WO2018025962A1 - 弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ - Google Patents

弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ Download PDF

Info

Publication number
WO2018025962A1
WO2018025962A1 PCT/JP2017/028269 JP2017028269W WO2018025962A1 WO 2018025962 A1 WO2018025962 A1 WO 2018025962A1 JP 2017028269 W JP2017028269 W JP 2017028269W WO 2018025962 A1 WO2018025962 A1 WO 2018025962A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
electrode fingers
surface acoustic
acoustic wave
pitch
Prior art date
Application number
PCT/JP2017/028269
Other languages
English (en)
French (fr)
Inventor
健太 前田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020197003130A priority Critical patent/KR102074631B1/ko
Priority to CN201780048388.4A priority patent/CN109565267B/zh
Priority to JP2018531979A priority patent/JP6516070B2/ja
Publication of WO2018025962A1 publication Critical patent/WO2018025962A1/ja
Priority to US16/261,690 priority patent/US10511283B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02937Means for compensation or elimination of undesirable effects of chemical damage, e.g. corrosion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14576Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
    • H03H9/14582Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger the last fingers having a different pitch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a surface acoustic wave filter, a high-frequency module using the surface acoustic wave filter, and the like.
  • the high-frequency module includes other components such as a low noise amplifier (LNA) at the subsequent stage or the front stage of the surface acoustic wave filter (see, for example, Patent Document 1).
  • LNA low noise amplifier
  • the impedance (output impedance) at the output end of the surface acoustic wave filter connected to the other component is the impedance at the input end of the other component.
  • the output impedance of the surface acoustic wave filter is adjusted to match (input impedance).
  • Adjustment of the output impedance of the surface acoustic wave filter is generally performed by changing the crossing width of the IDT (InterDigital Transducer) electrode, the pitch or logarithm of the electrode fingers in the resonator constituting the surface acoustic wave filter, and the capacitance of the IDT electrode. It is done by changing.
  • IDT InterDigital Transducer
  • the passband width is expanded while maintaining low loss characteristics. There was a problem that it was difficult to do.
  • an object of the present invention is to provide a surface acoustic wave filter, a high-frequency module, and a multiplexer that can adjust the output impedance of the surface acoustic wave filter while realizing a wide band and low loss. .
  • a surface acoustic wave filter is a longitudinally coupled surface acoustic wave filter, wherein the surface acoustic wave filter is continuous in the propagation direction of the surface acoustic wave.
  • Each of the plurality of resonators includes a pair of comb-shaped electrodes each having a bus bar electrode and a plurality of parallel electrode fingers connected to the bus bar electrode; The comb electrode is arranged such that the plurality of electrode fingers are alternately positioned in the surface acoustic wave propagation direction, and the first electrode connected to the output terminal of the surface acoustic wave filter among the plurality of resonators.
  • the resonator has four or more regions with different pitches of the electrode fingers, and the pitch of the electrode fingers is constant in each of the four or more regions, and the resonance of the four or more regions Child surface acoustic wave
  • the pitch of the electrode fingers in a region other than the pair of first regions is larger than the pitch of the electrode fingers in the pair of first regions arranged on both ends in the propagation direction, and the pair of first regions
  • the pitch of the electrode fingers in the second region adjacent to one of the two is different from the pitch of the electrode fingers in the third region adjacent to the other of the pair of first regions.
  • the output impedance of the surface acoustic wave filter can be moved in two or more directions. Thereby, the output impedance of the surface acoustic wave filter can be adjusted without reducing the passband width.
  • the pitch of the electrode fingers in the third region may be larger than the pitch of the electrode fingers in the second region.
  • the pitch of the electrode fingers in the second region may be larger than the pitch of the electrode fingers in the third region.
  • the four or more regions may be five regions.
  • the pitch of the electrode fingers in the fourth region arranged in the center of the five regions is the pitch of the electrode fingers in the second region and the pitch of the electrode fingers in the third region. It may be smaller than at least one of them.
  • the number of pairs of the electrode fingers in each of the regions other than the pair of first regions may be the same.
  • the output impedance of the surface acoustic wave filter can be moved in two or more directions on the Smith chart.
  • an aspect of the high-frequency module according to the present invention includes a surface acoustic wave filter having the characteristics described above, and a high-frequency wave connected to the surface acoustic wave filter and passed through the surface acoustic wave filter. And a low noise amplifier for amplifying the signal.
  • the output impedance of the surface acoustic wave filter can be adjusted in two or more directions, so that the output impedance can be adjusted without narrowing the pass bandwidth of the high frequency module.
  • an aspect of the multiplexer according to the present invention includes a plurality of surface acoustic wave filters having the above-described characteristics, and each of the plurality of surface acoustic wave filters is connected to a common terminal. Yes.
  • the output impedance of the surface acoustic wave filter in two or more directions, the output impedance can be adjusted without narrowing the passband width of the multiplexer.
  • a surface acoustic wave filter a high-frequency module, and a multiplexer that can adjust the output impedance of the surface acoustic wave filter without reducing the passband width.
  • FIG. 1 is a conceptual diagram illustrating a configuration of the high-frequency module according to the first embodiment.
  • FIG. 2A is a schematic diagram illustrating a configuration of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 2B is a schematic diagram illustrating a specific example of the configuration of the surface acoustic wave filter illustrated in FIG. 2A.
  • 3A and 3B are schematic views showing a configuration of a general surface acoustic wave filter, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along the dashed line in FIG.
  • FIG. 4 is a schematic diagram illustrating a configuration of the surface acoustic wave filter according to the first embodiment.
  • FIG. 5 is a schematic diagram illustrating a configuration of one resonator of the surface acoustic wave filter according to the first embodiment.
  • FIG. 6 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to the comparative example.
  • FIG. 7 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to Example 1 of the first embodiment.
  • FIG. 8 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to Example 2 of the first embodiment.
  • FIG. 9 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to Example 3 of the first embodiment.
  • FIG. 10 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to Example 4 of the first embodiment.
  • FIG. 11A is a diagram illustrating an output impedance characteristic of the surface acoustic wave filter according to the first embodiment.
  • FIG. 11B is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 11C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 11D is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 12 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to Example 5 of the second embodiment.
  • FIG. 13 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter according to Example 6 of the second embodiment.
  • each figure is a schematic diagram and is not necessarily shown strictly. In each figure, substantially the same components are denoted by the same reference numerals, and redundant descriptions are omitted or simplified.
  • the number of electrode fingers in the resonator and the reflector is smaller than the actual number of electrode fingers.
  • the portion of the output impedance in the passband of the surface acoustic wave filter is indicated by a bold line.
  • FIG. 1 is a conceptual diagram showing a configuration of a high-frequency module 1 according to the present embodiment.
  • the high-frequency module 1 includes a surface acoustic wave filter 10 and a low noise amplifier (LNA) 20.
  • the surface acoustic wave filter 10 is once connected to an antenna (not shown) and the other end is connected to the low noise amplifier 20.
  • the low noise amplifier 20 is an amplifier that amplifies a weak radio wave after reception without increasing noise as much as possible.
  • the input impedance refers to the impedance of the surface acoustic wave filter 10 when the surface acoustic wave filter 10 is viewed from the input terminal IN side of the high frequency module 1. That is, it means the SAW (Surface Acoustic Wave) input side impedance indicated by an arrow in FIG.
  • the output impedance refers to the impedance of the surface acoustic wave filter 10 when the surface acoustic wave filter 10 is viewed from a terminal (not shown) to which the low noise amplifier 20 that is the output destination of the high frequency signal is connected. That is, it means the SAW output side impedance indicated by an arrow in FIG.
  • the surface acoustic wave filter 10 is a longitudinally coupled surface acoustic wave filter. As shown in FIG. 2A, the surface acoustic wave filter 10 includes a resonator 13, a resonator 14, and a resonator 15, and a reflector 16 and a reflector 17 between the input terminal 11 and the output terminal 12. Yes.
  • the resonator 13, the resonator 14, and the resonator 15 are arranged in this order from the reflector 16 side to the reflector 17 side.
  • the resonator 13 has a configuration in which two IDT electrodes 13a and 13b are combined.
  • the IDT electrode 13 a of the resonator 13 is connected to the input terminal 11.
  • the IDT electrode 13b is connected to the ground.
  • the resonator 15 has a configuration in which two IDT electrodes 15a and 15b are combined.
  • the IDT electrode 15 a of the resonator 15 is connected to the input terminal 11.
  • the IDT electrode 15b is connected to the ground.
  • the resonator 14 disposed between the resonator 13 and the resonator 15 has a configuration in which two IDT electrodes 14a and 14b are combined.
  • the IDT electrode 14a of the resonator 14 is connected to the ground.
  • the IDT electrode 14 b is connected to the output terminal 12.
  • the reflector 16 is provided with a plurality of bus bar electrodes 16a and 16b, and between the bus bar electrode 16a and the bus bar electrode 16b, and electrode fingers 16c having both ends connected to the bus bar electrode 16a and the bus bar electrode 16b, respectively.
  • a plurality of reflectors 17 are provided between two bus bar electrodes 17a and 17b and between the bus bar electrode 17a and the bus bar electrode 17b, and electrode fingers having both ends connected to the bus bar electrode 17a and the bus bar electrode 17b, respectively. 17c.
  • FIG. 3A and 3B are schematic views showing a configuration of a general surface acoustic wave filter, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along the dashed line in FIG.
  • the resonator 100 includes a piezoelectric substrate 123 and an IDT electrode 101a and an IDT electrode 101b which are comb-shaped electrodes (comb-shaped electrodes).
  • the piezoelectric substrate 123 is made of, for example, a single crystal of LiNbO 3, which is cut at a predetermined cut angle. In the piezoelectric substrate 123, a surface acoustic wave propagates in a predetermined direction.
  • the IDT electrode 101a includes a plurality of electrode fingers 110a that are parallel to each other and a bus bar electrode 111a that connects the plurality of electrode fingers 110a.
  • the IDT electrode 101b includes a plurality of electrode fingers 110b that are parallel to each other and a bus bar electrode 111b that connects the plurality of electrode fingers 110b.
  • the IDT electrode 101a and the IDT electrode 101b are arranged such that a plurality of electrode fingers 110a and 110b are alternately positioned in the surface acoustic wave propagation direction. That is, the IDT electrode 101a and the IDT electrode 101b are configured such that each of the plurality of electrode fingers 110b of the IDT electrode 101b is disposed between each of the plurality of electrode fingers 110a of the IDT electrode 101a.
  • the IDT electrode 101a and the IDT electrode 101b have a structure in which an adhesion layer 124a and a main electrode layer 124b are laminated as shown in FIG.
  • the adhesion layer 124a is a layer for improving the adhesion between the piezoelectric substrate 123 and the main electrode layer 124b, and as a material, for example, NiCr is used.
  • the main electrode layer 124b may have a single layer structure composed of one layer, or may have a stacked structure in which a plurality of layers are stacked.
  • the protective layer 125 is formed so as to cover the IDT electrode 101a and the IDT electrode 101b.
  • the protective layer 125 is a layer for the purpose of protecting the main electrode layer 124b from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance.
  • the protective layer 125 is a film containing, for example, silicon dioxide as a main component.
  • the protective layer 125 may have a single layer structure or a laminated structure.
  • the materials forming the adhesion layer 124a, the main electrode layer 124b, and the protective layer 125 are not limited to the materials described above. Furthermore, the IDT electrode 101a and the IDT electrode 101b do not have to have the above laminated structure.
  • the IDT electrode 101a and the IDT electrode 101b may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, and a plurality of layers made of the above metal or alloy may be used. You may be comprised by the laminated structure laminated
  • ⁇ shown in FIG. 3B is referred to as the pitch between the electrode finger 110a and the electrode finger 110b constituting the IDT electrode 101a and the IDT electrode 101b.
  • the wavelength is defined by the pitch ⁇ of the plurality of electrode fingers 110a and electrode fingers 110b constituting the IDT electrode 101a and the IDT electrode 101b.
  • the pitch ⁇ refers to the length from the center of the width of one electrode finger to the center of the width of the other electrode finger in adjacent electrode fingers connected to the same bus bar electrode. For example, in FIG.
  • W shown in FIG. 3B refers to the width of the electrode finger 110a of the IDT electrode 101a and the electrode finger 110b of the IDT electrode 101b in the resonator 100.
  • S shown in (b) of FIG. 3 refers to an interval between the electrode finger 110a and the electrode finger 110b.
  • L shown in FIG. 3A is the cross width of the IDT electrode 101a and the IDT electrode 101b, and is the length of the electrode finger where the electrode finger 110a of the IDT electrode 101a and the electrode finger 110b of the IDT electrode 101b overlap. I mean.
  • the logarithm means the number of electrode fingers 110a or 110b.
  • the structure of the resonator 100 is not limited to the structure described in (a) and (b) of FIG.
  • the resonator 13, the resonator 14, and the resonator 15 according to the present embodiment are not limited to the configuration described above.
  • the resonator 13, the resonator 14, and the resonator 15 may have configurations in which the pitches and logarithms of the electrode fingers are different as described below.
  • the resonator 14 connected to the output terminal 12 of the surface acoustic wave filter 10 is the reflector 17 from the reflector 16 side.
  • the reflector 17 is the reflector 17 from the reflector 16 side.
  • five regions 141 to 145 having different electrode finger pitches are provided.
  • FIG. 4 is a schematic diagram showing the configuration of the resonator 14 and shows a configuration in which regions are divided into regions having different pitches.
  • FIG. 5 is a schematic diagram showing the configuration of the resonator 14 more specifically.
