12:
    判断车辆左侧转向灯、右侧转向灯是不是开启状态;
    是,系统进行警告级报警提示,进入步骤14
    不是,系统进行信息级报警提示,进入步骤14;
    13)步骤13:
    不提示;
    14)步骤14:
    结束监控。
  12. 如权利要求11所述的盲区探测方法,其特征在于,所述步骤12中,信息级提示为盲点警示灯亮起提示,警告级报警提示为盲点警示灯闪烁及蜂鸣器声音报警提示。
PCT/CN2017/096209 2016-08-30 2017-08-07 设置微波雷达和超声波传感器的汽车盲区探测系统及方法 WO2018040853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610759719.2A CN106353757B (zh) 2016-08-30 2016-08-30 设置微波雷达和超声波传感器的汽车盲区探测系统及方法
CN201610759719.2 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018040853A1 true WO2018040853A1 (zh) 2018-03-08

Family

ID=57857781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096209 WO2018040853A1 (zh) 2016-08-30 2017-08-07 设置微波雷达和超声波传感器的汽车盲区探测系统及方法

Country Status (2)

Country Link
CN (1) CN106353757B (zh)
WO (1) WO2018040853A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110861605A (zh) * 2019-11-29 2020-03-06 中汽研(常州)汽车工程研究院有限公司 一种大型车盲区复合型监测装置及方法
CN111352072A (zh) * 2018-12-24 2020-06-30 观致汽车有限公司 车辆的盲区检测装置及方法
CN111722230A (zh) * 2020-05-29 2020-09-29 东风汽车集团有限公司 一种全速域盲区监测方法及系统
CN111722234A (zh) * 2020-05-13 2020-09-29 浙江华消科技有限公司 基于超声波雷达的障碍物定位方法、装置和计算机设备
CN112014846A (zh) * 2020-08-27 2020-12-01 安徽江淮汽车集团股份有限公司 超声波雷达探测盲区方法、设备、存储介质及装置
CN112163307A (zh) * 2020-09-29 2021-01-01 中国船舶重工集团公司第七二四研究所 一种跨站信息保障的目标可信区标绘方法
CN112924976A (zh) * 2019-12-08 2021-06-08 钱仁贵 基于超声波雷达的靶标探测法及其装置
CN113126077A (zh) * 2020-08-13 2021-07-16 纵目科技(上海)股份有限公司 盲点区域的目标检测系统、方法及介质
CN113156445A (zh) * 2021-05-11 2021-07-23 东风汽车集团股份有限公司 一种超声波雷达盲区监测系统及监测方法
CN114067611A (zh) * 2021-10-08 2022-02-18 信通院车联网创新中心(成都)有限公司 一种基于v2v的盲区变道预警方法
TWI765208B (zh) * 2020-01-06 2022-05-21 為升電裝工業股份有限公司 具車速偵測功能的盲點偵測系統、偵測裝置及其測速方法
CN116039503A (zh) * 2023-03-30 2023-05-02 江铃汽车股份有限公司 商用车视野盲区监测提醒方法、移动终端及存储介质
CN117310713A (zh) * 2023-11-29 2023-12-29 广州优创电子有限公司 一种基于单传感器的盲区监测装置及监测方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353757B (zh) * 2016-08-30 2019-10-18 陈武强 设置微波雷达和超声波传感器的汽车盲区探测系统及方法
CN107472128A (zh) * 2017-04-11 2017-12-15 宝沃汽车(中国)有限公司 车辆盲区的监控方法、系统及车辆
CN109720335A (zh) * 2017-10-27 2019-05-07 法雷奥汽车内部控制(深圳)有限公司 机动车辆的接近辅助系统和驾驶辅助方法
CN107985191B (zh) * 2017-11-27 2019-09-03 东风汽车有限公司 一种汽车盲点侦测方法及汽车电子设备
CN108802739B (zh) * 2018-05-31 2021-04-16 深圳臻迪信息技术有限公司 一种水下障碍物探测方法及探测装置
CN108891376A (zh) * 2018-08-10 2018-11-27 上海申视汽车新技术有限公司 一种集成在后视镜内的汽车安全变道预警系统及方法
CN109243203A (zh) * 2018-10-25 2019-01-18 湖北工业大学 一种基于雷达的卡车防撞预警系统及方法
CN114280623A (zh) * 2019-01-15 2022-04-05 北京百度网讯科技有限公司 一种超声波雷达阵列、障碍物检测方法及系统
CN110182133B (zh) * 2019-05-13 2022-05-31 江铃汽车股份有限公司 汽车盲区监测提示方法、移动终端及存储介质
CN110254443A (zh) * 2019-07-05 2019-09-20 斑马网络技术有限公司 驾驶辅助方法、装置、存储介质以及汽车
CN111923857B (zh) * 2020-09-24 2021-02-09 深圳佑驾创新科技有限公司 车辆盲区检测处理方法、装置、车载终端和存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297332A1 (en) * 2007-05-31 2008-12-04 Denso Corporation Two-wheel-vehicle detecting device for an automotive vehicle
US20090058677A1 (en) * 2007-08-30 2009-03-05 Industrial Technology Research Institute Method and apparatus for predicting/alarming the moving of hidden objects
CN101522499A (zh) * 2006-10-09 2009-09-02 罗伯特·博世有限公司 用于检测汽车周围环境的方法
CN202243183U (zh) * 2011-09-02 2012-05-30 浙江吉利汽车研究院有限公司 一种汽车后视镜盲区辅助警示装置
CN102848973A (zh) * 2012-09-25 2013-01-02 浙江吉利汽车研究院有限公司杭州分公司 车辆后视镜盲区探测系统及方法
CN103018743A (zh) * 2012-12-06 2013-04-03 同致电子科技(厦门)有限公司 一种超声波盲区检测的静止障碍物判定方法
