WO2018037434A1 - 回路基板の製造方法 - Google Patents

回路基板の製造方法 Download PDF

Info

Publication number
WO2018037434A1
WO2018037434A1 PCT/JP2016/003854 JP2016003854W WO2018037434A1 WO 2018037434 A1 WO2018037434 A1 WO 2018037434A1 JP 2016003854 W JP2016003854 W JP 2016003854W WO 2018037434 A1 WO2018037434 A1 WO 2018037434A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
core substrate
thermoplastic resin
layer
adhesive layer
Prior art date
Application number
PCT/JP2016/003854
Other languages
English (en)
French (fr)
Inventor
浩 田代
清孝 古森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to PCT/JP2016/003854 priority Critical patent/WO2018037434A1/ja
Priority to CN201680088559.1A priority patent/CN109644567A/zh
Publication of WO2018037434A1 publication Critical patent/WO2018037434A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a method for manufacturing a circuit board.
  • a multi-layer structure in which prepreg and copper foil are superimposed on the upper and lower surfaces of a core board with copper foil on the upper and lower surfaces of a double-sided copper-clad laminate formed in a desired circuit pattern
  • a printed wiring board is used.
  • Such a multilayer printed wiring board is produced by a collective laminating press method in which a core substrate, a prepreg, and a copper foil are laminated and integrated in one process (see Patent Document 1).
  • Patent Document 2 discloses that an inner core layer made of a thermoplastic resin has a thermosetting resin or thermosetting resin-impregnated base material layer as a surface layer, and an outermost layer. There is described a double-sided metal-clad laminate in which a metal foil is disposed and integrally molded.
  • Patent Document 3 discloses a liquid crystal polymer.
  • JP 2003-347740 A Japanese Patent Laid-Open No. 4-291788 JP-A-9-309150
  • the method for manufacturing a circuit board according to the present disclosure includes a step of preparing a core substrate, a first molding step, and a second molding step.
  • the step of preparing the core substrate includes an insulating layer containing a thermoplastic resin, a first circuit having a predetermined pattern formed on one surface of the insulating layer, and a planar metal layer bonded to the other surface of the insulating layer.
  • a core substrate having the following is prepared.
  • the first molding step includes a first adhesive layer including a resin component having a softening point lower than the softening point of the thermoplastic resin on the first surface on which the first circuit of the core substrate is disposed, These metal foils are arranged in this order, and these are laminated and integrated by heating and pressing.
  • the second molding step is to form a second circuit on the second surface on which the metal layer of the core substrate is arranged by patterning the metal layer in the laminate obtained in the first molding step.
  • a second adhesive layer containing a resin component having a softening point lower than the softening point of the thermoplastic resin and a second metal foil are arranged in this order on the second surface of the core substrate, and these are heated and pressed.
  • a second forming step of stacking and integrating is to form a second circuit on the second surface on which the metal layer of the core substrate is arranged by patterning the metal layer in the laminate obtained in the first molding step.
  • the present disclosure it is possible to manufacture a circuit board that has excellent high frequency characteristics and good positional accuracy of circuit patterns.
  • the second surface side of the core substrate is supported by a planar metal layer, so that it is insulated even when the thermoplastic resin is lowered in elasticity and softens during heat and pressure molding. The deformation of the layer is suppressed, and the displacement of the first circuit is also suppressed.
  • the first surface side of the core substrate is supported by the cured layer of the first adhesive layer, so that the thermoplastic resin has a low elastic modulus and is softened during the heat and pressure molding.
  • the deformation of the insulating layer is suppressed, and the positional deviation of the second circuit is also suppressed.
  • the first metal foil and the second metal foil are formed on one side with respect to the insulating layer even when using the core substrate including the thermoplastic resin having excellent high frequency characteristics.
  • the first circuit and the second circuit are less likely to be misaligned on the front and back of the layer. Therefore, the first circuit and the second circuit in the XY plane direction perpendicular to the thickness direction (Z direction) of the core substrate have high positional accuracy and can be a circuit board with high electrical reliability. .
  • FIG. 1A is an explanatory diagram illustrating a method for manufacturing a circuit board according to an embodiment of the present disclosure.
  • FIG. 1B is an explanatory diagram illustrating a method for manufacturing a circuit board according to an embodiment of the present disclosure.
  • FIG. 1C is an explanatory diagram illustrating a method for manufacturing a circuit board according to an embodiment of the present disclosure.
  • FIG. 1D is an explanatory diagram illustrating a method for manufacturing a circuit board according to an embodiment of the present disclosure.
  • FIG. 1E is an explanatory diagram illustrating a method for manufacturing a circuit board according to an embodiment of the present disclosure.
  • FIG. 2A is an explanatory diagram for explaining a heating and pressing step of a conventional circuit board manufacturing method using a collective laminating press method.
  • FIG. 2B is an explanatory diagram for explaining a heating and pressurizing step of a conventional circuit board manufacturing method using a collective laminating press method.
  • the substrate is said to be superior in high frequency characteristics as compared to a multilayer circuit substrate using a core substrate having an insulating layer made of a cured product of a thermosetting resin.
  • the multilayer circuit board using the core substrate having the insulating layer containing the thermoplastic resin is laminated at a time with the positional accuracy of the circuit patterns on both surfaces of the core substrate in the XY plane direction perpendicular to the thickness direction (Z direction).
  • Z direction thickness direction
  • 100 is a multilayer circuit board
  • 111 is an insulating layer containing a thermoplastic resin
  • 112 is a first circuit having a predetermined pattern
  • 113 is a second circuit having a predetermined pattern
  • 110 is insulating.
  • a core substrate having the layer 111, the first circuit 112, and the second circuit 113, 120 is a copper foil
  • 130 is a prepreg containing a thermosetting resin
  • 130a is a cured product (insulating layer) of the prepreg.
  • the prepreg 130 and the copper foil 120 are superposed on the upper and lower surfaces of the core substrate 110 in this order, placed between hot plates, and heated and pressed by a hot press. These are laminated and integrated.
  • the insulating layer 111 is heated and pressed while being sandwiched between the prepregs 130 and 130.
  • the thermoplastic resin has a low elastic modulus and further lowers the elastic modulus at high temperatures. Therefore, since the insulating layer 111 is easily softened, the insulating layer 111 is easily deformed.
  • the prepregs 130, 130 disposed on both surfaces of the core substrate 110 are also in a molten state in the heating process, and flow from the central part to the peripheral part while filling between the circuits. The stress accompanying the flow acts on the first circuit 112 and the second circuit 113 in the XY plane direction.
  • the insulating layer 111 is softened by the thermoplastic resin and the supporting force for the first circuit 112 and the second circuit 113 is reduced, the insulating layer 111 is deformed by the stress caused by the resin flow, and the position of the circuit is reduced. Is considered to move.
  • This phenomenon is similarly caused when using a prepreg in which a fiber base material is impregnated with a thermoplastic resin instead of the prepreg 130 having a thermosetting resin, or when using a resin adhesive sheet not containing a fiber base material. It is possible that this will happen.
  • the heat-pressure molding is not normally performed at a high temperature that makes it difficult to maintain the shape of the insulating layer 111 of the core substrate 110, this positional deviation is not necessarily large.
  • circuit patterns are becoming finer, and this problem cannot be ignored in securing connection reliability between circuits.
  • the present disclosure has been made in view of the above points, and provides a method for manufacturing a circuit board that has excellent high-frequency characteristics and good circuit pattern positional accuracy.
  • FIGS. 1A to 1E are explanatory views for explaining a manufacturing method according to an embodiment of the present disclosure (hereinafter, this embodiment).
  • the circuit board manufacturing method includes the insulating layer 11, the first circuit 12, the second circuit 13a, the first cured layer 30a, and the second cured layer 50a shown in FIG. 1E.
  • a circuit board 1 including a first metal foil 20 and a second metal foil 40 is manufactured.
  • the method for manufacturing a circuit board according to the present embodiment includes the following steps (I) to (III).
  • the first surface side 11X is the side on which the first circuit 12 is formed with respect to the insulating layer 11
  • the second surface side 11Y is the metal layer 13 with respect to the insulating layer 11. Refers to the side that is joined.
  • Insulating layer 11 containing a thermoplastic resin, first circuit 12 having a predetermined pattern formed on one surface of insulating layer 11 on first surface side 11X, and insulating layer 11 on second surface side 11Y The process of preparing the core board
