WO2018038179A9 - 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 - Google Patents

樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 Download PDF

Info

Publication number
WO2018038179A9
WO2018038179A9 PCT/JP2017/030202 JP2017030202W WO2018038179A9 WO 2018038179 A9 WO2018038179 A9 WO 2018038179A9 JP 2017030202 W JP2017030202 W JP 2017030202W WO 2018038179 A9 WO2018038179 A9 WO 2018038179A9
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
resin composition
resin
mass
parts
Prior art date
Application number
PCT/JP2017/030202
Other languages
English (en)
French (fr)
Other versions
WO2018038179A1 (ja
Inventor
宜洋 中住
大輔 植山
健太郎 高野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201780005157.5A priority Critical patent/CN108431133B/zh
Priority to KR1020187018042A priority patent/KR20180080336A/ko
Priority to US16/063,429 priority patent/US10689496B2/en
Priority to JP2017565326A priority patent/JP6319533B1/ja
Priority to EP17843657.2A priority patent/EP3375822B1/en
Priority to KR1020197009398A priority patent/KR102208589B1/ko
Publication of WO2018038179A1 publication Critical patent/WO2018038179A1/ja
Publication of WO2018038179A9 publication Critical patent/WO2018038179A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3842Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring
    • C08G18/3844Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring containing one nitrogen atom in the ring
    • C08G18/3846Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring containing one nitrogen atom in the ring containing imide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0248Needles or elongated particles; Elongated cluster of chemically bonded particles

