WO2018025933A1 - 電気回路装置の放熱構造 - Google Patents

電気回路装置の放熱構造 Download PDF

Info

Publication number
WO2018025933A1
WO2018025933A1 PCT/JP2017/028133 JP2017028133W WO2018025933A1 WO 2018025933 A1 WO2018025933 A1 WO 2018025933A1 JP 2017028133 W JP2017028133 W JP 2017028133W WO 2018025933 A1 WO2018025933 A1 WO 2018025933A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
electric circuit
circuit device
transfer member
Prior art date
Application number
PCT/JP2017/028133
Other languages
English (en)
French (fr)
Inventor
山縣 利貴
紗緒梨 井之上
秀樹 広津留
亮 吉松
竜士 古賀
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020197006260A priority Critical patent/KR102382407B1/ko
Priority to EP17837035.9A priority patent/EP3496139B1/en
Priority to CN201780048563.XA priority patent/CN109791918B/zh
Priority to US16/322,570 priority patent/US10615096B2/en
Priority to JP2018531962A priority patent/JPWO2018025933A1/ja
Publication of WO2018025933A1 publication Critical patent/WO2018025933A1/ja
Priority to JP2022076224A priority patent/JP7282950B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present invention relates to a heat dissipation structure for an electric circuit device.
  • power semiconductor elements typified by power MOSFETs, insulated gate bipolar transistors (hereinafter referred to as IGBTs), etc. are arranged on a ceramic substrate and connected, and then they are combined into a single package by a sealing material.
  • an electric circuit device generally called a power module is known.
  • Such an electric circuit device is for power control, for example, and has been widely used as an electric component used for controlling a vehicle propulsion motor, for example.
  • power semiconductor elements handle large amounts of power, they are also typical heat generating elements. For this reason, various ideas have been devised for the heat dissipation structure of power modules (sometimes referred to as cooling structure, mounting structure, etc.).
  • a relatively simple power module has a heat dissipation structure that releases heat from the back side of the power element.
  • a cooling plate made of, for example, aluminum is disposed on a heat radiating plate provided on the back surface of a power module via heat radiating grease (also referred to as heat conductive grease) serving as a heat transfer member, such as silicone grease.
  • heat radiating grease also referred to as heat conductive grease
  • silicone grease serving as a heat transfer member
  • Patent Document 2 discloses a heat dissipation structure in which a heat transfer member (insulating plate) and a cooler are installed, and in which they are compressed at an optimum pressure so as to be in sufficient thermal contact with the heat dissipation plate Yes.
  • the heat transfer member interposed between the heat dissipation plate of the heat generating element and the cooler itself is required to have high thermal conductivity, but the heat transfer member simultaneously electrically insulates the heat sink and the cooler. It is also a member which has the structure to do.
  • the thermal resistance value is 0.24 K / W or less as a measure for improving the heat dissipation characteristics of the heat dissipation structure.
  • Patent Document 3 discloses an invention of a heat dissipation structure provided with a ridge-like layer in which carbon fibers and carbon fibers are arranged side by side.
  • this heat dissipation structure has a new problem in terms of mass production due to the delicate structure of the layer of the rod-shaped body.
  • ceramics have been preferably used conventionally from both sides of electrical insulation and thermal conductivity, but these are rigid, the surface is hard, and the adhesion to the contacted surface is inferior. If a ceramic heat transfer member is simply placed between the heat sink and the cooler, an air layer is formed at the interface even if pressure is applied to compress the two so that the interface is in close contact. Therefore, it is necessary to provide a heat dissipating grease layer at the interface to fill the air layer. That is, in the conventional heat dissipation structure, it is necessary to provide a heat dissipation grease layer on both the interface between the heat dissipation plate and the heat transfer member and the interface between the heat transfer member and the cooler.
  • heat dissipating grease layer in the heat dissipating structure, local heat conductivity can be improved, but the heat dissipating grease itself is generally lower in heat conductivity than the heat transfer member, and it is necessary to provide two layers. Even if the thickness of the heat dissipating grease layer is made as thin as possible, there is still room for improving the thermal conductivity of the heat dissipating structure as a whole. In addition, a process of providing a heat dissipating grease layer has been required separately.
  • JP 2003-168772 A Japanese Patent Laid-Open No. 2005-150420 JP 2010-192717 A
  • This invention makes it a subject to provide the thermal radiation structure which can express the outstanding thermal radiation performance while being excellent in mass-productivity in view of said subject.
  • the present invention can employ the following means (1) to (5).
  • a heat dissipation structure for an electric circuit device wherein the heat dissipation plate exposed to the outside of the electric circuit device, a heat transfer member, and a cooler are arranged and included so as to form a laminated structure
  • the heat transfer member is a ceramic resin composite in which a resin composition is impregnated with a sintered body in which ceramic primary particles form a three-dimensional integrated structure
  • a heat dissipation structure for an electric circuit device wherein the heat transfer member is arranged to be in direct contact with and stacked on at least one of the heat dissipation plate and the cooler.
  • the ceramic resin composite has an average major axis of 3 to 60 ⁇ m and a boron nitride primary particle having an aspect ratio of 5 to 30 having a three-dimensional monolithic structure and a ceramic sintered body of 35 to 70% by volume
  • the heat dissipation structure for an electric circuit device according to (1) is preferably a ceramic resin composite impregnated with 65 to 30% by volume of a resin composition.
  • the heat transfer member preferably has a heat dissipation structure for an electric circuit device according to (1) or (2), wherein the heat transfer member has a flat plate shape with a thickness of 0.05 mm to 1.0 mm.
  • the electric circuit device includes at least two or more heat radiating plates facing each other with a heating element therebetween and each having an exposed surface to the outside, according to any one of (1) to (3)
  • the heat dissipation structure of the electric circuit device is preferable.
  • a ceramic resin composite having high thermal conductivity can be disposed and used as the heat transfer member between the heat dissipation plate of the heat generating element and the cooler. For this reason, it is possible to provide a heat dissipation structure for an electric circuit device that has extremely high thermal conductivity and is excellent in mass productivity of the heat dissipation member, and as a result, the electric circuit device is thermally protected. Also, an electric circuit device that contributes to maintaining the electrical performance can be provided.
  • the numerical range includes the upper limit value and the lower limit value thereof.
  • the heat dissipation structure of the electric circuit device has a configuration in which a cooler is disposed in contact with a heat dissipation plate exposed to the outside of the electric circuit device via a heat transfer member, and The heat transfer member is disposed so as to be in direct contact with and laminated on at least one of the heat radiating plate and the cooler.
  • the heat transfer member is a heat transfer member including at least a ceramic resin composite in which a resin composition is impregnated with a sintered body in which ceramic primary particles form a three-dimensional integrated structure.
  • the electric circuit device referred to in this specification is an electric circuit device that includes a heat generating element and a heat radiating plate that is disposed near or in contact with the heat generating element and has an exposed surface to the outside. Normally, the entire electric circuit device is covered with a sealing material except for the connection terminal to the outside and the exposed surface of the heat sink.
  • a power module is a typical example of an electric circuit device, but the electric circuit device referred to in this specification is not a term that specifically refers to only an electric circuit device called a power module, and includes an element that generates heat. It is a concept which comprehensively shows an integrated apparatus including a heat sink having an exposed surface to the outside.
  • the heating element included in the electric circuit device as used in the present specification is an element that generates heat to a greater or lesser extent when it is used by passing a current. Therefore, in the present invention, the type of the heat generating element is not limited and may be either an active element or a passive element. Examples of the heat generating element closely related to the present invention include a power MOSFET, an IGBT, a thyristor, a SiC device, and the like. A power semiconductor element mainly used for power-related control such as drive control and power conversion of motors and lighting devices can be given.