  • the first adhesive layer 30 including the resin component having a softening point lower than the softening point of the thermoplastic resin and the first metal foil 20 are arranged in this order, A first molding step in which these are laminated and integrated by heat and pressure molding.
  • the metal layer 13 is patterned to form the second circuit 13a on the second surface of the core substrate 10, and then the core substrate 10
  • the second adhesive layer 50 containing a resin component having a softening point lower than the softening point of the thermoplastic resin and the second metal foil 40 are arranged in this order on the second surface of the thermoplastic resin, and these are heated and pressed.
  • the first surface of the core substrate 10 is a surface on which the first circuit 12 is formed
  • the second surface of the core substrate 10 is a surface on which the second circuit 13a is formed.
  • step (I) the core substrate 10 is prepared.
  • the core substrate 10 includes an insulating layer 11, and a first circuit 12 having a predetermined pattern is formed on one surface of the insulating layer 11.
  • a planar metal layer 13 is bonded to the other surface of the insulating layer 11.
  • the insulating layer 11 is made of a resin composition containing a thermoplastic resin (hereinafter referred to as a thermoplastic resin A). Since the thermoplastic resin A has a lower elastic modulus than the thermosetting resin, it is effective for reducing the linear expansion coefficient of the insulating layer 11 and preventing the circuit board 1 from warping. In addition, since the thermoplastic resin A is excellent in dielectric characteristics such as a lower dielectric constant of the insulating layer 11, the circuit board 1 having excellent characteristics can be configured. Therefore, it is preferable that the resin component in the resin composition constituting the insulating layer 11 does not include a thermosetting resin and is mainly composed of the thermoplastic resin A. In addition, although it does not prevent containing a thermosetting resin as said resin component, it is preferable that there are more thermoplastic resins A than a thermosetting resin by mass ratio in that case.
  • the thickness of the insulating layer 11 may be adjusted as appropriate according to the intended use of the circuit board 1, and is preferably 3 ⁇ m or more and 750 ⁇ m or less, more preferably 5 ⁇ m or more and 400 ⁇ m or less.
  • thermoplastic resin A examples include polyamide (PA), nylon (registered trademark), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, m-PPO), polyester, polyethylene terephthalate.
  • PA polyamide
  • nylon registered trademark
  • POM polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • polyester polyethylene terephthalate
  • PES glass fiber reinforced polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • PBT polybutylene terephthalate
  • engineering plastics such as cyclic polyolefin (COP), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF) , Polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), polyetheretherketone (PEEK), thermoplastic polyimide (P ), Engineering plastics such as polyamide-imide (PAI) and the like.
  • COP cyclic polyolefin
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PES polysulfone
  • PAR polyethersulfone
  • LCP liquid crystal polymer
  • PEEK polyetheretherketone
  • P thermoplastic polyimide
  • PAI polyamide-imide
  • the softening point of the thermoplastic resin A is not particularly limited because the required level of heat resistance varies depending on the intended use of the circuit board 1, but from the viewpoint of ensuring good heat resistance and mechanical characteristics in the circuit board 1. Preferably it is 230 degreeC or more, More preferably, it is 250 degreeC or more, More preferably, it is 280 degreeC or more.
  • the thermoplastic resin A tends to be easily softened due to a large decrease in elastic modulus at a high temperature range. However, since the higher the softening point of the thermoplastic resin A, the tendency can be reduced. In the steps (II) and (III), the deformation of the insulating layer 11 in the heat and pressure molding is more effectively suppressed, and the circuit board 1 having high circuit pattern positional accuracy can be easily obtained.
  • the “softening point” can be measured as a Vicat softening temperature, and can be measured by, for example, a measurement method defined in JIS K-7206 (1999).
  • the resin composition may further include an inorganic filler.
  • characteristics such as a low linear expansion coefficient, a flame retardance, and heat conductivity, can be provided to the insulating layer 11.
  • the inorganic filler examples include silica particles such as spherical silica and crushed silica, molybdenum compounds such as molybdenum trioxide, zinc molybdate, ammonium molybdate, and magnesium molybdate, aluminum hydroxide, magnesium hydroxide, and aluminum silicate. , Magnesium silicate, talc, clay, mica and the like. These may be used alone or in combination of two or more.
  • the content of the inorganic filler is not particularly limited and can be set according to the purpose.
  • the inorganic filler content is 20% by mass or more and 200% by mass or less based on the total mass of the resin component of the insulating layer 11. Good.
  • the insulating layer 11 may include a fiber base material. What is necessary is just to select suitably as said fiber base material according to the characteristic requested
  • the material of the fiber base material include inorganic fibers such as glass, and organic fibers such as aramid and polyester.
  • the thickness of the fiber substrate is not particularly limited, and is 3 to 200 ⁇ m, for example.
  • the first circuit 12 is formed in a predetermined pattern.
  • the shape of the pattern is designed according to the purpose of use of the circuit board 1 and is not particularly limited.
  • Examples of the material constituting the first circuit 12 include metal wiring such as copper, silver, aluminum, and stainless steel, and printed wiring using a conductive paste.
  • Examples of the method of forming the first circuit 12 include a method of forming a pattern mainly using a photoetching method and an electroless plating method, and a method of forming a pattern using a mask during sputtering or vapor deposition.
  • the first circuit 12 is preferably obtained by patterning a metal layer (metal foil) similar to the metal layer 13 described later.
  • the metal layer 13 has a planar shape (flat plate shape), is bonded to the other surface of the insulating layer 11, and covers the entire other surface of the insulating layer 11.
  • the material constituting the metal layer 13 examples include metal foils such as copper, silver, aluminum, and stainless steel.
  • the thickness of the metal layer 13 is not particularly limited as long as it can maintain a planar shape before and after the heat and pressure forming in the second forming step (III), and is preferably 2 ⁇ m or more and 400 ⁇ m or less.
  • the metal layer 13 may be, for example, an electrolytic metal foil obtained by an electrolytic method or a rolled metal foil obtained by a rolling method.
  • the first adhesive layer 30 is an insulating material in which a resin composition (a) containing a resin component having a softening point lower than that of the thermoplastic resin A is formed into a sheet shape.
  • a resin composition (a) for example, a resin component whose main component is an uncured or semi-cured thermosetting resin, or a material whose main component is a thermoplastic resin can be used.
  • the softening point of the resin component can be measured as the Vicat softening temperature.
  • the resin composition (a) When the resin component of the resin composition (a) is mainly composed of a thermosetting resin, the resin composition (a) has an uncured or semi-cured thermosetting resin as an essential component, a curing agent, and curing acceleration. An agent, an inorganic filler, a flame retardant and the like can be appropriately added depending on the purpose.
  • This resin composition (a) can further contain a small amount of thermoplastic resin.
  • the softening point of the resin component is based on an uncured or semi-cured thermosetting resin, and it is difficult to prepare a Vicat softening temperature measurement sample.
  • the melting start temperature of the resin component may be used as an approximate value of the softening point.
  • thermosetting resin examples include epoxy resins, cyanate ester resins, polyfunctional maleimide resins, low molecular weight polyphenylene ether resins, terminal unsaturated functional group-modified polyphenylene ether resins, benzoxazine resins, and vinyl ester resins. .
  • an epoxy resin is particularly preferable.
  • the thermosetting resin may be flame retardant by bromination, phosphorus modification or the like. These thermosetting resins may be used alone or in combination of two or more.
  • the curing agent is not particularly limited as long as it can react with the thermosetting resin to form a crosslinked structure, and may be appropriately selected according to the type of the thermosetting resin.
  • the thermosetting resin contains an epoxy resin, for example, a diamine-based curing agent such as a primary amine or a secondary amine, a bifunctional or higher phenol-based curing agent, an acid anhydride-based curing agent, dicyandiamide, Examples thereof include low molecular weight polyphenylene ether compounds.
  • these curing agents may be used alone or in combination of two or more.
  • curing accelerator examples include imidazole compounds such as 2-ethyl-4-methylimidazole (2E4MZ), tertiary amine compounds, organic phosphine compounds, and metal soaps.
  • imidazole compounds such as 2-ethyl-4-methylimidazole (2E4MZ)
  • tertiary amine compounds examples include 2-ethyl-4-methylimidazole (2E4MZ), tertiary amine compounds, organic phosphine compounds, and metal soaps.