Definitions

  • the present invention relates to a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board.
  • Thermosetting resins such as epoxy resins used for printed wiring board insulation layers themselves have low thermal conductivity. Therefore, in order to improve thermal conductivity as a printed wiring board, a method of highly filling an inorganic filler excellent in thermal conductivity into a thermosetting resin is known.
  • the inorganic filler is highly filled in the thermosetting resin composition, the volume ratio of the thermosetting resin is decreased, the moldability is deteriorated, and cracks and voids are easily generated between the resin and the inorganic filler. Therefore, there is a problem that the moisture absorption heat resistance is deteriorated, the elastic modulus is lowered, the adhesion between the resin and the inorganic filler is insufficient, and the copper foil peel strength is lowered. In view of such a problem, it has been proposed to use various resin compositions.
  • Patent Document 1 a resin composition containing a naphthol aralkyl-type cyanate ester resin and an epoxy resin, in which a resin composition containing a specific amount of an inorganic filler has excellent heat resistance, thermal conductivity and It describes that it exhibits water absorption.
  • Patent Document 2 a resin composition containing a cyanate ester compound and an epoxy resin, in which a resin composition containing two kinds of inorganic fillers having different particle diameters has good moldability, and It describes that it exhibits high heat dissipation characteristics, high glass transition temperature, copper foil peel strength, and moisture absorption heat resistance.
  • Patent Document 3 a resin composition containing an epoxy resin and a curing agent, wherein a resin composition containing borate particles coated with hexagonal boron nitride as an inorganic filler has a high glass transition temperature.
  • a resin composition containing borate particles coated with hexagonal boron nitride as an inorganic filler has a high glass transition temperature.
  • the present invention has been made in view of the above problems, and provides a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board that can exhibit excellent thermal conductivity and copper foil peel strength. For the purpose.
  • the present inventors diligently studied to solve the above problems. As a result, in a resin composition containing a cyanate ester compound and / or a maleimide compound, the boron nitride particle aggregate in which the (0001) faces of the boron nitride primary particles overlap and agglomerate is blended as an inorganic filler. The present inventors have found that the problem can be achieved and have completed the present invention.
  • a resin composition comprising:
  • the inorganic filler (C) is a boron nitride particle aggregate containing hexagonal boron nitride primary particles, and includes a boron nitride particle aggregate in which (0001) faces of the hexagonal boron nitride primary particles overlap each other. , Resin composition.
  • the cyanate ester compound (A) includes at least one of a cyanate ester compound represented by the following general formula (1) and a cyanate ester compound represented by the formula (2):
  • the resin composition in any one of. R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • the maleimide compound (B) is bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl-4-maleimidophenyl)
  • each R 5 independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.
  • Cyanate ester compound (A) represented by formula (1) and cyanate ester compound other than cyanate ester compound (A) represented by formula (2), epoxy resin, oxetane resin, phenol resin, benzoxazine compound The resin composition according to any one of [6] to [9], further comprising at least one selected from the group consisting of a compound having a polymerizable unsaturated group.
  • the present invention it is possible to provide a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board that can exhibit excellent thermal conductivity and copper foil peel strength.
  • FIG. 1 is an explanatory diagram for explaining R and r in the present embodiment.
  • FIG. 2A is an SEM image of the boron nitride particle aggregate according to Example 1 at a magnification of 120,000 times.
  • FIG. 2B is an SEM image of the boron nitride particle aggregate according to Example 1 at a magnification of 50000 times.
  • FIG. 3A is an SEM image of the hexagonal boron nitride primary particles not aggregated, that is, a magnification of 25,000 times that of the conventional hexagonal boron nitride primary particles.
  • FIG. 2A is an SEM image of the boron nitride particle aggregate according to Example 1 at a magnification of 120,000 times.
  • FIG. 2B is an SEM image of the boron nitride particle aggregate according to Example 1 at a magnification of 50000 times.
  • FIG. 3A is an SEM image of the hexagonal boron nitride primary
  • FIG. 3B shows a portion where the end face side is observed in the SEM image of the hexagonal boron nitride primary particles in which the hexagonal boron nitride primary particles are not aggregated.
  • FIG. 4 is a view for showing a scale of the boron nitride particle aggregates observed in FIG.
  • FIG. 5 is a diagram showing the scale of the three boron nitride particle aggregates observed in FIG.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
  • the resin composition of the present embodiment is a resin composition comprising a cyanate ester compound (A) and / or a maleimide compound (B) and an inorganic filler (C), wherein the inorganic filler (C) Is a boron nitride particle aggregate including hexagonal boron nitride primary particles, and includes boron nitride particle aggregates in which the (0001) faces of the hexagonal boron nitride primary particles overlap each other. Since it is comprised in this way, the resin composition of this embodiment can express the outstanding heat conductivity and copper foil peel strength.
  • each component which comprises the resin composition of this embodiment is demonstrated.
  • the cyanate ester compound (A) is an optional component and may not be contained, but from the viewpoint of desmear resistance and high thermal modulus, the resin composition of the present embodiment.
  • the resin composition of the present embodiment Preferably contains a cyanate ester compound (A).
  • cyanate ester compound (A) the novolak-type cyanate ester represented by the following general formula (A), the cyanate ester compound represented by the following general formula (1) ( Naphthol aralkyl cyanate), cyanate ester compound represented by formula (2) (diallyl bisphenol A cyanate), biphenyl aralkyl cyanate, bis (3,3-dimethyl-4-cyanatophenyl) methane Bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-disi Anatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthal 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene,
  • the above-described cyanate ester compound (A) may be used alone or in combination of two or more.
  • the cyanate ester compound (A) includes at least one of the cyanate ester compound represented by the general formula (1) and the cyanate ester compound represented by the formula (2).
  • R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • the R is preferably a hydrogen atom.
  • the n is an integer of 10 or less. It is preferably an integer of 7 or less.
  • R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • the R is preferably a hydrogen atom.
  • the n is an integer of 10 or less. It is preferably an integer of 6 or less.
  • the content of the cyanate ester compound (A) is preferably 1 to 90 parts by mass and preferably 5 to 85 parts by mass with respect to 100 parts by mass of the resin solid content. Is more preferable, and the amount is more preferably 10 to 80 parts by mass.
  • the content of the cyanate ester compound in the above range it is possible to maintain excellent moldability even when filling with an inorganic filler, and to further improve the curability, thermal elastic modulus, desmear resistance, etc. is there.
  • “resin solid content” means a component in the resin composition excluding the solvent and the inorganic filler (C) unless otherwise specified, and “resin solid content 100 parts by mass”.
  • total amount of components excluding the solvent and the inorganic filler (C) in the resin composition means 100 parts by mass.
  • the maleimide compound (B) is an optional component and may not be included, but from the viewpoint of heat resistance, the resin composition of the present embodiment includes the maleimide compound (B). It is preferable.
  • the maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule.
  • Preferred examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, polytetramethylene oxide-bis (4 -Maleimidobenzoate), maleimide compounds represented by the following general formula (3), prepolymers of these maleimide compounds, or prepolymers of maleimide compounds and amine compounds.
  • the maleimide compound (B) is bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl). It is preferable to include at least one selected from the group consisting of -4-maleimidophenyl) methane and a maleimide compound represented by the following formula (3). In that case, the thermal expansion coefficient of the obtained cured product is further lowered, and the heat resistance and the glass transition temperature tend to be further improved.
  • each R 5 independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.
  • R 5 preferably represents a hydrogen atom.
  • n 1 is preferably 10 or less, more preferably 7 or less.
  • the content of the maleimide compound (B) is preferably 1 to 90 parts by mass, more preferably 5 to 85 parts by mass, and further preferably 10 to 80 parts by mass with respect to 100 parts by mass of the resin solid content. Part.
  • content of a maleimide compound (B) exists in the said range, it exists in the tendency for the thermal expansion coefficient of the hardened
  • the resin composition of the present embodiment contains at least one of a cyanate ester compound (A) and a maleimide compound (B), and has heat resistance, combustion resistance, mechanical properties, long-term heat resistance, chemical resistance, and electricity. From the viewpoint of insulation, it is preferable that both of the cyanate ester compound (A) and the maleimide compound (B) are included.
  • the inorganic filler (C) includes a boron nitride particle aggregate including hexagonal boron nitride primary particles.
  • the (0001) faces of hexagonal boron nitride primary particles overlap each other. Examples of the method for confirming that the boron nitride particle aggregate is contained in the resin composition of the present embodiment and that the boron nitride particle aggregate has a preferable shape to be described later are described later.
  • the method as described in an Example is mentioned. That is, it can be easily confirmed by observing the resin composition of the present embodiment with an SEM.
  • the structure can be confirmed similarly to the above.
  • the boron nitride particle aggregate in the present embodiment can be said to easily maintain a laminated structure in which (0001) faces of hexagonal boron nitride primary particles overlap each other from the viewpoint described later, and is prepared as a resin composition.
  • the structure tends to be maintained in each step such as the step of molding the resin composition. That is, if it can be confirmed that the boron nitride particle aggregate as the raw material of the inorganic filler (C) satisfies the desired configuration of the present embodiment, the resin composition of the present embodiment will provide the boron nitride particle aggregate. It can be said that it contains.
  • the particle shape of the hexagonal boron nitride primary particles constituting the boron nitride particle aggregate in the present embodiment is not particularly limited, and examples thereof include a scale shape, a flat shape, a granular shape, a spherical shape, a fibrous shape, and a whisker shape. Of these, scale-like is preferable.
  • the average particle diameter of the hexagonal boron nitride primary particles is not particularly limited, but the median diameter is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 5 ⁇ m, and particularly preferably 0.1 to 1 ⁇ m.
  • the average particle diameter is in the above range, the (0001) faces of the hexagonal boron nitride primary particles are easily overlapped and aggregated, and as a result, the thermal conductivity of the resin sheet tends to be improved.
  • the average particle diameter of the hexagonal boron nitride primary particles can be measured by, for example, a wet laser diffraction / scattering method.
  • the aggregation form of the boron nitride particle aggregate in which the (0001) faces of the hexagonal boron nitride primary particles are aggregated and aggregated is not particularly limited, but includes natural aggregation, aggregation by an aggregating agent, physical aggregation, and the like. Can be mentioned. Examples of natural aggregation include, but are not limited to, aggregation caused by van der Waals force, electrostatic force, adsorbed moisture, and the like. Aggregation by the aggregating agent is not limited to the following, and examples include aggregating by an aggregating agent such as a coupling agent, an inorganic salt, and a polymer substance.
  • the hexagonal boron nitride primary particles are agglomerated by changing the surface state to a state where the surface energy is high, that is, a state where the primary particles tend to aggregate.
  • Examples of physical agglomeration include methods of agglomeration by operations such as mixed granulation, extrusion granulation, and spray drying. Among these, from the viewpoint of cohesive strength, aggregation with a coupling agent is preferable.
  • the “boron nitride particle aggregate” is an aggregate unit of secondary particles formed by agglomerating filler containing hexagonal boron nitride primary particles, and can take various shapes. That is, the shape of the boron nitride particle aggregate is not particularly limited as long as the (0001) faces of the hexagonal boron nitride primary particles overlap each other, for example, columnar, flat, granular, massive, It may be spherical or fibrous.
  • the a-axis direction of the hexagonal boron nitride primary particles may coincide with the thickness direction of the resin sheet (hereinafter, simply This is also preferable because it tends to increase.
  • “columnar” means a shape derived from the aggregation mode of hexagonal boron nitride primary particles, and means a shape including a prismatic shape, a cylindrical shape, a rod shape, and the like, which is different from a spherical shape. .
  • the columnar shape includes those that extend straight in the vertical direction, those that extend in an inclined shape, those that extend while curving, and those that branch and extend in a branch shape. It can be easily confirmed that the boron nitride particle aggregate has a columnar shape by observation with a scanning electron microscope (SEM).
  • a typical example of the method for confirming that the boron nitride particle aggregate in the present embodiment has a columnar shape is not limited to the following, but includes the longest diameter R in the stacking direction of the boron nitride particle aggregate and the boron nitride particle aggregate. And the longest diameter r in the width direction is identified by SEM observation, and a method of confirming the magnitude relationship between them is exemplified.
  • the boron nitride particle aggregate satisfies R> 0.3r from the viewpoint of increasing the orientation.
  • R> r is satisfied from the viewpoint of further improving the orientation.
  • the “stacking direction” here is a direction substantially parallel to the c-axis direction of the hexagonal boron nitride primary particles.
  • the “width direction” is a direction substantially perpendicular to the stacking direction. In other words, the width direction is a direction substantially parallel to the surface direction (a-axis direction) of the (0001) plane in at least one hexagonal boron nitride primary particle.
  • the longest diameter in the width direction is, for example, the longest diameter in the surface direction of the (0001) plane of the hexagonal boron nitride primary particles when the boron nitride particle aggregate has a columnar shape extending straight in the vertical direction.
  • the longest diameter in the width direction may be larger than the longest diameter in the surface direction of the (0001) plane of the hexagonal boron nitride primary particles.
  • substantially parallel means a state within ⁇ 10 ° from the parallel direction
  • substantially perpendicular means a state within ⁇ 10 ° from the vertical direction.
  • 1B is obtained by agglomerating rectangular hexagonal boron nitride primary particles so that their long sides, that is, (0001) planes overlap each other.
  • the short side of the aggregate corresponds to r (that is, the longest diameter in the width direction of the boron nitride particle aggregate), and the long side corresponds to R (that is, the longest diameter in the stacking direction of the boron nitride particle aggregate). is doing.
  • the boron nitride particle aggregate in the present embodiment has a structure in which hexagonal boron nitride primary particles are stacked.
  • the stacked structure is not particularly limited, but the hexagonal boron nitride primary per layer is not particularly limited.
  • the number of particles is preferably 2 or less, more preferably 1. Since it has the tendency for orientation to improve when it has such a laminated structure, it is preferable.
  • the longest diameter in the stacking direction of the boron nitride particle aggregate is not particularly limited, and the longest diameter in the width direction of the boron nitride particle aggregate is not particularly limited.
  • the average particle diameter of the hexagonal boron nitride primary particles is A ( ⁇ m)
  • R 0.3 ⁇ A to 10 ⁇ A ( ⁇ m)
  • r 0.3 ⁇ A to 3 ⁇ A ( ⁇ m) is preferably satisfied.
  • the method for measuring the longest diameter are not limited to the following, but in a captured SEM image, if the boron nitride particle aggregate is columnar, the shape approximates a rectangle, and the long side of the rectangle and For example, the length of the short side is measured.
  • the state in which “(0001) planes of hexagonal boron nitride primary particles overlap” is not limited to an aspect in which (0001) planes completely overlap, but in the width direction. A mode in which they overlap each other is also included.
  • the longest diameter r in the width direction of the boron nitride particle aggregate tends to depend on the particle size and the degree of aggregation of the hexagonal boron nitride primary particles, and is not particularly limited.
  • the thickness of the molded product is preferably less than T (r ⁇ T), more preferably r ⁇ 0.9 ⁇ T, and even more preferably r ⁇ 0.5 ⁇ T.
  • r tends to be able to prevent a decrease in smoothness due to unevenness on the surface of the molded product, and r is sufficiently smaller than T from the viewpoint that it can be used as a raw material for a thinner resin sheet. Is preferred.
  • the boron nitride particle aggregate in the present embodiment may contain a filler other than the hexagonal boron nitride primary particles.
  • a filler include, but are not limited to, for example, aluminum nitride, aluminum oxide, Metal oxides such as zinc oxide, silicon carbide, aluminum hydroxide, metals and alloys such as metal nitrides, metal carbides, metal hydroxides, spheres, powders, fibers, needles made of carbon, graphite, diamond, Examples include scale-like and whisker-like fillers. These may be contained independently and may contain multiple types.
  • the boron nitride particle aggregate in the present embodiment may contain a binder from the viewpoint of increasing the robustness of the boron nitride particle aggregate.
  • “robustness” is a property indicating the strength of bonding when the hexagonal boron primary particles are bonded together in the present embodiment.
  • the binder originally acts to firmly bind the primary particles to each other and stabilize the shape of the aggregate.