  • the heat radiating plate as used in the present specification is disposed in the vicinity of or in contact with the heating element in the electric circuit device, and has an exposed surface to the outside in order to release the heat of the heating element, for example, a copper alloy or an aluminum alloy It is a plate having good thermal conductivity and electrical conductivity made of metal such as. Depending on the type of electric circuit device, it may also function as an electrode.
  • the shape of the heat sink, the number of heat sinks included in one electric circuit device, and the plurality of heat sinks are not limited in their positional relationship, but in a typical embodiment
  • the electric circuit device has a form close to a flat plate, and the heat radiating plate can be arranged on one side or both upper and lower sides.
  • a heat transfer member according to an embodiment of the present invention is a composite in which a ceramic sintered body in which ceramic primary particles form a three-dimensional integral structure is impregnated with a resin composition (hereinafter referred to as a ceramic resin composite). It is. Unless the characteristics of the heat dissipation structure according to the embodiment of the present invention are impaired, the ceramic resin composite includes a heat dissipation grease layer, an interface between the ceramic resin composite and the exposed surface of the heat dissipation plate, or the ceramic resin composite. You may provide in any one of the interfaces of a body and a cooler.
  • the ceramic resin composite is a sintered body (hereinafter referred to as a ceramic primary particle sintered body) in which at least one kind of ceramic primary particles selected from boron nitride, aluminum nitride, and silicon nitride has a three-dimensional continuous structure.
  • a ceramic primary particle sintered body in which at least one kind of ceramic primary particles selected from boron nitride, aluminum nitride, and silicon nitride has a three-dimensional continuous structure.
  • the ceramic primary particles are boron nitride, it is called a boron nitride primary particle sintered body, when it is aluminum nitride, it is called an aluminum nitride primary particle sintered body, and when it is silicon nitride, it is nitrided.
  • Preferred is a silicon primary particle sintered body).
  • the ceramic resin composite has a three-dimensional integrated structure of boron nitride primary particles having an average major axis of 3 to 60 ⁇ m and an aspect ratio of 5 to 30. 65 to 30% by volume, preferably 60 to 35% by volume of the resin composition (preferably thermosetting resin composition) with respect to 35 to 70% by volume, preferably 40 to 65% by volume of the sintered ceramic body.
  • % Is preferably a ceramic resin composite. If the amount of the ceramic sintered body of the ceramic resin composite is smaller than 35% by volume, the ratio of the resin composition having a relatively low thermal conductivity is relatively increased. descend.
  • thermosetting resin composition penetrates into the irregularities on the surface of the heat sink when the heat transfer member is bonded to the heat sink or cooler by heating and pressing. It can be difficult and the tensile shear bond strength and thermal conductivity can be reduced.
  • a sintering aid such as calcium carbonate, sodium carbonate, boric acid or the like is added to the powder of the primary particles of boron nitride.
  • a sintering aid such as calcium carbonate, sodium carbonate, boric acid or the like is added to the powder of the primary particles of boron nitride.
  • the sintering furnace used for the above-mentioned sintering is a batch type furnace such as a muffle furnace, a tubular furnace, an atmospheric furnace, a continuous type such as a rotary kiln, a screw conveyor furnace, a tunnel furnace, a belt furnace, a pusher furnace, and a vertical continuous furnace. Furnace. These are properly used according to the purpose. For example, a batch type furnace is used when small quantities of many types of boron nitride sintered bodies are manufactured, and a continuous type furnace is used when large quantities of a certain type are produced.
  • the amount of the resin composition contained in the ceramic resin composite is preferably in the range of 30 to 65% by volume of the heat transfer member, and more preferably in the range of 35 to 60% by volume.
  • the amount of the resin composition contained in the ceramic resin composite can be calculated from the weight measurement before and after the composite of ceramic and resin and the specific gravity value.
  • the said resin composition is a thermosetting resin composition.
  • thermosetting resin composition examples include a combination of one or both of a substance having an epoxy group and a substance having a cyanate group, and a substance having a hydroxyl group and a substance having a maleimide group. Preferably there is. Among these, a combination of a substance having a cyanate group and a substance having a maleimide group is more preferable.
  • Substances having an epoxy group include bisphenol A type epoxy resins, bisphenol F type epoxy resins, polyfunctional epoxy resins (cresol borac epoxy resins, dicyclopentadiene type epoxy resins, etc.), phenol novolac type epoxy resins, cyclic
  • the epoxy resin include aliphatic epoxy resins, glycidyl ester type epoxy resins, and glycidyl amine type epoxy resins.
  • substances having a cyanate group examples include 2,2′-bis (4-cyanatophenyl) propane, bis (4-cyanato-3,5-dimethylphenyl) methane, and 2,2′-bis (4-cyanatophenyl).
  • cyanate resins such as hexafluoropropane, 1,1′-bis (4-cyanatophenyl) ethane, and 1,3-bis (2- (4-cyanatophenyl) isopropyl) benzene.
  • Examples of the substance having a hydroxyl group include phenols such as phenol novolac resin and 4,4 ′-(dimethylmethylene) bis [2- (2-propenyl) phenol].
  • Examples of the substance having a maleimide group include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bis Maleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6′-bismaleimide- (2,2,4-trimethyl) hexane, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenylsulfone bis Maleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, bis- (3-ethyl-5-methyl-4
  • the ceramic resin composite appropriately includes a silane coupling agent for improving the adhesion between the ceramic and the resin composition, an improvement in wettability and leveling properties, and a reduction in viscosity to reduce defects during impregnation and curing.
  • An antifoaming agent, a surface conditioner, and a wetting and dispersing agent for reducing the generation can be contained.
  • a curing accelerator may be added in order to control the curing rate and the heat generation start temperature.
  • Curing accelerators include imidazoles such as 2-ethyl-4-methylimidazole and 2-phenylimidazole, organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetra-p-tolylborate, acetylacetone copper (II), zinc (II) Metal catalysts such as acetylacetonate can be mentioned.
  • the ceramic resin composite is a composite of the ceramic and the resin composition.
  • the ceramic composite is formed by impregnating a ceramic primary particle sintered body with a resin composition.
  • impregnation of the ceramic primary particle sintered body with the resin composition can be performed, for example, by performing vacuum impregnation and / or pressure impregnation at 1 to 300 MPa (G).
  • the pressure during vacuum impregnation is preferably 1000 Pa (abs) or less, and more preferably 100 Pa (abs) or less.
  • the thermosetting resin composition can be semi-cured (B-staged), which is a preferable method.
  • the heating method for semi-curing can be performed by infrared heating, hot air circulation, oil heating method, hot plate heating method, or a combination thereof.
  • Semi-curing may be carried out as it is using the heating function of the impregnation device after impregnating the thermosetting resin composition, or after taking out from the impregnation device, a known device such as a hot air circulating conveyor furnace may be used. May be used separately.
  • the heat dissipation grease layer is provided at the interface between the ceramic resin composite and the exposed surface of the heat sink, Or you may provide in either one of the interfaces of the said ceramic resin composite body and a cooler.
  • a silicone resin filled with a heat conductive filler and having a heat conductivity of about 1 to 5 W / (m ⁇ K) is preferably used.
  • a ceramic resin composite It can be used in the form of being applied to the surface of The thickness when applied is preferably 20 to 100 ⁇ m.
  • the ceramic resin composite By applying the heat-dissipating grease to the heat transfer member, the ceramic resin composite can be more closely attached to the heat sink or the cooler, so that the heat transfer performance of the heat dissipation structure may be improved.
  • one heat dissipation plate when there are two heat dissipation plates, one heat dissipation plate has one heat dissipation grease layer, and the other heat dissipation plate does not include the heat dissipation grease layer. it can.
  • the heat dissipation structure may not include a heat dissipation grease layer.
  • the thickness of the heat transfer member can be appropriately changed in accordance with the required electrical and thermal characteristics of the heat dissipation structure of the electric circuit device.
  • the heat transfer member can be processed into a sheet with a predetermined thickness using, for example, a multi-wire saw (“MWS-32N” manufactured by Takatori Co., Ltd.). It is also possible to form a thin sheet of 35 mm.
  • the cooler is generally preferably a metal, for example, molded aluminum is preferably used.