  • the inorganic filler examples include metal oxides such as silica, aluminum oxide, magnesium oxide, and titanium oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, barium sulfate, calcium carbonate, magnesium carbonate, and boron nitride. , Aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, talc, clay, mica powder and the like. Of these, silica is particularly preferred.
  • the flame retardant examples include halogen-based flame retardants such as bromine-containing compounds, and non-halogen-based flame retardants such as phosphorus-containing compounds and nitrogen-containing compounds.
  • the resin composition (a) When the resin component of the resin composition (a) is mainly composed of a thermoplastic resin, the resin composition (a) has a softening point lower than the softening point of the thermoplastic resin A contained in the insulating layer 11 of the core substrate 10. It can be prepared by using as an essential component another thermoplastic resin having the following (hereinafter referred to as thermoplastic resin B), and appropriately adding an inorganic filler, a flame retardant and the like according to the purpose.
  • This resin composition (a) can further contain a small amount of a thermosetting resin.
  • thermoplastic resin B examples include those similar to the engineering plastics exemplified as the specific examples of the thermoplastic resin A in the above, but those having a softening point relatively lower than that of the thermoplastic resin A are selected.
  • the first adhesive layer 30 preferably has a sheet shape so that it can be placed over the core substrate 10.
  • the resin composition (a) is applied to a support such as a prepreg, a resin film, or a metal foil impregnated with a resin composition (a) on a fiber base material. Examples thereof include a formed resin sheet with a support.
  • the same fiber substrate as that described in the description of the core substrate 10 can be used.
  • the resin sheet with a support is used as the first adhesive layer 30, the resin sheet with a support is overlaid so that the resin composition (a) is bonded onto the first surface of the core substrate 10. After the resin composition (a) is transferred to the core substrate 10 side, the support may be peeled off and used.
  • the first metal foil 20 is also possible to use as the support, and in this case, it is not necessary to peel off the first metal foil 20 after being superimposed on the first surface of the core substrate 10. The heating and pressure molding described later can be performed as it is.
  • the thickness of the first adhesive layer 30 is not particularly limited, but the resin composition (a) is filled between the circuits of the first circuit 12, and the first circuit 12 and the first metal foil 20 In order to ensure insulation, the thickness is preferably larger than the thickness of the first circuit 12.
  • the same metal foil as that described in the description of the core substrate 10 can be used.
  • copper foil is suitable when pattern processing is used as a circuit.
  • a thin copper foil having a thickness of 10 ⁇ m or less can be used, or a copper foil with a carrier in which an ultrathin copper foil and a support copper foil are joined in a peelable manner can be used.
  • the surface of the first metal foil 20 facing the first adhesive layer 30 is preferably a roughened mat surface. Thereby, the peel strength between the 1st metal foil 20 and the 1st hardened layer 30a can be improved with an anchor effect.
  • the laminated body 2 is obtained.
  • the laminate 2 has the first circuit 12, the first hardened layer 30a, and the first metal foil 20 in this order on one surface of the insulating layer 11 on the first surface side 11X, and the second surface A planar metal layer 13 is provided on the other surface of the insulating layer 11 on the side 11Y.
  • the first adhesive layer 30 is in a softened or melted state in which the resin component contained in the resin composition (a) is in the center portion of the core substrate 10 while filling the space between the first circuits 12. It flows from to the periphery.
  • the stress due to the resin flow acts on the first circuit 12 in the XY plane direction perpendicular to the thickness direction (Z direction) of the core substrate 10.
  • the insulating layer 11 is prevented from being deformed due to the stress caused by the resin flow.
  • the positional deviation of the circuit 12 is less likely to occur. That is, even when the first adhesive layer 30 flows in a softened or melted state during heat and pressure molding, deformation of the insulating layer 11 is suppressed, and displacement of the first circuit 12 is also suppressed.
  • a hot press method Open Type Hot Press
  • a vacuum hot press method Vauum Type Hot Press
  • a first laminated body is inserted and heated by heating and heating the first laminated body at the same time.
  • the conditions for the heat and pressure molding may be adjusted as appropriate according to the material of the insulating layer 11 and the first adhesive layer 30, but the temperature condition is such that the resin component contained in the first adhesive layer 30 is softened.
  • the temperature is preferably set in a temperature range higher than the point and lower than the softening point of the thermoplastic resin A constituting the insulating layer 11 of the core substrate 10.
  • the temperature condition of the heat and pressure molding is 260 ° C. As mentioned above, it is good to set in the range below 300 ° C. Further, when the softening point of the thermoplastic resin A constituting the insulating layer 11 is 300 ° C. and the softening point of the resin component contained in the first adhesive layer 30 is 120 ° C. (the first adhesive layer 30 is uncured or half-cured).
  • the molding temperature may be set in the range of 130 to 250 ° C.
  • the pressure and molding time for heat and pressure molding can be appropriately set in consideration of moldability and the like.
  • the shape of the pattern of the second circuit 13 a can be appropriately set according to the purpose of use of the circuit board 1. Further, the pattern shape of the second circuit 13a may be the same as or different from that of the first circuit 12.
  • the pattern processing method is not particularly limited, and examples thereof include known methods such as a photo etching method.
  • the second adhesive layer 50 is an insulating material in which a resin composition (b) containing a resin component having a softening point lower than that of the thermoplastic resin A is formed into a sheet shape. is there.
  • a resin component which comprises a resin composition (b) the thing similar to the component of the 1st contact bonding layer 30 (resin composition (a)) can be mentioned.
  • the specific composition component of the resin composition (b) may be the same as or different from that of the first adhesive layer 30 (resin composition (a)). It can be decided according to the purpose.
  • the form of the second adhesive layer 50 as with the first adhesive layer 30, a prepreg, a resin sheet with a support, and the like can be given.
  • the form of the second adhesive layer 50 may be the same as or different from the form of the first adhesive layer 30, and can be determined according to the purpose of use of the circuit board 1.
  • the second metal foil 40 may be the same as the first metal foil 20 or may have a different thickness, property, and form, and can be determined according to the purpose of use of the circuit board 1.
  • the laminate 3, the second adhesive layer 50, and the second metal foil 40 are arranged in this order, and these are further formed by heating and pressing. Stack and integrate.
  • the circuit board 1 is obtained.
  • the circuit board 1 has the first circuit 12, the first hardened layer 30a, and the first metal foil 20 in this order on one surface of the insulating layer 11 on the first surface side 11X, and the second surface side.
  • a second circuit 13a, a second hardened layer 50a, and a second metal foil 40 are provided in this order on the other surface of the 11Y insulating layer 11.
  • the second adhesive layer 50 is once melted in the resin composition (b), and flows from the center of the core substrate 10 toward the periphery while filling the space between the second circuits 13a. To do.
  • the stress accompanying the resin flow acts on the second circuit 13a in the XY plane direction perpendicular to the thickness direction (Z direction) of the core substrate 10.
  • the insulating layer 11 is hardly deformed due to the stress caused by the resin flow. . Therefore, the position of the second circuit 13a is difficult to move.
  • the circuit board 1 has high positional accuracy of the first circuit 12 and the second circuit 13a, and has high electrical reliability.
  • the second adhesive layer 50, and the second metal foil 40 As a method of heat-pressing the laminate 3, the second adhesive layer 50, and the second metal foil 40, for example, it can be carried out in the same manner as the heat-pressure forming in the first forming step (II).
  • the circuit board 1 is printed by, for example, using a subtractive method to form a circuit by removing a part of the first metal foil 20 and the second metal foil 40 of the circuit board 1 by etching. It can be used as a wiring board. In this case, vias can be formed by laser processing or drilling to form through holes or blind via holes for electrical connection between layers. At this time, as described above, since the positional accuracy of the first circuit 12 and the second circuit 13a is high, the reliability of interlayer connection can be increased. Further, the obtained printed wiring board can be used as a core substrate of a multilayer printed wiring board in which resin layers and circuits are newly stacked alternately on one side or both sides by a build-up method.
  • the circuit board manufactured by the method of the present disclosure has high electrical reliability, it can be used for a small and multifunctional electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