  • Such a binder is preferably a metal oxide, and specifically, aluminum oxide, magnesium oxide, yttrium oxide, calcium oxide, silicon oxide, boron oxide, cerium oxide, zirconium oxide, titanium oxide, and the like are preferably used. Among these, aluminum oxide and yttrium oxide are preferable from the viewpoints of thermal conductivity and heat resistance as an oxide, and bonding strength for bonding hexagonal boron nitride primary particles.
  • the binder may be a liquid binder such as alumina sol, or an organic metal compound that is converted into a metal oxide by firing. These binders may be used individually by 1 type, and may mix 2 or more types.
  • the boron nitride particle aggregate in the present embodiment is not particularly limited as long as the above-described configuration is obtained, but is preferably manufactured by the following method. That is, a preferable method for producing an aggregate of boron nitride particles in the present embodiment includes the step (A) of adding a coupling agent to hexagonal boron nitride primary particles and the coupling agent obtained by the step (A). A step (B) of dispersing boron nitride primary particles in a solvent. More preferably, the method further includes a step (C) of separating the boron nitride particle aggregates from the dispersion obtained from the step (B).
  • the hexagonal boron nitride primary particles to which the coupling agent is added are aggregated between the (0001) faces due to surface charges in the dispersion, and the binder phase is coupled between the coupling agents.
  • a boron nitride particle aggregate having the desired configuration of the present embodiment is easily obtained.
  • the hexagonal boron nitride primary particles have a component derived from the coupling agent.
  • the method for adding the coupling agent to the hexagonal boron nitride primary particles is not particularly limited, but the coupling agent stock solution is uniformly dispersed in the filler that is stirred at high speed by a stirrer.
  • a dry method for processing, a wet method in which a filler is immersed in a dilute solution of a coupling agent, and agitation are suitable.
  • the hexagonal boron nitride primary particles to which a coupling agent is added are bonded to form a boron nitride particle aggregate.
  • the stirring temperature is not particularly limited, but special temperature control such as heating and cooling is not necessary.
  • the temperature rises by stirring but is preferably 200 ° C. or lower.
  • the stirring speed is not particularly limited, however, it is usually preferable to stir at 10 to 10,000 rpm, and more preferably 100 to 3000 rpm.
  • the stirring time is preferably 5 minutes to 180 minutes, and more preferably 10 minutes to 60 minutes in view of effective stirring time and productivity.
  • the above-mentioned coupling agent preferably has at least one selected from the group consisting of an aryl group, an amino group, an epoxy group, a cyanate group, a mercapto group, and a halogen from the viewpoint of cohesive strength and robustness.
  • a coupling agent include, but are not limited to, coupling agents such as silane, titanate, zirconate, zirconium aluminate, and aluminate.
  • silane coupling agent is preferable from the viewpoint of cohesive strength.
  • the above-mentioned silane coupling agent preferably has one or more selected from the group consisting of an aryl group, amino group, epoxy group, cyanate group, mercapto group and halogen.
  • an aryl group is more preferable because it has a ⁇ - ⁇ bond and the bond between silane coupling agents becomes stronger.
  • Examples of such a coupling agent include, but are not limited to, phenyltrimethoxysilane, phenyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, p-styryltrimethoxysilane, and naphthyltrimethoxysilane. Naphthyltriethoxysilane, (trimethoxysilyl) anthracene, (triethoxysilyl) anthracene, and the like.
  • silane coupling agent having a crosslinked structure as the above-mentioned coupling agent.
  • silane coupling agents include, but are not limited to, 1,6-bis (trimethoxysilyl) hexane, tris- (trimethoxysilylpropyl) isocyanurate, bis (triethoxysilylpropyl) tetra Examples thereof include sulfide and hexamethyldisilazane.
  • the silane coupling agent having the above-mentioned crosslinked structure can be obtained by reacting between organic functional groups and crosslinking.
  • the combination of organic functional groups in this case is not limited to the following, but examples include amino group-epoxy group, epoxy group-cyanate group, amino group-cyanate group, amino group-sulfonic acid group, amino group-halogen, mercapto.
  • Examples include a combination of organic functional groups of a coupling agent such as a group-cyanate group.
  • the amount of the coupling agent added in the step (A) depends on the surface area of the filler, that is, the surface area of the hexagonal boron nitride primary particles, but is 0.01 to 10 with respect to the hexagonal boron nitride primary particles. It is preferable to add by mass%, and it is more preferable to add 1 to 2 mass%.
  • the stirring method that can be used when adding the coupling agent is not particularly limited, and examples thereof include a vibration mill, a bead mill, a ball mill, a Henschel mixer, a drum mixer, a vibration stirrer, a V-shaped mixer, and the like. Stirring can be performed using a general stirrer.
  • step (B) in the present embodiment the hexagonal boron nitride primary particles added with the coupling agent obtained in step (A) are dispersed in a solvent.
  • the method for dispersing the hexagonal boron nitride primary particles added with the coupling agent in a solvent is not particularly limited. Since the hexagonal boron nitride primary particles to which a coupling agent having an aromatic skeleton is added tend to aggregate (0001) faces, it is preferably ultrasonically dispersed in a solvent.
  • the solvent used at a process (B) Water and / or various organic solvents can be used.
  • a highly polar solvent is preferable.
  • the amount of the solvent used is 0.5 to 20 times the mass of the hexagonal boron nitride primary particles from the viewpoint of reducing the load during separation in the step (C) and from the viewpoint of uniform dispersion in the step (B). It is preferable to do.
  • various surfactants may be added from the viewpoint of adjusting the degree of aggregation of the boron nitride particle aggregate.
  • the surfactant is not particularly limited, and for example, an anionic surfactant, a cationic surfactant, a nonionic surfactant and the like can be used, and these may be used alone. Two or more kinds may be mixed and used.
  • the surfactant concentration in the dispersion obtained from the step (B) is not particularly limited, but can be usually 0.1% by mass or more and 10% by mass or less, and 0.5% by mass or more and 5% by mass or less. It is preferable to do.
  • step (C) boron nitride particle aggregates are separated from the dispersion obtained in step (B).
  • the method for separating the boron nitride particle aggregates from the dispersion obtained from the step (B) is not particularly limited, and for example, stationary separation, filtration, centrifuge, heat treatment and the like can be used.
  • surface oxidation that is temperature-treated under oxygen, steam treatment, surface modification with an organic metal compound or polymer using a carrier or a reaction gas at room temperature or under heating, sol-gel method using boehmite or SiO 2 , etc. can be used It is. These treatments may be used alone or in combination of two or more.
  • typical post-processes such as scrutiny, pulverization, classification, purification, washing, and drying may be performed on the boron nitride particle aggregate in the present embodiment produced as described above, if necessary. If fines are included, they may be removed first.
  • the pulverization of the boron nitride particle agglomerates may be performed using a sieving net, a classification mill, a structured roller crusher or a cutting wheel. For example, dry milling in a ball mill is also possible.
  • the inorganic filler (C) in the present embodiment may contain various known inorganic fillers in addition to the above-described boron nitride particle aggregates.
  • Such an inorganic filler is not particularly limited as long as it has insulating properties.
  • silica such as natural silica, fused silica, amorphous silica, and hollow silica, alumina, aluminum nitride, boron nitride (this embodiment) Except for boron nitride particle aggregate in the form.
  • Boehmite molybdenum oxide, titanium oxide, silicone rubber, silicone composite powder, zinc borate, zinc stannate, clay, kaolin, talc, calcined clay, calcined kaolin, Examples thereof include calcined talc, mica, short glass fibers (fine glass powders such as E glass and D glass), hollow glass, and spherical glass. These may be used individually by 1 type and may use 2 or more types together.
  • silica is preferable from the viewpoint of low thermal expansion
  • alumina, aluminum nitride, and boron nitride are preferable from the viewpoint of high thermal conductivity.
  • the resin composition of the present embodiment is inorganicly filled with a silane coupling agent, a wetting dispersant and the like as components other than the inorganic filler. It can also be used in combination with the material (C).
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances.
  • Specific examples include aminosilane-based silane coupling agents such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane; epoxies such as ⁇ -glycidoxypropyltrimethoxysilane.
  • Silane-based silane coupling agents such as ⁇ -acryloxypropyltrimethoxysilane; N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride, etc.
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints.
  • DISPERBYK-110 “DISPERBYK-111”, “DISPERBYK-118”, “DISPERBYK-180”, “DISPERBYK-161”, “BYK-W996”, “BYK-W9010”, “BigKemi Japan”
  • Wetting and dispersing agents such as “BYK-W903”. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the inorganic filler (C) is not particularly limited, but is preferably 1 to 1600 parts by mass, and 50 to 1500 parts by mass with respect to 100 parts by mass of the resin solid content. More preferred is 80 to 700 parts by mass.
  • content of an inorganic filler (C) is in the said range, it is preferable from a viewpoint of characteristics, such as moisture absorption heat resistance, low thermal expansion, and high thermal conductivity.
  • the content of the boron nitride particle aggregate in the resin composition is more preferably 20 to 200 parts by mass, and even more preferably 30 to 140 parts by mass with respect to 100 parts by mass of the resin solid content. .
  • the content of the boron nitride particle aggregate in the resin composition is 200 parts by mass or less, a better copper foil peel strength tends to be obtained.
  • the content is 20 parts by mass or more, more excellent thermal conductivity is obtained. It tends to be obtained.
  • the content of the boron nitride particle aggregate in the inorganic filler (C) is not particularly limited, but is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the inorganic filler (C).
  • the amount is more preferably 5 to 100 parts by mass, further preferably 10 to 100 parts by mass, further preferably 50 to 100 parts by mass, and further preferably 90 to 100 parts by mass.
  • the orientation tends to be further improved.
  • the resin composition of the present embodiment can contain other components in addition to the components described above as long as the desired characteristics of the present embodiment are not impaired.
  • cyanic acid other than the cyanate ester compound (A) represented by the formula (1) and the cyanate ester compound (A) represented by the formula (2) It is preferable to further include one or more selected from the group consisting of an ester compound, an epoxy resin, an oxetane resin, a phenol resin, a benzoxazine compound, and a compound having a polymerizable unsaturated group.
  • cyanate ester compound other than the cyanate ester compound (A) represented by the formula (1) and the cyanate ester compound (A) represented by the formula (2) are not particularly limited, but as described above.
  • the cyanate ester compound is exemplified.
  • epoxy resin By including an epoxy resin, the resin composition of the present embodiment tends to be more excellent in adhesiveness, moisture absorption heat resistance, flexibility, and the like.
  • the epoxy resin as long as it is a compound having two or more epoxy groups in one molecule, generally known ones can be used, and the kind thereof is not particularly limited. Specific examples thereof include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolak.
  • Type epoxy resin xylene novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, trifunctional Phenol type epoxy resin, tetrafunctional phenol type epoxy resin, triglycidyl isocyanurate, glycidyl ester type epoxy resin, alicyclic epoxy Fatty, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, phenol aralkyl novolak type epoxy resin, naphthol aralkyl novolak type epoxy resin, aralkyl novolak type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclo Pentadiene type epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin,
  • the epoxy resin is preferably at least one selected from the group consisting of a biphenyl aralkyl type epoxy resin, a naphthylene ether type epoxy resin, a polyfunctional phenol type epoxy resin, and a naphthalene type epoxy resin.
  • a biphenyl aralkyl type epoxy resin preferably at least one selected from the group consisting of a biphenyl aralkyl type epoxy resin, a naphthylene ether type epoxy resin, a polyfunctional phenol type epoxy resin, and a naphthalene type epoxy resin.
  • the content of the epoxy resin is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and still more preferably with respect to 100 parts by mass of the resin solid content in the resin composition. Is 3 to 80 parts by mass. When the content of the epoxy resin is within the above range, the adhesiveness and flexibility tend to be excellent.
  • the resin composition of the present embodiment tends to be superior in adhesiveness, flexibility, and the like by including the oxetane resin.
  • the oxetane resin generally known oxetane resins can be used, and the kind thereof is not particularly limited.
  • alkyloxetanes such as oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, and 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3 ′ -Di (trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name, manufactured by Toagosei), OXT-121 (produced by Toagosei) Product name).
  • These oxetane resins can be used alone or in combination of two or more.
  • the content of the oxetane resin is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and still more preferably with respect to 100 parts by mass of the resin solid content in the resin composition. Is 3 to 80 parts by mass. When the content of the oxetane resin is within the above range, the adhesiveness and flexibility tend to be excellent.
  • phenol resin When the resin composition of this embodiment contains a phenol resin, it tends to be more excellent in adhesiveness and flexibility.
  • the phenol resin generally known resins can be used as long as they are phenol resins having two or more hydroxy groups in one molecule, and the kind thereof is not particularly limited. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type.
  • the content of the phenol resin is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and still more preferably with respect to 100 parts by mass of the resin solid content in the resin composition. Is 3 to 80 parts by mass. When the content of the phenol resin is within the above range, the adhesiveness and flexibility tend to be more excellent.
  • the resin composition of the present embodiment tends to be more excellent in flame retardancy, heat resistance, low water absorption, low dielectric constant, and the like.
  • the benzoxazine compound generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule, and the kind thereof is not particularly limited. Specific examples include bisphenol A type benzoxazine BA-BXZ (trade name, manufactured by Konishi Chemical) bisphenol F type benzoxazine BF-BXZ (trade name, manufactured by Konishi Chemical), bisphenol S type benzoxazine BS-BXZ (product manufactured by Konishi Chemical). Name). These benzoxazine compounds can be used alone or in combination.
  • the content of the benzoxazine compound is not particularly limited, but is preferably 0 to 99 parts by weight, more preferably 1 to 90 parts by weight with respect to 100 parts by weight of the resin solid content in the resin composition.
  • the amount is preferably 3 to 80 parts by mass.
  • the resin composition of this embodiment contains a compound having a polymerizable unsaturated group, it tends to be superior in heat resistance, toughness, and the like.
  • the compound having a polymerizable unsaturated group generally known compounds can be used, and the kind thereof is not particularly limited.
  • vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di ( Mono- or polyhydric alcohol (meth) such as (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate Acrylates; Epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy (meth) acrylate; Benzocyclobutene resin; Scan) maleimide resins. These compounds having an unsaturated group can be used alone or in combination.
  • the content of the compound having a polymerizable unsaturated group is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts per 100 parts by mass of the resin solid content in the resin composition. Parts by weight, more preferably 3 to 80 parts by weight. When the content of the polymerizable unsaturated group-containing compound is within the above range, the heat resistance and toughness tend to be superior.
  • the resin composition of the present embodiment further includes a cyanate ester compound, an epoxy resin, an oxetane resin, a polymerization catalyst that catalyzes the polymerization of a compound having a polymerizable unsaturated group, and A curing accelerator for appropriately adjusting the curing rate can be blended.
  • a cyanate ester compound an epoxy resin, an oxetane resin, a polymerization catalyst that catalyzes the polymerization of a compound having a polymerizable unsaturated group
  • a curing accelerator for appropriately adjusting the curing rate can be blended.
  • the polymerization catalyst and / or curing accelerator generally known ones can be used, and the kind thereof is not particularly limited.
  • metal salts such as zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, and iron acetylacetone
  • organometallic salts such as nickel octylate and manganese octylate
  • phenol, xylenol, cresol, resorcin Phenol compounds such as catechol, octylphenol and nonylphenol
  • alcohols such as 1-butanol and 2-ethylhexanol
  • 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole Derivatives such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole Derivatives of these imidazoles such as
  • catalysts such as Amicure PN-23 (Ajinomoto Fine Techno Co., NovaCure HX-3721 (Asahi Kasei Co., Ltd.), Fujicure FX-1000 (Fuji Kasei Kogyo Co., Ltd.), etc. These polymerization catalysts and / or curing accelerators can be used alone or in combination.
  • the contents of the polymerization catalyst and the curing accelerator can be appropriately adjusted in consideration of the degree of curing of the resin, the viscosity of the resin composition, and the like, and are not particularly limited.
  • the resin solid content in the resin composition is 100 masses.
  • the amount is preferably 0.005 to 10 parts by mass with respect to parts.
  • the resin composition of the present embodiment may include other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, curing catalysts, curing accelerators, coloring pigments, if necessary.
  • the flame retardant generally known ones can be used, and the kind thereof is not particularly limited. Specific examples thereof include bromine compounds such as 4,4′-dibromobiphenyl; phosphoric acid esters, melamine phosphates, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine; oxazine ring-containing compounds, silicone compounds, and the like. .
  • the resin composition which concerns on this embodiment can use an organic solvent as needed.
  • the resin composition of this embodiment can be used as an aspect (solution or varnish) in which at least a part, preferably all, of the various resin components described above are dissolved or compatible in an organic solvent.