  • the resonator 14 is adjacent to the first regions 141 and 145 disposed on both ends in the propagation direction of the surface acoustic wave in the resonator 14, and the first region 141.
  • the resonator 14 includes an IDT electrode 14a and an IDT electrode 14b as shown in FIG.
  • the IDT electrode 14a and the IDT electrode 14b correspond to comb-shaped electrodes in the present invention.
  • the IDT electrode 14a and the IDT electrode 14b form a pair of comb electrodes.
  • the IDT electrode 14a has a bus bar electrode 140a arranged in common in the regions 141 to 145.
  • the IDT electrode 14a has a plurality of electrode fingers 141a, 142a, 143a, 144a, and 145a, one end of which is connected to the bus bar electrode 140a in each of the regions 141 to 145.
  • the IDT electrode 14b has a bus bar electrode 140b arranged in common in the regions 141 to 145.
  • the IDT electrode 14b has a plurality of electrode fingers 141b, 142b, 143b, 144b, and 145b, one end of which is connected to the bus bar electrode 140b in each of the regions 141 to 145.
  • the pitch of the electrode fingers is different in the regions 141 to 145.
  • the first regions 141 and 145 are so-called narrow pitch regions where the pitch is narrower than other regions.
  • the second region, the third region, and the fourth region other than the narrow pitch region are so-called main pitch regions in which the pitch of the electrode fingers is larger than the pitch of the electrode fingers in the narrow pitch region.
  • the pitch of the electrode fingers in the first region 141 is ⁇ 1
  • the pitch of the electrode fingers in the second region 142 is ⁇ 2
  • the pitch of the electrode fingers in the fourth region 143 is ⁇ 3
  • the electrode finger pitch in the third region 144 is ⁇ 4
  • the electrode finger pitch in the first region 145 is ⁇ 5.
  • the relationship between the pitches of the electrode fingers in each region is as follows.
  • the electrode finger pitches ⁇ 2, ⁇ 4, and ⁇ 3 in the second region 142, the third region 144, and the fourth region 143 are larger than the electrode finger pitches ⁇ 1, ⁇ 5 in the first regions 141 and 145, respectively.
  • the electrode finger pitch ⁇ 2 in the second region 142 and the electrode finger pitch ⁇ 4 in the third region 144 are different.
  • the number of pairs of electrode fingers 142a and 142b in the second region 142 is three, and the number of pairs of electrode fingers 144a and 144b in the third region 144 is five.
  • the output impedance of the surface acoustic wave filter 10 changes to the inductive side.
  • the output impedance of the surface acoustic wave filter 10 changes to the capacitive side.
  • the electrode finger pitch ⁇ 3 in the fourth region 143 is smaller than at least one of the electrode finger pitch ⁇ 2 in the second region 142 and the electrode finger pitch ⁇ 4 in the third region 144.
  • ⁇ 3 0.09 ⁇ m.
  • the logarithm of the electrode fingers 143a and 143b in the fourth region 143 is two.
  • the output impedance of the surface acoustic wave filter 10 changes to the capacitive side.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is 3, 2, and 5, respectively, as an example.
  • the number of pairs of electrode fingers in each region of the resonator 14 is not limited to the number of pairs described above, and may be changed.
  • the resonator 13 adjacent to the resonator 14 has two regions 131 and 132 having different electrode finger pitches in order from the reflector 16 side to the reflector 17 side. That is, the region 132 is disposed on the center side of the surface acoustic wave filter 10, that is, at a position close to the resonator 14. The region 131 is disposed outside the surface acoustic wave filter 10, that is, on the side close to the reflector 16.
  • the pitch of the electrode fingers in the region 132 is formed smaller than the pitch of the electrode fingers in the region 131.
  • the region 132 is a so-called narrow pitch region.
  • the electrode finger pitch in the region 131 is 5.15 ⁇ m
  • the electrode finger pitch in the region 132 is 4.61 ⁇ m.
  • the number of electrode fingers in the region 131 is 22, and the number of electrode fingers in the region 132 is 3.
  • the resonator 15 adjacent to the resonator 14 and disposed on the opposite side of the resonator 13 with respect to the resonator 14 has different electrode finger pitches in order from the reflector 16 side to the reflector 17 side 2. It has two areas 151 and 152. That is, the region 151 is disposed at the center side of the surface acoustic wave filter 10, that is, at a position close to the resonator 14. The region 152 is disposed outside the surface acoustic wave filter 10, that is, on the side close to the reflector 17.
  • the pitch of the electrode fingers in the region 151 is formed smaller than the pitch of the electrode fingers in the region 152.
  • the region 151 is a so-called narrow pitch region.
  • the pitch of the electrode fingers in the region 151 is 4.87 ⁇ m
  • the pitch of the electrode fingers in the region 152 is 5.12 ⁇ m.
  • the number of electrode fingers in the region 151 is 5, and the number of electrode fingers in the region 152 is 20.
  • the pitch of the electrode fingers in the regions 132 and 151 may be the same as or different from that of the first region 141 or 145 in the resonator 14. Further, the pitch of the electrode fingers in the region 131 and the region 152 may be the same or different. Further, the number of pairs of electrode fingers in each region is not limited to the above-described number, and may be changed. For example, as will be described later, the number of pairs of electrode fingers in each region may be the same.
  • FIG. 6 is a diagram illustrating output impedance characteristics of the surface acoustic wave filter 10 according to the comparative example.
  • the electrode finger pitches ⁇ 2, ⁇ 4, and ⁇ 3 in the second region 142, the third region 144, and the fourth region 143 are made the same, and the pitch of the same electrode finger is changed to small, medium, and large.
  • the output impedance of the surface acoustic wave filter 10 will be described.
  • the pitch of the electrode fingers when the pitch of the electrode fingers is small, the pitch of the electrode fingers is 5.08 ⁇ m.
  • the pitch of the electrode fingers when the pitch of the electrode fingers is medium is 5.02 ⁇ m.
  • the pitch of the electrode fingers is 5.14 ⁇ m.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is 3, 2, and 5, respectively, as an example. At this time, the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the output impedance of the surface acoustic wave filter 10 when the pitch of the electrode fingers is small, medium, and large is indicated by a broken line, an alternate long and short dash line, and a solid line, respectively.
  • the output impedance in the pass band of the surface acoustic wave filter 10 moves from the left to the right in the Smith chart shown in FIG. Yes. That is, it can be seen that the output impedance in the passband of the surface acoustic wave filter 10 increases as the pitch of the electrode fingers of the resonator 14 is increased to small, medium, and large. Specifically, it can be seen that the real component of the output impedance increases.
  • the resistance of 4 can be increased by increasing the electrode finger pitches ⁇ 2, ⁇ 4, ⁇ 3 in the second region 142, the third region 144, and the fourth region 143.
  • the output impedance characteristic of the surface acoustic wave filter 10 when the relationship between the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 of the resonator 14 is ⁇ 3 ⁇ 2 ⁇ 4.
  • the electrode finger pitches ⁇ 1 and ⁇ 5 in the first regions 141 and 145 are not changed from the values in the comparative example described above. That is, the electrode finger pitches ⁇ 1 and ⁇ 5 are smaller than the electrode finger pitches ⁇ 2, ⁇ 4, and ⁇ 3 in the second region 142, the third region 144, and the fourth region 143.
  • FIG. 7 is a diagram showing the output impedance characteristics of the surface acoustic wave filter 10 according to this example.
  • the case where the pitch of the electrode fingers is not changed is a broken line
  • the case where only the pitch of the electrode fingers is changed is changed
  • the case where the pitch of the electrode fingers is changed into a different pitch by dividing the pitch of the electrode fingers into a plurality of regions Is shown by a solid line.
  • the case where the pitch of the electrode fingers is not changed is a case where the pitch of the electrode fingers shown in the comparative example is not changed from the configuration when it is small. Further, the case where only the pitch of the electrode fingers is changed is a case where the pitch of the electrode fingers shown in the comparative example is changed from when it is small to when it is inside.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed so that the relationship between the pitches of the electrode fingers becomes ⁇ 3 ⁇ 2 ⁇ 4.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is 3, 2, and 5, respectively, as an example.
  • the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the output impedance in the pass band of the surface acoustic wave filter 10 is obtained when the pitch of the electrode fingers is not changed. Compared to the Smith chart shown in FIG. 7, it moves in the right direction and the upward direction. That is, the output impedance of the surface acoustic wave filter 10 moves in the upper right direction in the Smith chart, unlike the comparative example in which only the pitch of the electrode fingers is changed.
  • the output impedance within the pass band of the surface acoustic wave filter 10 has a large resistance by changing the pitch of the electrode fingers so that the relationship of the pitch of the electrode fingers of the resonator 14 becomes ⁇ 3 ⁇ 2 ⁇ 4. And move to capacitive impedance.
  • the output impedance of the surface acoustic wave filter 10 can be adjusted so that the resistance and capacitive impedance are increased.
  • the output impedance characteristic of the surface acoustic wave filter 10 when the relationship between the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 of the resonator 14 is ⁇ 2 ⁇ 3 ⁇ 4.
  • the electrode finger pitches ⁇ 1 and ⁇ 5 are the electrode finger pitches ⁇ 2, ⁇ 4, and ⁇ 3 in the second region 142, the third region 144, and the fourth region 143. Smaller than.
  • FIG. 8 is a diagram showing the output impedance characteristics of the surface acoustic wave filter according to this example.
  • the case where the pitch of the electrode fingers is not changed is indicated by a broken line
  • the case where only the pitch of the electrode fingers is changed a dashed line
  • the pitch of the electrode fingers is changed so as to be divided into a plurality of different areas. Is shown by a solid line.
  • the pitch of the electrode fingers is not changed and the case where only the pitch of the electrode fingers is changed are the same as in the case of the first embodiment.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed so that the relationship between the pitches of the electrode fingers becomes ⁇ 2 ⁇ 3 ⁇ 4.
  • the number of pairs of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is 3, 2, and 5 as an example, as in the first embodiment.
  • the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the output impedance in the pass band of the surface acoustic wave filter 10 is shown in FIG. 8 as compared with the case where the pitch of the electrode fingers is not changed. Move to the right in the Smith chart. At this time, the upward movement in the Smith chart is smaller than that in the first embodiment.
  • the output impedance in the pass band of the surface acoustic wave filter 10 has a large resistance by changing the pitch of the electrode fingers so that the relationship of the pitch of the electrode fingers of the resonator 14 becomes ⁇ 2 ⁇ 3 ⁇ 4. It shows that it has become.
  • the shift to capacitive is weaker than in the case of Example 1.
  • the output impedance of the surface acoustic wave filter 10 can be adjusted so that the resistance is large and the capacitive impedance is slightly increased.
  • FIG. 9 is a graph showing the output impedance characteristics of the surface acoustic wave filter according to this example.
  • the case where the pitch of the electrode fingers is not changed is a broken line
  • the case where only the pitch of the electrode fingers is changed is a one-dot chain line
  • the pitch of the electrode fingers is changed so as to be divided into a plurality of different areas. Is shown by a solid line.
  • the pitch of the electrode fingers is not changed and the case where only the pitch of the electrode fingers is changed are the same as in the case of the first embodiment.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed so that the relationship between the pitches of the electrode fingers becomes ⁇ 3 ⁇ 4 ⁇ 2.
  • the number of pairs of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is 3, 2, and 5 as an example, as in the first embodiment.
  • the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the output impedance of the surface acoustic wave filter 10 is higher in the Smith chart shown in FIG. 9 than when the pitch of the electrode fingers is not changed. Move to the right and down. That is, the output impedance in the pass band of the surface acoustic wave filter 10 moves in the lower right direction in the Smith chart, unlike the comparative example in which only the pitch of the electrode fingers is changed.
  • the output impedance in the pass band of the surface acoustic wave filter 10 has a large resistance by changing the pitch of the electrode fingers so that the relationship of the pitch of the electrode fingers of the resonator 14 becomes ⁇ 3 ⁇ 4 ⁇ 2. And move inductively.
  • the output impedance of the surface acoustic wave filter 10 can be adjusted so that the resistance and inductive impedance are increased.
  • FIG. 10 is a diagram showing the output impedance characteristics of the surface acoustic wave filter according to this example.
  • the case where the pitch of the electrode fingers is not changed is indicated by a broken line
  • the case where only the pitch of the electrode fingers is changed is changed, the alternate long and short dash line, and the pitch of the electrode fingers is changed so as to be divided into a plurality of different areas. Is shown by a solid line.
  • the pitch of the electrode fingers is not changed and the case where only the pitch of the electrode fingers is changed are the same as in the case of the first embodiment.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed in such a way that the relationship between the pitches of the electrode fingers becomes ⁇ 4 ⁇ 3 ⁇ 2.
  • the number of pairs of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is 3, 2, and 5 as an example, as in the first embodiment.
  • the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the output impedance of the surface acoustic wave filter 10 is higher in the Smith chart shown in FIG. 10 than when the pitch of the electrode fingers is not changed. Move to the right and down. That is, the output impedance in the pass band of the surface acoustic wave filter 10 moves in the lower right direction in the Smith chart, unlike the comparative example in which only the pitch of the electrode fingers is changed. At this time, the downward movement in the Smith chart is larger than that in the third embodiment.
  • the output impedance of the surface acoustic wave filter 10 can be adjusted so that the resistance is large and the capacitive impedance is larger.
  • FIG. 11A is a diagram showing an output impedance characteristic of the surface acoustic wave filter according to the present embodiment.
  • the case where the pitch of the electrode fingers is not changed is indicated by a broken line
  • the case where the crossing width of the electrode fingers is changed is changed, the alternate long and short dash line, and the pitch of the electrode fingers is changed to a different pitch by dividing the plurality of regions. Is shown by a solid line.
  • the case where the pitch of the electrode fingers is not changed is a case where the pitch of the electrode fingers shown in the comparative example is not changed from the configuration when it is small.
  • the case where the cross width of the electrode fingers is changed is a case where only the cross width is changed from the configuration when the pitch of the electrode fingers shown in the comparative example is small.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed so that the relationship between the pitches of the electrode fingers becomes ⁇ 3 ⁇ 4 ⁇ 2.
  • the output impedance in the pass band of the surface acoustic wave filter 10 is smaller than when the pitch of the electrode fingers shown in the comparative example is small. Move to the right on the Smith chart.