  • the cooler preferably has a surface suitable for being placed in contact with the heat transfer member, but there is no particular limitation on the other shapes and internal structure, and a liquid-cooled type in which the coolant flows inside. There is no particular limitation on the structure or the air-cooled structure having cooling fins.
  • a heat transfer member is disposed in contact with the exposed surface of the heat dissipation plate provided in the electric circuit device, and further, the heat transfer without contacting the heat dissipation plate directly.
  • a cooler is disposed in contact with the member.
  • the electric circuit device may include at least two heat radiating plates facing each other with the heating element interposed therebetween. In this case, it is generally preferable that the heat sinks face each other in parallel. Therefore, in the heat dissipation structure of the electric circuit device of the present invention, a heat dissipation structure in which a cooler is mounted on both surfaces of the electric circuit device via heat transfer members, respectively, to form a laminated structure is preferably employed.
  • the electric circuit device and the heat transfer member are sandwiched and tightened firmly to compress the load in a direction perpendicular to the laminated surface (that is, the pressure in the compression direction). ) Is also preferably employed. Further, it is more preferable to apply a compressive load over the entire laminated surface in view of heat conduction efficiency.
  • the method of applying the compressive load is not particularly limited. For example, as shown in FIG. 1, for example, holes are formed in the cooler and a fastening member using a bolt, a nut, or the like is attached, and the coolers facing each other are connected. A heat dissipating structure in which a compressive load is applied so as to attract with screws can be preferably employed.
  • ⁇ Electric circuit device> As an electric circuit device, a double-sided cooling type power module having a flat rectangular heat sink of 35 mm in length and 21 mm in width on both the upper surface and the lower surface was prepared. In addition, the emitted-heat amount of the said power module is 310W. This is an electric circuit device A.
  • Heat transfer member As a heat transfer member, a ceramic resin composite in which a resin composition was impregnated with a ceramic sintered body in which sheet-like boron nitride primary particles had a three-dimensional integrated structure was prepared. This is referred to as a heat transfer member B.
  • the heat conductivity of the heat transfer member B was 80 W / (m ⁇ K).
  • the ceramic resin composite is a boron nitride sintered body resin composite in which a boron nitride sintered body obtained by three-dimensionally sintering boron nitride powder is impregnated with a thermosetting resin composition.
  • the boron nitride sintered body comprises boron nitride having an average major axis of 18 ⁇ m and an aspect ratio of 12, boron nitride having an average major axis of 6 ⁇ m and an aspect ratio of 15, boric acid, and calcium carbonate, 64.2: 34.
  • this boron nitride sintered body was 1.51. Further, the boron nitride sintered body was cut into a sheet of 45 mm length ⁇ 35 mm width ⁇ thickness 0.32 mm, and the temperature was 145 ° C. using a vacuum heating impregnation apparatus (G-555AT-R, manufactured by Kyoshin Engineering Co., Ltd.).
  • thermosetting resin composition ie, bisphenol F type epoxy resin (JER807, Mitsubishi Chemical) Made by the company, specific gravity 1.2) 12.1% by mass, 72% by mass of novolak-type cyanate resin (PT-30, Lonza, specific gravity 1.2), phenol novolac resin (TD-2131, manufactured by DIC, In a resin composition in which 7.9% by mass of specific gravity 1.2) and 8% by mass of bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane (specific gravity 1.3) were mixed, 10 Min Immersion treatment was performed.
  • the boron nitride sintered body impregnated with the thermosetting resin composition is further placed in a pressure and warming impregnation apparatus (HP-4030AA-H45, manufactured by Kyoshin Engineering Co., Ltd.), temperature 145 ° C., pressure A sheet-like ceramic resin composite that is held at a pressure of 3.5 MPa for 120 minutes and then heated at 160 ° C. under atmospheric pressure for 120 minutes to semi-cure the thermosetting resin composition, That is, a composite of a boron nitride sintered body and a resin composition (hereinafter also referred to as a boron nitride resin composite sheet) was obtained.
  • a pressure and warming impregnation apparatus HP-4030AA-H45, manufactured by Kyoshin Engineering Co., Ltd.
  • this ceramic resin composite was not substantially different from that of the original boron nitride sintered body.
  • the volume ratio of the boron nitride sintered body and the resin composition in the ceramic resin composite was calculated by weight measurement before and after the ceramic and resin were composited and the specific gravity was 52:48.
  • Heat dissipation grease As the heat dissipating grease, a heat dissipating grease (G-765, manufactured by Shin-Etsu Chemical Co., Ltd.) exhibiting a thermal conductivity of 2 W / (m ⁇ K) was prepared. This is heat radiation grease C.
  • a flat plate-shaped aluminum water-cooled cooler having a thermal conductivity of 200 W / (m ⁇ K) and a surface in contact with the heat transfer member of 50 mm ⁇ 30 mm and a thickness of 5 mm was prepared. This is the cooler D.
  • the center line of the heat transfer member B and the center line of the cooler D are matched, and the 45 mm side of the heat transfer member B and the 50 mm side of the cooler are parallel from both the upper and lower sides,
  • Two coolers were stacked to form the heat dissipation structure of the example. Tightening members with bolts and nuts were attached to the four corners of the two coolers, respectively, and adjusted so that a pressure in the compression direction of 10 MPa was applied uniformly over the entire laminated surface.
  • the thermal resistance which is the heat dissipation characteristic of the heat dissipation structure of Example 1, was evaluated by the following method.
  • the thermal resistance is the thermal resistance (° C./W) of the path from the heat sink to the cooler.
  • the heat generation amount of the electric circuit device A is set to 310 W
  • the inlet temperature of the cooling water sent to the cooler is set to 65 ° C.
  • the flow rate of the cooling water is set to 5 (l / min)
  • the thermoelectric power is applied to the outer surface of the radiator plate and the outer surface of the cooler. A pair was inserted and the temperature was measured.
  • thermal resistance (° C./W) (heat sink temperature (° C.) ⁇ Cooler temperature (° C.)) ⁇ 310 (W).
  • Table 2 below shows the stacking order from the first stage of the heat dissipation structure of Example 1 and the tightening pressure and thermal resistance value. Further, the dielectric breakdown strength was measured by JISC2110, and the value is also shown in Table 2.
  • Example 2 The heat radiation structure of Example 2 is the same as that of Example 1 except that a 20 ⁇ m thick heat radiation grease C layer is provided at the interface between the heat radiation plate on both the upper and lower surfaces of electric circuit device A and heat transfer member B.
  • the heat resistance was measured in the same manner as in Example 1. The results are shown in Table 2.
  • the heat dissipation grease C layer was formed using a screen printer.
  • Example 3 A heat dissipation structure of Example 3 was manufactured by the same configuration and manufacturing procedure as Example 1 except that a heat dissipation grease C layer having a thickness of 20 ⁇ m was provided at the interface between the heat transfer member B and the cooler D.
  • the thermal resistance of Example 3 was also measured in the same manner as in Example 1, and the results are shown in Table 2.
  • a heat-dissipating grease C layer having a thickness of 20 ⁇ m is provided at the interface between the heat radiation plate on both the upper and lower surfaces of the electric circuit device A and the heat transfer member B, and a heat-dissipating grease C layer having a thickness of 20 ⁇ m is provided at the two interfaces of the heat transfer member B and the cooler D.
  • the heat dissipation structure of Comparative Example 1 was fabricated with the same configuration as that of Example 1 except that each was provided, and the thermal resistance was measured in the same manner as in Example 1. The results are also shown in Table 2.
  • Comparative Example 2 A heat dissipation structure having the same structure as Comparative Example 1 was produced except that the heat transfer member was a dense silicon nitride sintered body, and the heat dissipation structure of Comparative Example 2 was obtained.
  • Comparative Example 2 is an example of a heat dissipation structure having a typical configuration of the prior art.
  • the silicon nitride sintered body was cut from a commercially available product (SN-90, manufactured by Maruwa) so as to have the same dimensions as the heat transfer member B.
  • the structure and heat resistance value of the heat dissipation structure of Comparative Example 2 are also shown in Table 2.
  • the heat dissipation structure of the present invention has a lower thermal resistance than the heat dissipation structure of the prior art having two layers of heat dissipation grease C per side. It was shown that it has an excellent heat dissipation structure.
  • the heat dissipation structure of the electric circuit device of the present invention can be used for general industrial and in-vehicle power modules.
  • Heating elements power semiconductor elements, etc.
  • Sealing material 3 Heat sink (1 to 3 are integrated to form an electric circuit device) 4 Ceramic resin composite 5 Cooler 6 Fastening member