  • the solvent is not particularly limited as long as it can dissolve or be compatible with at least a part, preferably all of the above-described various resin components.
  • Specific examples thereof include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, and acetic acid.
  • Ester solvents such as isoamyl, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate; polar solvents such as amides such as dimethylacetamide and dimethylformamide; methanol, ethanol, isopropanol, 1-ethoxy-2-propanol, etc. Alcohol solvents; aromatic hydrocarbons such as toluene, xylene, anisole and the like. These solvents can be used alone or in combination.
  • the resin composition of this embodiment can be prepared according to a conventional method. For example, a method in which a resin composition containing the cyanate ester compound (A) and / or maleimide compound (B), the inorganic filler (C), and other optional components described above is obtained is preferable. Specifically, for example, the resin composition of this embodiment can be easily prepared by sequentially blending each component in a solvent and sufficiently stirring.
  • an organic solvent can be used as necessary.
  • the kind of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.
  • a known process for uniformly dissolving or dispersing each component can be performed.
  • a stirring tank provided with a stirrer having an appropriate stirring ability.
  • the above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill or a bead mill for mixing, or a revolving or rotating mixing device.
  • the prepreg of this embodiment includes a base material (D) and the resin composition of this embodiment impregnated or coated on the base material (D).
  • the prepreg of this embodiment can be obtained, for example, by combining the above resin composition with the base material (D), specifically by impregnating or applying the above resin composition to the base material (D). it can.
  • the manufacturing method of the prepreg of this embodiment can be performed according to a conventional method, and is not specifically limited.
  • the substrate (D) is impregnated or coated with the above resin composition, and then semi-cured (B stage) by heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes. And the method of obtaining a prepreg is mentioned.
  • the amount of the resin composition relative to the total amount of prepreg is not particularly limited, but is preferably in the range of 30 to 90% by mass.
  • the substrate (D) used in the prepreg of the present embodiment is not particularly limited, and known materials used for various printed wiring board materials are appropriately selected depending on the intended use and performance. Can be used. Specific examples thereof include glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass and T glass, inorganic fibers other than glass such as quartz, polyparaphenylene terephthalamide (Kevlar), and the like.
  • E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fiber are preferable from the viewpoint of low thermal expansion.
  • These base materials (D) may be used alone or in combination of two or more.
  • a shape of a base material (D) For example, a woven fabric, a nonwoven fabric, roving, a chopped strand mat, a surfacing mat, etc. are mentioned.
  • the weaving method of the woven fabric is not particularly limited, and for example, plain weave, Nanako weave, twill weave and the like are known, and can be appropriately selected from these known ones depending on the intended use and performance. .
  • a glass woven fabric whose surface is treated with a fiber-opening treatment or a silane coupling agent is preferably used.
  • the thickness and mass of the substrate (D) are not particularly limited, those having a thickness of about 0.01 to 0.3 mm are preferably used.
  • the base material (D) is preferably a glass woven fabric having a thickness of 200 ⁇ m or less and a mass of 250 g / m 2 or less, and is made of glass fibers such as E glass, S glass, and T glass.
  • a glass woven fabric is more preferable.
  • the laminated board of the present embodiment is formed by stacking at least one selected from the group consisting of the above prepreg and a resin sheet described later, and at least selected from the group consisting of the above prepreg and resin sheet.
  • cured material of the resin composition contained in 1 type is included.
  • This laminated board can be obtained by, for example, stacking and curing one or more of the above prepregs.
  • the metal foil-clad laminate of the present embodiment has at least one selected from the group consisting of the above prepreg and resin sheet, and at least one type selected from the group consisting of the above prepreg and resin sheet.
  • This metal foil-clad laminate can be obtained, for example, by laminating and curing the above prepreg and metal foil.
  • the metal foil-clad laminate of this embodiment can be obtained, for example, by laminating at least one prepreg as described above and laminating and forming the metal foil on one or both sides. More specifically, by stacking one or a plurality of the above-mentioned prepregs and arranging a metal foil such as copper or aluminum on one side or both sides as desired, by laminating and forming as necessary A metal foil-clad laminate can be produced.
  • the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 1 to 70 ⁇ m, more preferably 1.5 to 35 ⁇ m.
  • a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a metal foil-clad laminate.
  • the temperature is generally 100 to 300 ° C.
  • the pressure is 2 to 100 kgf / cm 2
  • the heating time is generally 0.05 to 5 hours.
  • post-curing can be performed at a temperature of 150 to 300 ° C., if necessary.
  • a multilayer board can be formed by laminating and combining the above prepreg and a separately prepared wiring board for the inner layer.
  • the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by forming a predetermined wiring pattern.
  • the metal foil-clad laminate of this embodiment has a low coefficient of thermal expansion, good formability, metal foil peel strength, and chemical resistance (particularly desmear resistance), and a semiconductor that requires such performance. It can be used particularly effectively as a printed wiring board for a package.
  • the resin sheet of the present embodiment refers to a support and the resin composition layer (laminated sheet) disposed on the surface of the support, and only the resin composition layer from which the support is removed (single layer sheet) ). That is, the resin sheet of this embodiment has at least the resin composition of this embodiment.
  • the resin sheet is used as one means for thinning.
  • a thermosetting resin (including an inorganic filler) used for a prepreg is directly applied to a support such as a metal foil or a film and dried. Can be manufactured.
  • the resin sheet of the present embodiment preferably has a strength ratio (I ⁇ 002> / I ⁇ 100>) of ⁇ 002> X-ray diffraction and ⁇ 100> X-ray diffraction of 30 or less.
  • the intensity ratio between ⁇ 002> X-ray diffraction and ⁇ 100> X-ray diffraction is the X-ray in the thickness direction of the resin composition sheet. That is, the ratio of ⁇ 002> diffraction line intensity and ⁇ 100> diffraction line peak intensity (I ⁇ 002> / I ⁇ ) obtained by irradiation at an angle of 90 ° with respect to the sheet length direction. 100>).
  • the strength ratio of 30 or less suggests that the orientation is sufficiently high, and the thermal conductivity of the resin sheet tends to be higher.
  • the support used in producing the resin sheet of the present embodiment is not particularly limited, and known materials used for various printed wiring board materials can be used. Examples thereof include a polyimide film, a polyamide film, a polyester film, a polyethylene terephthalate (PET) film, a polybutylene terephthalate (PBT) film, a polypropylene (PP) film, a polyethylene (PE) film, an aluminum foil, a copper foil, and a gold foil. Among these, electrolytic copper foil and PET film are preferable.
  • the resin sheet of the present embodiment is particularly preferably a resin sheet obtained by applying the above resin composition to a support and then semi-curing (B-stage).
  • the resin sheet production method of the present embodiment is preferably a method for producing a composite of a B-stage resin and a support.
  • the resin composition is coated on a support such as a copper foil, and then semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes to produce a resin sheet. The method of doing is mentioned.
  • the amount of the resin composition attached to the support is preferably in the range of 1 to 300 ⁇ m in terms of the resin thickness of the resin sheet.
  • the resin sheet of this embodiment can be used as, for example, a build-up material for a printed wiring board.
  • the laminated board of this embodiment can be obtained by, for example, stacking and curing one or more of the above resin sheets.
  • the metal foil tension laminated board of this embodiment can be obtained by laminating
  • the metal foil-clad laminate of the present embodiment can be obtained by, for example, using the above resin sheet and arranging and laminating metal foil on one side or both sides thereof. More specifically, for example, a single sheet of the above-mentioned resin sheet or a plurality of sheets from which the support is peeled off is stacked, and a metal foil such as copper or aluminum is disposed on one or both sides thereof.
  • a metal foil-clad laminate can be produced by laminating as necessary.
  • the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable.
  • the method for forming the metal foil-clad laminate and the molding conditions thereof There are no particular limitations on the method for forming the metal foil-clad laminate and the molding conditions thereof, and general methods and conditions for a laminate for a printed wiring board and a multilayer board can be applied.
  • a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a metal foil-clad laminate.
  • the temperature is generally 100 to 300 ° C.
  • the pressure is 2 to 100 kgf / cm 2
  • the heating time is generally 0.05 to 5 hours.
  • post-curing can be performed at a temperature of 150 to 300 ° C., if necessary.
  • the laminate of this embodiment may be a laminate obtained by laminating and curing one or more resin sheets and prepregs each, and is obtained by laminating and curing a resin sheet, prepreg and metal foil. It may be a metal foil-clad laminate.
  • the printed wiring board of the present embodiment is a printed wiring board including an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition described above.
  • the printed wiring board according to the present embodiment is produced, for example, by forming a conductive layer serving as a circuit on an insulating layer by metal foil or electroless plating.
  • the conductor layer is generally made of copper or aluminum.
  • the insulating layer for printed wiring board on which the conductor layer is formed can be suitably used for a printed wiring board by forming a predetermined wiring pattern.
  • the printed wiring board of the present embodiment effectively warps the semiconductor plastic package by maintaining an excellent elastic modulus even under a reflow temperature during semiconductor mounting by including the above resin composition in the insulating layer. Therefore, it can be used particularly effectively as a printed wiring board for semiconductor packages.
  • the printed wiring board of the present embodiment can be manufactured by the following method, for example.
  • the metal foil-clad laminate such as a copper-clad laminate
  • An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate.
  • the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, then the required number of the prepregs are stacked on the inner layer circuit surface, and a metal foil for the outer layer circuit is stacked on the outer side. Then, it is integrally molded by heating and pressing.
  • a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit.
  • desmear treatment is performed to remove smears, which are resin residues derived from the resin component contained in the cured product layer.
  • a plated metal film is formed on the wall surface of this hole to connect the inner layer circuit and the metal foil for the outer layer circuit, and the outer layer circuit is formed by etching the metal foil for the outer layer circuit to produce a printed wiring board. Is done.
  • the prepreg the base material and the resin composition attached thereto
  • the resin sheet the resin composition layer of the metal foil-clad laminate (the resin composition described above).
  • the layer made of a material constitutes an insulating layer containing the above resin composition.
  • the reaction solution was allowed to stand to separate the organic phase and the aqueous phase.
  • the obtained organic phase was washed with 2 L of 0.1N hydrochloric acid and then washed 6 times with 2000 g of water.
  • the electrical conductivity of the waste water in the sixth washing with water was 20 ⁇ S / cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water.
  • the end faces of the hexagonal boron nitride primary particles are observed more than the (0001) face of the hexagonal boron nitride primary particles.
  • the aggregate A it was found that 80% or more of the boron nitride primary particles were aggregated with the (0001) planes overlapping. That is, the boron nitride particle aggregate A contained 80% or more of boron nitride particles (boron nitride particle aggregate) in which the (0001) faces of the boron nitride primary particles overlapped and aggregated.
  • the number of hexagonal boron nitride primary particles per layer is 1, the longest diameter R in the stacking direction of the boron nitride particle aggregate, and the boron nitride particles
  • R 0.66 ⁇ m
  • r 0.49 ⁇ m
  • R / r 1.35
  • R was specified as shown in FIG.
  • three boron nitride particle aggregates (boron nitride particle aggregates 1 to 3) having a particularly typical columnar shape are selected, and the particle size is measured by the method described above. did.
  • FIG. 3 (a) An SEM observation image is shown in FIG.
  • FIG. 3 (a) it was observed that the (0001) plane of many hexagonal boron nitride primary particles faced the upper surface of the sample. That is, a structure in which (0001) of hexagonal boron nitride primary particles overlapped was not observed.
  • FIG. 3B it was observed that the surface direction of the end face of the hexagonal boron nitride primary particles partially coincided with the thickness direction of the sample. Boron nitride particles observed in these SEM images were approximated to a rectangle as shown in FIG.
  • the longest diameter r ′ in the width direction of the hexagonal boron nitride primary particles is 0.3 to 1.0 ⁇ m, and the longest diameter R ′ in the direction perpendicular to the width direction of the hexagonal boron nitride primary particles is 0.01. It was ⁇ 0.05 ⁇ m. That is, all of the observed hexagonal boron nitride primary particles had R ′ ⁇ 0.3r ′.
  • Synthesis Example 2-2 Production of Boron Nitride Particle Aggregate B Except for using hexagonal boron nitride primary particles having an average particle diameter of 1.0 ⁇ m (“MBN-010T” manufactured by Mitsui Chemicals) instead of UHP-S2. Produced boron nitride particle aggregate B in the same manner as in Synthesis Example 2-1. Next, SEM observation was performed in the same manner as in Synthesis Example 2-1, and it was confirmed that the hexagonal boron nitride primary particles had a laminated structure in which the (0001) faces overlap each other.
  • MBN-010T average particle diameter of 1.0 ⁇ m
  • the boron nitride particle aggregate B contained 20 to 30% of boron nitride particles (boron nitride particle aggregates) aggregated by overlapping (0001) faces of boron nitride primary particles.
  • the MBN-010T before the surface treatment with the coupling agent was similarly observed by SEM. As a result, a laminated structure in which the (0001) faces of the hexagonal boron nitride primary particles overlapped could not be confirmed. .
  • Example 1-1 50 parts by mass of DABPA-CN (allyl equivalent: 179.2 g / eq.) Obtained in Synthesis Example 1 and a novolac maleimide compound (manufactured by Daiwa Kasei Kogyo Co., Ltd., “BMI-2300”, maleimide functional equivalent 186 g / eq.) 50 parts by mass, 15.0 parts by mass of a silane coupling agent (Z6040, manufactured by Toray Dow Corning Co., Ltd.), and a wetting and dispersing agent containing an acid group (BYK-W903, manufactured by Big Chemie Japan Co., Ltd.) 5.0 1. Part by mass is dissolved and mixed in methyl ethyl ketone.
  • a silane coupling agent Z6040, manufactured by Toray Dow Corning Co., Ltd.
  • a wetting and dispersing agent containing an acid group BYK-W903, manufactured by Big Chemie Japan Co., Ltd.
  • This resin varnish was impregnated and coated on a 0.04 mm T-glass woven fabric and dried by heating at 165 ° C. for 5 minutes to produce a 0.1 mmt prepreg.
  • 8 sheets of the obtained prepregs were stacked, and 12 ⁇ m thick electrolytic copper foil (3EC-III, manufactured by Mitsui Mining & Smelting Co., Ltd.) was placed on the upper and lower surfaces of the obtained laminate, and the pressure was 30 kgf / cm 2.
  • a metal foil-clad laminate double-sided copper-clad laminate having a thickness of 0.8 mm was produced by performing vacuum pressing at a temperature of 230 ° C. for 120 minutes to perform lamination molding.
  • Table 2 shows the results of measurement of the thermal conductivity, copper foil peel strength, and moisture absorption heat resistance of the metal foil-clad laminate of Example 1-1.
  • Example 1-2 A composite of metal foil-clad laminate and composite was made in the same manner as in Example 1-1, except that the amount of boron nitride particle aggregate A was changed to 100 parts by mass and the amount of zinc octylate was changed to 0.275 parts by mass. A sheet was prepared. These evaluation results are shown in Table 2.
  • Example 1-1 An attempt was made to produce a metal foil-clad laminate in the same manner as in Example 1-1, except that 140 parts by mass of boron nitride particle aggregate A was changed to 140 parts by mass of UHP-S2. However, molding could not be performed due to generation of voids and the like. On the other hand, Table 2 shows the results of producing and evaluating the composite sheet.
  • Example 1-2 In the same manner as in Example 1-1, except that 140 parts by mass of boron nitride particle aggregate A was changed to 100 parts by mass of UHP-S2, and the amount of zinc octylate was changed to 0.30 parts by mass, A foil-clad laminate and a composite sheet were prepared. These evaluation results are shown in Table 2.
  • Example 2-1 140 parts by mass of boron nitride particle aggregate A was changed to 140 parts by mass of boron nitride particle aggregate B, and the amount of zinc octylate was changed to 0.05 parts by mass in the same manner as in Example 1-1. Thus, a metal foil-clad laminate and a composite sheet were produced. These evaluation results are shown in Table 3.
  • Example 2-2 In the same manner as in Example 2-1, except that the amount of boron nitride particle aggregate B was changed to 110 parts by mass and the amount of zinc octylate was changed to 0.175 parts by mass, A composite sheet was prepared. These evaluation results are shown in Table 3.
  • Example 2-1 A metal foil-clad laminate was prepared in the same manner as in Example 2-1, except that 140 parts by mass of boron nitride particle aggregate B was changed to 140 parts by mass of MBN-010T. However, molding could not be performed due to generation of voids and the like. On the other hand, Table 3 shows the results of producing and evaluating the composite sheet.
  • Example 2-3 In the same manner as in Example 2-1, except that 140 parts by mass of boron nitride particle aggregate B was changed to 110 parts by mass of MBN-010T and the amount of zinc octylate was changed to 0.25 parts by mass, A foil-clad laminate and a composite sheet were prepared. These evaluation results are shown in Table 2.
  • the resin composition of the present invention has industrial applicability as a material for prepregs, metal foil-clad laminates, laminated resin sheets, resin sheets, printed wiring boards and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明に係る樹脂組成物は、シアン酸エステル化合物(A)及び/又はマレイミド化合物(B)と、無機充填材(C)と、を含む樹脂組成物であって、前記無機充填材(C)が、六方晶窒化ホウ素一次粒子を含む窒化ホウ素粒子凝集体であって、当該六方晶窒化ホウ素一次粒子の(0001)面同士が重なってなる窒化ホウ素粒子凝集体を含む。

