JP5246143B2 - 半導体モジュールおよびその製造方法ならびに電気機器 - Google Patents

半導体モジュールおよびその製造方法ならびに電気機器 Download PDF

Info

Publication number
JP5246143B2
JP5246143B2 JP2009266264A JP2009266264A JP5246143B2 JP 5246143 B2 JP5246143 B2 JP 5246143B2 JP 2009266264 A JP2009266264 A JP 2009266264A JP 2009266264 A JP2009266264 A JP 2009266264A JP 5246143 B2 JP5246143 B2 JP 5246143B2
Authority
JP
Japan
Prior art keywords
insulating layer
semiconductor module
semiconductor
metal substrate
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009266264A
Other languages
English (en)
Other versions
JP2011114010A (ja
Inventor
健次 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009266264A priority Critical patent/JP5246143B2/ja
Publication of JP2011114010A publication Critical patent/JP2011114010A/ja
Application granted granted Critical
Publication of JP5246143B2 publication Critical patent/JP5246143B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体モジュールおよびその製造方法ならびに電気機器に関する。より詳細には、本発明は、絶縁と放熱とを両立させ得る半導体モジュールおよびその製造方法ならびに電気機器に関する。
近年、IGBT(絶縁ゲートバイポーラトランジスタ)やMOSFET(金属酸化膜半導体電界効果トランジスタ)などのパワー半導体素子を含む回路モジュールすなわちパワーモジュールが、民生用機器や産業用機器に広範に使用されている。このようなパワーモジュールを用いる民生用機器には、例えば、家庭用エアコン、冷蔵庫などの電源装置がある一方、産業用機器には、インバータ電源回路中のコンバータ部やインバータ部などの電源装置、電動機の出力制御装置やサーボコントローラなどが含まれる。パワーモジュール以外にも、例えば能動回路素子を1つまたは集積して複数個含む半導体回路素子にコンデンサなどの受動回路素子を組み合わせることによって1つのモジュールとするハイブリッドIC(集積回路)も広範に用いられる。さらに、発光ダイオード(LED)や半導体レーザーなどの発光素子が単体でまたは複数個組み合わされることによって、光源モジュールが作製されている。これらの半導体素子を用いる各種のモジュール(以下、「半導体モジュール」という)の中には、扱う電力が大きい場合、回路の集積度が高い場合、または回路の動作周波数が高い場合などのさまざまな理由から、搭載している半導体素子によって生成される熱を適切に放熱しなくてはならないものがある。
ところで、上述のような半導体モジュールは、その性能上の要求や実装上の要求に加えて流通の便宜のために、さまざまな形態をとるように作製される。それらの形態は、半導体パッケージ、あるいは単にパッケージとも呼ばれる。発熱量が問題となる半導体モジュールのパッケージにあっては、その電気的な特性のみならず、上述のように放熱に対しても適切な対処がなされなくてはならない。
一方、製造コストを低減するために、半導体モジュールのパッケージの表面において端子以外の部分をエポキシ樹脂などの樹脂によってモールド成型としたもの、すなわちフルモールド半導体モジュールが用いられている(例えば、特許文献1参照)。このフルモールド半導体モジュールは、モールド成型のための樹脂によって、リードフレームおよびヒートシンクなどの各要素を物理的または機械的に保持するとともに、端子以外の表面において外界から電気的に絶縁するように構成されている。上述のような放熱が課題となる半導体モジュールのパッケージには、しばしば、金属を用いた基板(以下、「金属ベース基板」という)やセラミックスの基板などの何らかの基板(以下、総称して「配線基板」という)が用いられる。その配線基板には、半導体回路素子や受動回路素子が搭載され、例えば封止剤によって回路素子を封止することによって半導体モジュールが作製される。なお、この封止は、シリコーンゲルなどの定まった形状のない材質のものを配線基板に取り付けたプラスティックの枠に保持するようにして行なわれることもある。上述のとおり、放熱が課題となる半導体モジュールには、電気的な特性と放熱とを両立させるような種々のパッケージが用いられている。