CN204855800U (zh) * 2015-07-09 2015-12-09 北汽福田汽车股份有限公司 车载雷达系统
CN205098052U (zh) * 2015-09-25 2016-03-23 张家荣 汽车盲区监控警示装置
CN106353757A (zh) * 2016-08-30 2017-01-25 陈武强 设置微波雷达和超声波传感器的汽车盲区探测系统及方法
CN206038903U (zh) * 2016-08-30 2017-03-22 陈武强 设置微波雷达传感器和超声波传感器的汽车盲区探测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018585A1 (de) * 2006-04-21 2007-10-25 Valeo Schalter Und Sensoren Gmbh Assistenzsystem für Kraftfahrzeuge
JP4412337B2 (ja) * 2007-03-08 2010-02-10 トヨタ自動車株式会社 周囲環境推定装置及び周囲環境推定システム
DE102008061357A1 (de) * 2008-12-10 2010-06-17 Valeo Schalter Und Sensoren Gmbh Überwachungseinrichtung und Verfahren zur Überwachung für Totwinkelbereiche eines Fahrzeugs
CN101950021A (zh) * 2010-08-24 2011-01-19 浙江大学 超声波与毫米波联合测量的无盲区汽车防撞雷达装置
CN104442812B (zh) * 2013-10-16 2017-11-03 陈武强 一种汽车变道辅助探测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522499A (zh) * 2006-10-09 2009-09-02 罗伯特·博世有限公司 用于检测汽车周围环境的方法
US20080297332A1 (en) * 2007-05-31 2008-12-04 Denso Corporation Two-wheel-vehicle detecting device for an automotive vehicle
US20090058677A1 (en) * 2007-08-30 2009-03-05 Industrial Technology Research Institute Method and apparatus for predicting/alarming the moving of hidden objects
CN202243183U (zh) * 2011-09-02 2012-05-30 浙江吉利汽车研究院有限公司 一种汽车后视镜盲区辅助警示装置
CN102848973A (zh) * 2012-09-25 2013-01-02 浙江吉利汽车研究院有限公司杭州分公司 车辆后视镜盲区探测系统及方法
CN103018743A (zh) * 2012-12-06 2013-04-03 同致电子科技(厦门)有限公司 一种超声波盲区检测的静止障碍物判定方法
CN204855800U (zh) * 2015-07-09 2015-12-09 北汽福田汽车股份有限公司 车载雷达系统
CN205098052U (zh) * 2015-09-25 2016-03-23 张家荣 汽车盲区监控警示装置
CN106353757A (zh) * 2016-08-30 2017-01-25 陈武强 设置微波雷达和超声波传感器的汽车盲区探测系统及方法
CN206038903U (zh) * 2016-08-30 2017-03-22 陈武强 设置微波雷达传感器和超声波传感器的汽车盲区探测系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352072A (zh) * 2018-12-24 2020-06-30 观致汽车有限公司 车辆的盲区检测装置及方法
CN111352072B (zh) * 2018-12-24 2023-09-26 观致汽车有限公司 车辆的盲区检测装置及方法
CN110861605A (zh) * 2019-11-29 2020-03-06 中汽研(常州)汽车工程研究院有限公司 一种大型车盲区复合型监测装置及方法
CN112924976A (zh) * 2019-12-08 2021-06-08 钱仁贵 基于超声波雷达的靶标探测法及其装置
TWI765208B (zh) * 2020-01-06 2022-05-21 為升電裝工業股份有限公司 具車速偵測功能的盲點偵測系統、偵測裝置及其測速方法
CN111722234A (zh) * 2020-05-13 2020-09-29 浙江华消科技有限公司 基于超声波雷达的障碍物定位方法、装置和计算机设备
CN111722230B (zh) * 2020-05-29 2023-07-18 东风汽车集团有限公司 一种全速域盲区监测方法及系统
CN111722230A (zh) * 2020-05-29 2020-09-29 东风汽车集团有限公司 一种全速域盲区监测方法及系统
CN113126077A (zh) * 2020-08-13 2021-07-16 纵目科技(上海)股份有限公司 盲点区域的目标检测系统、方法及介质
CN113126077B (zh) * 2020-08-13 2024-03-22 纵目科技(上海)股份有限公司 盲点区域的目标检测系统、方法及介质
CN112014846A (zh) * 2020-08-27 2020-12-01 安徽江淮汽车集团股份有限公司 超声波雷达探测盲区方法、设备、存储介质及装置
CN112014846B (zh) * 2020-08-27 2024-01-23 安徽江淮汽车集团股份有限公司 超声波雷达探测盲区方法、设备、存储介质及装置
CN112163307A (zh) * 2020-09-29 2021-01-01 中国船舶重工集团公司第七二四研究所 一种跨站信息保障的目标可信区标绘方法
CN113156445B (zh) * 2021-05-11 2023-10-20 东风汽车集团股份有限公司 一种超声波雷达盲区监测系统及监测方法
CN113156445A (zh) * 2021-05-11 2021-07-23 东风汽车集团股份有限公司 一种超声波雷达盲区监测系统及监测方法
CN114067611B (zh) * 2021-10-08 2023-01-03 信通院车联网创新中心(成都)有限公司 一种基于v2v的盲区变道预警方法
CN114067611A (zh) * 2021-10-08 2022-02-18 信通院车联网创新中心(成都)有限公司 一种基于v2v的盲区变道预警方法
CN116039503A (zh) * 2023-03-30 2023-05-02 江铃汽车股份有限公司 商用车视野盲区监测提醒方法、移动终端及存储介质
CN117310713A (zh) * 2023-11-29 2023-12-29 广州优创电子有限公司 一种基于单传感器的盲区监测装置及监测方法
CN117310713B (zh) * 2023-11-29 2024-03-15 广州优创电子有限公司 一种基于单传感器的盲区监测装置及监测方法