Description

樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
 本発明は、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板に関する。
 近年、電気機器あるいは電子機器の回路の高速・高集積化、及び発熱性電子部品のプリント配線板への実装密度の増加に伴って、電子機器内部の発熱密度は年々増加している。そのため、電子部品などにて発生する熱を効率よく放散させる高い熱伝導率と電気絶縁性を有する部材が求められている。
 プリント配線板の絶縁層に用いられるエポキシ樹脂などの熱硬化性樹脂自体は熱伝導率が低い。そこで、プリント配線板として熱伝導率を向上させるため、熱硬化性樹脂に熱伝導性に優れた無機充填材を高充填する方法が知られている。しかし、熱硬化性樹脂組成物に無機充填材を高充填すると、熱硬化性樹脂の体積比率が少なくなり成形性が悪化し、樹脂と無機充填材の間にクラックやボイドが発生しやすくなる。そのため吸湿耐熱特性の悪化や弾性率の低下、さらに樹脂と無機充填材の密着性が不充分となり、銅箔ピール強度が低下するという問題がある。このような問題に鑑み、種々の樹脂組成物を用いることが提案されている。
 例えば、特許文献1においては、ナフトールアラルキル型シアン酸エステル樹脂及びエポキシ樹脂を含む樹脂組成物であって、特定量の無機充填材を配合した樹脂組成物が、優れた耐熱性、熱伝導性及び吸水性を発現することが記載されている。
 また、特許文献2においては、シアン酸エステル化合物及びエポキシ樹脂を含む樹脂組成物であって、粒子径が異なる2種類の無機充填材を配合した樹脂組成物が、成形性が良好でありかつ、高い放熱特性、高いガラス転移温度、銅箔ピール強度、及び吸湿耐熱性を発現することが記載されている。
 さらに、特許文献3においては、エポキシ樹脂及び硬化剤を含む樹脂組成物であって、六方晶窒化ホウ素で被覆されたホウ酸塩粒子を無機充填材として配合した樹脂組成物が、高いガラス転移温度、銅箔ピール強度、吸湿耐熱性、難燃性、低熱膨張率及び高い放熱特性を発現することが記載されている。
国際公開第2011/152402号 国際公開第2013/069479号 国際公開第2012/121224号
 特許文献1~3に記載の樹脂組成物により、熱伝導性や銅箔ピール強度等の物性の改善はある程度みられるものの、これらの物性は未だに改善の余地がある。
 本発明は、上記問題点に鑑みてなされたものであり、優れた熱伝導性及び銅箔ピール強度を発現できる樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、シアン酸エステル化合物及び/又はマレイミド化合物を含む樹脂組成物において、窒化ホウ素一次粒子の(0001)面同士が重なって凝集する窒化ホウ素粒子凝集体を無機充填材として配合することにより、上記課題が達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[1]
 シアン酸エステル化合物(A)及び/又はマレイミド化合物(B)と、
 無機充填材(C)と、
 を含む樹脂組成物であって、
 前記無機充填材(C)が、六方晶窒化ホウ素一次粒子を含む窒化ホウ素粒子凝集体であって、当該六方晶窒化ホウ素一次粒子の(0001)面同士が重なってなる窒化ホウ素粒子凝集体を含む、樹脂組成物。
[2]
 前記窒化ホウ素粒子凝集体が、柱状の形状を有する、[1]に記載の樹脂組成物。
[3]
 前記窒化ホウ素粒子凝集体の積層方向の最長径が、前記窒化ホウ素粒子凝集体の幅方向の最長径より大きい、[1]又は[2]に記載の樹脂組成物。
[4]
 前記六方晶窒化ホウ素一次粒子が、カップリング剤に由来する成分を有する、[1]~[3]のいずれかに記載の樹脂組成物。
[5]
 前記無機充填材(C)の含有量が、樹脂固形分100質量部に対して、1~1600質量部である、[1]~[4]のいずれかに記載の樹脂組成物。
[6]
 前記シアン酸エステル化合物(A)が、下記一般式(1)で表されるシアン酸エステル化合物及び式(2)で表されるシアン酸エステル化合物の少なくとも一方を含む、[1]~[5]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは水素原子、又はメチル基を表し、nは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
[7]
 前記シアン酸エステル化合物(A)の含有量が、樹脂固形分100質量部に対して、1~90質量部である、[1]~[6]のいずれかに記載の樹脂組成物。
[8]
 前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記一般式(3)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種を含む、[1]~[7]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
(一般式(3)中、Rは、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を表す。)
[9]
 前記マレイミド化合物(B)の含有量が、樹脂固形分100質量部に対して、1~90質量部である、[1]~[8]のいずれかに記載の樹脂組成物。
[10]
 式(1)で表されるシアン酸エステル化合物(A)及び式(2)で表されるシアン酸エステル化合物(A)以外のシアン酸エステル化合物、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、ベンゾオキサジン化合物、並びに重合可能な不飽和基を有する化合物からなる群より選択される1種以上をさらに含む、[6]~[9]のいずれかに記載の樹脂組成物。
[11]
 基材(D)と、
 前記基材(D)に含浸又は塗布された、[1]~[10]のいずれかに記載の樹脂組成物と、
 を備える、プリプレグ。
[12]
 [11]に記載のプリプレグと、
 前記プリプレグの片面又は両面に配された金属箔と、
 を有する金属箔張積層板であって、
 前記プリプレグに含まれる樹脂組成物の硬化物を含む、金属箔張積層板。
[13]
 [1]~[10]のいずれかに記載の樹脂組成物を有する、樹脂シート。
[14]
 絶縁層と、
 前記絶縁層の表面に形成された導体層と、
 を含むプリント配線板であって、
 前記絶縁層が、[1]~[10]のいずれかに記載の樹脂組成物を含む、プリント配線板。
 本発明によれば、優れた熱伝導性及び銅箔ピール強度を発現できる樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板を提供することができる。
図1は、本実施形態におけるR及びrを説明するための説明図である。 図2(a)は、実施例1に係る窒化ホウ素粒子凝集体の倍率120000倍のSEM像である。図2(b)は、実施例1に係る窒化ホウ素粒子凝集体の倍率50000倍のSEM像である。 図3(a)は、六方晶窒化ホウ素一次粒子が凝集していない、すなわち、従来の六方晶窒化ホウ素一次粒子の倍率25000倍のSEM像である。図3(b)は、六方晶窒化ホウ素一次粒子が凝集していない六方晶窒化ホウ素一次粒子のSEM像において、端面側が観測された部分を示すものである。 図4は、図2(a)において観察された窒化ホウ素粒子凝集体のスケールを示すための図である。 図5は、図2(b)において観察された3つの窒化ホウ素粒子凝集体のスケールを示すための図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 本実施形態の樹脂組成物は、シアン酸エステル化合物(A)及び/又はマレイミド化合物(B)と、無機充填材(C)と、を含む樹脂組成物であって、前記無機充填材(C)が、六方晶窒化ホウ素一次粒子を含む窒化ホウ素粒子凝集体であって、当該六方晶窒化ホウ素一次粒子の(0001)面同士が重なってなる窒化ホウ素粒子凝集体を含む。このように構成されているため、本実施形態の樹脂組成物は、優れた熱伝導性及び銅箔ピール強度を発現できる。以下、本実施形態の樹脂組成物を構成する各成分について説明する。
[シアン酸エステル化合物(A)]
 本実施形態の樹脂組成物において、シアン酸エステル化合物(A)は任意成分であり、含まれていなくてもよいが、耐デスミア性及び高熱時弾性率の観点から、本実施形態の樹脂組成物がシアン酸エステル化合物(A)を含むことが好ましい。シアン酸エステル化合物(A)の種類としては、特に限定されないが、例えば、下記一般式(A)で表されるノボラック型シアン酸エステル、下記一般式(1)で表されるシアン酸エステル化合物(ナフトールアラルキル型シアン酸エステル)、式(2)で表されるシアン酸エステル化合物(ジアリルビスフェノールA型シアネート)、ビフェニルアラルキル型シアン酸エステル、ビス(3,3-ジメチル-4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、2、2-ビス(4-シアナトフェニル)プロパン等が挙げられる。上記したシアン酸エステル化合物(A)は、1種単独で用いてもよいし、2種以上を併用してもよい。本実施形態においては、シアン酸エステル化合物(A)が一般式(1)で表されるシアン酸エステル化合物及び式(2)で表されるシアン酸エステル化合物の少なくとも一方を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000007
(一般式(A)中、Rは、水素原子又はメチル基を表し、nは1以上の整数を表す。上記Rは水素原子であることが好ましい。また、上記nは10以下の整数であることが好ましく、より好ましくは7以下の整数である。)
Figure JPOXMLDOC01-appb-C000008
(一般式(1)中、Rは、水素原子又はメチル基を表し、nは1以上の整数を表す。上記Rは水素原子であることが好ましい。また、上記nは10以下の整数であることが好ましく、より好ましくは6以下の整数である。)
Figure JPOXMLDOC01-appb-C000009
 本実施形態の樹脂組成物において、シアン酸エステル化合物(A)の含有量は、樹脂固形分100質量部に対して、1~90質量部とすることが好ましく、5~85質量部とすることがより好ましく、10~80質量部とすることが更に好ましい。シアン酸エステル化合物の含有量を上記範囲とすることで、無機充填材の充填時においても優れた成形性を維持できるとともに、硬化性、熱時弾性率、耐デスミア性等が一層向上する傾向にある。
 なお、本明細書において、「樹脂固形分」とは、特に断りのない限り、樹脂組成物における、溶剤、及び無機充填材(C)を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における溶剤、及び無機充填材(C)を除いた成分の合計が100質量部であることをいうものとする。
[マレイミド化合物(B)]
 本実施形態の樹脂組成物において、マレイミド化合物(B)は任意成分であり、含まれていなくてもよいが、耐熱性の観点から、本実施形態の樹脂組成物がマレイミド化合物(B)を含むことが好ましい。マレイミド化合物は、分子中に1個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その好適例としては、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ポリテトラメチレンオキシド-ビス(4-マレイミドベンゾエート)、下記一般式(3)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマー等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。本実施形態においては、マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(3)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。その場合、得られる硬化物の熱膨張率がより低下し、耐熱性、ガラス転移温度がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000010
(一般式(3)中、Rは、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を表す。)
 一般式(3)中、Rは、好ましくは水素原子を示す。また、nは、好ましくは10以下であり、より好ましくは7以下である。
 マレイミド化合物(B)の含有量は、樹脂固形分100質量部に対して、好ましくは1~90質量部質量部であり、より好ましくは5~85質量部であり、さらに好ましくは10~80質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。
 本実施形態の樹脂組成物は、シアン酸エステル化合物(A)及びマレイミド化合物(B)の少なくとも一方を含むものであり、耐熱性、耐燃焼性、機械物性、長期耐熱性、耐薬品性及び電気絶縁性の観点から、シアン酸エステル化合物(A)及びマレイミド化合物(B)の双方を含むことが好ましい。
[無機充填材(C)]
 無機充填材(C)は、六方晶窒化ホウ素一次粒子を含む窒化ホウ素粒子凝集体を含む。この窒化ホウ素粒子凝集体は、六方晶窒化ホウ素一次粒子の(0001)面同士が重なってなる。本実施形態の樹脂組成物中において、窒化ホウ素粒子凝集体が含まれていること、及び当該窒化ホウ素粒子凝集体が後述する好ましい形状を有していることの確認方法としては、例えば、後述する実施例に記載の方法が挙げられる。すなわち、本実施形態の樹脂組成物をSEMで観察することによって容易に確認することができる。なお、樹脂組成物として調製する前の窒化ホウ素粒子凝集体についても、上記と同様にその構成を確認することができる。本実施形態における窒化ホウ素粒子凝集体は、後述する観点から、六方晶窒化ホウ素一次粒子の(0001)面同士が重なった積層構造を維持しやすいということができ、樹脂組成物として調製する段階、当該樹脂組成物を成形する段階等の各段階においてもその構造が維持される傾向にある。すなわち、無機充填材(C)の原料としての窒化ホウ素粒子凝集体が本実施形態の所望の構成を満たすことが確認できていれば、本実施形態の樹脂組成物が当該窒化ホウ素粒子凝集体を含むものということができる。
(窒化ホウ素粒子凝集体)
 本実施形態における窒化ホウ素粒子凝集体を構成する六方晶窒化ホウ素一次粒子の粒子形状としては、特に限定されないが、例えば、鱗片状、偏平状、顆粒状、球状、繊維状、ウィスカー状などが挙げられ、中でも鱗片状が好ましい。
 上記六方晶窒化ホウ素一次粒子の平均粒径としては、特に限定されないが、メディアン径として0.1~50μmが好ましく、0.1~5μmがより好ましく、0.1~1μmが特に好ましい。平均粒径が上記範囲内であることにより、六方晶窒化ホウ素一次粒子の(0001)面同士が重なって凝集しやすく、その結果、樹脂シートの熱伝導性が向上する傾向にある。
 ここで、六方晶窒化ホウ素一次粒子の平均粒径は、例えば、湿式レーザー回折・散乱法により測定することができる。
 六方晶窒化ホウ素一次粒子の(0001)面同士が重なって凝集する窒化ホウ素粒子凝集体の凝集形態としては、特に限定されるものではないが、自然凝集、凝集剤による凝集、物理的凝集などが挙げられる。自然凝集としては、以下に限定されないが、例えば、ファンデルワールス力、静電気力、吸着水分等に起因する凝集が挙げられる。凝集剤による凝集としては、以下に限定されないが、例えば、カップリング剤、無機塩、高分子物質等の凝集剤による凝集が挙げられる。例えば、カップリング剤を凝集剤として使用する場合、六方晶窒化ホウ素一次粒子の表面状態を表面エネルギーが高い状態、即ち凝集しやすい状態に変化させて凝集するのが好ましい。物理的凝集としては、混合造粒、押出造粒、噴霧乾燥などの操作により凝集する方法が挙げられる。中でも、凝集力の観点から、カップリング剤による凝集が好ましい。
 本明細書において、「窒化ホウ素粒子凝集体」とは、六方晶窒化ホウ素一次粒子を含む充填材が凝集して形成された二次粒子の集合単位であり、種々の形状をとりうる。すなわち、窒化ホウ素粒子凝集体の形状は、六方晶窒化ホウ素一次粒子の(0001)面同士が重なって凝集していれば特に限定されることなく、例えば、柱状、偏平状、顆粒状、塊状、球状、繊維状等のいずれであってもよい。
 本実施形態において、窒化ホウ素粒子凝集体が柱状の形状を有する場合、樹脂シートとした際、六方晶窒化ホウ素一次粒子のa軸方向が当該樹脂シートの厚み方向と一致する可能性(以下、単に「配向性」ともいう。)が高まる傾向にあるため好ましい。本明細書において、「柱状」とは、六方晶窒化ホウ素一次粒子の凝集態様に由来する形状を表すものであり、角柱状、円柱状、棒状等を含む形状を意味し、球状とは相違する。さらに、柱状は、鉛直方向に真っ直ぐに伸びるもの、傾斜状に伸びるもの、湾曲しながら伸びるもの、枝状に分岐して伸びるもの等も含む。窒化ホウ素粒子凝集体が柱状を有することは、走査型電子顕微鏡(SEM)観察により、容易に確認することができる。
 本実施形態における窒化ホウ素粒子凝集体が柱状の形状を有することの確認方法の典型例としては、以下に限定されないが、窒化ホウ素粒子凝集体の積層方向の最長径Rと、窒化ホウ素粒子凝集体の幅方向の最長径rとをSEM観察により特定し、これらの大小関係を確認する方法等が挙げられる。なお、本実施形態においては、配向性がより高まる観点から、窒化ホウ素粒子凝集体が、R>0.3rを満たすことが好ましい。また、本実施形態において、配向性がさらに高まる観点から、R>rを満たすことがより好ましい。ここでいう「積層方向」とは、すなわち、六方晶窒化ホウ素一次粒子のc軸方向に略平行となる方向である。また、「幅方向」とは、すなわち、積層方向に対して略垂直となる方向である。換言すると、幅方向は、少なくとも1つの六方晶窒化ホウ素一次粒子における(0001)面の面方向(a軸方向)に略平行となる方向である。本実施形態において、上記幅方向の最長径は、例えば、窒化ホウ素粒子凝集体が鉛直方向に真っ直ぐに伸びた柱状である場合、六方晶窒化ホウ素一次粒子の(0001)面の面方向の最長径とよく一致する傾向にあるが、このような関係に限定されず、幅方向の最長径は六方晶窒化ホウ素一次粒子の(0001)面の面方向の最長径よりも大きい値をとりうる。ここで、略平行とは、平行方向から±10°以内の状態をいうものとし、略垂直とは、垂直方向から±10°以内の状態をいうものとする。
 R及びrについて、図1を参照して具体的に説明する。図1(a)に例示された六方晶窒化ホウ素一次粒子は、その典型例として、二次元的に長方形として示したものであり、長辺側(r)が(0001)面に対応しており、短辺側(R)が端面に対応している。図1(b)に例示された窒化ホウ素粒子凝集体は、長方形状の六方晶窒化ホウ素一次粒子が、その長辺側、すなわち、(0001)面側同士を重ねるように凝集したものである。この凝集体の短辺側がr(すなわち、窒化ホウ素粒子凝集体の幅方向の最長径)に対応しており、長辺側がR(すなわち、窒化ホウ素粒子凝集体の積層方向の最長径)に対応している。
 本実施形態における窒化ホウ素粒子凝集体は、上述のとおり、六方晶窒化ホウ素一次粒子が積層した構造を有するものであり、その積層構造については特に限定されないが、1層あたりの六方晶窒化ホウ素一次粒子の粒子数が2以下であることが好ましく、より好ましくは1である。このような積層構造を有する場合、配向性が高まる傾向にあるため好ましい。
 上記のとおり、窒化ホウ素粒子凝集体の積層方向の最長径は、特に限定されず、また、窒化ホウ素粒子凝集体の幅方向の最長径も特に限定されない。本実施形態において、六方晶窒化ホウ素一次粒子の平均粒径をA(μm)とするとき、R=0.3×A~10×A(μm)かつr=0.3×A~3×A(μm)を満たすことが好ましい。具体的には、六方晶窒化ホウ素一次粒子の平均粒径が0.5μmの場合を例にすると、R=0.15~5μm程度の値をとることが典型的であり、r=0.15~1.5μm程度の値をとることが典型的である。上記最長径の測定方法の具体例としては、以下に限定されないが、撮影されたSEM画像において、窒化ホウ素粒子凝集体が柱状であれば、その形状を長方形に近似し、かかる長方形の長辺及び短辺の長さを計測する等が挙げられる。
 なお、本実施形態において、「六方晶窒化ホウ素一次粒子の(0001)面同士が重なって」いる状態は、(0001)面同士が完全に重なっている態様に限定されるものではなく、幅方向にずれて重なっている態様も包含される。
 また、窒化ホウ素粒子凝集体の幅方向の最長径rは、六方晶窒化ホウ素一次粒子の粒径や凝集度合いなどにも依存する傾向があり、特に限定されるものではないが、樹脂シートなどの成形物の厚さT未満である(r<T)ことが好ましく、より好ましくはr<0.9×T、さらに好ましくはr<0.5×Tである。上記範囲を満たす場合、成形物表面の凹凸に起因する平滑性の低下を防止できる傾向にあり、また、より薄い樹脂シートの原料に用いることができる観点から、rはTよりも十分に小さいことが好ましい。
 本実施形態における窒化ホウ素粒子凝集体は、六方晶窒化ホウ素一次粒子以外の充填材を含んでいてもよく、そのような充填材としては、以下に限定されないが、例えば、窒化アルミニウム、酸化アルミニウム、酸化亜鉛、炭化ケイ素、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの金属や合金、炭素、グラファイト、ダイヤモンドからなる球状、粉状、繊維状、針状、鱗片状、ウィスカー状などの充填材が挙げられる。これらは単独で含まれていてもよいし、複数種類を含んでいてもよい。
 本実施形態における窒化ホウ素粒子凝集体は、窒化ホウ素粒子凝集体の頑強性を上げる観点から、バインダーを含んでもよい。ここでいう「頑強性」とは、本実施形態における六方晶ホウ素一次粒子同士が結合する際の結合の強さを示す性質である。バインダーは、元来、一次粒子同士間を強固に結びつけ、凝集体の形状を安定化するために作用する。
 このようなバインダーとしては金属酸化物が好ましく、具体的には、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化カルシウム、酸化珪素、酸化ホウ素、酸化セリウム、酸化ジルコニウム、酸化チタンなどが好ましく用いられる。これらの中でも、酸化物としての熱伝導性と耐熱性、六方晶窒化ホウ素一次粒子同士を結合する結合力などの観点から、酸化アルミニウム、酸化イットリウムが好適である。なお、バインダーはアルミナゾルのような液状バインダーであってもよく、有機金属化合物のように焼成により金属酸化物に変換されるものを用いてもよい。これらのバインダーは、1種を単独で用いてもよく、2種以上を混合してもよい。