回路基板の製造方法は、コア基板を準備する工程と、第一の成形工程と、第二の成形工程と、を含む。コア基板を準備する工程は、熱可塑性樹脂を含む絶縁層と、絶縁層の一表面に形成された第一の回路と、絶縁層の他の表面に接合された平面状の金属層とを有するコア基板を準備する。第一の成形工程は、コア基板の第一の回路が配置された第一の表面に熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第一の接着層および第一の金属箔をこの順に配置して積層一体化させる。第二の成形工程は、第一の成形工程で得られた積層体において金属層をパターン加工して金属層が配置された第二の表面に第二の回路を形成した後、コア基板の第二の表面に熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第二の接着層および第二の金属箔をこの順に配置し積層一体化させる第二の成形工程と、を含む。

Description

回路基板の製造方法
 本開示は、回路基板の製造方法に関する。
 電子機器の小型化、多機能化、通信高速化などの追求にともない、電子機器に用いられる回路基板に対するさらなる高密度化および優れた高周波特性が要求されている。
 回路基板に対する高密度化の要求に応えるために、両面銅張積層板の上下面の銅箔を所望の回路パターンに形成したコア基板に対し、その上下面にプリプレグおよび銅箔を重ね合わせた多層プリント配線基板が用いられている。このような多層プリント配線基板は、コア基板、プリプレグおよび銅箔を1度のプロセスで積層一体化する一括積層プレス工法により作製されている(特許文献1参照)。
 一方、高周波特性に優れた金属張積層板として、特許文献2には、熱可塑性樹脂からなる内部コア層に表面層としての熱硬化性樹脂または熱硬化性樹脂含浸基材層、さらに最外層の金属箔とを配設し、一体化成形してなる両面金属張積層板が記載されている。また、特許文献3には、液晶ポリマーが開示されている。
特開2003-347740号公報 特開平4-291782号公報 特開平9-309150号公報
 本開示に係る回路基板の製造方法は、コア基板を準備する工程と、第一の成形工程と、第二の成形工程と、を含む。コア基板を準備する工程は、熱可塑性樹脂を含む絶縁層と、絶縁層の一表面に形成された所定パターンの第一の回路と、絶縁層の他の表面に接合された平面状の金属層とを有するコア基板を準備する。第一の成形工程は、コア基板の第一の回路が配置された第一の表面に、前記熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第一の接着層および第一の金属箔をこの順に配置し、これらを加熱加圧成形することによって積層一体化させる。第二の成形工程は、第一の成形工程で得られた積層体において、金属層をパターン加工してコア基板の金属層が配置された第二の表面に第二の回路を形成した後、コア基板の第二の表面に、熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第二の接着層および第二の金属箔をこの順に配置し、これらを加熱加圧成形することによって積層一体化させる第二の成形工程と、を含む。
 本開示によれば、高周波特性に優れ、かつ回路パターンの位置精度が良好な回路基板を製造することができる。すなわち、第一の成形工程において、コア基板の第二の表面側は、平面状の金属層によって支持されているので、加熱加圧成形時に熱可塑性樹脂が低弾性率化して軟化しても絶縁層の変形が抑制され、前記第一の回路の位置ズレも抑制される。さらに、第二の成形工程において、コア基板の第一の表面側は、第一の接着層の硬化層によって支持されているので、加熱加圧成形時に熱可塑性樹脂が低弾性率化して軟化しても絶縁層の変形が抑制され、前記第二の回路の位置ズレも抑制される。このように、本開示によれば、高周波特性に優れる熱可塑性樹脂を含むコア基板を用いても、第一の金属箔および第二の金属箔を絶縁層に対して片側ずつ成形するので、絶縁層の表裏において、第一の回路および第二の回路の位置ズレが生じにくい。そのため、コア基板の厚み方向(Z方向)と垂直なX-Y平面方向における第一の回路および前記第二の回路の位置精度が高く、電気的な信頼性が高い回路基板とすることができる。
図1Aは、本開示の一実施形態に係る回路基板の製造方法を説明するための説明図である。 図1Bは、本開示の一実施形態に係る回路基板の製造方法を説明するための説明図である。 図1Cは、本開示の一実施形態に係る回路基板の製造方法を説明するための説明図である。 図1Dは、本開示の一実施形態に係る回路基板の製造方法を説明するための説明図である。 図1Eは、本開示の一実施形態に係る回路基板の製造方法を説明するための説明図である。 図2Aは、一括積層プレス工法を用いた従来の回路基板の製造方法の加熱加圧工程を説明するための説明図である。 図2Bは、一括積層プレス工法を用いた従来の回路基板の製造方法の加熱加圧工程を説明するための説明図である。
 本開示の実施の形態の説明に先駆け、従来の構成における問題点を説明する。特許文献2に記載のような、熱可塑性樹脂を含む絶縁層を有する両面金属張積層板の金属箔をエッチングして回路形成した基板をコア基板として用いて、一括積層プレス工法により得られる多層回路基板は、熱硬化性樹脂の硬化物からなる絶縁層を有するコア基板を用いた多層回路基板に比べて高周波特性に優れていると言われている。
 しかしながら、熱可塑性樹脂を含む絶縁層を有するコア基板を用いた多層回路基板は、厚み方向(Z方向)と垂直なX-Y平面方向における前記コア基板両面の回路パターンの位置精度に、一括積層プレス成形の過程で狂いが生じる恐れがあるという問題があった。このため、各層の回路間をビア等で層間接続するときに接続不良が発生するおそれがある。
 この現象について図2A及び図2Bを用いて説明する。図2A及び図2B中の各符号に関して、100は多層回路基板、111は熱可塑性樹脂を含む絶縁層、112は所定パターンの第一の回路、113は所定パターンの第二の回路、110は絶縁層111と第一の回路112と第二の回路113を有するコア基板、120は銅箔、130は熱硬化性樹脂を含むプリプレグ、130aはプリプレグの硬化物(絶縁層)を示している。
 図2Aに示すように、コア基板110の上下面にそれぞれプリプレグ130および銅箔120をこの順となるように重ね合わせ、これを熱板間に配置し、加熱プレスにより加熱加圧成形することによってこれらを積層一体化する。
 この際、図2Aに示すように、絶縁層111はプリプレグ130,130同士に挟まれた状態で加熱加圧成形されるが、熱可塑性樹脂は弾性率が低く且つ高温下で更に弾性率が低下して軟化しやすい性質を有するため絶縁層111は変形しやすくなる。また同時に、コア基板110の両面に配置されたプリプレグ130,130も加熱過程で熱硬化性樹脂が一旦溶融状態となり、回路間を充填しながら中心部から周辺部に向かって流動するため、この樹脂流動に伴う応力が第一の回路112と第二の回路113に対してX-Y平面方向に作用する。このとき、絶縁層111は熱可塑性樹脂が軟化して第一の回路112及び第二の回路113に対する支持力が低下しているため、樹脂流動による応力によって絶縁層111が変形して回路の位置が移動すると考えられる。この現象は、熱硬化性樹脂を有するプリプレグ130の代わりに熱可塑性樹脂を繊維基材に含浸したプリプレグを使用する場合や、繊維基材を含まない樹脂接着シートを使用する場合にも、同様に起こり得ると考えられる。なお、コア基板110の絶縁層111の形状保持が困難になるほどの高温で加熱加圧成形が行われることは通常ないため、この位置ズレは必ずしも大きなものではない。しかしながら、近年の多層プリント配線板では、回路パターンの微細配線化が進んでいるため、この問題は回路間の接続信頼性を確保する上で無視できないものとなってきている。