Also Published As

Publication number Publication date
CN106353757B (zh) 2019-10-18
CN106353757A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018040853A1 (zh) 设置微波雷达和超声波传感器的汽车盲区探测系统及方法
CN108845327B (zh) 一种大货车视野盲区障碍物的智能检测及提醒系统
CN106708040B (zh) 自动驾驶系统的传感器模块、自动驾驶系统及方法
US10977944B2 (en) Apparatus and method for supporting collision avoidance of vehicle
CN104442812B (zh) 一种汽车变道辅助探测方法
US7504986B2 (en) Blind spot sensor system
CN107264521B (zh) 一种汽车转弯安全预警系统
US8072352B2 (en) Cross traffic alert with parking angle trajectory
WO2014192369A1 (ja) 車両用危険報知制御装置
US8718916B2 (en) Object detecting device, and object detecting method
CN105869438A (zh) 一种车辆防碰撞预警系统
CN101311034B (zh) 一种车辆盲区探测、报警装置及其探测、报警方法
CN105564307A (zh) 车辆侧转弯安全提醒装置及方法
CN210062816U (zh) 车辆内轮差防碰撞预警系统
CN108032809B (zh) 一种倒车侧向辅助系统及其数据融合与控制方法
CN207809187U (zh) 一种车辆后方盲区监测预警系统
JP2008037361A (ja) 障害物認識装置
CN111439198A (zh) 一种大型车辆转弯预警方法及系统
CN113470433A (zh) 基于v2i的车辆内轮差区域危险预警方法、系统、车辆及路侧设备
CN100472225C (zh) 检测与汽车在接近相同的空间方向上运动物体的方法和装置
JP2013249002A (ja) 障害物回避支援装置及び障害物回避支援方法
CN111746383A (zh) 车辆转向安全控制系统、车辆
KR20180064639A (ko) 자동차 및 그 제어 방법
CN104136281A (zh) 行驶控制装置以及行驶控制方法
JP3672914B2 (ja) 車両用警報装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845155

Country of ref document: EP

Kind code of ref document: A1