(窒化ホウ素粒子凝集体の製造方法)
 本実施形態における窒化ホウ素粒子凝集体は、上述した構成が得られる限り特に限定されないが、好ましくは、次の方法により製造される。すなわち、本実施形態において好ましい窒化ホウ素粒子凝集体の製造方法は、六方晶窒化ホウ素一次粒子にカップリング剤を付加する工程(A)と、工程(A)により得られたカップリング剤が付加した窒化ホウ素一次粒子を、溶媒中で分散する工程(B)と、を含むものである。また、工程(B)より得られた分散液から窒化ホウ素粒子凝集体を分離する工程(C)をさらに含むことがより好ましい。
 工程(A)及び工程(B)を含む場合、カップリング剤を付加した六方晶窒化ホウ素一次粒子が、分散液中で表面電荷によって(0001)面同士が凝集し、カップリング剤間で結合相を形成する傾向にあり、本実施形態の所望とする構成を有する窒化ホウ素粒子凝集体が得られやすくなるため好ましい。上記のとおり、本実施形態においては、六方晶窒化ホウ素一次粒子が、カップリング剤に由来する成分を有することが好ましい。
 本実施形態における工程(A)において、六方晶窒化ホウ素一次粒子にカップリング剤を付加する方法は特に限定されないが、攪拌機によって高速攪拌している充填材にカップリング剤原液を均一に分散させて処理する乾式法、カップリング剤希薄溶液に充填材を浸漬し攪拌する湿式法等が好適である。
 工程(A)の段階において、カップリング剤付加した六方晶窒化ホウ素一次粒子間で結合し、窒化ホウ素粒子凝集体が作製される場合もある。撹拌温度は特に限定されないが、加熱や冷却などの特別な温度コントロールは必要ない。通常、撹拌により温度が上昇するが、200℃以下であることが好ましい。撹拌速度も特に限定されないが、通常10~10000rpmで撹拌することが好ましく、より好ましくは100~3000rpmで撹拌される。撹拌時間は5分~180分が好ましく、有効な撹拌時間と生産性から10分~60分がより好ましい。
 上述のカップリング剤は、凝集力及び頑強性の観点から、アリール基、アミノ基、エポキシ基、シアネート基、メルカプト基及びハロゲンからなる群より選ばれるいずれか一種以上を有することが好ましい。このようなカップリング剤としては、以下に限定されないが、例えば、シラン系、チタネート系、ジルコネート系、アルミン酸ジルコニウム系、アルミネート系等のカップリング剤が挙げられる。中でもシラン系カップリング剤(以下、「シランカップリング剤」ともいう。)が凝集力の観点から好ましい。
 上述のシランカップリング剤としては、アリール基、アミノ基、エポキシ基、シアネート基、メルカプト基及びハロゲンからなる群より選ばれるいずれか一種以上を有することが好ましい。中でもπ-π結合を有し、シランカップリング剤間の結合がより強くなることから、アリール基を有することがより好ましい。このようなカップリング剤としては、以下に限定されないが、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、(トリメトキシシリル)アントラセン、(トリエトキシシリル)アントラセン等が挙げられる。
 また、上述のカップリング剤として、架橋構造を有するシランカップリング剤を用いることも好ましい。このようなシランカップリング剤の具体例としては、以下に限定されないが、1,6-ビス(トリメトキシシリル)ヘキサン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、ビス(トリエトキシシリルプロピル)テトラスルフィド、ヘキサメチルジシラザン等が挙げられる。
 また、上述の架橋構造を有するシランカップリング剤は、有機官能基間で反応させ、架橋することによっても得られる。この場合の有機官能基の組み合わせとしては、以下に限定されないが、例えば、アミノ基-エポキシ基、エポキシ基-シアネート基、アミノ基-シアネート基、アミノ基-スルホン酸基、アミノ基-ハロゲン、メルカプト基-シアネート基等のカップリング剤の有機官能基の組み合わせが挙げられる。
 上述した各種のカップリング剤は1種単独で用いてもよいし、2種以上を組み合わせても用いてもよい。
 工程(A)における上記カップリング剤の添加量としては、充填材の表面積、すなわち、六方晶窒化ホウ素一次粒子の表面積にもよるが、六方晶窒化ホウ素一次粒子に対して、0.01~10質量%添加することが好ましく、1~2質量%添加することがより好ましい。
 上記した製造方法において、前記カップリング剤を付加する際に使用できる攪拌方法としては、特に限定されず、例えば、振動ミル、ビーズミル、ボールミル、ヘンシェルミキサー、ドラムミキサー、振動攪拌機、V字混合機等の一般的な攪拌機を使用して撹拌を行うことができる。
 本実施形態における工程(B)において、工程(A)より得られたカップリング剤が付加した六方晶窒化ホウ素一次粒子を溶媒中で分散する。カップリング剤が付加した六方晶窒化ホウ素一次粒子を溶媒中で分散する方法は特に限定されない。芳香族骨格を有するカップリング剤を付加した六方晶窒化ホウ素一次粒子は、(0001)面同士が凝集しやすい傾向があることから、溶媒中で超音波分散するのが好ましい。
 工程(B)で用いられる溶媒については特に限定されず、水及び/又は各種の有機溶媒を用いることができる。芳香環骨格を有する、すなわち、アリール基を有するカップリング剤を付加した六方晶窒化ホウ素一次粒子を用いる場合、極性が高い溶媒が好ましい。
 溶媒の使用量は、工程(C)における分離時の負荷を低減する観点、及び工程(B)において均一に分散させる観点から、六方晶窒化ホウ素一次粒子に対して0.5~20質量倍とすることが好ましい。
 工程(B)において、窒化ホウ素粒子凝集体の凝集度を調整する観点から、種々の界面活性剤を添加してもよい。界面活性剤としては、特に限定されず、例えば、アニオン系界面活性剤、カチオン系界面活性剤、非イオン性界面活性剤等を用いることができ、これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。工程(B)より得られる分散液中の界面活性剤濃度は、特に限定されないが、通常0.1質量%以上10質量%以下とすることができ、0.5質量%以上5質量%以下とすることが好ましい。
 工程(C)において、工程(B)より得られた分散液から窒化ホウ素粒子凝集体を分離する。工程(B)より得られた分散液から窒化ホウ素粒子凝集体を分離する方法は特に限定されず、例えば、静置分離、濾過、遠心分離機、加熱処理等が使用可能である。
 これらより得られた窒化ホウ素粒子凝集体に対して、更に別の処理を行ってもよい。例えば、酸素下で温度処理する表面酸化、水蒸気処理、室温で又は加温下においてキャリア又は反応ガスを用いた有機金属化合物やポリマーによる表面変性、ベーマイト又はSiOを用いたゾルゲル法等が利用可能である。これらの処理は、1種を単独で用いてもよく、2種以上を混合してもよい。
 さらに、以上によって作製された本実施形態における窒化ホウ素粒子凝集体に対し、必要に応じて精査、粉砕、分級、精製、洗浄及び乾燥などの典型的な後工程を実行してもよい。細粒分が含まれている場合は、それを最初に取り除いてもよい。ふるい分けに代わる方法として、窒化ホウ素粒子凝集体の前記粉砕は、ふるい網、分類ミル、構造化ローラークラッシャー又は切削ホイールを用いて行ってもよい。例えば、ボールミル内での乾燥ミリング処理することも可能である。
 本実施形態における無機充填材(C)は、上述した窒化ホウ素粒子凝集体の他に、種々公知の無機充填材を含んでいてもよい。そのような無機充填材としては、絶縁性を有するものであれば特に限定されず、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、アルミナ、窒化アルミニウム、窒化ホウ素(本実施形態における窒化ホウ素粒子凝集体を除く。以下同様。)、ベーマイト、酸化モリブデン、酸化チタン、シリコーンゴム、シリコーン複合パウダー、ホウ酸亜鉛、錫酸亜鉛、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラス等のガラス微粉末類)、中空ガラス、球状ガラス等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 上記の中でも、シリカ、アルミナ、窒化アルミニウム、及び窒化ホウ素からなる群より選ばれる、少なくとも1種を含むことが好ましい。とりわけ、低熱膨張の観点からシリカが好ましく、高熱伝導性の観点からアルミナや窒化アルミニウム、窒化ホウ素が好ましい。
 本実施形態の樹脂組成物には、微粒子の分散性、樹脂と微粒子やガラスクロスの接着強度を向上させるために、無機充填材以外の成分として、シランカップリング剤や湿潤分散剤等を無機充填材(C)と併用することも可能である。
 シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系シランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系シランカップリング剤;γ-アクリロキシプロピルトリメトキシシラン等のアクリルシラン系シランカップリング剤;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系シランカップリング剤;フェニルシラン系シランカップリング剤;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルメチルジメトキシシラン、p-スチリルメチルジエトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩等のスチリルシラン系カップリング剤等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。例えばビッグケミー・ジャパン社製の「DISPERBYK-110」、「DISPERBYK-111」、「DISPERBYK-118」、「DISPERBYK-180」、「DISPERBYK-161」、「BYK-W996」、「BYK-W9010」、「BYK-W903」等の湿潤分散剤が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の樹脂組成物において、無機充填材(C)の含有量は特に限定されないが、樹脂固形分100質量部に対して、1~1600質量部であることが好ましく、50~1500質量部であることがより好ましく、80~700質量部であることが更に好ましい。無機充填材(C)の含有量が上記範囲内である場合、吸湿耐熱性、低熱膨張、高熱伝導といった特性の観点から好ましい。
 さらに、樹脂組成物における窒化ホウ素粒子凝集体の含有量は、樹脂固形分100質量部に対して、20~200質量部であることが一層好ましく、30~140質量部であることがより一層好ましい。樹脂組成物における窒化ホウ素粒子凝集体の含有量が200質量部以下である場合、より良好な銅箔ピール強度が得られる傾向にあり、20質量部以上とする場合、より優れた熱伝導性が得られる傾向にある。
 本実施形態において、無機充填材(C)中における窒化ホウ素粒子凝集体の含有量は特に限定されないが、無機充填材(C)100質量部に対して、1~100質量部であることが好ましく、5~100質量部であることがより好ましく、10~100質量部であることが更に好ましく、50~100質量部であることが更に好ましく、90~100質量部であることが更に好ましい。窒化ホウ素粒子凝集体の含有量が上記範囲内である場合、配向性がより向上する傾向にある。
[他の成分]
 本実施形態の樹脂組成物は、本実施形態の所望の特性が損なわれない範囲において、上記した成分に加え、他の成分を含むことができる。本実施形態においては、諸物性をより向上させる観点から、式(1)で表されるシアン酸エステル化合物(A)及び式(2)で表されるシアン酸エステル化合物(A)以外のシアン酸エステル化合物、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、ベンゾオキサジン化合物、並びに重合可能な不飽和基を有する化合物からなる群より選択される1種以上をさらに含むことが好ましい。式(1)で表されるシアン酸エステル化合物(A)及び式(2)で表されるシアン酸エステル化合物(A)以外のシアン酸エステル化合物の具体例は、特に限定されないが、前述したとおりのシアン酸エステル化合物が例示される。
(エポキシ樹脂)
 本実施形態の樹脂組成物は、エポキシ樹脂を含むことにより、接着性、吸湿耐熱性、可撓性等により優れる傾向にある。エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する化合物であれば、一般に公知のものを用いることができ、その種類は特に限定されない。その具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、或いはこれらのハロゲン化物等が挙げられる。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
 このなかでも、エポキシ樹脂が、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂からなる群より選択される一種以上であることが好ましい。このようなエポキシ樹脂を含むことにより、得られる硬化物の難燃性及び耐熱性がより向上する傾向にある。
 エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。エポキシ樹脂の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
(オキセタン樹脂)
 本実施形態の樹脂組成物は、オキセタン樹脂を含むことにより、接着性や可撓性等により優れる傾向にある。オキセタン樹脂としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製商品名)、OXT-121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は、1種又は2種以上を組み合わせて用いることができる。
 オキセタン樹脂の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。オキセタン樹脂の含有量が上記範囲内であることにより、密着性や可撓性等により優れる傾向にある。
(フェノール樹脂)
 本実施形態の樹脂組成物がフェノール樹脂を含むことにより、接着性や可撓性等により優れる傾向にある。フェノール樹脂としては、1分子中に2個以上のヒドロキシ基を有するフェノール樹脂であれば、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
 フェノール樹脂の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。フェノール樹脂の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
(ベンゾオキサジン化合物)
 本実施形態の樹脂組成物は、ベンゾオキサジン化合物を含むことにより、難燃性、耐熱性、低吸水性、低誘電等により優れる傾向にある。ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができ、その種類は特に限定されない。その具体例としては、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物は、1種又は2種以上混合して用いることができる。
 ベンゾオキサジン化合物の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。ベンゾオキサジン化合物の含有量が上記範囲内であることにより、耐熱性等により優れる傾向にある。
(重合可能な不飽和基を有する化合物)
 本実施形態の樹脂組成物が重合可能な不飽和基を有する化合物を含むことにより、耐熱性や靱性等により優れる傾向にある。重合可能な不飽和基を有する化合物としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂;(ビス)マレイミド樹脂等が挙げられる。これらの不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。
 重合可能な不飽和基を有する化合物の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。重合可能な不飽和基を有する化合物の含有量が上記範囲内であることにより、耐熱性や靱性等により優れる傾向にある。
(重合触媒及び硬化促進剤)
 本実施形態の樹脂組成物には、上記した化合物ないし樹脂に加えて、更に、シアン酸エステル化合物、エポキシ樹脂、オキセタン樹脂、重合可能な不飽和基を有する化合物の重合を触媒する重合触媒、及び/又は硬化速度を適宜調節するための硬化促進剤を配合することができる。重合触媒及び/又は硬化促進剤としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄等の金属塩;オクチル酸ニッケル、オクチル酸マンガン等の有機金属塩類;フェノール、キシレノール、クレゾール、レゾルシン、カテコール、オクチルフェノール、ノニルフェノール等のフェノール化合物;1-ブタノール、2-エチルヘキサノール等のアルコール類;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体;これらのイミダゾール類のカルボン酸もしくはその酸無水類の付加体等の誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物;ホスフィン系化合物、ホスフィンオキサイド系化合物、ホスホニウム系化合物、ダイホスフィン系化合物等のリン化合物;エポキシ-イミダゾールアダクト系化合物、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等の過酸化物;及びアゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。これら触媒は市販のものを使用してもよく、例えば、アミキュアPN?23(味の素ファインテクノ社製、ノバキュアHX?3721(旭化成社製)、フジキュアFX?1000(富士化成工業社製)等が挙げられる。これらの重合触媒及び/又は硬化促進剤は、1種又は2種以上混合して用いることができる。
 なお、重合触媒及び硬化促進剤の含有量は、樹脂の硬化度や樹脂組成物の粘度等を考慮して適宜調整でき、特に限定されないが、通常は、樹脂組成物中の樹脂固形分100質量部に対し、好ましくは0.005~10質量部である。
[規則91に基づく訂正 11.05.2018] 
(その他の添加剤)
 更に、本実施形態の樹脂組成物は、必要に応じて、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、硬化触媒、硬化促進剤、着色顔料、消泡剤、表面調整剤、難燃剤、溶媒、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、流動調整剤、分散剤、レベリング剤、光沢剤、重合禁止剤、シランカップリング剤等の公知の添加剤を含有していてもよい。また、必要に応じて、溶媒を含有していてもよい。これら任意の添加剤は、1種又は2種以上混合して使用することができる。
 難燃剤としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては4,4’-ジブロモビフェニル等の臭素化合物;リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂、メラミンやベンゾグアナミンなどの窒素化合物;オキサジン環含有化合物、シリコーン系化合物等が挙げられる。
 なお、本実施形態に係る樹脂組成物は、必要に応じて、有機溶剤を使用することができる。この場合、本実施形態の樹脂組成物は、上述した各種樹脂成分の少なくとも一部、好ましくは全部が有機溶剤に溶解あるいは相溶した態様(溶液あるいはワニス)として用いることができる。
 溶媒としては、上述した各種樹脂成分の少なくとも一部、好ましくは全部を溶解あるいは相溶可能なものであれば、一般に公知のものを使用でき、特に限定されない。その具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;ジメチルアセトアミド、ジメチルホルムアミド等のアミド類などの極性溶剤類;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種又は2種以上混合して用いることができる。
[樹脂組成物の製造方法]
 本実施形態の樹脂組成物は、常法に従って調製することができる。例えば、シアン酸エステル化合物(A)及び/又はマレイミド化合物(B)と、無機充填材(C)と、上記したその他の任意成分とを均一に含有する樹脂組成物が得られる方法が好ましい。具体的には、例えば、各成分を順次溶剤に配合し、十分に攪拌することで本実施形態の樹脂組成物を容易に調製することができる。
 本実施形態の樹脂組成物の調製時において、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上記したとおりである。
 なお、樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(攪拌、混合、混練処理等)を行うことができる。例えば、無機充填材の均一分散にあたり、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する分散性が高められる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。
[プリプレグ]