 本開示は、上記の点に鑑みてなされたものであり、高周波特性に優れ、かつ回路パターンの位置精度が良好な回路基板の製造方法を提供する。
 以下、本開示を実施するための形態を説明する。
 [本開示の一実施形態]
 図1A~図1Eは、本開示の一実施形態(以下、本実施形態)に係る製造方法を説明するための説明図である。
 本実施形態に係る回路基板の製造方法は、図1Eに示す、絶縁層11と、第一の回路12,第二の回路13aと、第一の硬化層30a,第二の硬化層50aと、第一の金属箔20,第二の金属箔40とを備える回路基板1を製造する方法である。具体的には、本実施形態に係る回路基板の製造方法は、下記の工程(I)から工程(III)を含む。
 ここで、第一の表面側11Xとは、絶縁層11に対して第一の回路12が形成されている側であり、第二の表面側11Yとは、絶縁層11に対して金属層13が接合されている側をいう。
(I)熱可塑性樹脂を含む絶縁層11と、第一の表面側11Xにおいて絶縁層11の一表面に形成された所定パターンの第一の回路12と、第二の表面側11Yにおいて絶縁層11の他の表面に接合された平面状の金属層13とを有するコア基板10を準備する工程。
(II)コア基板10の第一の表面に、前記熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第一の接着層30および第一の金属箔20をこの順に配置し、これらを加熱加圧成形することによって積層一体化させる第一の成形工程。
(III)第一の成形工程(II)で得られた積層体2において、金属層13をパターン加工してコア基板10の第二の表面に第二の回路13aを形成した後、コア基板10の第二の表面に、前記熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第二の接着層50および第二の金属箔40をこの順に配置し、これらを加熱加圧成形することによって積層一体化させる第二の成形工程。
 ここで、コア基板10の第一の表面は第一の回路12が形成された面であり、コア基板10の第二の表面は第二の回路13aが形成された面である。
 [コア基板10を準備する工程(I)]
 工程(I)では、コア基板10を準備する。コア基板10は絶縁層11を備え、絶縁層11の一方の表面に所定パターンの第一の回路12が形成されている。絶縁層11の他の表面には平面状の金属層13が接合されている。
 絶縁層11は、熱可塑性樹脂(以下、熱可塑性樹脂Aと称する)を含む樹脂組成物により構成される。熱可塑性樹脂Aは、熱硬化性樹脂よりも弾性率が低いので絶縁層11の線膨張係数を低減して回路基板1の反りを防止するのに有効である。また、熱可塑性樹脂Aは、絶縁層11の低誘電率化など誘電特性にも優れているため、これら特性に優れた回路基板1を構成することができる。そのため、絶縁層11を構成する前記樹脂組成物中の樹脂成分は、熱硬化性樹脂を含まず、熱可塑性樹脂Aを主剤とするものであるのが好ましい。なお、前記樹脂成分として熱硬化性樹脂を含むことを妨げるものではないが、その場合、質量比で熱可塑性樹脂Aが熱硬化性樹脂よりも多いことが好ましい。
 絶縁層11の厚みは、回路基板1の使用用途等に応じて適宜調整すればよく、好ましくは3μm以上、750μm以下、より好ましくは5μm以上、400μm以下である。
 熱可塑性樹脂Aとしては、例えば、ポリアミド(PA)、ナイロン(登録商標)、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、m-PPO)、ポリエステル、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、ポリブチレンテレフタレート(PBT)、環状ポリオレフィン(COP)などのエンジニアリングプラスチック、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)などのエンジニアリングプラスチックなどが挙げられる。なかでも、伝送損失を低減する点で誘電率が低い液晶ポリマーが好ましい。これらを単独で用いてもよいし、2種以上を混合して用いてもよい。液晶ポリマーとしては、公知のものを目的に応じて使用可能であり、市販の液晶ポリマーであってもよい。液晶ポリマーの具体例としては、例えば、特許文献3において例示されているもの等が挙げられる。
 熱可塑性樹脂Aの軟化点は、回路基板1の使用用途により要求される耐熱性の水準が異なることから特に限定されないが、回路基板1における良好な耐熱性や機械的特性を確保する観点から、好ましくは230℃以上、より好ましくは250℃以上、さらに好ましくは280℃以上である。熱可塑性樹脂Aは高温域において弾性率の低下が大きくなり軟化しやすくなる傾向にあるが、熱可塑性樹脂Aの軟化点が高いほどこの傾向を緩和することができるため、上記範囲内であれば、工程(II),(III)において、加熱加圧成形における絶縁層11の変形をより効果的に抑制し、回路パターンの位置精度が高い回路基板1が得やすくなる。ここで「軟化点」は、ビカット軟化温度(Vicat Softening temperature)として計測可能なものであり、例えば、JIS K-7206(1999)にて規定される測定方法で計測できる。
 前記樹脂組成物は、無機充填材をさらに含んでもよい。これにより、低線膨張率化、難燃性、熱伝導性等の特性を絶縁層11に付与することができる。
 前記無機充填材としては、例えば、球状シリカ、破砕シリカ等のシリカ粒子、三酸化モリブデン、モリブデン酸亜鉛、モリブデン酸アンモニウム、モリブデン酸マグネシウム等のモリブデン化合物、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、タルク、クレー、マイカ等が挙げられる。これらを単独で用いてもよいし、2種以上を混合して用いてもよい。
 前記無機充填材の含有量は、特に制限は無く、目的に応じて設定することができるが、例えば、絶縁層11の樹脂成分の総質量に対して20質量%以上、200質量%以下で配合するとよい。
 絶縁層11は、繊維基材を備えていてもよい。前記繊維基材としては、回路基板1の使用用途等により要求される特性に応じて適宜選定すればよく、例えば、無機繊維、有機繊維からなる織布や不織布を使用することができる。前記繊維基材の材質としては、ガラス等の無機繊維、アラミド、ポリエステル等の有機繊維などが挙げられる。前記繊維基材の厚みに特に制限はなく、例えば3~200μmである。
 第一の回路12は、所定のパターンに形成されたものである。パターンの形状は、回路基板1の使用目的等に応じた設計が行われるものであって、特に限定されない。第一の回路12を構成する材料としては、例えば、銅、銀、アルミニウム、ステンレスなどの金属配線、導電ペースト等を用いた印刷配線などが挙げられる。