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

量産性に優れ、高い放熱性を有する電気回路装置の放熱構造を提供する。電気回路装置の外部へ露出する放熱板と、伝熱部材と、冷却器とが積層構造をなすように配置されて含まれる電気回路装置の放熱構造であって、前記伝熱部材が、セラミックス一次粒子が3次元的に一体構造をなしている焼結体に樹脂組成物が含浸しているセラミックス樹脂複合体であり、かつ前記放熱板および前記冷却器のうちの少なくとも一方と直接接触して積層するように配置される。

Description

電気回路装置の放熱構造
本発明は、電気回路装置の放熱構造に関する。
例えばパワーMOSFET、絶縁ゲート型バイポーラトランジスタ(以降IGBTと表記する)等に代表されるパワー半導体素子を、セラミックス基板上に配置して結線し、さらにそれらを封止材でまとめて1つのパッケージに組み込んだ、一般にパワーモジュールと呼ばれる電気回路装置が知られている。そのような電気回路装置は例えば電力制御用であり、例えば車両推進モーターの制御に使われる電気部品として多用されてきている。パワー半導体素子は大電力を扱うため、代表的な発熱素子でもあり、そのためパワーモジュールの放熱構造(他に冷却構造、実装構造などということもある)については様々な工夫が凝らされてきた。
比較的簡単なパワーモジュールは、パワー素子の裏面側から熱を逃がす放熱構造を有している。例えば特許文献1には、パワーモジュールの裏面に設けられた放熱板に、伝熱部材となる放熱グリス(熱伝導性グリースなどとも言う)、例えばシリコーングリスを介して、例えばアルミニウム製の冷却器を、ネジで固定したパワーモジュールの放熱構造が示されている。
さらにパワーモジュールの小型化や大電力化に対応して、放熱面積を増やすために発熱素子の両面に外部に露出した放熱板を設け、放熱グリースやゲルの伝熱材を介して電気的に絶縁性の伝熱部材(絶縁板)と冷却器とを設置し、さらに放熱板に十分熱的に密着するようそれらを最適圧力で圧縮させるよう配慮された放熱構造が、特許文献2に示されている。なお、発熱素子の放熱板と冷却器の間に介在する前記伝熱部材には、それ自体にも高い熱伝導性が求められるが、伝熱部材は同時に放熱板と冷却器を電気的に絶縁する構成を有する部材でもある。そのため、発熱素子の放熱板と冷却器との密着性を高めるために用いる放熱グリースが、電気的な絶縁性を持たない場合は、電気的な絶縁素材を別に用いて伝熱部材を構成する必要がある。なお、特許文献2においては、放熱構造の放熱特性の改善の目安として、熱抵抗値が0.24K/W以下になることが挙げられている。
さらに従来の放熱部材を改良した、パワーモジュールの放熱構造の発明の例として、発熱素子の放熱板と冷却器の間に、熱伝導させる方向、即ち放熱面に垂直な方向に沿うようにカーボンナノチューブや炭素繊維を並べて配置した髭状体の層を設けた放熱構造の発明が、特許文献3に示されている。ただし、この放熱構造は、前記髭状体の層の構造が繊細であるため量産適正の面での課題が新たに生じていた。
なお、伝熱部材としては、従来セラミックスが電気絶縁性と熱伝導性の両面から好ましく用いられてきたが、これらは剛直であり、表面も固くて被接触面との密着性に劣るため、例えば放熱板や冷却器との間に単にセラミックスの伝熱部材を配置しただけでは、その界面が密着するように両者を圧縮するように圧力をかけたとしても、その界面には空気層が形成されて熱伝導性が妨げられるため、前記空気層を埋めるための放熱グリース層を界面に設ける必要があった。即ち、従来の放熱構造では、放熱板と伝熱部材との界面、及び伝熱部材と冷却器との界面の両方に放熱グリース層を設ける必要があった。放熱構造に放熱グリース層を設けることにより、局所的な熱伝導率の改善は図れるが、前記放熱グリース自体の熱伝導率は一般に伝熱部材よりも低く、またそれを2層設ける必要があるため、放熱グリース層の厚みを可能な限り薄くしたとしても、放熱構造全体としての熱伝導率改善の余地が依然として残されていた。また、放熱グリース層を設ける工程も別途必要となっていた。
特開2003-168772号公報 特開2005-150420号公報 特開2010-192717号公報
本発明は、上記の課題に鑑み、量産性に優れるとともに、優れた放熱性能を発現できる放熱構造を提供することを課題とする。
本発明は、上記課題を解決するため、以下(1)~(5)に示す手段を採用できる。
(1)電気回路装置の外部へ露出する放熱板と、伝熱部材と、冷却器とが積層構造をなすように配置されて含まれる、電気回路装置の放熱構造であって、
前記伝熱部材が、セラミックス一次粒子が3次元的に一体構造をなしている焼結体に樹脂組成物が含浸しているセラミックス樹脂複合体であり、
前記伝熱部材が、前記放熱板および前記冷却器のうちの少なくとも一方と直接接触して積層するように配置される
ことを特徴とする電気回路装置の放熱構造。
(2)セラミックス樹脂複合体が、平均長径が3~60μm、アスペクト比が5~30である窒化ホウ素一次粒子が3次元的に一体構造をなしているセラミックス焼結体35~70体積%に、樹脂組成物65~30体積%を含浸している、セラミックス樹脂複合体である、(1)記載の電気回路装置の放熱構造であることが好ましい。
(3)伝熱部材が、厚さ0.05mm以上1.0mm以下の平板状である、(1)または(2)記載の電気回路装置の放熱構造であることが好ましい。
(4)電気回路装置が、発熱素子を挟んで向かい合い、それぞれが外部への露出面を有する、少なくとも2枚以上の放熱板を備えている、(1)~(3)のいずれかに記載の電気回路装置の放熱構造であることが好ましい。
(5)積層構造の積層面に対して垂直な方向に、圧縮方向の圧力をかけている、(1)~(4)のいずれかに記載の電気回路装置の放熱構造であることが好ましい。
本発明の実施形態によれば、発熱素子の放熱板と冷却器の間に、伝熱部材として熱伝導率の高いセラミックス樹脂複合体を配置して用いることができる。このため、熱伝導性が極めて高く、また放熱部材の量産性にも優れている、電気回路装置の放熱構造を提供することができ、さらにその結果として、電気回路装置を熱的に保護すると共に、その電気的性能の保持に資する電気回路装置も提供することができる。
本発明の実施形態に係る放熱構造の概略を例示する図である。
本明細書においては、別段の断わりが無いかぎりは、数値範囲はその上限値および下限値を含むものとする。
本発明の実施形態に係る電気回路装置の放熱構造は、電気回路装置の外部へ露出する放熱板に、伝熱部材を介して冷却器を接して配置される構成を有しており、かつ当該伝熱部材が、その放熱板および冷却器のうちの少なくとも一方と直接接触して積層するように配置される。前記伝熱部材は、セラミックス一次粒子が3次元的に一体構造をなしている焼結体に樹脂組成物が含浸しているセラミックス樹脂複合体を少なくとも含む伝熱部材である。