 本実施形態のプリプレグは、基材(D)と、当該基材(D)に含浸又は塗布された、本実施形態の樹脂組成物と、を備える。本実施形態のプリプレグは、例えば、上記の樹脂組成物を基材(D)と組み合わせる、具体的には、上記の樹脂組成物を基材(D)に含浸又は塗布させることにより、得ることができる。本実施形態のプリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、上記の樹脂組成物を基材(D)に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱するなどして半硬化(Bステ-ジ化)させることで、プリプレグを得る方法が挙げられる。なお、本実施形態において、プリプレグの総量に対する上記の樹脂組成物の量は、特に限定されないが、30~90質量%の範囲であることが好ましい。
 本実施形態のプリプレグで使用される基材(D)としては、特に限定されるものではなく、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。その具体例としては、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Tガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)等の全芳香族ポリアミド、2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)等のポリエステル、ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどの有機繊維が挙げられるが、これらに限定されない。
 これらの中でも低熱膨張性の観点から、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維が好ましい。
 これら基材(D)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 基材(D)の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材(D)の厚さや質量は、特に限定されないが、通常は0.01~0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材(D)は、厚み200μm以下、質量250g/m以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラス等のガラス繊維からなるガラス織布がより好ましい。
 本実施形態の積層板は、上述のプリプレグ及び後述する樹脂シートからなる群より選ばれる少なくとも1種を1枚以上重ねてなるものであって、上述のプリプレグ及び樹脂シートからなる群より選ばれる少なくとも1種に含まれる樹脂組成物の硬化物を含む。この積層板は、例えば、上記のプリプレグを1枚以上重ねて硬化して得ることができる。また、本実施形態の金属箔張積層板は、上述のプリプレグ及び樹脂シートからなる群より選ばれる少なくとも1種と、上述のプリプレグ及び樹脂シートからなる群より選ばれる少なくとも1種の片面又は両面に配された金属箔とを有する金属箔張積層板であって、上記プリプレグ及び樹脂シートからなる群より選ばれる少なくとも1種に含まれる樹脂組成物の硬化物を含むものである。この金属箔張積層板は、例えば、上記のプリプレグと、金属箔とを積層して硬化して得ることができる。本実施形態の金属箔張積層板は、具体的には、例えば、上記のプリプレグを少なくとも1枚以上重ね、その片面若しくは両面に金属箔を配して積層成形することにより、得ることができる。より具体的には、前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面若しくは両面に銅やアルミニウムなどの金属箔を配置した構成とし、これを必要に応じて積層成形することにより、金属箔張積層板を製造することができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、金属箔の厚みは、特に限定されないが、1~70μmが好ましく、より好ましくは1.5~35μmである。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる。また、金属箔張積層板の成形において、温度は100~300℃、圧力は面圧2~100kgf/cm、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。また、上記のプリプレグと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。
 本実施形態の金属箔張積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。また、本実施形態の金属箔張積層板は、低い熱膨張率、良好な成形性、金属箔ピール強度及び耐薬品性(特に耐デスミア性)を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
[樹脂シート]
 本実施形態の樹脂シートは、支持体と、その支持体の表面に配された、上記樹脂組成物層(積層シート)とを指し、また支持体を取り除いた樹脂組成物層のみ(単層シート)も指す。すなわち、本実施形態の樹脂シートは、少なくとも、本実施形態の樹脂組成物を有するものである。樹脂シートは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルムなどの支持体に、直接、プリプレグ等に用いられる熱硬化性樹脂(無機充填材を含む)を塗布及び乾燥して製造することができる。
 本実施形態の樹脂シートは、<002>X線回析の強度と<100>X線回析との強度比(I<002>/I<100>)が30以下であることが好ましい。ここで、<002>X線回析の強度と<100>X線回析との強度比(I<002>/I<100>)とは、X線を樹脂組成物のシートの厚さ方向に、即ち、シートの長さ方向に対して90°の角度で照射して得られた<002>回析線の強度と<100>回析線のピーク強度比(I<002>/I<100>)である。本実施形態において、上記強度比が30以下であることは、配向性が十分に高いことを示唆しており、樹脂シートの熱伝導率がより高くなる傾向にある。
 本実施形態の樹脂シートを製造する際において使用される支持体は、特に限定されないが、各種プリント配線板材料に用いられている公知のものを使用することができる。例えばポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、アルミ箔、銅箔、金箔など挙げられる。その中でも電解銅箔、PETフィルムが好ましい。
 本実施形態の樹脂シートは、特に、上記した樹脂組成物を支持体に塗布後、半硬化(Bステージ化)させたものであることが好ましい。本実施形態の樹脂シートの製造方法は一般にBステージ樹脂及び支持体の複合体を製造する方法が好ましい。具体的には、例えば、上記樹脂組成物を銅箔などの支持体に塗布した後、100~200℃の乾燥機中で、1~60分加熱させる方法などにより半硬化させ、樹脂シートを製造する方法などが挙げられる。支持体に対する樹脂組成物の付着量は、樹脂シートの樹脂厚で1~300μmの範囲が好ましい。
 本実施形態の樹脂シートは、例えば、プリント配線板のビルドアップ材料として使用可能である。
 本実施形態の積層板は、例えば、上記の樹脂シートを1枚以上重ねて硬化して得ることができる。また、本実施形態の金属箔張積層板は、例えば、上記の樹脂シートと、金属箔とを積層して硬化して得ることができる。本実施形態の金属箔張積層板は、具体的には、例えば、上記の樹脂シートを用いて、その片面もしくは両面に金属箔を配置して積層形成することにより、得ることができる。より具体的には、例えば、前述の樹脂シートを1枚あるいは所望によりその支持体を剥離したものを複数枚重ね、その片面もしくは両面に銅やアルミニウムなどの金属箔を配置した構成とし、これを必要に応じて積層成形することにより、金属箔張積層板を製造することができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる。また、金属箔張積層板の成形時において、温度は100~300℃、圧力は面圧2~100kgf/cm、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。
 本実施形態の積層板は、樹脂シートとプリプレグとを各々1枚以上重ねて硬化して得られる積層板であってもよく、樹脂シートとプリプレグと金属箔とを積層して硬化して得られる金属箔張積層板であってもよい。
 本実施形態において、回路となる導体層を形成しプリント配線板を作製する際、金属箔張積層板の形態をとらない場合、無電解めっきの手法を用いることもできる。
 本実施形態のプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを含むプリント配線板であって、この絶縁層が、上記の樹脂組成物を含む。
 本実施形態のプリント配線板は、例えば、絶縁層に金属箔や無電解めっきによって回路となる導体層が形成されて作成される。導体層は一般的に銅やアルミニウムから構成される。導体層が形成されたプリント配線板用絶縁層は、所定の配線パターンを形成することにより、プリント配線板に好適に用いることができる。また、本実施形態のプリント配線板は、絶縁層が上記の樹脂組成物を含むことにより半導体実装時のリフロー温度下においても優れた弾性率を維持することで、半導体プラスチックパッケージの反りを効果的に抑制し、金属箔ピール強度及び耐デスミア性に優れることから、半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
 本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上記の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上記のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。
 本実施形態のプリント配線板において、例えば、上記のプリプレグ(基材及びこれに添着された上記の樹脂組成物)、上記の樹脂シート、金属箔張積層板の樹脂組成物層(上記の樹脂組成物からなる層)が、上記の樹脂組成物を含む絶縁層を構成することになる。
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
<各特性の評価方法>
(1)熱伝導率
 後述する絶縁層厚さ0.8mmの両面銅張積層板の両面全銅箔をエッチング除去した後、試験片(10mm×10mm×厚さ1mm)を切り出した。この試験片に対し、NETZSCH製キセノンフラッシュアナライザーLFA447型熱伝導率計を用いて、レーザーフラッシュで熱伝導率を測定した。
(2)銅箔ピール強度
 後述する絶縁層厚さ0.8mmの両面銅張積層板の試験片(30mm×150mm×厚さ0.8mm)を用い、JIS C6481のプリント配線板用銅張積層板試験方法(5.7 引き剥がし強さ参照。)に準じて、銅箔の引き剥がし強度を3回測定し、下限値の平均値を測定値とした。
(3)吸湿耐熱性
 両面銅張積層板(50mm×50mm×絶縁層厚さ0.8mm)の片面の半分以外の全銅箔をエッチング除去して試験片を得た。得られた試験片を、プレッシャークッカー試験機(平山製作所社製、PC-3型)で121℃、2気圧で1時間又は3時間処理し、その後260℃のはんだの中に60秒浸漬した。3つのサンプルに対し、上記試験をそれぞれ行い、浸漬後の膨れの有無を目視で観察し、下記評価基準により吸湿耐熱性を評価した。すなわち、各実施例及び比較例の吸湿耐熱性は、○と評価されたサンプルの数に応じて0~3の4段階で評価した。
 ○:異常なし
 ×:膨れ発生
〔合成例1〕ジアリルビスフェノールAのシアン酸エステル化合物(以下、DABPA-CNと略記する。)の合成
 ジアリルビスフェノールA700g(ヒドロキシル基当量154.2g/eq.)(OH基換算4.54mol)(DABPA、大和化成工業(株)製)及びトリエチルアミン459.4g(4.54mol)(ヒドロキシル基1モルに対して1.0モル)をジクロロメタン2100gに溶解させ、これを溶液1とした。
 塩化シアン474.4g(7.72mol)(ヒドロキシル基1モルに対して1.7モル)、ジクロロメタン1106.9g、36%塩酸735.6g(7.26mol)(ヒドロキシル基1モルに対して1.6モル)、水4560.7gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を90分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン459.4g(4.54mol)(ヒドロキシル基1モルに対して1.0モル)をジクロロメタン459.4gに溶解させた溶液(溶液2)を25分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。
 その後反応液を静置して有機相と水相を分離した。得られた有機相を、0.1N塩酸 2Lにより洗浄した後、水2000gで6回洗浄した。水洗6回目の廃水の電気伝導度は20μS/cmであり、水による洗浄により、除けるイオン性化合物は十分に除けられたことを確認した。
 水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて、目的とするシアン酸エステル化合物DABPA-CN(薄黄色液状物)を805g得た。得られたシアン酸エステル化合物DABPA-CNのIRスペクトルは2264cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシル基の吸収は示さなかった。
(粒子サイズの測定)
 後述する窒化ホウ素粒子凝集体の形態を確認するため、2.5μm×1.8μm四方の複数のSEM観察像を電子顕微鏡(FE-SEM-EDX(SU8220):株式会社日立ハイテクノロジー社製)により解析した。上記観察範囲に存在する、窒化ホウ素一次粒子の(0001)面が重なって凝集した窒化ホウ素粒子(窒化ホウ素粒子凝集体)のRとrとを測定した。その際、SEM画像において観察された窒化ホウ素粒子を図1(b)に示すような長方形に近似し、Rに相当する辺の長さ及びrに相当する辺の長さを計測した。
〔合成例2-1〕窒化ホウ素粒子凝集体Aの製造
 平均粒径0.5μmの六方晶窒化ホウ素一次粒子(昭和電工製「UHP-S2」)に対して、カップリング剤としてフェニルトリメトキシラン(東京化成製)を1.5質量%滴下し、ミキサーで攪拌し、カップリング剤を付加した六方晶窒化ホウ素一次粒子を得た。続いて、メチルエチルケトンに上記カップリング剤を付加した六方晶窒化ホウ素一次粒子を加え、超音波分散機で十分に分散し、分散液を得た。この分散液を6時間静置し、上精を取り除き、窒化ホウ素粒子凝集体Aを得た。この窒化ホウ素粒子凝集体Aをさらにエタノール中で超音波分散し、アルミホイルに撒き、溶媒が蒸発した後、カーボンテープに押し付け、窒化ホウ素粒子凝集体AのSEM像を観測した。その結果を図2(a)及び図2(b)に示す。
 図2(a)及び図2(b)に示すSEM像では、六方晶窒化ホウ素一次粒子の端面の方が、六方晶窒化ホウ素一次粒子の(0001)面よりも多く観測され、窒化ホウ素粒子凝集体Aにおいて、80%以上の窒化ホウ素一次粒子は、(0001)面が重なって凝集していることがわかった。すなわち、窒化ホウ素粒子凝集体Aは、窒化ホウ素一次粒子の(0001)面が重なって凝集した窒化ホウ素粒子(窒化ホウ素粒子凝集体)を80%以上含むものであった。図2(a)に示す窒化ホウ素粒子凝集体について、1層あたりの六方晶窒化ホウ素一次粒子の粒子数は1であり、この窒化ホウ素粒子凝集体の積層方向の最長径Rと、窒化ホウ素粒子凝集体の幅方向の最長径rとを測定したところ、R=0.66μm、r=0.49μm、R/r=1.35であった。なお、Rは図4に示すように特定した。また、図2(b)の中から、特に典型的な柱状形状を有していた3つの窒化ホウ素粒子凝集体(窒化ホウ素粒子凝集体1~3)を選び、前述する方法により粒子サイズを測定した。窒化ホウ素粒子凝集体1~3は、いずれも、1層あたりの六方晶窒化ホウ素一次粒子の粒子数は1であった。この窒化ホウ素粒子凝集体は帯電しており、SEM像は歪んでいた。窒化ホウ素粒子凝集体1~3において、r及びRを求めた結果を表1に示す。なお、これらのRは図5に示すように特定した。
Figure JPOXMLDOC01-appb-T000011
 また、カップリング剤による表面処理を行う前のUHP-S2についても、上記と同様にSEM観測を行った。SEM観察像を、図3(a)に示す。図3(a)からわかるように、多くの六方晶窒化ホウ素一次粒子の(0001)面がサンプル上面に向いているのが観測された。すなわち、六方晶窒化ホウ素一次粒子の(0001)同士が重なった構造は観測されなかった。また、図3(b)に示すように、一部、六方晶窒化ホウ素一次粒子の端面の面方向がサンプルの厚み方向と一致しているものも観測された。これらのSEM画像において観察された窒化ホウ素粒子を図1(a)に示すような長方形に近似し、Rに相当する辺の長さ及びrに相当する辺の長さを計測した。六方晶窒化ホウ素一次粒子の幅方向の最長径r’は0.3~1.0μmであり、六方晶窒化ホウ素一次粒子の幅方向に対して垂直となる方向の最長径R’は0.01~0.05μmであった。すなわち、観察された六方晶窒化ホウ素一次粒子は、いずれもR’<0.3r’であった。
〔合成例2-2〕窒化ホウ素粒子凝集体Bの製造
 UHP-S2に代えて、平均粒径1.0μmの六方晶窒化ホウ素一次粒子(三井化学製「MBN-010T」)を用いたこと以外は合成例2-1と同様にして、窒化ホウ素粒子凝集体Bを得た。次いで、合成例2-1と同様にSEM観察を行い、六方晶窒化ホウ素一次粒子の(0001)面同士が重なっている積層構造を有することを確認した。なお、窒化ホウ素粒子凝集体Bは、窒化ホウ素一次粒子の(0001)面が重なって凝集した窒化ホウ素粒子(窒化ホウ素粒子凝集体)を20~30%含むものであった。一方、カップリング剤による表面処理を行う前のMBN-010Tについても、同様にSEM観察を行ったところ、六方晶窒化ホウ素一次粒子の(0001)面同士が重なっている積層構造は確認できなかった。
[実施例1-1]
 合成例1で得たDABPA-CN(アリル当量:179.2g/eq.)50質量部と、ノボラック型マレイミド化合物(大和化成工業社製、「BMI-2300」、マレイミド官能当量186g/eq.)50質量部と、シランカップリング剤(Z6040、東レダウコーニング(株)製)15.0質量部と、酸基を含む湿潤分散剤(BYK-W903、ビッグケミー・ジャパン(株)製)5.0質量部とをメチルエチルケトン中で溶解混合し、これに、合成例2-1で得られた窒化ホウ素粒子凝集体A140質量部と、分散剤(ビックケミー・ジャパン社製、「DISPERBYK-161」)1.0質量部、湿潤分散剤1(ビックケミー・ジャパン社製、「DISPERBYK-111」)1.0質量部、湿潤分散剤2(ビックケミー・ジャパン社製、「DISPERBYK-2009」)0.3質量部、トリフェニルイミダゾール(東京化成工業社製、硬化促進剤)0.50質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)を0.025質量部加えて混合し、メチルエチルケトンで希釈することで固形分濃度が65wt%の樹脂ワニスを得た。
 この樹脂ワニスを0.04mmのTガラス織布に含浸塗工し、165℃で5分間加熱乾燥することにより0.1mmmtのプリプレグを作製した。
 次に、得られたプリプレグを8枚重ね合わせ、得られた積層体の上下面に12μm厚の電解銅箔(3EC-III、三井金属鉱業(株)製)を配置し、圧力30kgf/cm、温度230℃、120分間の真空プレスを行い積層成形することで、厚さ0.8mmの金属箔張り積層板(両面銅張積層板)を作製した。
 実施例1-1の金属箔張り積層板の熱伝導率、銅箔ピール強度及び吸湿耐熱性を測定した結果を表2に示す。
[実施例1-2]
 窒化ホウ素粒子凝集体Aの配合量を100質量部に変更し、オクチル酸亜鉛の配合量を0.275質量部に変更した以外は実施例1-1と同様にして金属箔張り積層板と複合シートとを作製した。これらの評価結果を表2に示す。
[比較例1-1]
 140質量部の窒化ホウ素粒子凝集体Aを140質量部のUHP-S2に変更した以外は実施例1-1と同様にして、金属箔張り積層板の作製を試みた。しかし、ボイド等の発生により成形ができなかった。一方、複合シートを作製し、評価した結果を表2に示す。
[比較例1-2]
 140質量部の窒化ホウ素粒子凝集体Aを100質量部のUHP-S2に変更し、オクチル酸亜鉛の配合量を0.30質量部に変更した以外は実施例1-1と同様にして、金属箔張り積層板と複合シートとを作製した。これらの評価結果を表2に示す。
[実施例2-1]
 140質量部の窒化ホウ素粒子凝集体Aを140質量部の窒化ホウ素粒子凝集体Bに変更し、オクチル酸亜鉛の配合量を0.05質量部に変更した以外は実施例1-1と同様にして、金属箔張り積層板と複合シートとを作製した。これらの評価結果を表3に示す。
[実施例2-2]
 窒化ホウ素粒子凝集体Bの配合量を110質量部に変更し、オクチル酸亜鉛の配合量を0.175質量部に変更した以外は実施例2-1と同様にして、金属箔張り積層板と複合シートとを作製した。これらの評価結果を表3に示す。
[比較例2-1]
 140質量部の窒化ホウ素粒子凝集体Bを140質量部のMBN-010Tに変更した以外は実施例2-1と同様にして、金属箔張り積層板の作製を試みた。しかし、ボイド等の発生により成形ができなかった。一方、複合シートを作製し、評価した結果を表3に示す。
[比較例2-2]
 140質量部の窒化ホウ素粒子凝集体Bを130質量部のMBN-010Tに変更し、オクチル酸亜鉛をオクチル酸マンガン(日本化学産業株式会社製、商標ニッカオクチックスマンガン、金属含有量8%)0.01質量部に変更し、樹脂ワニスを塗工するガラスクロスを0.04mmのEガラス織布に変更した以外は実施例2-1と同様にして、金属箔張り積層板と複合シートとを作製した。これらの評価結果を表3に示す。
[比較例2-3]
 140質量部の窒化ホウ素粒子凝集体Bを110質量部のMBN-010Tに変更し、オクチル酸亜鉛の配合量を0.25質量部に変更した以外は実施例2-1と同様にして、金属箔張り積層板と複合シートとを作製した。これらの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 本発明の樹脂組成物は、プリプレグ、金属箔張積層板、積層樹脂シート、樹脂シート、プリント配線板等の材料として、産業上の利用可能性を有する。