 第一の回路12の形成方法としては、例えば、フォトエッチング法、無電解めっき法を主体としてパターン形成する方法、スパッタや蒸着等の際にマスクを使用してパターン形成する方法などが挙げられる。特に、第一の回路12としては、後述する金属層13と同様の金属層(金属箔)をパターン加工したものが好適である。
 金属層13は平面状(平板状)であり、絶縁層11の他の表面に接合され、絶縁層11の他の表面の全面を覆っている。これにより、第一の成形工程(II)における加熱加圧成形時に、コア基板10の第二の表面側11Yは、平面状の金属層13によって支持されることになるので、熱可塑性樹脂Aが軟化しても絶縁層11の変形を抑制することができる。
 金属層13を構成する材料としては、例えば、銅、銀、アルミニウム、ステンレスなどの金属箔が挙げられる。金属層13の厚みは、第二の成形工程(III)における加熱加圧成形の前後で平面状を維持できる厚みであれば特に限定されず、好ましくは2μm以上、400μm以下である。金属層13は、例えば、電解法により得られる電解金属箔であっても、圧延法により得られる圧延金属箔であってもよい。
 [第一の成形工程(II)]
 (配置)
 第一の成形工程(II)では、まず、図1Aに示すように、コア基板10の第一の表面に、第一の接着層30および第一の金属箔20をこの順に重ね合わせて配置する。
 第一の接着層30は、熱可塑性樹脂Aの軟化点よりも低い軟化点を有する樹脂成分を含む樹脂組成物(a)をシート状にした絶縁材料である。樹脂組成物(a)としては、例えば、樹脂成分における主成分が未硬化または半硬化状態の熱硬化性樹脂であるもの、又は、熱可塑性樹脂を主成分とするものを用いることができる。ここで、前記樹脂成分の軟化点は、熱可塑性樹脂Aと同様に、ビカット軟化温度として計測可能である。
 樹脂組成物(a)の樹脂成分が熱硬化性樹脂を主成分とする場合、樹脂組成物(a)は、未硬化または半硬化状態の熱硬化性樹脂を必須成分とし、硬化剤、硬化促進剤、無機充填材、難燃剤等を目的に応じて適宜添加して調製することができる。この樹脂組成物(a)にはさらに少量の熱可塑性樹脂を含有させることもできる。この場合、前記樹脂成分の軟化点は、未硬化または半硬化状態の熱硬化性樹脂を主成分とするためにビカット軟化温度の測定サンプルを作成しにくい場合も想定されるが、そのような場合には、前記樹脂成分の溶融開始温度を軟化点の近似値として代用するとよい。
 前記熱硬化性樹脂としては、例えば、エポキシ樹脂、シアネートエステル樹脂、多官能性マレイミド樹脂、低分子量ポリフェニレンエーテル樹脂、末端不飽和官能基変性ポリフェニレンエーテル樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂等が挙げられる。中でも特にエポキシ樹脂が好ましい。前記熱硬化性樹脂は臭素化、リン変性等により難燃化されていてもよい。これら熱硬化性樹脂は、1種単独で用いてもよいし、2種以上を併用することもできる。
 前記硬化剤としては、前記熱硬化性樹脂と反応して架橋構造を形成しうるものであれば特に限定されず、前記熱硬化性樹脂の種類に応じて適宜選定すればよい。例えば、前記熱硬化性樹脂がエポキシ樹脂を含む場合は、例えば第1級アミンや第2級アミンなどのジアミン系硬化剤、2官能以上のフェノール系硬化剤、酸無水物系硬化剤、ジシアンジアミド、低分子量ポリフェニレンエーテル化合物などを挙げることができる。これらの硬化剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 前記硬化促進剤としては、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)等のイミダゾール系化合物、第3級アミン系化合物、有機ホスフィン化合物、金属石鹸等が挙げられる。
 前記無機充填材としては、例えば、シリカ、酸化アルミニウム、酸化マグネシウム、酸化チタン等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、タルク、クレー、雲母粉などが挙げられる。これらの中でもシリカが特に好適である。
 前記難燃剤としては、臭素含有化合物等のハロゲン系難燃剤、リン含有化合物及び窒素含有化合物等の非ハロゲン系難燃剤などが挙げられる。
 樹脂組成物(a)の樹脂成分が熱可塑性樹脂を主成分とする場合、樹脂組成物(a)は、コア基板10の絶縁層11が含有する熱可塑性樹脂Aの軟化点よりも低い軟化点を有する他の熱可塑性樹脂(以下、熱可塑性樹脂Bと称する)を必須成分とし、無機充填材、難燃剤等を目的に応じて適宜添加して調製することができる。この樹脂組成物(a)にはさらに少量の熱硬化性樹脂を含有させることもできる。
 熱可塑性樹脂Bの具体例としては、前述において熱可塑性樹脂Aの具体例として例示したエンジニアリングプラスチックと同様のものが挙げられるが、軟化点が相対的に熱可塑性樹脂Aよりも低いものが選定される。
 第一の接着層30は、コア基板10に重ね合わせて配置できるようにシート形状を有しているものが好適である。具体的には、第一の接着層30として、例えば、繊維基材に樹脂組成物(a)を含浸したプリプレグ、樹脂フィルムや金属箔等の支持体に樹脂組成物(a)を塗布して形成された支持体付き樹脂シートなどが挙げられる。
 第一の接着層30として前記プリプレグを用いる場合、前記繊維基材としては、コア基板10の説明にて挙げたものと同様のものが使用できる。また、第一の接着層30として前記支持体付き樹脂シートを用いる場合、コア基板10の第一の表面上に樹脂組成物(a)が接合されるように前記支持体付き樹脂シートを重ね合わせ、樹脂組成物(a)をコア基板10側に転写した後、前記支持体を剥離除去して使用するとよい。ここで、前記支持体として第一の金属箔20を用いることも可能であり、この場合、コア基板10の第一の表面上に重ね合わせた後に第一の金属箔20を剥離する必要は無く、そのまま後述の加熱加圧成形を行うことができる。
 第一の接着層30の厚みは、特に制限はないが、第一の回路12の回路間を樹脂組成物(a)が充填し、且つ第一の回路12と第一の金属箔20との絶縁性を確保するために、第一の回路12の厚みよりも大きいことが好ましい。
 第一の金属箔20としては、コア基板10の説明にて挙げたものと同様の金属箔を使用できる。なお、回路としてパターン加工を施して使用される場合には、銅箔が好適である。特に、微細配線回路とする場合には、厚み10μm以下の薄銅箔を用いるか、或いは極薄銅箔と支持体銅箔とを剥離可能に接合したキャリア付き銅箔を用いることができる。
 第一の金属箔20の第一の接着層30に対向する面は、粗化処理されたマット面であることが好ましい。これにより、アンカー効果で、第一の金属箔20と第一の硬化層30aとの間のピール強度を向上させることができる。
 (加熱加圧成形)
 第一の成形工程(II)では、図1Aに示すように配置した、コア基板10、第一の接着層30および第一の金属箔20を加熱加圧成形することによって、これらを積層一体化する。これにより、図1Bに示すように、積層体2が得られる。積層体2は、第一の表面側11Xの絶縁層11の一表面上に第一の回路12、第一の硬化層30aおよび第一の金属箔20をこの順で有し、第二の表面側11Yの絶縁層11の他の表面上に平面状の金属層13を有する。