<電気回路装置>
本明細書でいう電気回路装置は、発熱素子と、前記発熱素子の近傍にまたは接して配置されかつ外部への露出面を有する放熱板とを備えている電気回路装置である。通常は外部への接続端子や前記放熱板の露出面を除き、封止材で電気回路装置の全体が覆われている。電気回路装置としてはパワーモジュールが代表的な例であるが、本明細書でいう電気回路装置は、特にパワーモジュールと呼ばれる電気回路装置のみを指している用語ではなく、発熱する素子を内部に含み、外部への露出面を有する放熱板を含む一体の装置を包括的に示す概念である。
<発熱素子>
本明細書でいう電気回路装置に含まれる発熱素子とは、電流を流して使用する際に多かれ少なかれ熱を発生する素子である。そのため、本発明では発熱素子の種類を限定するものではなく能動素子であれ受動素子のいずれでも良いが、本発明と関係が深い発熱素子としては、例えば、パワーMOSFET、IGBT、サイリスタやSiCデバイス等の、主にモーターや照明装置の駆動制御や電力変換など、電力関係の制御等に用いられるパワー半導体素子を挙げることができる。
<放熱板>
本明細書でいう放熱板とは、前記電気回路装置において、発熱素子の近傍にまたは接して配置され、発熱素子の熱を逃がすために、外部への露出面を有する、例えば銅合金もしくはアルミ合金等の金属でできた熱伝導性及び電気伝導性の良い板である。電気回路装置の種類によっては電極としての機能を兼ねていることもある。本発明では、放熱板の形状や、ひとつの電気回路装置に含まれる放熱板の数や、放熱板が複数ある場合、それらの位置関係を限定するものではないが、典型的な実施形態においては、電気回路装置は、平板に近い形態をしており、放熱板はその片面または上下両面に配置されているようにできる。
<伝熱部材>
本発明の実施形態に係る伝熱部材は、セラミックス一次粒子が3次元的に一体構造をなしているセラミックス焼結体に、樹脂組成物が含浸している複合体(以下セラミックス樹脂複合体という)である。前記セラミックス樹脂複合体には、本発明の実施形態に係る放熱構造の特性を損なわない限り、放熱グリース層を、前記セラミックス樹脂複合体と前記放熱板の露出面との界面、または前記セラミックス樹脂複合体と冷却器との界面のうちのいずれか一方に設けても良い。
前記セラミックス樹脂複合体は、窒化ホウ素、窒化アルミニウム、窒化ケイ素から選ばれる少なくとも一種のセラミックス一次粒子が、3次元的に連続した一体構造をなしている焼結体(以下、セラミックス一次粒子焼結体という。またセラミックス一次粒子が、窒化ホウ素である場合は、窒化ホウ素一次粒子焼結体といい、窒化アルミニウムである場合は、窒化アルミニウム一次粒子焼結体といい、窒化ケイ素である場合は、窒化ケイ素一次粒子焼結体という。)が好ましい。特に前記セラミックス一次粒子が窒化ホウ素一次粒子である場合には、前記セラミックス樹脂複合体は、平均長径が3~60μm、アスペクト比が5~30である窒化ホウ素一次粒子が3次元的に一体構造をなしているセラミックス焼結体35~70体積%、好ましくは40~65体積%に対して、樹脂組成物(好ましくは、熱硬化性樹脂組成物)65~30体積%、好ましくは60~35体積%を含浸している、セラミックス樹脂複合体であることが好ましい。なお前記セラミックス樹脂複合体のセラミックス焼結体の量が、35体積%より小さいと、熱伝導率の比較的低い樹脂組成物の割合が相対的に増えるため、伝熱部材全体の熱伝導率が低下する。逆にセラミックス焼結体の量が70体積%より大きいと、放熱板や冷却器に伝熱部材を加熱加圧により接着する際に、放熱板表面の凹凸に熱硬化性樹脂組成物が浸入し難くなり、引っ張りせん断接着強さと熱伝導率が低下する可能性がある。
窒化ホウ素一次粒子が3次元的に一体構造をなしているセラミックス焼結体を得る場合には、例えば窒化ホウ素の一次粒子の粉末に、炭酸カルシウム、炭酸ナトリウム、ホウ酸等の焼結助剤を0.01~20質量%程度、典型的には0.1~10質量%程度、より典型的には1~5質量%程度の内割で配合し、金型や冷間等方圧加圧法(CIP)等の公知の方法にて成形した後、窒素、アルゴン等の非酸化性雰囲気中、温度1500~2200℃で1~30時間程度焼結することによって製造することができる。
前記の焼結に用いる焼結炉には、マッフル炉、管状炉、雰囲気炉などのバッチ式炉や、ロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪形連続炉などの連続式炉が挙げられる。これらは目的に応じて使い分けられ、たとえば多くの品種の窒化ホウ素焼結体を少量ずつ製造するときはバッチ式炉を、一定の品種を多量製造するときは連続式炉が採用される。
前記セラミックス樹脂複合体に含まれる樹脂組成物の量は、伝熱部材の30~65体積%の範囲内であることが好ましく、35~60体積%の範囲内であることがより好ましい。セラミックス樹脂複合体に含まれる樹脂組成物の量は、セラミックスと樹脂の複合化前後の重量測定及び比重値によって算出できる。なお、前記樹脂組成物は、熱硬化性樹脂組成物であることが好ましい。
前記熱硬化性樹脂組成物としては、例えばエポキシ基を有する物質及びシアネート基を有する物質の何れか一方又は両方と、水酸基を有する物質及びマレイミド基を有する物質の何れか一方又は両方との組み合わせであることが好ましい。これらの中でも、シアネート基を有する物質とマレイミド基を有する物質の組み合わせがより好ましい。
エポキシ基を有する物質としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂(クレゾールのボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等)、フェノ-ルノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等のエポキシ樹脂が挙げられる。
シアネート基を有する物質としては、2,2'-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、2,2'-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、1,1'-ビス(4-シアナトフェニル)エタン、1,3-ビス(2-(4-シアナトフェニル)イソプロピル)ベンゼン等のシアネート樹脂が挙げられる。