図7および図8は、フルモールドの半導体モジュールを含むいくつかの半導体モジュールの従来例の構成を示す断面図である。図7は、従来例の第1の構成のモールド半導体モジュールであるフルモールド半導体モジュール700の構成を示している。このフルモールド半導体モジュール700においては、リードフレーム6の上にパワー半導体(半導体回路素子)2aおよび駆動IC3が実装され、リードフレーム6、パワー半導体2a、および駆動IC3が、ボンデイングワイヤー4a,4bにより相互に接続される。そして、これらの部品が封止剤である成型樹脂5によって封止されることにより、フルモールド半導体モジュール700が形成される。こうして、フルモールド半導体モジュール700の表面は、端子として用いるリードフレーム6の端部を除いて絶縁材料に覆われることにより、外界から絶縁される。
また、図8は、もう1つの従来例の第2の構成の半導体モジュール800を示している。半導体モジュール800は、図7に示すフルモールド半導体モジュール700のように、端子を除くすべての外面が絶縁表面となるようには形成されていない。この例では、図8に示すように、半導体モジュール800は、金属製のヒートシンク8を設けられたときにヒートシンク8の面の一部が外界に露出するように形成されている。
特開平9−139461号公報(段落番号0038、第1図)
しかしながら、上述の従来のようなパッケージを採用する半導体モジュールでは、出力できる電圧値および電流値に上限が生じる。例えば、上述のような従来のパッケージをパワー半導体モジュールに用いると、出力電圧および電流の上限がそれぞれ200Vおよび50A程度となる。これは、その電圧よりも高い電圧になれば電気的な絶縁性の問題が生じる一方、その電流よりも大きい電流が流れると、半導体モジュールの内部のパワー半導体回路素子2aからの発熱を十分に放熱することができなくなる可能性が高まるためである。しかし、従来の半導体モジュールにおいては、このような電圧や電流の上限をこれまで以上に高めたいという産業界の強い要求がある。なお、上述の電圧および電流の上限値の具体的な値は、種々の条件、すなわち半導体回路素子の種類をパワー半導体とするか上述のハイブリッドICとするかLEDとするかに依存するだけでなく、設計される形状等にも依存する。
ここで、許容される電流値の上限を増大させる、すなわち半導体モジュールの電流容量を大きくするための手法として、例えば、フルモールド半導体モジュールの放熱経路となる成型樹脂の部分を薄くすることが考えられる。図7のフルモールド半導体モジュール700に即していえば、これは、放熱量が多いパワー半導体2aの直下のリードフレーム6から図7の下方に向かったときの表面までの樹脂の部分52の厚みを薄くすることに相当する。しかしながら、製作条件からこの部分52の厚みには下限がある。というのは、通常、トランスファー成型方式によって行なわれる成型樹脂5による封止処理では、フルモールド半導体モジュール700は、互いに接続したリードフレーム6、パワー半導体2a、および駆動IC3を成型用の金型内にセットして、予め融解させた成型樹脂5をその金型内に流し込むことにより製造される。このような製造手法において部分52を薄くしすぎると、成型金型の内部においてリードフレーム6の下方に成型樹脂の未充填部が形成される。その結果、例えばリードフレーム6と金属製の外部ヒートシンク(図示しない)との間において十分な絶縁性が確保できなくなる。このため、部分52の厚みを薄くするのには限界が生じるのである。これを防止するための厚みの下限の数値例を挙げれば、フルモールド半導体モジュール700の成型樹脂の厚さの下限値は、概ね300μmである。
なお、この部分52を薄くしたときに樹脂を適切に充填するための対処法として、成型時の樹脂注入圧力を高くすることも考えられる。しかし、樹脂注入圧力を高くすると、一方で、ボンデイングワイヤー4a,4bの変形や断線も生じやすくなる。
電流の上限を増大させるための別の対処法として、成型樹脂5に無機フィラーを混入させて放熱経路の熱伝導率を向上させることも考えられる。この無機フィラーとしては、例えば、酸化珪素、酸化アルミニウム、窒化珪素、窒化アルミニウム、窒化ホウ素からなるフィラー群の1種類以上を成型時に樹脂に混入させることが知られている。しかしながら、これらの無機フィラーを混入した成型樹脂5であっても、その熱伝導率は3〜4W/m・K程度が限界である。必然的に、上述の厚みの下限値とあいまって、放熱経路の熱抵抗には下限が存在することとなる。なお、本出願の記載における「熱抵抗」とは、(温度差ΔT)=(熱抵抗R)×(熱流Q)として表現されるRであり、例えば℃/Wを単位として数値によって表現される量である。