 この加熱加圧成形時において、第一の接着層30は樹脂組成物(a)中に含まれる樹脂成分が軟化又は溶融状態となり、第一の回路12間を充填しながらコア基板10の中心部から周辺部に向かって流動する。そして、この樹脂流動に伴う応力が第一の回路12に対して、コア基板10の厚み方向(Z方向)と垂直なX-Y平面方向に作用する。このとき、コア基板10の第二の表面側11Yは、平面状の金属層13によって支持されているので、この樹脂流動による応力に起因して絶縁層11が変形するのが防止され、第一の回路12の位置ズレが生じにくい。すなわち、加熱加圧成形時に第一の接着層30が軟化又は溶融状態となって流動しても、絶縁層11の変形が抑制され、第一の回路12の位置ズレも抑制される。
 コア基板10、第一の接着層30および第一の金属箔20を加熱加圧成形する方法としては、例えば、熱板間にコア基板10、第一の接着層30および第一の金属箔20からなる第一積層体を挿入し、熱板を加熱昇温させて前記第一積層体を加熱すると同時に加圧圧締するホットプレス法(Open Type Hot Press)、真空ホットプレス法(Vacuum Type Hot Press)などが挙げられる。
 加熱加圧成形の条件としては、絶縁層11や第一の接着層30の材質等に応じて適宜調整すればよいが、温度条件としては、第一の接着層30が含有する樹脂成分の軟化点よりも高く、且つ、コア基板10の絶縁層11を構成する熱可塑性樹脂Aの軟化点よりも低い温度範囲で設定されるのが好ましい。
 例えば、絶縁層11を構成する熱可塑性樹脂Aの軟化点が310℃、第一の接着層30が含有する樹脂成分の軟化点が250℃の場合、加熱加圧成形の温度条件は、260℃以上、300℃以下の範囲で設定するとよい。また、絶縁層11を構成する熱可塑性樹脂Aの軟化点が300℃、第一の接着層30が含有する樹脂成分の軟化点が120℃の場合(第一の接着層30が未硬化または半硬化状の熱硬化性樹脂を主成分とする場合など)は、130以上、250℃以下の範囲で成形温度を設定するとよい。加熱加圧成形の圧力、成形時間は成形性等を考慮して適宜設定することができる。
 [第二の成形工程(III)]
 (パターン加工)
 第二の成形工程(III)では、まず、第一の成形工程(II)で得られた積層体2において、金属層13をパターン加工してコア基板10の第二の表面に第二の回路13aを形成する。これにより、図1Cに示すように、積層体3が得られる。積層体3は、第一の表面側11Xの絶縁層11の一表面に第一の回路12、第一の硬化層30aおよび第一の金属箔20をこの順で有し、第二の表面側11Yの絶縁層11の他の表面に第二の回路13aを有する。
 第二の回路13aのパターンの形状は、回路基板1の使用目的に応じて適宜設定することができる。また、第二の回路13aのパターンの形状は第一の回路12と同じであっても異なる形状であっても構わない。パターン加工法としては、特に限定されず、例えば、フォトエッチング法などの公知の方法が挙げられる。
 (配置)
 第二の成形工程(III)では、図1Dに示すように、積層体3において、コア基板10の第二の表面に、第二の接着層50および第二の金属箔40をこの順に配置する。
 第二の接着層50は、第一の接着層30と同様に、熱可塑性樹脂Aの軟化点よりも低い軟化点を有する樹脂成分を含む樹脂組成物(b)をシート状にした絶縁材料である。樹脂組成物(b)を構成する樹脂成分としては、第一の接着層30(樹脂組成物(a))の構成成分と同様のものを挙げることができる。また、樹脂組成物(b)の具体的な組成成分は、第一の接着層30(樹脂組成物(a))と同じであっても、異なるものであってもよく、回路基板1の使用目的に応じて決定することができる。
 また、第二の接着層50の形態についても、第一の接着層30と同様に、プリプレグ、支持体付き樹脂シートなどが挙げられる。第二の接着層50の形態は、第一の接着層30と同一形態であっても、異なる形態であってもよく、回路基板1の使用目的に応じて決定することができる。
 第二の金属箔40についても、第一の金属箔20と同様のものが挙げられる。第二の金属箔40は、第一の金属箔20と同一であっても、厚みや性状、形態が異なるものであってもよく、回路基板1の使用目的に応じて決定することができる。
 (加熱加圧成形)
 第二の成形工程(III)では、図1Dに示すように、積層体3、第二の接着層50および第二の金属箔40をこの順に配置し、さらに加熱加圧成形することによってこれらを積層一体化する。これにより、図1Eに示すように、回路基板1が得られる。回路基板1は、第一の表面側11Xの絶縁層11の一表面に第一の回路12、第一の硬化層30aおよび第一の金属箔20をこの順で有し、第二の表面側11Yの絶縁層11の他の表面に第二の回路13a、第二の硬化層50aおよび第二の金属箔40をこの順で有する。
 この加熱加圧成形時において、第二の接着層50は樹脂組成物(b)が一旦溶融状態となり、第二の回路13a間を充填しながらコア基板10の中心部から周辺部に向かって流動する。そして、この樹脂流動に伴う応力が第二の回路13aに対してコア基板10の厚み方向(Z方向)と垂直なX-Y平面方向に作用する。このとき、コア基板10の第一の表面側11Xは、第一の回路12、第一の硬化層30aによって平面支持されているので、樹脂流動による応力に起因した絶縁層11の変形が起こりにくい。それ故、第二の回路13aの位置が移動しにくい。すなわち、加熱加圧成形時に熱可塑性樹脂Aが軟化しても絶縁層11の変形が抑制され、第二の回路13aの位置ズレも抑制される。したがって、この回路基板1は、第一の回路12および第二の回路13aの位置精度が高く、電気的な信頼性が高いものとなる。
 積層体3、第二の接着層50および第二の金属箔40を加熱加圧成形する方法としては、例えば、第一の成形工程(II)における加熱加圧成形と同様にして実施できる。
 回路基板1は、例えば、サブトラクティブ法等を使用して、回路基板1の第一の金属箔20および第二の金属箔40の一部をエッチングにより除去して回路を形成することによって、プリント配線板として使用することができる。この場合、層間の電気的接続のためのスルーホール又はブラインドバイアホールを形成するためにレーザー加工やドリル加工によりビア形成を行うことができる。このとき、前述のように、第一の回路12および第二の回路13aの位置精度が高いため、層間接続の信頼性を高くすることができる。また、得られたプリント配線板は、その片面又は両面に、ビルドアップ法により、新たに樹脂層と回路を交互に積み上げた多層プリント配線板のコア基板として使用することができる。
 本開示の方法により製造した回路基板は、電気的な信頼性が高いため、小型で多機能な電子機器に用いることができる。
 1   回路基板
 2,3 積層体
 10  コア基板
 11  絶縁層
 12  第一の回路
 13  金属層
 13a 第二の回路
 20  第一の金属箔
 30  第一の接着層
 30a 第一の硬化層
 40  第二の金属箔
 50  第二の接着層
 50a 第二の硬化層
 100 多層回路基板
 110 コア基板
 111 絶縁層
 112 第一の回路
 113 第二の回路
 120 銅箔
 130 プリプレグ