  • the output impedance of the surface acoustic wave filter 10 is as shown in FIG. 11A compared to the case where the pitch of the electrode fingers is not changed. Move further to the right in the Smith chart shown.
  • the output impedance in the pass band of the surface acoustic wave filter 10 increases both when the crossing width of the electrode fingers is changed and when the pitch of the electrode fingers is changed to a different pitch by dividing the plurality of regions. To do.
  • the output impedance of the surface acoustic wave filter 10 is changed more greatly when the pitch of the electrode fingers is divided into a plurality of regions and changed to be different than when the cross width of the electrode fingers is changed. be able to.
  • FIGS. 11B to 11D are diagrams showing pass characteristics of the surface acoustic wave filter 10 according to the first exemplary embodiment.
  • FIG. 11C shows the pass characteristics of the surface acoustic wave filter 10 when mismatch loss is removed in order to make the change in bandwidth easier to understand.
  • the case where the pitch of the electrode fingers is not changed is indicated by a broken line
  • the case where the cross width of the electrode fingers is changed is indicated by a one-dot chain line
  • the pitch of the electrode fingers is divided into a plurality of regions.
  • the change is indicated by a solid line.
  • the pitch of the electrode fingers is divided into a plurality of regions to be different pitches, the pitch of the electrode fingers is not changed, and the cross width of the electrode fingers is changed Compared to the case, the passband width of the surface acoustic wave filter 10 is widened. In particular, the passband on the low frequency side is widened so as to be easily understood when viewing FIG. 11C. Therefore, changing the pitch of the electrode fingers so as to have different pitches by dividing the plurality of regions is more effective for widening the band than changing the cross width of the electrode fingers.
  • the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode of the surface acoustic wave filter 10 move to the low frequency side as shown in FIG. 11D.
  • the pass characteristics of the surface acoustic wave filter 10 when the pitch of the electrode fingers is divided into a plurality of regions and changed so as to be different from each other are as follows. Compared with the pass characteristic of the surface acoustic wave filter when the cross width of the finger is changed, the resonance frequency of the zeroth-order resonance mode moves to the low frequency side.
  • the pass bandwidth of the surface acoustic wave filter 10 is the same as that when the pitch of the electrode fingers is not changed and the cross width of the electrode fingers. Is larger than the pass characteristic of the surface acoustic wave filter when the value is changed.
  • both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode move to the low frequency side.
  • the resonance frequency of the secondary resonance mode moves to a lower frequency side than the resonance frequency of the zeroth resonance mode. Accordingly, since the interval between the resonance frequencies of the zeroth-order resonance mode and the second-order resonance mode is widened, the coupling between these resonance modes is weakened.
  • the surface acoustic wave filter 10 in the case where the pitch of the electrode fingers is changed so as to be different from each other by dividing into a plurality of regions passes.
  • the input impedance in the band deviates from the Smith chart center compared to the input impedance of the surface acoustic wave filter when the pitch of the electrode fingers is not changed and when the cross width of the electrode fingers is changed. It will be. That is, the output impedance of the surface acoustic wave filter 10 changes in the direction in which the resistance increases.
  • the output impedance can be changed while widening the passband width of the surface acoustic wave filter 10. That is, the output impedance of the surface acoustic wave filter 10 can be adjusted without deteriorating the pass characteristic of the surface acoustic wave filter 10.
  • the crossing width of the electrode fingers of the surface acoustic wave filter 10 is changed, it is better to divide the pitch of the electrode fingers into a plurality of regions and change the pitch so that the passing characteristics are better.
  • the output impedance can be adjusted.
  • the output impedance of the surface acoustic wave filter 10 can be adjusted without deteriorating the pass characteristics of the surface acoustic wave filter 10.
  • the relationship between the electrode finger pitches ⁇ 2 and ⁇ 4 in the second region 142 and the third region 144 of the resonator 14 is set to ⁇ 2 ⁇ 4, so that the output impedance of the surface acoustic wave filter 10 is only a resistance. Instead of inductive impedance. Further, by setting the relationship between the pitches ⁇ 2 and ⁇ 4 of the electrode fingers to ⁇ 4 ⁇ 2, the output impedance of the surface acoustic wave filter 10 can be moved not only to the resistance but also to the capacitive impedance.
  • the surface acoustic wave filter 10. can be moved inductively.
  • the output impedance can be moved in two or more directions. That is, the output impedance of the surface acoustic wave filter 10 can be adjusted including resistance, capacitive and inductive impedance.
  • the resonator 14 is divided into five regions having different electrode finger pitches, but is not limited to five regions, and may be four regions or six or more regions. .
  • the pitch of the electrode fingers By setting the pitch of the electrode fingers to a different value for each of the five regions, the output impedance of the surface acoustic wave filter 10 can be adjusted more finely than in the case of using four regions.
  • the surface acoustic wave filter 10 includes three resonators, but the number of resonators is not limited to this and may be changed.
  • the surface acoustic wave filter may include five resonators.
  • the pitch of electrode fingers and the number of pairs of electrode fingers are not limited to those described above, and may be changed as appropriate.
  • the pitch of the electrode fingers in the fourth region may be smaller than the pitch of the electrode fingers in one of the second region and the third region, or smaller than the pitch of the electrode fingers in both regions. May be.
  • the high-frequency module 1 according to the present embodiment is different from the high-frequency module 1 according to the first embodiment in that the number of pairs of electrode fingers in each region other than the first region is the same.
  • the surface acoustic wave filter 10 in comparison with the surface acoustic wave filter 10 in Example 1 of the first embodiment described above.
  • the surface acoustic wave filter 10 in which the relationship between the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 of the resonator 14 is ⁇ 3 ⁇ 2 ⁇ 4 did.
  • the numbers of electrode fingers in the second region 142, the third region 144, and the fourth region 143 are set to 3, 2, and 5 as an example. Note that the number of electrode fingers in the first regions 141 and 145 at this time was 3 and 8, respectively.
  • the relationship between the electrode finger pitches ⁇ 2, ⁇ 4, and ⁇ 3 in the second region 142, the third region 144, and the fourth region 143 of the resonator 14 is expressed as ⁇ 3 ⁇ 2 ⁇ 4 (Example 5), ⁇ 2 As ⁇ 3 ⁇ 4 (Example 6), the output impedance when the number of pairs of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is the same will be described.
  • FIG. 12 is a diagram showing the output impedance characteristics of the surface acoustic wave filter 10 according to this example.
  • a broken line when only the pitch of the electrode fingers is changed, an alternate long and short dash line, when the pitch of the electrode fingers is divided into a plurality of areas and changed to be different pitches Is shown by a solid line.
  • the case where the pitch of the electrode fingers is not changed is the case where the pitch of the electrode fingers shown in the comparative example is not changed from the configuration when it is small as in the first embodiment. Further, the case where only the pitch of the electrode fingers is changed is a case where the pitch of the electrode fingers shown in the comparative example is changed from when it is small to when it is inside.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed so that the relationship between the pitches of the electrode fingers becomes ⁇ 3 ⁇ 2 ⁇ 4.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is the same, for example, six. At this time, the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is the same, and the pitch between the electrode fingers is in a relationship of ⁇ 3 ⁇ 2 ⁇ 4.
  • the output impedance in the pass band of the surface acoustic wave filter 10 moves in the upper right direction in the Smith chart shown in FIG. 12 as compared with the case where the pitch of the electrode fingers is not changed.
  • the output impedance within the pass band of the surface acoustic wave filter 10 has a large resistance by changing the pitch of the electrode fingers so that the relationship of the pitch of the electrode fingers of the resonator 14 becomes ⁇ 3 ⁇ 2 ⁇ 4. And move to capacitive impedance.
  • the output impedance in the pass band of the surface acoustic wave filter 10 is smaller in comparison with the surface acoustic wave filter 10 in the first embodiment shown in FIG.
  • the output impedance in the passband of the surface acoustic wave filter 10 is slightly changed to an inductive impedance. This is because the number of electrode fingers in the fourth region 143 is increased from 2 to 3 and the number of electrode fingers in the third region 144 is decreased from 5 to 3, so that the output impedance in the pass band in the Smith chart is increased. It can be said that this shows a change that rotates to the left. In FIG. 12, since the winding of the output impedance in the Smith chart is widened, it can be said that the output impedance in the pass band tends to vary.
  • the output impedance within the pass band of the surface acoustic wave filter 10 can be finely adjusted by making the number of pairs of electrode fingers in the second region 142, the third region 144, and the fourth region 143 the same. Can do. Thereby, the output impedance of the surface acoustic wave filter 10 can be adjusted without deteriorating the pass characteristic of the surface acoustic wave filter 10.
  • FIG. 13 is a diagram showing output impedance characteristics of the surface acoustic wave filter 10 according to the present example.
  • the case where the pitch of the electrode fingers is not changed is indicated by a broken line
  • the case where only the pitch of the electrode fingers is changed a dashed line
  • the pitch of the electrode fingers is changed so as to be divided into a plurality of different areas. Is shown by a solid line.
  • the case where the pitch of the electrode fingers is not changed is the case where the pitch of the electrode fingers shown in the comparative example is not changed from the configuration when it is small as in the first embodiment. Further, the case where only the pitch of the electrode fingers is changed is a case where the pitch of the electrode fingers shown in the comparative example is changed from when it is small to when it is inside.
  • the pitches of the electrode fingers in the second region 142, the third region 144, and the fourth region 143 are ⁇ 2, ⁇ 4.
  • ⁇ 3 is changed so that the relationship between the pitches of the electrode fingers becomes ⁇ 2 ⁇ 3 ⁇ 4.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is the same, and as an example, each is six. At this time, the number of electrode fingers in the first regions 141 and 145 is 3 and 8, respectively.
  • the number of electrode fingers in the second region 142, the third region 144, and the fourth region 143 is the same, and the pitch between the electrode fingers is in a relationship of ⁇ 2 ⁇ 3 ⁇ 4.
  • the output impedance in the pass band of the surface acoustic wave filter 10 moves in the right direction in the Smith chart shown in FIG. 13 as compared with the case where the pitch of the electrode fingers is not changed. This is because the output impedance in the pass band of the surface acoustic wave filter 10 has a large resistance by changing the pitch of the electrode fingers so that the relationship of the pitch of the electrode fingers of the resonator 14 becomes ⁇ 2 ⁇ 3 ⁇ 4. It shows that it becomes.
  • the output impedance of the surface acoustic wave filter 10 according to the present example is smaller in overall change as in the case of Example 5 than the surface acoustic wave filter 10 in Example 2 shown in FIG.
  • the shift to capacitive is larger than the output impedance in the pass band of the surface acoustic wave filter 10 in the second embodiment. This is because the number of electrode fingers in the fourth region 143 is increased from 2 to 3 and the number of electrode fingers in the third region 144 is decreased from 5 to 3, so that the output impedance in the pass band in the Smith chart is increased. It can be said that this shows a change that rotates to the left.
  • the output impedance of the surface acoustic wave filter 10 is balanced between capacitive and inductive properties. Can be adjusted. That is, in the Smith chart, the output impedance of the surface acoustic wave filter can be moved in two or more directions.
  • the output impedance of the surface acoustic wave filter 10 can also be adjusted by changing the logarithm of the electrode fingers.
  • the surface acoustic wave filter according to the above-described embodiment may be used for a high-frequency module.
  • the surface acoustic wave filter 10 may be connected to a low noise amplifier 20 that amplifies the high-frequency signal that has passed through the surface acoustic wave filter 10.
  • the surface acoustic wave filter according to the above-described embodiment may be used for a multiplexer.
  • the multiplexer has a plurality of surface acoustic wave filters, and each of the plurality of surface acoustic wave filters is connected to a common terminal.
  • the resonator is divided into five regions having different electrode finger pitches.
  • the region is not limited to five regions, and may be four regions or six or more regions. .
  • the surface acoustic wave filter 10 includes three resonators, but the number of resonators is not limited to this and may be changed.
  • the surface acoustic wave filter may include five resonators.
  • the pitch of electrode fingers and the number of pairs of electrode fingers are not limited to those described above, and may be changed as appropriate.
  • the pitch of the electrode fingers in the fourth region may be smaller than the pitch of the electrode fingers in one of the second region and the third region, or smaller than the pitch of the electrode fingers in both regions. May be.
  • the resonator arranged in the center portion among the three resonators used in the surface acoustic wave filter has four or more regions having different electrode finger pitches.
  • the present invention is not limited to this, and the resonator may have four regions, or the number of regions may be increased as long as the resonator includes three or more regions.
  • the number of resonators having three or more regions having different electrode finger pitches is not limited to one, and two resonators disposed at both ends of three resonators used in a surface acoustic wave filter. Also good.
  • the pitches of the electrode fingers in the corresponding regions of the two resonators may be the same or different.
  • the number of electrode fingers in each corresponding region of the two resonators may be the same or different.
  • the materials for the substrate, electrodes, protective layer, etc. constituting the resonator are not limited to those described above, and may be appropriately changed.
  • the pitch and logarithm of the electrode fingers of each resonator may be changed as long as the above-described conditions are satisfied.
  • the present invention can be used for high-frequency modules, duplexers, multiplexers, receivers, etc. using surface acoustic wave filters.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性表面波フィルタは、共振子(13、14、15)を備え、共振子(14)は、電極指のピッチが異なる4つ以上の領域を有し、4つ以上の領域のそれぞれでは電極指のピッチは一定であり、4つ以上の領域のうち、共振子の弾性表面波の伝搬方向の両端側に配置された第1の領域(141、145)における電極指のピッチよりも、第1の領域(141、145)以外の領域(142~144)における電極指のピッチは大きく、第1の領域(141)に隣接する第2の領域(142)における電極指のピッチと、第1の領域(145)に隣接する第3の領域(144)における電極指のピッチとは、異なっている。