これらの事情は、図8に示した半導体モジュール800の場合にも当てはまる。半導体モジュール800において未充填部が生じ得るのは、成型樹脂5のうち、リードフレーム6とヒートシンク8との間隙の部分54である。この部分54に生じた未充填部分は半導体モジュール800の絶縁不良の原因となる。ここで、未充填部分の生成を防止するために成型時の成型樹脂5の注入圧力を高めるようとしても限界があり、さらに、成型樹脂5にフィラーを混入させても熱抵抗が十分に低減できるわけではない。従って、半導体モジュール800も半導体モジュール700と同様の問題が生じ得る。
以上のような課題への従来の対処方法として、熱伝導率を向上させるためのセラミックスの絶縁性基板(図示しない)を用いることも知られている。この絶縁性基板としては、酸化アルミニウム、窒化珪素、窒化アルミニウムなどの焼結体が用いられる。この場合には、その絶縁性基板のいずれかの面にパワー半導体などの回路素子が接するように配置することにより、絶縁性と放熱性を両立させることが試みられている。
しかし、上述のような絶縁性基板を用いると、上述のフルモールド半導体モジュール700や半導体モジュール800と比べて、材料コストが大幅に増大してしまうため、市場に受け入れられない可能性が高い。その理由の1つとして、上記のような焼結体のセラミックスを絶縁性基板として作製する工程が複雑なことが挙げられる。一例としてその工程を説明すれば、まず、セラミックス原料がバインダーなどと混練されて、グリーンシートと呼ばれる薄層状の状態が形成される。その薄膜を焼成することによってセラミックス基板を作製した後、そのセラミックス基板上に電極が形成される。熱伝導率の観点から言えばセラミックス基板を薄くするのが好ましいが、セラミックス基板は脆いため、そのような基板を安定的に製造することは容易ではない。
さらに、これらのパッケージに加えて、絶縁層を予め形成した金属基板をヒートシンクとして用いるパッケージが知られている。図9は、このような金属基板を用いる従来例(第3の構成)の半導体モジュール900を示している。半導体モジュール900は、図8に示す第2の構成の半導体モジュール800におけるヒートシンク8として機能しつつ絶縁層を備えるような金属ベース基板9を備えている。すなわち、金属ベース基板9は、主に各回路素子の導通基板として作用する銅箔からなる導電層9aと、主に絶縁層として作用し、樹脂とセラミックスのフィラーとからなる絶縁層9bと、主に伝熱層として作用する金属からなるヒートシンク9cとによって構成されている。この金属ベース基板9において、絶縁層9bの厚みは、100〜150μmという薄い膜とすることができる。このため、半導体モジュール900においては、パワー半導体2aからの主な放熱経路(図9における下方)の熱抵抗を比較的小さくすることができる。
この構成を実現するためには、薄層状すなわち厚み方向(換言すれば、高さ方向)の距離が短い空間に成型樹脂を充填する必要は無いものの、その代わりに、金属ベース基板9に配置する絶縁層9bに高い熱伝導率と高い絶縁性とが必要となる。しかしながら、このような性質を備えた絶縁層9bを低コストで製造する方法は知られていない。
本発明は、上記問題点の少なくともいくつかを解決することにより、十分な絶縁性と放熱性をもつ低コストのパッケージを用いる半導体モジュールを実現することに大きく貢献するものである。
本願発明者は、上述の金属ベース基板のような金属基材に絶縁層を形成する処理を低コストで実現できれば十分な絶縁性と放熱性を併せ持つ理想的な半導体モジュールのパッケージが得られると考えた。このために、絶縁層の形成に溶射法を用いることに着目して検討を行った。本願発明者が溶射法に着目したのは、層の形成コストが低廉であるばかりでなく、パターン形成も容易なためである。具体的には、本願発明者は、まず、絶縁層に適する材料である酸化アルミニウム(Al、アルミナ)の粉末をプラズマ溶射法によって層状または膜状になるように金属基材に形成した。その上で、その溶射された絶縁層を利用することにより、半導体モジュールとして望ましい絶縁性と熱伝導率とが確保され得るかどうかについて調査を行った。その結果、本願発明者は、溶射によって形成した酸化アルミニウムの絶縁層を利用して最終的な半導体モジュールを作製した多くの場合に、絶縁層自体の熱伝導率が概ね3〜4W/m・Kにとどまるという問題があることを見出した。ちなみに、溶射ではなく焼成によって作られるタイプの酸化アルミニウム(アルミナの焼結体)における熱伝導率は、通常約20W/m・K程度となる。それにもかかわらず溶射されたままの絶縁層では、上述のように熱伝導率が3〜4W/m・K、すなわちアルミナ焼結体の約1/5以下にとどまってしまう。従って、たとえ簡便かつ低コストな溶射法を用いたとしても、この程度の熱伝導率の絶縁層を利用して十分に小さい熱抵抗を実現することは難しい。というのは、絶縁層の厚みを薄くしなければならず、その結果、十分な絶縁性を確保し得ないからである。