水酸基を有する物質としては、フェノールノボラック樹脂、4,4'-(ジメチルメチレン)ビス[2-(2-プロペニル)フェノール]等のフェノール類が挙げられる。マレイミド基を有する物質としては、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4'-ジフェニルエーテルビスマレイミド、4,4'-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3―ビス(4-マレイミドフェノキシ)ベンゼン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2'-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等のマレイミド樹脂が挙げられる。
前記セラミックス樹脂複合体には、適宜、セラミックスと樹脂組成物間の密着性を向上させるためのシランカップリング剤、濡れ性やレベリング性の向上及び粘度低下を促進して含浸・硬化時の欠陥の発生を低減するための消泡剤、表面調整剤、湿潤分散剤を含有することができる。さらに、硬化速度や発熱開始温度を制御するために、硬化促進剤を加えても良い。硬化促進剤としては、2-エチル―4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラ-p-トリルボレート等の有機リン化合物、アセチルアセトン銅(II)、亜鉛(II)アセチルアセトナート等の金属触媒が挙げられる。
セラミックス樹脂複合体は、前記セラミックスと前記樹脂組成物を複合化したものであり、例えばセラミックス一次粒子焼結体に樹脂組成物を含浸させることにより、複合化したものである。この場合セラミックス一次粒子焼結体への樹脂組成物の含浸は、例えば真空含浸及び/または1~300MPa(G)での加圧含浸を実施することにより行うことができる。なお、真空含浸時の圧力は、1000Pa(abs)以下が好ましく、100Pa(abs)以下が更に好ましい。加圧含浸では、圧力1MPa(G)未満ではセラミックス一次粒子焼結体の内部まで樹脂組成物が十分含浸できない可能性があり、300MPa(G)超では設備が大規模になるためコスト的に不利である。なお、窒化ホウ素一次粒子焼結体の内部に樹脂組成物を容易に含浸させるため、真空含浸及び加圧含浸時に100~180℃に加熱し、樹脂組成物の粘度を低下させることも可能である。
前記樹脂組成物が、熱硬化性樹脂組成物である場合は、熱硬化性樹脂組成物を半硬化(Bステージ化)させることも可能であり、好ましい方法である。半硬化させるための加熱方式は、赤外線加熱、熱風循環、オイル加熱方式、ホットプレート加熱方式又はそれらの組み合わせで行うことができる。半硬化は、熱硬化性樹脂組成物を含浸させた後に、含浸装置の加熱機能を利用してそのまま行っても良いし、含浸装置から取り出した後に、熱風循環式コンベア炉等の公知の装置を用いて別途行っても良い。
本発明のある実施形態では、前記セラミックス樹脂複合体に対して、本発明の放熱構造の特性を損なわない限り、放熱グリース層を、前記セラミックス樹脂複合体と前記放熱板の露出面との界面、または前記セラミックス樹脂複合体と冷却器との界面のいずれか一方に設けても良い。放熱グリースとしては、例えばシリコーン樹脂に熱伝導性フィラーが充填されたものであり、その熱伝導率としては1~5W/(m・K)程度のものを用いることが好ましく、例えばセラミックス樹脂複合体の表面に塗布する形で用いることができる。塗布する場合の厚さとしては20~100μmであることが好ましい。伝熱部材に放熱グリースを塗布することで、セラミックス樹脂複合体は放熱板または冷却器と、より密着しやすくなるため、放熱構造の伝熱性能が高まることがある。別の実施形態における放熱構造では、放熱板を二面有している場合に、一方の放熱板には放熱グリース層が一層存在し、他方の放熱板には放熱グリース層を含まないようにもできる。なおも別の実施形態においては、放熱構造が放熱グリース層を含まないようにもできる。
伝熱部材の厚みは、電気回路装置の放熱構造の、電気的及び熱的な要求特性に沿って、適宜変えることができる。伝熱部材は、例えばマルチワイヤーソー(「MWS-32N」 タカトリ社製)などを用いて、所定厚みのシート状に加工することができ、特に熱抵抗を少なくしたい場合は、0.1~0.35mmの薄シート状とすることも可能である。
<冷却器>
冷却器は、一般に金属が好ましく、例えば成形したアルミニウムが好ましく用いられる。冷却器は、伝熱部材に接して配置するのに適した面を有することが好ましいが、その他の形状や内部構造については特に限定はなく、冷却液が内部に流れるようにした液冷式の構造であっても、冷却フィンを有する空冷式の構造であっても、特に制限はない。
本発明の実施形態に係る電気回路装置の放熱構造では、電気回路装置に備わる放熱板の露出面に接して、伝熱部材が配置され、さらに前記放熱板とは直接接触させずに前記伝熱部材に接して冷却器が配置されている。なお、前記電気回路装置が、発熱素子を挟んで向かい合う、少なくとも2枚以上の放熱板を備えていることも可能である。この場合の放熱板は、一般的には平行に向かい合っていることが好ましい。そのため、本発明の電気回路装置の放熱構造では、電気回路装置の両面に、それぞれ伝熱部材を介して冷却器を装着して積層構造とした放熱構造が好ましく採用される。さらに冷却器をより強く電気回路素子に密着させて放熱特性を向上させるため、電気回路装置、伝熱部材を挟み込み、強く締め付けて積層面に対して垂直な方向に圧縮荷重(すなわち圧縮方向の圧力)をかけることを可能とした構造も好ましく採用される。また積層面の全体にわたって圧縮荷重をかけることが熱伝導効率に鑑みてより好ましい。圧縮荷重をかける方法には、特に限定はないが、例えば、図1に示すように、例えば冷却器に孔を開け、ボルトやナットなどを利用した締め付け部材を取り付けて、互いに向かい合う冷却器同士をネジで引き合うようにして圧縮荷重をかける方式の放熱構造を、好ましく採用することができる。
以下、本発明を実施例、比較例を挙げて更に具体的に説明するが、これらは本発明及びその利点をより良く理解するために提供されるのであり、本発明が限定されることを意図するものではない。
実施例、及び比較例の放熱構造を構成するための準備として、以下に示す電気回路装置、伝熱部材、放熱グリース、冷却器を準備し、それぞれの概要を下記の表1に示した。
<電気回路装置>
電気回路装置として、縦35mm×横21mmの平板長方形の放熱板を上面/下面の両面に有する、両面冷却型パワーモジュールを準備した。なお、前記パワーモジュールの発熱量は310Wである。これを電気回路装置Aとする。
<伝熱部材>
伝熱部材として、シート状の窒化ホウ素一次粒子が3次元的に一体構造をなしているセラミックス焼結体に樹脂組成物を含浸させたセラミックス樹脂複合体を準備した。これを伝熱部材Bとする。伝熱部材Bの熱伝導率は80W/(m・K)であった。