Description

弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ
 本発明は、弾性表面波フィルタおよび弾性表面波フィルタを用いた高周波モジュール等に関する。
 従来、移動体通信機器の回路モジュールとして、弾性表面波(Surface Acoustic Wave:SAW)フィルタが使用された高周波モジュールが開発されている。近年の通信周波数帯域の広帯域化に伴い、高周波モジュールの受信感度の向上のため、受信回路モジュールには低損失かつ低雑音化の要求が高まっている。そのため、高周波モジュールは、弾性表面波フィルタの後段または前段に、低雑音増幅器(Low Noise Amplifier:LNA)等の他の部品を備えている(例えば、特許文献1参照)。
 一般的に、高周波モジュールに他の部品が接続されている場合には、他の部品に接続された側の弾性表面波フィルタの出力端におけるインピーダンス(出力インピーダンス)が他の部品の入力端におけるインピーダンス(入力インピーダンス)に整合するように、弾性表面波フィルタの出力インピーダンスを調整する。
 弾性表面波フィルタの出力インピーダンスの調整は、一般的に、弾性表面波フィルタを構成する共振子におけるIDT(InterDigital Transducer)電極の交叉幅、電極指のピッチまたは対数等を変更してIDT電極の容量を変化させることにより行われている。
特開2008-301223号公報
 しかし、IDT(InterDigital Transducer)電極の交叉幅、電極指のピッチまたは対数等を変更することにより、弾性表面波フィルタの出力インピーダンスを調整する場合、低損失特性を維持しつつで通過帯域幅を拡大させることは難しいという問題が生じていた。
 上記課題に鑑み、本発明は、広帯域化、低損失化を実現しつつ、弾性表面波フィルタの出力インピーダンスを調整することができる弾性表面波フィルタおよび高周波モジュールおよびマルチプレクサを提供することを目的とする。
 上記目的を達成するために、本発明にかかる弾性表面波フィルタの一態様は、縦結合型の弾性表面波フィルタであって、前記弾性表面波フィルタは、弾性表面波の伝搬方向に連続して配置された複数の共振子を備え、前記複数の共振子のそれぞれは、バスバー電極と前記バスバー電極に接続された互いに平行な複数の電極指とを有する一対の櫛形電極を有し、一対の前記櫛形電極は、前記複数の電極指が前記弾性表面波伝搬方向に交互に位置するように配置されており、前記複数の共振子のうち前記弾性表面波フィルタの出力端子に接続された第1の共振子は、前記電極指のピッチが異なる4つ以上の領域を有し、前記4つ以上の領域のそれぞれでは前記電極指のピッチは一定であり、前記4つ以上の領域のうち、前記共振子の弾性表面波の伝搬方向の両端側に配置された一対の第1の領域における前記電極指のピッチよりも、前記一対の第1の領域以外の領域における前記電極指のピッチは大きく、前記一対の第1の領域の一方に隣接する第2の領域における前記電極指のピッチと、前記一対の第1の領域の他方に隣接する第3の領域における前記電極指のピッチとは、異なっている。
 これにより、弾性表面波フィルタの出力インピーダンスを、抵抗、容量性および誘導性のインピーダンスを含めて調整することができる。したがって、スミスチャートにおいて、弾性表面波フィルタの出力インピーダンスを2以上の方向に移動させることができる。これにより、通過帯域幅を狭小化させることなく、弾性表面波フィルタの出力インピーダンスを調整することができる。
 また、前記第3の領域における前記電極指のピッチは、前記第2の領域における前記電極指のピッチよりも大きくてもよい。
 これにより、弾性表面波フィルタの出力インピーダンスを、抵抗だけでなく誘導性のインピーダンスに移動させることができる。
 また、前記第2の領域における前記電極指のピッチは、前記第3の領域における前記電極指のピッチよりも大きくてもよい。
 これにより、弾性表面波フィルタの出力インピーダンスを、抵抗だけでなく容量性のインピーダンスに移動させることができる。
 また、前記4つ以上の領域とは、5つの領域であってもよい。
 これにより、電極指のピッチを4つの領域ごとに異なる値とする場合に比べて、弾性表面波フィルタの出力インピーダンスをより細かく調整することができる。
 また、前記5つの領域のうちの中央に配置された第4の領域における前記電極指のピッチは、前記第2の領域における前記電極指のピッチおよび前記第3の領域における前記電極指のピッチの少なくともいずれかよりも小さくてもよい。
 これにより、弾性表面波フィルタの出力インピーダンスを、誘導性に移動させることができる。
 また、前記一対の第1の領域以外の領域のそれぞれにおける前記電極指の対数は、同数であってもよい。
 これにより、電極指の対数が同数の場合であっても、スミスチャートにおいて、弾性表面波フィルタの出力インピーダンスを2以上の方向に移動させることができる。
 また、上記目的を達成するために、本発明にかかる高周波モジュールの一態様は、上述した特徴を有する弾性表面波フィルタと、前記弾性表面波フィルタに接続され、前記弾性表面波フィルタを通過した高周波信号を増幅する低雑音増幅器とを備える。
 これにより、スミスチャートにおいて、弾性表面波フィルタの出力インピーダンスを2以上の方向に移動させることで、高周波モジュールの通過帯域幅を狭小化させることなく、出力インピーダンスを調整することができる。
 また、上記目的を達成するために、本発明にかかるマルチプレクサの一態様は、上述した特徴を有する弾性表面波フィルタを複数備え、前記複数の弾性表面波フィルタのそれぞれは、共通端子に接続されている。
 これにより、スミスチャートにおいて、弾性表面波フィルタの出力インピーダンスを2以上の方向に移動させることで、マルチプレクサの通過帯域幅を狭小化させることなく、出力インピーダンスを調整することができる。
 本発明によれば、通過帯域幅を狭小化させることなく、弾性表面波フィルタの出力インピーダンスを調整することができる弾性表面波フィルタおよび高周波モジュールおよびマルチプレクサを提供することができる。
図1は、実施の形態1にかかる高周波モジュールの構成を示す概念図である。 図2Aは、実施の形態1にかかる弾性表面波フィルタの構成を示す概略図である。 図2Bは、図2Aに示した弾性表面波フィルタの構成の具体例を示す概略図である。 図3は、一般的な弾性表面波フィルタの構成を示す概略図であり、(a)は平面図、(b)は(a)に示した一点鎖線における矢視断面図である。 図4は、実施の形態1にかかる弾性表面波フィルタの構成を示す概略図である。 図5は、実施の形態1にかかる弾性表面波フィルタの1つの共振子の構成を示す概略図である。 図6は、比較例にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図7は、実施の形態1における実施例1にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図8は、実施の形態1における実施例2にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図9は、実施の形態1における実施例3にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図10は、実施の形態1における実施例4にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図11Aは、実施の形態1にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図11Bは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。 図11Cは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。 図11Dは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。 図12は、実施の形態2における実施例5にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。 図13は、実施の形態2における実施例6にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。
 以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。また、図示した電極構造では、本発明の理解を容易とするために、共振子および反射器における電極指の本数を実際の電極指の本数よりも少なく図示している。また、図示したスミスチャートでは、弾性表面波フィルタの通過帯域における出力インピーダンスの部分を太線で示している。
 (実施の形態1)
 以下、実施の形態について、図1~図11Dを用いて説明する。
 [1.弾性表面波フィルタおよび高周波モジュールの構成]
 はじめに、本実施の形態にかかる高周波モジュール1の構成について説明する。図1は、本実施の形態にかかる高周波モジュール1の構成を示す概念図である。
 図1に示すように、本実施の形態にかかる高周波モジュール1は、弾性表面波フィルタ10と低雑音増幅器(Low Noise Amplifier:LNA)20とを備えている。弾性表面波フィルタ10は、一旦がアンテナ(図示せず)に接続され、他端が低雑音増幅器20に接続されている。低雑音増幅器20は、受信後の微弱な電波をできるだけ雑音を増加させずに増幅する増幅器である。
 なお、弾性表面波フィルタ10において、入力インピーダンスとは、高周波モジュール1の入力端子IN側から弾性表面波フィルタ10をみたときの弾性表面波フィルタ10のインピーダンスのことをいう。つまり、図1に矢印で示したSAW(Surface Acoustic Wave)入力側インピーダンスのことをいう。また、出力インピーダンスとは、高周波信号の出力先である低雑音増幅器20が接続された端子(図示せず)から弾性表面波フィルタ10をみたときの弾性表面波フィルタ10のインピーダンスのことをいう。つまり、図1に矢印で示したSAW出力側インピーダンスのことをいう。
 弾性表面波フィルタ10は、縦結合型の弾性表面波フィルタである。図2Aに示すように、弾性表面波フィルタ10は、入力端子11と出力端子12との間に、共振子13、共振子14および共振子15と、反射器16および反射器17とを備えている。共振子13、共振子14および共振子15は、反射器16側から反射器17側へと、この順に配置されている。
 図2Bに示すように、共振子13は、2つのIDT電極13aおよび13bが組み合わされた構成をしている。共振子13のIDT電極13aは、入力端子11に接続されている。IDT電極13bは、グランドに接続されている。同様に、共振子15は、2つのIDT電極15aおよび15bが組み合わされた構成をしている。共振子15のIDT電極15aは、入力端子11に接続されている。IDT電極15bは、グランドに接続されている。また、共振子13と共振子15との間に配置された共振子14は、2つのIDT電極14aおよび14bが組み合わされた構成をしている。共振子14のIDT電極14aは、グランドに接続されている。IDT電極14bは、出力端子12に接続されている。
 また、反射器16は、2つのバスバー電極16aおよびバスバー電極16bと、バスバー電極16aとバスバー電極16bとの間に複数設けられ、バスバー電極16aおよびバスバー電極16bにそれぞれ両端が接続された電極指16cとを備えている。同様に、反射器17は、2つのバスバー電極17aおよびバスバー電極17bと、バスバー電極17aとバスバー電極17bとの間に複数設けられ、バスバー電極17aおよびバスバー電極17bにそれぞれ両端が接続された電極指17cとを備えている。
 ここで、共振子の構成について、一般的な共振子100を用いてより詳細に説明する。図3は、一般的な弾性表面波フィルタの構成を示す概略図であり、(a)は平面図、(b)は(a)に示した一点鎖線における矢視断面図である。
 図3の(a)および(b)に示すように、共振子100は、圧電基板123と、櫛形形状を有する電極(櫛形電極)であるIDT電極101aおよびIDT電極101bとで構成されている。
 圧電基板123は、例えば、所定のカット角で切断されたLiNbOの単結晶からなる。圧電基板123では、所定の方向に弾性表面波が伝搬する。
 図3の(a)に示すように、圧電基板123の上には、対向する一対のIDT電極101aおよびIDT電極101bが形成されている。IDT電極101aは、互いに平行な複数の電極指110aと、複数の電極指110aを接続するバスバー電極111aとで構成されている。また、IDT電極101bは、互いに平行な複数の電極指110bと、複数の電極指110bを接続するバスバー電極111bとで構成されている。IDT電極101aとIDT電極101bとは、互いの複数の電極指110aおよび110bが弾性表面波伝搬方向に交互に位置するように配置されている。すなわち、IDT電極101aとIDT電極101bとは、IDT電極101aの複数の電極指110aのそれぞれの間に、IDT電極101bの複数の電極指110bのそれぞれが配置される構成となっている。
 また、IDT電極101aおよびIDT電極101bは、図3の(b)に示すように、密着層124aと主電極層124bとが積層された構造となっている。
 密着層124aは、圧電基板123と主電極層124bとの密着性を向上させるための層であり、材料としては、例えば、NiCrが用いられる。
 主電極層124bは、材料として、例えば、Ptが用いられる。主電極層124bは、1つの層で構成された単層構造であってもよいし、複数の層が積層された積層構造であってもよい。
 保護層125は、IDT電極101aおよびIDT電極101bを覆うように形成されている。保護層125は、主電極層124bを外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層である。保護層125は、例えば、二酸化ケイ素を主成分とする膜である。保護層125は、単層構造であってもよいし積層構造であってもよい。
 なお、密着層124a、主電極層124bおよび保護層125を構成する材料は、上述した材料に限定されない。さらに、IDT電極101aおよびIDT電極101bは、上記積層構造でなくてもよい。IDT電極101aおよびIDT電極101bは、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属又は合金から構成されてもよく、また、上記の金属又は合金から構成される層が複数積層された積層構造で構成されてもよい。また、保護層125は、形成されていなくてもよい。