Claims (14)

  1.  シアン酸エステル化合物(A)及び/又はマレイミド化合物(B)と、
     無機充填材(C)と、
     を含む樹脂組成物であって、
     前記無機充填材(C)が、六方晶窒化ホウ素一次粒子を含む窒化ホウ素粒子凝集体であって、当該六方晶窒化ホウ素一次粒子の(0001)面同士が重なってなる窒化ホウ素粒子凝集体を含む、樹脂組成物。
  2.  前記窒化ホウ素粒子凝集体が、柱状の形状を有する、請求項1に記載の樹脂組成物。
  3.  前記窒化ホウ素粒子凝集体の積層方向の最長径が、前記窒化ホウ素粒子凝集体の幅方向の最長径より大きい、請求項1又は2に記載の樹脂組成物。
  4.  前記六方晶窒化ホウ素一次粒子が、カップリング剤に由来する成分を有する、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記無機充填材(C)の含有量が、樹脂固形分100質量部に対して、1~1600質量部である、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記シアン酸エステル化合物(A)が、下記一般式(1)で表されるシアン酸エステル化合物及び式(2)で表されるシアン酸エステル化合物の少なくとも一方を含む、請求項1~5のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子、又はメチル基を表し、nは1以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
  7.  前記シアン酸エステル化合物(A)の含有量が、樹脂固形分100質量部に対して、1~90質量部である、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記一般式(3)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種を含む、請求項1~7のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、Rは、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を表す。)
  9.  前記マレイミド化合物(B)の含有量が、樹脂固形分100質量部に対して、1~90質量部である、請求項1~8のいずれか一項に記載の樹脂組成物。
  10.  式(1)で表されるシアン酸エステル化合物(A)及び式(2)で表されるシアン酸エステル化合物(A)以外のシアン酸エステル化合物、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、ベンゾオキサジン化合物、並びに重合可能な不飽和基を有する化合物からなる群より選択される1種以上をさらに含む、請求項6~9のいずれか一項に記載の樹脂組成物。
  11.  基材(D)と、
     前記基材(D)に含浸又は塗布された、請求項1~10のいずれか一項に記載の樹脂組成物と、
     を備える、プリプレグ。
  12.  請求項11に記載のプリプレグと、
     前記プリプレグの片面又は両面に配された金属箔と、
     を有する金属箔張積層板であって、
     前記プリプレグに含まれる樹脂組成物の硬化物を含む、金属箔張積層板。
  13.  請求項1~10のいずれか一項に記載の樹脂組成物を有する、樹脂シート。
  14.  絶縁層と、
     前記絶縁層の表面に形成された導体層と、
     を含むプリント配線板であって、
     前記絶縁層が、請求項1~10のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
PCT/JP2017/030202 2016-08-24 2017-08-23 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 WO2018038179A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780005157.5A CN108431133B (zh) 2016-08-24 2017-08-23 树脂组合物、预浸料、覆金属箔层叠板、树脂片及印刷电路板
KR1020187018042A KR20180080336A (ko) 2016-08-24 2017-08-23 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
US16/063,429 US10689496B2 (en) 2016-08-24 2017-08-23 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed circuit board
JP2017565326A JP6319533B1 (ja) 2016-08-24 2017-08-23 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
EP17843657.2A EP3375822B1 (en) 2016-08-24 2017-08-23 Resin composition, prepreg, metal foil-clad laminated board, resin sheet, and printed wiring board
KR1020197009398A KR102208589B1 (ko) 2016-08-24 2017-08-23 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163749 2016-08-24
JP2016-163749 2016-08-24

Publications (2)

Publication Number Publication Date
WO2018038179A1 WO2018038179A1 (ja) 2018-03-01
WO2018038179A9 true WO2018038179A9 (ja) 2018-07-26

Family

ID=61245014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030202 WO2018038179A1 (ja) 2016-08-24 2017-08-23 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Country Status (7)

Country Link
US (1) US10689496B2 (ja)
EP (1) EP3375822B1 (ja)
JP (1) JP6319533B1 (ja)
KR (2) KR102208589B1 (ja)
CN (1) CN108431133B (ja)
TW (1) TWI715799B (ja)
WO (1) WO2018038179A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988409B (zh) 2017-12-29 2021-10-19 广东生益科技股份有限公司 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途
US11939447B2 (en) 2018-04-27 2024-03-26 Mitsubishi Gas Chemical Company, Inc. Thermosetting composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TWI822841B (zh) * 2018-08-27 2023-11-21 日商積水化學工業股份有限公司 樹脂材料、積層結構體及多層印刷佈線板
CN111662592B (zh) * 2020-07-16 2022-08-30 焦作卓立膜材料股份有限公司 一种抗静电阻燃热转印碳带用油墨及其制备方法
US12060647B2 (en) 2021-07-06 2024-08-13 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil and copper clad laminate
TWI809441B (zh) * 2021-07-06 2023-07-21 長春石油化學股份有限公司 表面處理銅箔及銅箔基板
CN113956481A (zh) * 2021-09-07 2022-01-21 江苏诺德新材料股份有限公司 一种5g高频高速覆铜板用树脂组合物、半固化片及层压板
CN114891255B (zh) * 2022-05-27 2023-08-18 重庆大学 一种玻璃纤维增强六方氮化硼三维有序框架复合环氧树脂及制备方法和应用
WO2024080455A1 (ko) * 2022-10-14 2024-04-18 삼도에이티에스(주) 고방열 고분자 복합소재시트 및 이의 제조방법
WO2024154715A1 (ja) * 2023-01-16 2024-07-25 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
WO2024202840A1 (ja) * 2023-03-31 2024-10-03 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898009A (en) * 1996-03-19 1999-04-27 Advanced Ceramics Corporation High density agglomerated boron nitride particles
US7445797B2 (en) 2005-03-14 2008-11-04 Momentive Performance Materials Inc. Enhanced boron nitride composition and polymer-based compositions made therewith
US7976941B2 (en) 1999-08-31 2011-07-12 Momentive Performance Materials Inc. Boron nitride particles of spherical geometry and process for making thereof
US20060121068A1 (en) 1999-08-31 2006-06-08 General Electric Company Boron nitride particles of spherical geometry and process for making thereof
US20070241303A1 (en) 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
US6764975B1 (en) * 2000-11-28 2004-07-20 Saint-Gobain Ceramics & Plastics, Inc. Method for making high thermal diffusivity boron nitride powders
JP5305656B2 (ja) 2004-08-23 2013-10-02 モーメンティブ・パフォーマンス・マテリアルズ・インク 熱伝導性組成物およびその作製方法
US20070259211A1 (en) * 2006-05-06 2007-11-08 Ning Wang Heat spread sheet with anisotropic thermal conductivity
SG10201504246UA (en) 2010-06-02 2015-06-29 Mitsubishi Gas Chemical Co Resin composition, and prepreg and laminated sheet using the same
DE102010050900A1 (de) 2010-11-10 2012-05-10 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
WO2012121224A1 (ja) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 樹脂組成物ならびにこれを用いたプリプレグおよび積層板
US9512329B2 (en) * 2011-05-27 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminate
SG11201401906SA (en) 2011-11-07 2014-10-30 Mitsubishi Gas Chemical Co Resin composition, and prepreg and laminate using the same
EP3269682B1 (en) * 2011-11-29 2020-01-01 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
US9832870B2 (en) * 2012-06-12 2017-11-28 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate and printed wiring board
JP6249345B2 (ja) * 2013-03-22 2017-12-20 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板及びプリント配線板
WO2014157626A1 (ja) 2013-03-28 2014-10-02 三菱化学株式会社 積層型半導体装置の層間充填材用の組成物、積層型半導体装置、および積層型半導体装置の製造方法
JP6331575B2 (ja) * 2013-03-28 2018-05-30 三菱ケミカル株式会社 積層型半導体装置の層間充填材用の組成物、積層型半導体装置、および積層型半導体装置の製造方法
JP6375140B2 (ja) * 2014-04-30 2018-08-15 日東電工株式会社 熱伝導性ポリマー組成物及び熱伝導性成形体
JP6405981B2 (ja) 2014-12-18 2018-10-17 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板及びプリント配線板
KR20160140258A (ko) * 2015-05-29 2016-12-07 삼성전기주식회사 패키지용 수지 조성물, 이를 이용한 절연 필름 및 인쇄회로기판

Also Published As

Publication number Publication date
EP3375822A1 (en) 2018-09-19
KR102208589B1 (ko) 2021-01-27
US20190153177A1 (en) 2019-05-23
EP3375822A4 (en) 2019-09-04
CN108431133B (zh) 2019-06-14
CN108431133A (zh) 2018-08-21
US10689496B2 (en) 2020-06-23
TW201815957A (zh) 2018-05-01
JPWO2018038179A1 (ja) 2018-08-30
EP3375822B1 (en) 2020-03-11
KR20190038689A (ko) 2019-04-08
JP6319533B1 (ja) 2018-05-09
KR20180080336A (ko) 2018-07-11
TWI715799B (zh) 2021-01-11
WO2018038179A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6319533B1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR102280840B1 (ko) 수지 조성물, 프리프레그, 적층판, 금속박 피복 적층판 및 프린트 배선판
WO2016072404A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
JP2018518563A (ja) 半導体パッケージ用熱硬化性樹脂組成物とこれを用いたプリプレグ
JP6421755B2 (ja) プリプレグ、金属箔張積層板及びプリント配線板
WO2013187303A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板及びプリント配線板
WO2018147053A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP7116370B2 (ja) 樹脂組成物、プリプレグ、レジンシート、積層板、及びプリント配線板
JP6732215B2 (ja) 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
KR102502314B1 (ko) 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판
WO2021246231A1 (ja) 電子材料用モリブデン酸亜鉛アンモニウム水和物、電子材料用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
JP2020176020A (ja) 鱗片状窒化ホウ素凝集体、組成物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP6817529B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、樹脂複合シート及びプリント配線板
JP2019137581A (ja) 表面粗化六方晶窒化ホウ素粒子、組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2019077759A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2017195334A (ja) プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、及びプリント配線板
JP6731190B2 (ja) 樹脂組成物、それを用いたプリプレグ、レジンシート、積層板、及びプリント配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017565326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2017843657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187018042

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017843657

Country of ref document: EP

Effective date: 20180613

NENP Non-entry into the national phase

Ref country code: DE