<セラミックス樹脂複合体>
前記セラミックス樹脂複合体は、窒化ホウ素粉末を3次元的に焼結させた窒化ホウ素焼結体に、熱硬化性樹脂組成物を含浸させた窒化ホウ素焼結体の樹脂複合体である。前記窒化ホウ素焼結体は、平均長径が18μm、アスペクト比が12の窒化ホウ素と、平均長径が6μm、アスペクト比が15の窒化ホウ素と、ホウ酸と、炭酸カルシウムとを、64.2:34.0:1.2:0.6の質量比で合わせ、これをエタノール、窒化ケイ素製ボ-ルミルを用いて湿式法で2時間混合後、乾燥、解砕して得た混合粉末を、金型に充填し、5MPaの圧力でブロック状にプレス成形し、得られたブロック状成形体を、さらにCIP(冷間等方圧加圧法)装置(ADW800、神戸製鋼所社製)により75MPa(G)の間で加圧処理を行った後、バッチ式高周波炉(FTH-300-1H、富士電波工業社製)にて2000℃で10時間、窒素流量10L/minの条件で焼結させて得たものである。この窒化ホウ素焼結体の比重は1.51であった。さらに、前記窒化ホウ素焼結体を縦45mm×横35mm×厚0.32mmのシート状に切り出し、真空加温含浸装置(G-555AT-R、協真エンジニアリング社製)を用いて、温度145℃、圧力15Pa(abs)の真空中で、各々10分間脱気した後、引き続き同装置内で前記の加温真空下で、熱硬化性樹脂組成物、即ちビスフェノールF型エポキシ樹脂(JER807、三菱化学社製、比重1.2)12.1質量%と、ノボラック型シアネート樹脂(PT-30、ロンザ社製、比重1.2)72質量%と、フェノールノボラック樹脂(TD-2131、DIC社製、比重1.2)7.9質量%と、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン(比重1.3)8質量%とを混合させた樹脂組成物中に、10分間浸漬処理した。次いで、熱硬化性樹脂組成物を含浸させた窒化ホウ素焼結体を、さらに、加圧加温含浸装置(HP-4030AA-H45、協真エンジニアリング社製)内に設置し、温度145℃、圧力3.5MPaの加圧状態で120分間保持し、その後、大気圧下、160℃で、120分間の条件で加熱し、熱硬化性樹脂組成物を半硬化させたシート状のセラミックス樹脂複合体、即ち窒化ホウ素焼結体と樹脂組成物の複合体(以下、窒化ホウ素樹脂複合体シートとも表記する)を得た。このセラミックス樹脂複合体の大きさは元になった窒化ホウ素焼結体のそれと実質的に変わらなかった。またセラミックス樹脂複合体中の窒化ホウ素焼結体と樹脂組成物との体積比を、セラミックスと樹脂の複合化前後の重量測定及び比重によって算出したところ、52:48であった。
<放熱グリース>
放熱グリースとしては、熱伝導率2W/(m・K)を示す放熱グリース(G-765、信越化学工業社製)を準備した。これを放熱グリースCとする。
<冷却器>
冷却器としては熱伝導率200W/(m・K)の、伝熱部材に接する面が50mm×30mmであり、厚み5mmである平板状の、アルミニウム製の水冷式冷却器を準備した。これを冷却器Dとする。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
準備した電気回路装置Aと窒化ホウ素樹脂複合体シートである伝熱部材Bとの両中心線を一致させ、かつ放熱板の長さ35mmの辺と、伝熱部材Bの45mmの辺とが平行になるように、前記電気回路装置Aの上下両面の放熱板に接して、伝熱部材Bを積層させてから、プレス機圧力10MPa、温度200℃で24時間かけて接着した。さらにその外側に、伝熱部材Bの中心線と冷却器Dの中心線を一致させ、かつ伝熱部材Bの45mmの辺と冷却器の50mmの辺とが平行になるように上下両面から、2個の冷却器を積層させ、実施例の放熱構造とした。2個の冷却器の四隅には、それぞれボルトとナットによる締め付け部材を取り付け、積層面全体にわたって均一に10MPaの圧縮方向の圧力がかかるように調整した。
<放熱構造の放熱特性評価>
実施例1の放熱構造の放熱特性である熱抵抗を以下の方法で評価した。熱抵抗は放熱板と冷却器にいたる経路の熱抵抗(℃/W)である。電気回路装置Aの発熱量を310W、冷却器に送る冷却水の入口温度を65℃、冷却水流量を5(l/分)に設定し、放熱板の外側表面と冷却器の外側表面に熱電対を挿入し、温度を測定した。さらに熱抵抗(℃/W)=(放熱板の温度(℃)-冷却器の温度(℃))÷310(W)の式を用いて放熱構造全体の熱抵抗を算出した。実施例1の放熱構造の1段目からの積層順やその締め付け圧力と熱抵抗値は下記表2に示した。また絶縁破壊強さをJISC2110で測定し、その値も表2に示した。
<実施例2>
電気回路装置Aの上下両面の放熱板と伝熱部材Bの界面に、厚み20μmの放熱グリースC層を設けた以外は、実施例1と同じ構成、作製手順により、実施例2の放熱構造を作製し、その熱抵抗を実施例1と同様に測定した。この結果は、表2に示した。なお放熱グリースC層はスクリーン印刷機を用いて形成させた。
<実施例3>
伝熱部材Bと冷却器Dの2箇所の界面に、厚み20μmの放熱グリースC層を設けた以外は、実施例1と同じ構成、作製手順により、実施例3の放熱構造を作製した。実施例3の熱抵抗も実施例1と同様に測定し、結果を表2に示した。
<比較例1>
電気回路装置Aの上下両面の放熱板と伝熱部材Bの界面に、厚み20μmの放熱グリースC層を、伝熱部材Bと冷却器Dの2箇所の界面に、厚み20μmの放熱グリースC層をそれぞれ設けた以外は、実施例1と同じ構成として、比較例1の放熱構造を作製し、その熱抵抗を実施例1と同様に測定した。この結果も表2に示した。
<比較例2>
伝熱部材を緻密な窒化ケイ素焼結体とした以外は、比較例1と同じ構造の放熱構造を作製し、比較例2の放熱構造とした。比較例2は従来技術の典型的な構成を持つ放熱構造の例である。なお、前記窒化ケイ素焼結体は、市販の製品(SN-90、マルワ社製)から伝熱部材Bと同寸法になるように切り出したものを使用した。比較例2の放熱構造の構成と熱抵抗値も表2に示した。
実施例、比較例の放熱構造が示す放熱特性の比較により、本発明の放熱構造は、放熱グリースC層を片面あたり2層ずつ有していた従来技術の放熱構造より低い熱抵抗であり、より優れた放熱構造であることが示された。
Figure JPOXMLDOC01-appb-T000002
本発明の電気回路装置の放熱構造は、一般産業用や車載用パワーモジュールに使用可能である。
 1 発熱素子(パワー半導体素子等)
 2 封止材
 3 放熱板
(1~3が一体となり電気回路装置を形成している)
 4 セラミックス樹脂複合体
 5 冷却器
 6 締め付け部材