 ここで、IDT電極101aおよびIDT電極101bの設計パラメータについて説明する。図3の(b)に示すλは、IDT電極101aおよびIDT電極101bを構成する電極指110aおよび電極指110bのピッチという。弾性表面波フィルタにおいて、波長は、IDT電極101aおよびIDT電極101bを構成する複数の電極指110aおよび電極指110bのピッチλで規定される。ピッチλとは、詳細には、同一のバスバー電極に接続された隣り合う電極指において、一方の電極指の幅の中央から他方の電極指の幅の中央までの長さのことをいう。例えば、図3の(b)では、バスバー電極111aに接続された一の電極指110aの幅の中央から、当該一の電極指110aが接続されたバスバー電極111aと同一のバスバー電極111aに接続され、一の電極指110aに隣り合う他の電極指110aの幅の中央までの長さである。
 なお、図3の(b)に示すWは、共振子100におけるIDT電極101aの電極指110aおよびIDT電極101bの電極指110bの幅のことをいう。また、図3の(b)に示すSは、電極指110aと電極指110bとの間隔のことをいう。また、図3の(a)に示すLは、IDT電極101aおよびIDT電極101bの交叉幅といい、IDT電極101aの電極指110aとIDT電極101bの電極指110bとが重複する電極指の長さのことをいう。また、対数とは、電極指110aまたは電極指110bの本数のことをいう。
 なお、共振子100の構造は、図3の(a)および(b)に記載された構造に限定されない。また、本実施の形態にかかる共振子13、共振子14および共振子15は、上述した構成に限らない。共振子13、共振子14および共振子15は、以下に示すように、電極指のピッチおよび対数がそれぞれ異なる構成であってもよい。
 図2Aおよび図2Bに示した3つの共振子13、共振子14および共振子15のうち、弾性表面波フィルタ10の出力端子12に接続された共振子14は、反射器16側から反射器17側へと順に、電極指のピッチが異なる5つの領域141~145を有している。
 図4は、共振子14の構成を示す概略図であり、ピッチの異なる領域ごとに領域を分割して構成を示している。図5は、共振子14の構成をより具体的に示す概略図である。
 詳細には、共振子14は、図4に示すように、共振子14において弾性表面波の伝搬方向の両端側に配置された第1の領域141および145と、第1の領域141に隣接する第2の領域142と、第1の領域145に隣接する第3の領域144と、第2の領域142と第3の領域144との間の領域である第4の領域143とを有している。
 また、共振子14は、図5に示すように、IDT電極14aとIDT電極14bとで構成されている。IDT電極14aおよびIDT電極14bは、本発明における櫛形電極に相当する。IDT電極14aとIDT電極14bとで、一対の櫛形電極を成している。
 IDT電極14aは、領域141~145に共通して配置されたバスバー電極140aを有している。また、IDT電極14aは、領域141~145のそれぞれにおいてバスバー電極140aに一端が接続された、複数の電極指141a、142a、143a、144aおよび145aを有している。
 同様に、IDT電極14bは、領域141~145に共通して配置されたバスバー電極140bを有している。また、IDT電極14bは、領域141~145のそれぞれにおいてバスバー電極140bに一端が接続された、複数の電極指141b、142b、143b、144bおよび145bを有している。電極指のピッチは、領域141~145で異なっている。
 なお、第1の領域141および145は、他の領域よりもピッチが狭い、いわゆる狭ピッチ領域である。また、狭ピッチ領域以外の第2の領域、第3の領域および第4の領域は、電極指のピッチが狭ピッチ領域における電極指のピッチよりも大きい、いわゆるメインピッチ領域である。
 ここで、図5に示すように、第1の領域141における電極指のピッチをλ1、第2の領域142における電極指のピッチをλ2、第4の領域143における電極指のピッチをλ3、第3の領域144における電極指のピッチをλ4、第1の領域145における電極指のピッチをλ5とする。それぞれの領域における電極指のピッチの関係は、以下のとおりである。
 第2の領域142、第3の領域144および第4の領域143のそれぞれにおける電極指のピッチλ2、λ4およびλ3は、第1の領域141および145における電極指のピッチλ1、λ5よりも大きい。また、第2の領域142における電極指のピッチλ2と、第3の領域144における電極指のピッチλ4とは、異なっている。
 例えば、第2の領域142における電極指のピッチλ2は、第3の領域144における電極指のピッチλ4よりも小さい。つまり、λ2<λ4の関係を満たすように、第2の領域142の電極指142aおよび142bと第3の領域144の電極指144aおよび144bが形成されている。一例として、λ2=5.00μm、λ4=5.20μmである。また、第2の領域142における電極指142aおよび142bの対数は3、第3の領域144における電極指144aおよび144bの対数は5である。
 これにより、後に詳述するように、弾性表面波フィルタ10の出力インピーダンスは、誘導性側に変化する。
 なお、第2の領域142における電極指のピッチλ2と第3の領域144における電極指のピッチλ4との関係は、第3の領域144における電極指のピッチλ4が、第2の領域142における電極指のピッチλ2よりも小さいとしてもよい。つまり、λ4<λ2の関係を満たすように、第2の領域142の電極指142aおよび142bと第3の領域144の電極指144aおよび144bを形成してもよい。一例として、λ2=5.30μm、λ4=5.14μmとしてもよい。また、第2の領域142における電極指142aおよび142bの対数を3、第3の領域144における電極指144aおよび144bの対数を5としてもよい。
 これにより、後に詳述するように、弾性表面波フィルタ10の出力インピーダンスは、容量性側に変化する。
 また、第4の領域143における電極指のピッチλ3は、第2の領域142における電極指のピッチλ2および第3の領域144における電極指のピッチλ4のすくなくともいずれかよりも小さい。一例として、λ3=5.09μmである。また、第4の領域143における電極指143aおよび143bの対数は2である。
 これにより、後に詳述するように、弾性表面波フィルタ10の出力インピーダンスは、容量性側に変化する。
 なお、第1の領域141における電極指のピッチλ1と、第1の領域145における電極指のピッチλ5は、λ1<λ2およびλ1<λ4、並びに、λ5<λ2およびλ5<λ4の関係を満たしていれば、同一であってもよいし異なっていてもよい。一例として、λ1=4.69μm、λ5=4.77μmである。また、第2の領域142、第3の領域144、第4の領域143における電極指の対数は、一例として、それぞれ3、2、5である。
 なお、共振子14の各領域における電極指の対数は、上述した対数に限らず、変更してもよい。
 また、共振子14に隣接する共振子13は、反射器16側から反射器17側へと順に、電極指のピッチが異なる2つの領域131および132を有している。つまり、領域132は、弾性表面波フィルタ10における中央側、すなわち、共振子14に近い位置に配置されている。領域131は、弾性表面波フィルタ10における外側、すなわち、反射器16に近い側に配置されている。
 領域132における電極指のピッチは、領域131における電極指のピッチよりも小さく形成されている。領域132は、いわゆる狭ピッチ領域である。例えば、領域131における電極指のピッチは5.15μm、領域132における電極指のピッチは4.61μmである。また、領域131における電極指の対数は22、領域132における電極指の対数は3である。
 また、共振子14に隣接し、共振子14に対して共振子13と反対側に配置された共振子15は、反射器16側から反射器17側へと順に、電極指のピッチが異なる2つの領域151および152を有している。つまり、領域151は、弾性表面波フィルタ10における中央側、すなわち、共振子14に近い位置に配置されている。領域152は、弾性表面波フィルタ10における外側、すなわち、反射器17に近い側に配置されている。
 領域151における電極指のピッチは、領域152における電極指のピッチよりも小さく形成されている。領域151は、いわゆる狭ピッチ領域である。例えば、領域151における電極指のピッチは4.87μm、領域152における電極指のピッチは5.12μmである。また、領域151における電極指の対数は5、領域152における電極指の対数は20である。
 なお、領域132および151における電極指のピッチは、共振子14における第1の領域141または145と同一であってもよいし、異なっていてもよい。また、領域131および領域152における電極指のピッチは、同一であってもよいし異なっていてもよい。また、各領域における電極指の対数は、上述した対数に限らず、変更してもよい。例えば、後述するように、各領域における電極指の対数は、同一であってもよい。
 [2.弾性表面波フィルタのインピーダンス特性]
 次に、本実施の形態にかかる弾性表面波フィルタ10の出力インピーダンス特性について説明する。以下では、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3の関係を、λ3<λ2<λ4(実施例1)、λ2<λ3<λ4(実施例2)、λ3<λ4<λ2(実施例3)、λ4<λ3<λ2(実施例4)とするときの出力インピーダンスについて説明する。
 [2-1.比較例]
 はじめに、本実施の形態にかかる弾性表面波フィルタにおける出力インピーダンスについて理解を容易にするために、比較例にかかる弾性表面波フィルタ10のインピーダンス特性について説明する。図6は、比較例にかかる弾性表面波フィルタ10の出力インピーダンス特性を示す図である。
 比較例として、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を同一とし、この同一の電極指のピッチを小、中、大と変更した場合の弾性表面波フィルタ10の出力インピーダンスについて説明する。
 ここで、電極指のピッチが小のときの当該電極指のピッチは、5.08μmである。電極指のピッチが中のときの当該電極指のピッチは、5.02μmである。電極指のピッチが大のときの当該電極指のピッチは、5.14μmである。また、第1の領域141における電極指のピッチλ1は、λ1=4.69μm、第1の領域145における電極指のピッチλ5は、4.77μmである。また、第2の領域142、第3の領域144、第4の領域143における電極指の対数は、一例として、それぞれ3、2、5である。また、このときの第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 なお、図6において、電極指のピッチを小、中、大の場合の弾性表面波フィルタ10の出力インピーダンスを、それぞれ破線、一点鎖線、実線で示している。
 共振子14の電極指のピッチを小、中、大と大きくするにつれて、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、図6に示すスミスチャートにおいて、左から右の方向に移動している。すなわち、共振子14の電極指のピッチを小、中、大と大きくするにつれて、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、増加することがわかる。詳細には、出力インピーダンスの実数成分が増加することがわかる。
 つまり、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を増加することにより、4の抵抗を増加することができる。
 [2-2.実施例1]
 次に、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチの関係がλ3<λ2<λ4である場合の弾性表面波フィルタ10の出力インピーダンス特性について説明する。なお、第1の領域141および145における電極指のピッチλ1およびλ5については、上述した比較例のときの値から変更しないものとする。つまり、電極指のピッチλ1およびλ5は、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3よりも小さい。
 図7は、本実施例にかかる弾性表面波フィルタ10の出力インピーダンス特性を示す図である。図7において、電極指のピッチを変更しない場合を破線、電極指のピッチのみを変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合とは、比較例に示した電極指のピッチを小の時の構成から変更していない場合である。また、電極指のピッチのみを変更した場合とは、比較例に示した電極指のピッチが小のときから中のときに変更した場合である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ3<λ2<λ4となるように変更した場合である。例えば、λ3<λ2<λ4を満たす電極指のピッチとして、λ2=5.00μm、λ3=4.80μm、λ4=5.19μmとする。また、第2の領域142、第3の領域144、第4の領域143における電極指の対数は、一例として、それぞれ3、2、5である。なお、このときの第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 図7に示すように、電極指のピッチをλ3<λ2<λ4の関係となるように変更した場合、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図7に示したスミスチャートにおいて右の方向および上の方向に移動する。すなわち、弾性表面波フィルタ10の出力インピーダンスは、スミスチャートにおいて、電極指のピッチのみを変更した比較例の場合とは異なり、右上の方向に移動する。
 これは、共振子14の電極指のピッチの関係がλ3<λ2<λ4となるように電極指のピッチを変更することにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、抵抗が大きくなるとともに容量性のインピーダンスに移動することを示している。