Claims (5)

  1.  熱可塑性樹脂を含む絶縁層と、前記絶縁層の一表面に形成された所定パターンの第一の回路と、前記絶縁層の他の表面に接合された平面状の金属層とを有するコア基板を準備する工程と、
     前記コア基板の前記第一の回路が配置された第一の表面に、前記熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第一の接着層および第一の金属箔をこの順に配置し、前記コア基板、前記第一の接着層および前記第一の金属箔を加熱加圧成形することによって積層一体化させる第一の成形工程と、
     前記第一の成形工程で得られた積層体において、前記金属層をパターン加工して前記コア基板の前記金属層が配置された第二の表面に第二の回路を形成した後、前記コア基板の第二の表面に、前記熱可塑性樹脂の軟化点よりも低い軟化点を有する樹脂成分を含む第二の接着層および第二の金属箔をこの順に配置し、前記コア基板、前記第二の接着層および前記第二の金属箔を加熱加圧成形することによって積層一体化させる第二の成形工程と、
    を含む、回路基板の製造方法。
  2.  前記熱可塑性樹脂は液晶ポリマーを含む、
    請求項1に記載の回路基板の製造方法。
  3.  前記第一の接着層および第二の接着層は、前記樹脂成分として未硬化又は半硬化状の熱硬化性樹脂を含む、
    請求項1又は2に記載の回路基板の製造方法。
  4.  前記第一の接着層および第二の接着層は、前記樹脂成分として前記熱可塑性樹脂の軟化点よりも低い軟化点を有する他の熱可塑性樹脂を含む、
    請求項1又は2に記載の回路基板の製造方法。
  5.  前記絶縁層は厚みが3μm以上、750μm以下である、
    請求項1~4のいずれか1項に記載の回路基板の製造方法。
PCT/JP2016/003854 2016-08-24 2016-08-24 回路基板の製造方法 WO2018037434A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/003854 WO2018037434A1 (ja) 2016-08-24 2016-08-24 回路基板の製造方法
CN201680088559.1A CN109644567A (zh) 2016-08-24 2016-08-24 电路基板的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/003854 WO2018037434A1 (ja) 2016-08-24 2016-08-24 回路基板の製造方法

Publications (1)

Publication Number Publication Date
WO2018037434A1 true WO2018037434A1 (ja) 2018-03-01

Family

ID=61246462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003854 WO2018037434A1 (ja) 2016-08-24 2016-08-24 回路基板の製造方法

Country Status (2)

Country Link
CN (1) CN109644567A (ja)
WO (1) WO2018037434A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080998A4 (en) * 2019-12-17 2023-06-14 NHK Spring Co., Ltd. MULTILAYER BODY, BONDING METHOD AND SEMI-FINISHED PRODUCT FOR PRINTED CIRCUIT BOARDS
CN212046250U (zh) * 2020-02-20 2020-12-01 瑞声科技(沭阳)有限公司 液晶聚合物复合层结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046247A (ja) * 2001-08-02 2003-02-14 Mitsui Chemicals Inc 多層プリント配線板およびその製造方法
JP2005268810A (ja) * 2002-11-12 2005-09-29 Nec Corp 配線基板、半導体パッケージ、基体絶縁膜及び配線基板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183653B2 (ja) * 1999-08-26 2001-07-09 ソニーケミカル株式会社 フレキシブル基板
JP4797742B2 (ja) * 2006-03-28 2011-10-19 パナソニック株式会社 多層配線基板とその製造方法
JP5151265B2 (ja) * 2007-06-14 2013-02-27 日立電線株式会社 多層配線基板及び多層配線基板の製造方法
CN104335688B (zh) * 2012-06-04 2018-02-09 Jx日矿日石金属株式会社 多层印刷配线板的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046247A (ja) * 2001-08-02 2003-02-14 Mitsui Chemicals Inc 多層プリント配線板およびその製造方法
JP2005268810A (ja) * 2002-11-12 2005-09-29 Nec Corp 配線基板、半導体パッケージ、基体絶縁膜及び配線基板の製造方法

Also Published As

Publication number Publication date
CN109644567A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
KR101014517B1 (ko) 캐리어 장착 프리프레그의 제조방법, 캐리어 장착 프리프레그, 박형 양면판의 제조방법, 박형 양면판, 및 다층 프린트 배선판의 제조방법
KR20090108834A (ko) 절연시트, 동박적층판 및 인쇄회로기판의 제조방법과 이를이용한 인쇄회로기판
WO2001045478A1 (fr) Carte a circuit imprime multicouche et procede de production
JPH07147464A (ja) 回路基板接続材とそれを用いた多層回路基板の製造方法
CN103841771A (zh) 组合印制电路板和印制电路板的制造方法以及印制电路板
WO2018037434A1 (ja) 回路基板の製造方法
WO2015010400A1 (zh) 印制电路板子板及印制电路板的制造方法和印制电路板
JP6631902B2 (ja) 回路基板の製造方法
TW201630482A (zh) 多層印刷配線板、多層金屬貼覆積層板、附樹脂之金屬箔
KR101281898B1 (ko) 다층 프린트배선판 및 그 제조방법
JP4967359B2 (ja) 樹脂組成物、樹脂フィルム、層間接着材および多層回路板
KR20140016934A (ko) 빌드업용 프리프레그
JP6811400B2 (ja) 回路基板の製造方法
WO2021049106A1 (ja) 回路基板、回路基板の製造方法、及び電子機器
JPH1154922A (ja) 内層回路入り積層板の製造方法
JP2007266165A (ja) 多層配線基板の製造方法
JP2004059716A (ja) 高誘電率複合材料組成物、誘電体転写シート、受動素子内蔵多層回路板及びその製造方法
JP6183743B2 (ja) プリプレグ、金属張積層板、プリント配線板
TW201808069A (zh) 電路基板之製造方法
JP2001085838A (ja) 多層積層板の製造方法
JP3356010B2 (ja) 金属箔張り積層板の製造方法
JP5032870B2 (ja) 凹凸回路基板の製造方法
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JPWO2017130945A1 (ja) 多層プリント配線板及び多層金属張積層板
JP4784082B2 (ja) プリント配線板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16914110

Country of ref document: EP

Kind code of ref document: A1