Claims (5)

  1. 電気回路装置の外部へ露出する放熱板と、伝熱部材と、冷却器とが積層構造をなすように配置されて含まれる、電気回路装置の放熱構造であって、
    前記伝熱部材が、セラミックス一次粒子が3次元的に一体構造をなしている焼結体に樹脂組成物が含浸しているセラミックス樹脂複合体であり、
    前記伝熱部材が、前記放熱板および前記冷却器のうちの少なくとも一方と直接接触して積層するように配置される
    ことを特徴とする、電気回路装置の放熱構造。
  2. セラミックス樹脂複合体が、平均長径が3~60μm、アスペクト比が5~30である窒化ホウ素一次粒子が3次元的に一体構造をなしているセラミックス焼結体35~70体積%に、樹脂組成物65~30体積%を含浸している、セラミックス樹脂複合体である、請求項1記載の電気回路装置の放熱構造。
  3. 伝熱部材が、厚さ0.05mm以上1.0mm以下の平板状である、請求項1または2記載の電気回路装置の放熱構造。
  4. 電気回路装置が、発熱素子を挟んで向かい合い、それぞれが外部への露出面を有する、少なくとも2枚以上の放熱板を備えている、請求項1~3のいずれか一項記載の電気回路装置の放熱構造。
  5. 積層構造の積層面に対して垂直な方向に、圧縮方向の圧力をかけている、請求項1~4のいずれか一項記載の電気回路装置の放熱構造。
PCT/JP2017/028133 2016-08-02 2017-08-02 電気回路装置の放熱構造 WO2018025933A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197006260A KR102382407B1 (ko) 2016-08-02 2017-08-02 전기 회로 장치의 방열 구조
EP17837035.9A EP3496139B1 (en) 2016-08-02 2017-08-02 Heat dissipation structure for electric circuit device
CN201780048563.XA CN109791918B (zh) 2016-08-02 2017-08-02 电路装置的散热结构
US16/322,570 US10615096B2 (en) 2016-08-02 2017-08-02 Heat dissipation structure for electric circuit device
JP2018531962A JPWO2018025933A1 (ja) 2016-08-02 2017-08-02 電気回路装置の放熱構造
JP2022076224A JP7282950B2 (ja) 2016-08-02 2022-05-02 電気回路装置の放熱構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152205 2016-08-02
JP2016152205 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025933A1 true WO2018025933A1 (ja) 2018-02-08

Family

ID=61074093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028133 WO2018025933A1 (ja) 2016-08-02 2017-08-02 電気回路装置の放熱構造

Country Status (6)

Country Link
US (1) US10615096B2 (ja)
EP (1) EP3496139B1 (ja)
JP (2) JPWO2018025933A1 (ja)
KR (1) KR102382407B1 (ja)
CN (1) CN109791918B (ja)
WO (1) WO2018025933A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080078A1 (ja) * 2020-10-16 2022-04-21 富士フイルム株式会社 硬化性組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
WO2023190559A1 (ja) * 2022-03-30 2023-10-05 デンカ株式会社 放熱構造体
JP7510497B2 (ja) 2020-03-31 2024-07-03 デンカ株式会社 複合体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861697B2 (ja) * 2016-03-10 2021-04-21 デンカ株式会社 セラミックス樹脂複合体
US11647612B2 (en) * 2020-11-23 2023-05-09 Toyota Motor Engineering & Manufacturing North America, Inc. High-density integrated power electronic assembly including double-sided cooling structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150420A (ja) * 2003-11-17 2005-06-09 Nippon Soken Inc 半導体装置の冷却構造
WO2014199650A1 (ja) * 2013-06-14 2014-12-18 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
JP2015096456A (ja) * 2013-11-15 2015-05-21 電気化学工業株式会社 放熱部材およびその用途

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100939A (ja) 2001-09-27 2003-04-04 Tokuyama Corp 放熱基板及びその製造方法
JP3644428B2 (ja) 2001-11-30 2005-04-27 株式会社デンソー パワーモジュールの実装構造
US20050252177A1 (en) * 2004-05-12 2005-11-17 Shiro Ishikawa Ceramic filter and smoke treatment device
JP2010192717A (ja) 2009-02-19 2010-09-02 Sumitomo Electric Ind Ltd 冷却構造
JP5838065B2 (ja) 2011-09-29 2015-12-24 新光電気工業株式会社 熱伝導部材及び熱伝導部材を用いた接合構造
KR101928005B1 (ko) * 2011-12-01 2019-03-13 삼성전자주식회사 열전 냉각 패키지 및 이의 열관리 방법
WO2015022956A1 (ja) * 2013-08-14 2015-02-19 電気化学工業株式会社 窒化ホウ素-樹脂複合体回路基板、窒化ホウ素-樹脂複合体放熱板一体型回路基板
JP6262522B2 (ja) * 2013-12-26 2018-01-17 デンカ株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
JP6189822B2 (ja) * 2014-11-28 2017-08-30 デンカ株式会社 窒化ホウ素樹脂複合体回路基板
JP6170486B2 (ja) * 2014-12-05 2017-07-26 デンカ株式会社 セラミックス樹脂複合体回路基板及びそれを用いたパワー半導体モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150420A (ja) * 2003-11-17 2005-06-09 Nippon Soken Inc 半導体装置の冷却構造
WO2014199650A1 (ja) * 2013-06-14 2014-12-18 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
JP2015096456A (ja) * 2013-11-15 2015-05-21 電気化学工業株式会社 放熱部材およびその用途

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7510497B2 (ja) 2020-03-31 2024-07-03 デンカ株式会社 複合体の製造方法
WO2022080078A1 (ja) * 2020-10-16 2022-04-21 富士フイルム株式会社 硬化性組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
WO2023190559A1 (ja) * 2022-03-30 2023-10-05 デンカ株式会社 放熱構造体

Also Published As

Publication number Publication date
JP2022103256A (ja) 2022-07-07
JP7282950B2 (ja) 2023-05-29
US20190189534A1 (en) 2019-06-20
KR20190046828A (ko) 2019-05-07
EP3496139A1 (en) 2019-06-12
EP3496139B1 (en) 2021-06-16
CN109791918A (zh) 2019-05-21
CN109791918B (zh) 2023-09-29
EP3496139A4 (en) 2019-07-31
KR102382407B1 (ko) 2022-04-01
JPWO2018025933A1 (ja) 2019-06-06
US10615096B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP7282950B2 (ja) 電気回路装置の放熱構造
KR102438540B1 (ko) 전열 부재 및 이것을 포함하는 방열 구조체
US7564129B2 (en) Power semiconductor module, and power semiconductor device having the module mounted therein
JP4046120B2 (ja) 絶縁シートの製造方法およびパワーモジュールの製造方法
TW201105577A (en) Substrate formed by aluminum-graphite composite, heat radiating component using the same and LED luminescent member
CN1275170A (zh) 复合材料及其应用
WO2015115649A1 (ja) 炭化珪素質複合体及びその製造方法並びにそれを用いた放熱部品
JP4582144B2 (ja) 熱伝導シートおよびその製造方法、並びに熱伝導シートを用いたパワーモジュール
JP5246143B2 (ja) 半導体モジュールおよびその製造方法ならびに電気機器
JP5366859B2 (ja) 窒化珪素基板およびそれを用いた半導体モジュール
JP6303776B2 (ja) 半導体装置
JP6979270B2 (ja) グラファイト樹脂複合体
JP5954374B2 (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
JP2017191826A (ja) 半導体装置およびその製造方法
JP2010192717A (ja) 冷却構造
JP5630375B2 (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
JP2014030059A (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
JP7148758B1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
WO2024042913A1 (ja) 複合材料、放熱基板および半導体装置
WO2022224368A1 (ja) 放熱部材およびヒートシンク
JP2024055999A (ja) 回路基板の製造方法及び回路基板
JP2012054604A (ja) 絶縁シートおよびこれを用いたパワーモジュール
JP2016129193A (ja) 電極構造体
JP2014045103A (ja) 電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197006260

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017837035

Country of ref document: EP

Effective date: 20190304