 したがって、電極指のピッチλ2、λ4、λ3の関係がλ3<λ2<λ4となるように第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を変更することにより、抵抗および容量性のインピーダンスが大きくなるように弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 [2-3.実施例2]
 次に、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチの関係がλ2<λ3<λ4の場合の弾性表面波フィルタ10の出力インピーダンス特性について説明する。なお、本実施例においても、実施例1と同様、電極指のピッチλ1およびλ5は、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3よりも小さい。
 図8は、本実施例にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。図8において、電極指のピッチを変更しない場合を破線、電極指のピッチのみを変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合および電極指のピッチのみを変更した場合については、実施例1の場合と同様である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ2<λ3<λ4となるように変更した場合である。例えば、λ2<λ3<λ4を満たす電極指のピッチとして、λ2=4.90μm、λ3=5.00μm、λ4=5.19μmとする。なお、第2の領域142、第3の領域144、第4の領域143における電極指の対数は、実施例1と同様、一例として、それぞれ3、2、5である。また、第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 図8に示すように、電極指のピッチを上述のように変更した場合、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図8に示したスミスチャートにおいて右の方向に移動する。このとき、スミスチャートにおける上方向への移動は、実施例1の場合と比べて小さい。
 これは、共振子14の電極指のピッチの関係がλ2<λ3<λ4となるように電極指のピッチを変更することにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、抵抗が大きくなっていることを示している。また、容量性への移動もあるものの、実施例1の場合よりも容量性への移動が弱くなっていることを示している。
 したがって、電極指のピッチλ2、λ4、λ3の関係がλ2<λ3<λ4となるように第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を変更することにより、抵抗が大きく、かつ、容量性のインピーダンスが若干大きくなるように弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 [2-4.実施例3]
 次に、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチの関係がλ3<λ4<λ2の場合の弾性表面波フィルタ10の出力インピーダンス特性について説明する。なお、本実施例においても、実施例1と同様、電極指のピッチλ1およびλ5は、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3よりも小さい。
 図9は、本実施例にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。図9において、電極指のピッチを変更しない場合を破線、電極指のピッチのみを変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合および電極指のピッチのみを変更した場合については、実施例1の場合と同様である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ3<λ4<λ2となるように変更した場合である。例えば、λ3<λ4<λ2を満たす電極指のピッチとして、λ2=5.29μm、λ3=5.09μm、λ4=5.14μmとする。なお、第2の領域142、第3の領域144、第4の領域143における電極指の対数は、実施例1と同様、一例として、それぞれ3、2、5である。また、第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 図9に示すように、電極指のピッチを上述のように変更した場合、弾性表面波フィルタ10の出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図9に示したスミスチャートにおいて右の方向および下の方向に移動する。すなわち、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、スミスチャートにおいて、電極指のピッチのみを変更した比較例の場合とは異なり、右下の方向に移動する。
 これは、共振子14の電極指のピッチの関係がλ3<λ4<λ2となるように電極指のピッチを変更することにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、抵抗が大きくなるとともに誘導性に移動することを示している。
 したがって、電極指のピッチλ2、λ4、λ3の関係がλ3<λ4<λ2となるように第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を変更することにより、抵抗および誘導性のインピーダンスが大きくなるように弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 [2-5.実施例4]
 次に、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチの関係がλ4<λ3<λ2の場合の弾性表面波フィルタ10の出力インピーダンス特性について説明する。なお、本実施例においても、実施例1と同様、電極指のピッチλ1およびλ5は、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3よりも小さい。
 図10は、本実施例にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。図10において、電極指のピッチを変更しない場合を破線、電極指のピッチのみを変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合および電極指のピッチのみを変更した場合については、実施例1の場合と同様である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ4<λ3<λ2となるように変更した場合である。例えば、λ4<λ3<λ2を満たす電極指のピッチとして、λ2=5.29μm、λ3=5.16μm、λ4=5.14μmとする。なお、第2の領域142、第3の領域144、第4の領域143における電極指の対数は、実施例1と同様、一例として、それぞれ3、2、5である。また、第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 図10に示すように、電極指のピッチを上述のように変更した場合、弾性表面波フィルタ10の出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図10に示したスミスチャートにおいて右の方向および下の方向に移動する。すなわち、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、スミスチャートにおいて、電極指のピッチのみを変更した比較例の場合とは異なり、右下の方向に移動する。このとき、スミスチャートにおける下方向への移動は、実施例3の場合と比べて大きい。
 これは、共振子14の電極指のピッチの関係がλ4<λ3<λ2となるように電極指のピッチを変更することにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、抵抗が大きくなるとともに、実施例3の場合よりも大きく誘導性に移動することを示している。
 したがって、電極指のピッチλ2、λ4、λ3の関係がλ4<λ3<λ2となるように第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を変更することにより、抵抗が大きく、かつ、容量性のインピーダンスがより大きくなるように弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 [3.弾性表面波フィルタの伝送特性]
 次に、弾性表面波フィルタ10の伝送特性について説明する。以下では、共振子14の電極指のピッチを変更しない場合、共振子14の交叉幅を変更する場合、および、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更する場合について説明する。
 図11Aは、本実施の形態にかかる弾性表面波フィルタの出力インピーダンス特性を示す図である。図11Aにおいて、電極指のピッチを変更しない場合を破線、電極指の交叉幅を変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合とは、比較例に示した電極指のピッチを小のときの構成から変更していない場合である。また、電極指の交叉幅を変更した場合とは、比較例に示した電極指のピッチが小のときの構成から交叉幅のみを変更した場合である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ3<λ4<λ2となるように変更した場合である。例えば、λ3<λ4<λ2を満たす電極指のピッチとして、λ2=5.07μm、λ3=5.02μm、λ4=5.06μmとする。
 図11Aに示すように、電極指の交叉幅を変更した場合には、比較例に示した電極指のピッチを小としたときに比べて、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、スミスチャート上において右の方向に移動する。また、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合、弾性表面波フィルタ10の出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図11Aに示したスミスチャートにおいてさらに右の方向に移動する。
 つまり、電極指の交叉幅を変更した場合も電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合も、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは増加する。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更する場合のほうが、電極指の交叉幅を変更する場合よりも、弾性表面波フィルタ10の出力インピーダンスをより大きく変化させることができる。
 また、図11B~図11Dは、本実施の形態1にかかる弾性表面波フィルタ10の通過特性を示す図である。なお、図11Cは、帯域幅の変化を分かりやすくするために、不整合損失を除去したときの弾性表面波フィルタ10の通過特性を示している。図11B~図11Dにおいて、電極指のピッチを変更しない場合を破線、電極指の交叉幅を変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 図11Bおよび図11Cに示すように、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合、電極指のピッチを変更しない場合および電極指の交叉幅を変更した場合と比べて、弾性表面波フィルタ10の通過帯域幅は広がっている。特に、図11Cを見ると分かり易いように、低周波側の通過帯域が広がっている。したがって、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更することは、電極指の交叉幅を変更するよりも広帯域化に有効である。
 これは、図11Dに示すように、弾性表面波フィルタ10の0次の共振モードの共振周波数および2次の共振モードの共振周波数が低周波側に移動するためである。図11Dに示すように、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合の弾性表面波フィルタ10の通過特性は、電極指のピッチを変更しない場合および電極指の交叉幅を変更した場合の弾性表面波フィルタの通過特性に比べて、0次の共振モードの共振周波数が低周波側に移動する。したがって、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合、弾性表面波フィルタ10の通過帯域幅は、電極指のピッチを変更しない場合および電極指の交叉幅を変更した場合の弾性表面波フィルタの通過特性よりも拡大する。
 また、0次の共振モードの共振周波数および2次の共振モードの共振周波数の両方が低周波側に移動する。このとき、2次の共振モードの共振周波数のほうが0次の共振モードの共振周波数よりも低周波数側に移動する。したがって、0次の共振モードと2次の共振モードの共振周波数の間隔は広がるため、これらの共振モードの結合は弱まる。
 また、0次の共振モードと2次の共振モードの結合は弱まるため、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合の弾性表面波フィルタ10では、通過帯域内における入力インピーダンスは、図11Aに示したように、電極指のピッチを変更しない場合および電極指の交叉幅を変更した場合の弾性表面波フィルタの入力インピーダンスと比べてスミスチャートの中心から外れることとなる。つまり、弾性表面波フィルタ10の出力インピーダンスは、抵抗が増加する方向に変化する。
 このように、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更することにより、弾性表面波フィルタ10の通過帯域幅を広げつつ、出力インピーダンスを変更することができる。つまり、弾性表面波フィルタ10の通過特性を劣化させることなく、弾性表面波フィルタ10の出力インピーダンスを調整することができる。また、弾性表面波フィルタ10の電極指の交叉幅を変更する場合よりも、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更するほうが、より通過特性を良好に保ちながら出力インピーダンスを調整することができる。
 [4.効果等]
 以上、本実施の形態にかかる弾性表面波フィルタ10によると、弾性表面波フィルタ10の通過特性を劣化させることなく、弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 このとき、共振子14の第2の領域142および第3の領域144における電極指のピッチλ2、λ4の関係を、λ2<λ4とすることにより、弾性表面波フィルタ10の出力インピーダンスを、抵抗だけでなく誘導性のインピーダンスに移動させることができる。また、電極指のピッチλ2、λ4の関係を、λ4<λ2とすることにより、弾性表面波フィルタ10の出力インピーダンスを、抵抗だけでなく容量性のインピーダンスに移動させることができる。
 また、共振子14の第4の領域143における電極指のピッチλ3を、第2の領域142および第3の領域144における電極指のピッチλ2、λ4よりも小さくすることにより、弾性表面波フィルタ10の出力インピーダンスを、誘導性に移動させることができる。
 このように、本実施の形態にかかる弾性表面波フィルタ10によると、出力インピーダンスを2以上の方向に移動させることができる。すなわち、弾性表面波フィルタ10の出力インピーダンスを、抵抗、容量性および誘導性のインピーダンスを含めて調整することができる。
 なお、本実施の形態では、共振子14を電極指ピッチの異なる5つの領域に分割するとしたが、5つの領域に限らず、4つの領域でもよいし、6つ以上の領域であってもよい。電極指のピッチを5つの領域ごとに異なる値とすることにより、4つの領域とする場合に比べて、弾性表面波フィルタ10の出力インピーダンスをより細かく調整することができる。
 また、本実施の形態では、弾性表面波フィルタ10は共振子を3つ備える構成としたが、共振子の数はこれに限らず変更してもよい。例えば、弾性表面波フィルタは、5つの共振子を備えてもよい。
 また、電極指のピッチおよび電極指の対数は、上述したものに限らず適宜変更してもよい。また、第4の領域における電極指のピッチは、第2の領域および第3の領域のいずれか一方における電極指のピッチよりも小さくてもよいし、両方の領域における電極指のピッチよりも小さくてもよい。
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態にかかる高周波モジュール1が実施の形態1にかかる高周波モジュール1と異なる点は、第1の領域以外の領域のそれぞれにおける電極指の対数が同数である点である。
 以下、本実施の形態にかかる弾性表面波フィルタ10について、上述した実施の形態1の実施例1における弾性表面波フィルタ10と比較しながら説明する。なお、実施例1では、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチの関係がλ3<λ2<λ4である弾性表面波フィルタ10について説明した。実施例1における弾性表面波フィルタ10では、電極指のピッチは、λ2=5.00μm、λ3=4.79μm、λ4=5.19μmとした。また、第2の領域142、第3の領域144、第4の領域143における電極指の本数は、一例として、それぞれ3、2、5とした。なお、このときの第1の領域141および145における電極指の本数は、それぞれ3本および8本とした。
 以下では、共振子14の第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3の関係を、λ3<λ2<λ4(実施例5)、λ2<λ3<λ4(実施例6)として、第2の領域142、第3の領域144、第4の領域143における電極指の対数を同一とするときの出力インピーダンスについて説明する。
 [5.実施例5]
 まず、共振子14における電極指のピッチの関係がλ3<λ2<λ4であって、かつ、第2の領域142、第3の領域144、第4の領域143における電極指の対数が同一の場合の弾性表面波フィルタ10の出力インピーダンス特性について説明する。
 図12は、本実施例にかかる弾性表面波フィルタ10の出力インピーダンス特性を示す図である。図12において、電極指のピッチを変更しない場合を破線、電極指のピッチのみを変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合とは、実施例1と同様、比較例に示した電極指のピッチを小の時の構成から変更していない場合である。また、電極指のピッチのみを変更した場合とは、比較例に示した電極指のピッチが小のときから中のときに変更した場合である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ3<λ2<λ4となるように変更した場合である。例えば、λ3<λ2<λ4を満たす電極指のピッチとして、λ2=5.00μm、λ3=4.79μm、λ4=5.19μmとする。また、第2の領域142、第3の領域144、第4の領域143における電極指の本数は同一であり、一例として、それぞれ6本である。なお、このときの第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 図12に示すように、第2の領域142、第3の領域144、第4の領域143における電極指の本数を同一にして、電極指のピッチをλ3<λ2<λ4の関係となるように変更した場合、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図12に示したスミスチャートにおいて右上の方向に移動する。
 これは、共振子14の電極指のピッチの関係がλ3<λ2<λ4となるように電極指のピッチを変更することにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、抵抗が大きくなるとともに容量性のインピーダンスに移動することを示している。
 また、本実施例にかかる弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、図7に示した実施例1における弾性表面波フィルタ10と比較すると、全体的に変化が小さいものの、実施例1における弾性表面波フィルタ10の通過帯域内における出力インピーダンスよりも、若干誘導性のインピーダンスへ変化している。これは、第4の領域143における電極指の対数を2から3に増加し、第3の領域144における電極指の対数を5から3に減少したことにより、スミスチャートにおいて通過帯域内における出力インピーダンスが左方向へ回転する変化を示したためであるといえる。なお、図12において、スミスチャートにおける出力インピーダンスの巻きは広がっているため、通過帯域内における出力インピーダンスにばらつきが生じやすいともいえる。
 このように、第2の領域142、第3の領域144、第4の領域143における電極指の対数を同数にすることにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスを微調整することができる。これにより、弾性表面波フィルタ10の通過特性を劣化させることなく、弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 [6.実施例6]
 次に、共振子14における電極指のピッチの関係がλ2<λ3<λ4であって、かつ、第2の領域142、第3の領域144、第4の領域143における電極指の対数が同一の場合の弾性表面波フィルタ10の出力インピーダンス特性について説明する。
 図13は、本実施例にかかる弾性表面波フィルタ10の出力インピーダンス特性を示す図である。図13において、電極指のピッチを変更しない場合を破線、電極指のピッチのみを変更した場合を一点鎖線、電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合を実線で示している。
 ここで、電極指のピッチを変更しない場合とは、実施例1と同様、比較例に示した電極指のピッチを小の時の構成から変更していない場合である。また、電極指のピッチのみを変更した場合とは、比較例に示した電極指のピッチが小のときから中のときに変更した場合である。電極指のピッチを複数の領域ごとに分割して異なるピッチとなるように変更した場合とは、第2の領域142、第3の領域144、第4の領域143における電極指のピッチλ2、λ4、λ3を、電極指のピッチの関係がλ2<λ3<λ4となるように変更した場合である。例えば、λ2<λ3<λ4を満たす電極指のピッチとして、λ2=4.89μm、λ3=5.00μm、λ4=5.19μmとする。また、実施例5と同様、第2の領域142、第3の領域144、第4の領域143における電極指の本数は同一であり、一例として、それぞれ6本である。なお、このときの第1の領域141および145における電極指の本数は、それぞれ3本および8本である。
 図13に示すように、第2の領域142、第3の領域144、第4の領域143における電極指の本数を同一にして、電極指のピッチをλ2<λ3<λ4の関係となるように変更した場合、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、電極指のピッチを変更しない場合に比べて、図13に示したスミスチャートにおいて右の方向に移動する。これは、共振子14の電極指のピッチの関係がλ2<λ3<λ4となるように電極指のピッチを変更することにより、弾性表面波フィルタ10の通過帯域内における出力インピーダンスは、抵抗が大きくなることを示している。
 また、本実施例にかかる弾性表面波フィルタ10の出力インピーダンスは、図8に示した実施例2における弾性表面波フィルタ10と比較すると、実施例5の場合と同様、全体的に変化が小さいものの、実施例2における弾性表面波フィルタ10の通過帯域内における出力インピーダンスよりも容量性への移動が大きくなっている。これは、第4の領域143における電極指の対数を2から3に増加し、第3の領域144における電極指の対数を5から3に減少したことにより、スミスチャートにおいて通過帯域内における出力インピーダンスが左方向へ回転する変化を示したためであるといえる。つまり、電極指の対数を同数にすることにより、第3の領域144における電極指のピッチが示す誘導性のインピーダンスへの変化が小さくなる。なお、図13において、スミスチャートにおける通過帯域内における出力インピーダンスの巻きは広がっているため、出力インピーダンスにばらつきが生じやすいともいえる。
 このように、第2の領域142、第3の領域144、第4の領域143における電極指の対数を同数にすることにより、弾性表面波フィルタ10の出力インピーダンスを容量性および誘導性にバランスよく調整することができる。すなわち、スミスチャートにおいて、弾性表面波フィルタの出力インピーダンスを2以上の方向に移動させることができる。
 したがって、第2の領域142、第3の領域144、第4の領域143における電極指のピッチを変更することだけでなく、第2の領域142、第3の領域144、第4の領域143における電極指の対数を変更することによっても、弾性表面波フィルタ10の出力インピーダンスを調整することができる。
 (その他の実施の形態)
 なお、本発明は、上述した実施の形態に記載した構成に限定されるものではなく、例えば以下に示す変形例のように、適宜変更を加えてもよい。
 例えば、上述した実施の形態にかかる弾性表面波フィルタは、高周波モジュールに用いられてもよい。このとき、図1に示したように、弾性表面波フィルタ10は、弾性表面波フィルタ10を通過した高周波信号を増幅する低雑音増幅器20に接続されていてもよい。
 また、上述した実施の形態にかかる弾性表面波フィルタは、マルチプレクサに用いられてもよい。この場合、マルチプレクサは、複数の弾性表面波フィルタを有し、複数の弾性表面波フィルタのそれぞれは、共通端子に接続されている構成となっている。
 また、上述した実施の形態では、共振子を電極指ピッチの異なる5つの領域に分割するとしたが、5つの領域に限らず、4つの領域でもよいし、6つ以上の領域であってもよい。
 また、本実施の形態では、弾性表面波フィルタ10は共振子を3つ備える構成としたが、共振子の数はこれに限らず変更してもよい。例えば、弾性表面波フィルタは、5つの共振子を備えてもよい。
 また、電極指のピッチおよび電極指の対数は、上述したものに限らず適宜変更してもよい。また、第4の領域における電極指のピッチは、第2の領域および第3の領域のいずれか一方における電極指のピッチよりも小さくてもよいし、両方の領域における電極指のピッチよりも小さくてもよい。
 また、上述した実施の形態では、弾性表面波フィルタに用いられる3つの共振子のうち中央部分に配置された共振子が、電極指のピッチの異なる4つ以上の領域を有するとした。しかし、これに限らず、当該共振子は、4つの領域を有してもよいし、3つ以上の領域を含む構成であればさらに領域数を多くしてもよい。
 また、電極指のピッチの異なる3つ以上の領域を有する共振子は1つに限らず、弾性表面波フィルタに用いられる3つの共振子のうちの両端に配置された2つの共振子であってもよい。この場合、2つの共振子の対応する各領域における電極指のピッチを同一にしてもよいし、異ならせてもよい。また、2つの共振子の対応する各領域における電極指の対数を同一にしてもよいし、異ならせてもよい。
 また、共振子を構成する基板、電極、保護層等の材料は、上述したものに限らず、適宜変更してもよい。また、各共振子の電極指のピッチおよび対数は、上述した条件をみたすものであれば変更してもよい。
 その他、上述の実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で上述の実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明は、弾性表面波フィルタを用いた高周波モジュール、デュプレクサ、マルチプレクサ、受信装置等に利用することができる。
 1 高周波モジュール
 10 弾性表面波フィルタ
 11 入力端子
 12 出力端子
 13、14、15、100 共振子
 13a、13b、14a、14b、15a、15b、101a、101b IDT電極
 16、17 反射器
 16a、16b、17a、17b、111a、111b、140a、140b バスバー電極
 110a、110b、141a、141b、142a、142b、143a、143b、144a、144b、145a、145b 電極指
 123 圧電基板
 124a 密着層
 124b 主電極層
 125 保護層
 131、132、151、152 領域
 141、145 第1の領域
 142 第2の領域
 143 第4の領域
 144 第3の領域

Claims (8)

  1.  縦結合型の弾性表面波フィルタであって、
     前記弾性表面波フィルタは、弾性表面波の伝搬方向に連続して配置された複数の共振子を備え、
     前記複数の共振子のそれぞれは、バスバー電極と前記バスバー電極に接続された互いに平行な複数の電極指とを有する一対の櫛形電極を有し、
     一対の前記櫛形電極は、互いの前記複数の電極指が前記弾性表面波伝搬方向に交互に位置するように配置されており、
     前記複数の共振子のうち前記弾性表面波フィルタの出力端子に接続された第1の共振子は、前記電極指のピッチが異なる4つ以上の領域を有し、前記4つ以上の領域のそれぞれでは前記電極指のピッチは一定であり、
     前記4つ以上の領域のうち、前記共振子の弾性表面波の伝搬方向の両端側に配置された一対の第1の領域における前記電極指のピッチよりも、前記一対の第1の領域以外の領域における前記電極指のピッチは大きく、
     前記一対の第1の領域の一方に隣接する第2の領域における前記電極指のピッチと、前記一対の第1の領域の他方に隣接する第3の領域における前記電極指のピッチとは、異なっている、
     弾性表面波フィルタ。
  2.  前記第3の領域における前記電極指のピッチは、前記第2の領域における前記電極指のピッチよりも大きい、
     請求項1に記載の弾性表面波フィルタ。
  3.  前記第2の領域における前記電極指のピッチは、前記第3の領域における前記電極指のピッチよりも大きい、
     請求項1に記載の弾性表面波フィルタ。
  4.  前記4つ以上の領域とは、5つの領域である、
     請求項1~3のいずれか1項に記載の弾性表面波フィルタ。
  5.  前記5つの領域のうちの中央に配置された第4の領域における前記電極指のピッチは、前記第2の領域における前記電極指のピッチおよび前記第3の領域における前記電極指のピッチの少なくともいずれかよりも小さい、
     請求項4に記載の弾性表面波フィルタ。
  6.  前記一対の第1の領域以外の領域のそれぞれにおける前記電極指の対数は、同数である、
     請求項1~5のいずれか1項に記載の弾性表面波フィルタ。
  7.  請求項1~6のいずれか1項に記載の弾性表面波フィルタと、
     前記弾性表面波フィルタに接続され、前記弾性表面波フィルタを通過した高周波信号を増幅する低雑音増幅器とを備える、
     高周波モジュール。
  8.  請求項1~6のいずれか1項に記載の弾性表面波フィルタを複数備え、前記複数の弾性表面波フィルタのそれぞれは、共通端子に接続されている、
     マルチプレクサ。
PCT/JP2017/028269 2016-08-05 2017-08-03 弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ WO2018025962A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197003130A KR102074631B1 (ko) 2016-08-05 2017-08-03 탄성 표면파 필터, 고주파 모듈 및 멀티플렉서
CN201780048388.4A CN109565267B (zh) 2016-08-05 2017-08-03 声表面波滤波器、高频模块以及多工器
JP2018531979A JP6516070B2 (ja) 2016-08-05 2017-08-03 弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ
US16/261,690 US10511283B2 (en) 2016-08-05 2019-01-30 Surface acoustic wave filter, high frequency module, and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016155018 2016-08-05
JP2016-155018 2016-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/261,690 Continuation US10511283B2 (en) 2016-08-05 2019-01-30 Surface acoustic wave filter, high frequency module, and multiplexer

Publications (1)

Publication Number Publication Date
WO2018025962A1 true WO2018025962A1 (ja) 2018-02-08

Family

ID=61073704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028269 WO2018025962A1 (ja) 2016-08-05 2017-08-03 弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ

Country Status (5)

Country Link
US (1) US10511283B2 (ja)
JP (1) JP6516070B2 (ja)
KR (1) KR102074631B1 (ja)
CN (1) CN109565267B (ja)
WO (1) WO2018025962A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021241364A1 (ja) * 2020-05-27 2021-12-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6886331B2 (ja) * 2017-04-07 2021-06-16 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ
KR20210049322A (ko) * 2019-10-25 2021-05-06 (주)와이솔 공진기, 그리고 이를 구비한 필터 및 공용기
JP2023003114A (ja) * 2021-06-23 2023-01-11 株式会社村田製作所 表面弾性波共振子、弾性波フィルタおよびマルチプレクサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084163A (ja) * 2000-05-22 2002-03-22 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP2008035092A (ja) * 2006-07-27 2008-02-14 Kyocera Corp 弾性表面波素子及び弾性表面波装置並びに通信装置
JP2008252678A (ja) * 2007-03-30 2008-10-16 Tdk Corp 縦結合共振子型弾性表面波フィルタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358615B2 (ja) * 2000-06-26 2002-12-24 株式会社村田製作所 縦結合共振子型弾性表面波フィルタ
KR101139193B1 (ko) * 2004-04-28 2012-06-21 파나소닉 주식회사 탄성 표면파 공진자
JPWO2008108113A1 (ja) * 2007-03-01 2010-06-10 株式会社村田製作所 弾性波フィルタ装置及びデュプレクサ
JP2008301223A (ja) 2007-05-31 2008-12-11 Panasonic Corp 高周波フィルタ
JP5033876B2 (ja) * 2007-06-28 2012-09-26 京セラ株式会社 弾性表面波装置及び通信装置
DE112009002361B4 (de) 2008-09-24 2016-07-21 Murata Manufacturing Co., Ltd. Filtervorrichtung für elastische Wellen
US8994479B2 (en) * 2009-08-25 2015-03-31 Kyocera Corporation Surface acoustic wave device
CN105284048B (zh) * 2013-06-13 2017-10-31 株式会社村田制作所 声表面波滤波器、声表面波滤波器装置以及双工器
JP2015119258A (ja) * 2013-12-17 2015-06-25 株式会社村田製作所 弾性波フィルタ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084163A (ja) * 2000-05-22 2002-03-22 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP2008035092A (ja) * 2006-07-27 2008-02-14 Kyocera Corp 弾性表面波素子及び弾性表面波装置並びに通信装置
JP2008252678A (ja) * 2007-03-30 2008-10-16 Tdk Corp 縦結合共振子型弾性表面波フィルタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021241364A1 (ja) * 2020-05-27 2021-12-02
WO2021241364A1 (ja) * 2020-05-27 2021-12-02 株式会社村田製作所 弾性波装置
JP7464116B2 (ja) 2020-05-27 2024-04-09 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20190158060A1 (en) 2019-05-23
JPWO2018025962A1 (ja) 2019-03-28
CN109565267B (zh) 2020-02-07
KR102074631B1 (ko) 2020-02-06
KR20190016122A (ko) 2019-02-15
US10511283B2 (en) 2019-12-17
CN109565267A (zh) 2019-04-02
JP6516070B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2018168836A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
WO2018025962A1 (ja) 弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ
WO2016111262A1 (ja) 複合フィルタ装置
US11569433B2 (en) Acoustic wave resonator, filter, and multiplexer
JP2019106622A (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6760480B2 (ja) エクストラクタ
JP6614329B2 (ja) 帯域阻止フィルタおよび複合フィルタ
KR101949020B1 (ko) 멀티플렉서 및 고주파 프론트엔드 모듈
WO2019131533A1 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
US10284170B2 (en) Surface acoustic wave filter, duplexer, and multiplexer
JP7055023B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JP6607323B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
CN107483027B (zh) 多工器以及高频前端模块
KR102689012B1 (ko) 탄성파 필터 장치 및 멀티플렉서
CN107689784B (zh) 高频模块
WO2019117106A1 (ja) フィルタ装置およびマルチプレクサ
WO2018079284A1 (ja) ラダー型フィルタ、デュプレクサ及び弾性波フィルタ装置
WO2018123545A1 (ja) マルチプレクサ
JP4995923B2 (ja) 弾性境界波デバイス、およびそれを用いた通信機
WO2018025961A1 (ja) 弾性表面波フィルタ、高周波モジュールおよびマルチプレクサ
JP6747387B2 (ja) 高周波モジュール
WO2022071185A1 (ja) マルチプレクサ
JP3963360B2 (ja) 弾性表面波装置
JP4506394B2 (ja) 一方向性弾性表面波変換器及びそれを用いた弾性表面波デバイス
WO2019065863A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531979

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197003130

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837063

Country of ref document: EP

Kind code of ref document: A1