上述のような問題を生じさせるメカニズムを明らかにするために、本願発明者は溶射によって形成された絶縁層の構造に着目してさらに調査と解析を行なった。まず、溶射によって生成された層には一般に気孔が多く含まれる点に注目した。気孔が含まれることは、原料粉末を加熱して溶融した原料粉末の噴流を形成し、その噴流を対象物に吹き付けるという溶射法の手法を採用する限り、避けがたい。ここで、このような気孔が上述の熱伝導率の低下の原因といえるなら、気孔率を小さくするような層の形成条件を採用することによって熱伝導率の低下は緩和されるはずである。ところが実際には、気孔率の増大が熱伝導率の低下にある程度関連はするものの、気孔だけでは上述のような大幅な熱伝導率の低下を説明できないことが判明した。すなわち、上述の熱伝導率低下の主たる原因は気孔の生成以外にあるようであった。
この調査結果を受けて、本願発明者は、溶射によって形成された絶縁層においては、材質そのものが何らかの影響を受けているとの考えに至った。特に、本願発明者は、酸化アルミニウムの粉末が溶射の際に瞬間的に融解してそのまま基材に吹き付けられるために熱的および機械的なストレスを受けていて、これが絶縁層の材質の熱伝導率を低下させている原因であると推測している。
さらに、本願発明者は、絶縁層が溶射によって形成される際に受ける作用を考慮して、絶縁層の熱伝導率の値を高める手法を鋭意検討した。その結果、本願発明者は、溶射によって形成した絶縁層に対して熱処理またはアニール処理(以下、単に「熱処理」ともいう)を施すことにより、その絶縁層の熱伝導率が上昇することを見出した。より具体的には、溶射によって熱伝導率が一旦3〜4W/m・Kとなった絶縁層であっても、その後に熱処理を施すことにより、熱伝導率を約10W/m・Kにまで高めることができることを確認した。絶縁層に熱処理を施して熱伝導率を上昇させた絶縁層を用いれば、半導体モジュールの熱抵抗を容易に低減させることが可能となる。本発明は、上述のような視点で創出された。
すなわち、本発明の態様として、第1面および第2面を有する金属基材と、前記金属基材の前記第1面上に酸化アルミニウムの粉末を溶射して形成され、熱処理によって熱伝導率が高められている絶縁層と、前記金属基材の前記第2面に直接的または間接的に接して搭載されている半導体回路素子とを備える半導体モジュールが提供される。
なお、本願発明者の推測によれば、熱伝導率が溶射によって低下し、熱処理によって上昇する現象には、以下のような機構が作用しているようである。まず、上述の溶射によって形成したままの酸化アルミニウムの層では、原料の粉末に比べて結晶構造が変化している。より詳しくは、酸化アルミニウムの原子配列が、もともとの溶射前の原料である酸化アルミニウムの粉末(すなわちコランダム)の構造である六方晶系から、溶射によってアモルファス状態または立方晶またはγ−アルミナへと変化している。この状態では、熱伝導率は小さい値となる。そして、その後の熱処理によって、溶射された絶縁層の結晶構造が六方晶系となる。この六方晶系になっている絶縁層では、熱伝導率が本来の値に近づき、の熱伝導率が高まる。なお、ここでは、絶縁層の結晶構造がすべて六方晶系となるとは限らず、原子配列をアモルファス状態や軸長の長い立方晶といった種類ごとに分類したときに、六方晶系となっている結晶構造の割合、特に、α−アルミナの割合が熱処理によって増加することによって熱伝導率が上昇している可能性もあると考えている。すなわち、本願の発明者は、絶縁層の結晶構造を六方晶系とするもしくはその割合を高めることによって、絶縁層を用いる半導体モジュールの熱抵抗が低減されることを見出した。
すなわち、本発明によれば、第1面および第2面を有する金属基材と、前記金属基材の前記第1面上に酸化アルミニウムの粉末を溶射して形成され、六方晶系の結晶構造を有する絶縁層と、前記金属基材の前記第2面に直接的または間接的に接して搭載されている半導体回路素子とを備える半導体モジュールが提供される。
これらの態様により、酸化アルミニウムの絶縁層の熱伝導率は、溶射して形成したのみの場合(3〜4W/m・K程度)に比べて高くなり、例えば10W/m・K以上となる。このような絶縁層を放熱経路に有する半導体モジュールは良好な放熱性を実現することができる。なお、上述のように、金属基材の第1面と第2面に分かれて絶縁層と半導体回路素子とが備えられると、半導体回路素子と金属基材との間の熱抵抗を低減することができるため、小さな金属基材を用いても金属基材を通過する放熱経路全体の熱抵抗を小さくすることができる。
また、これらの態様において、前記第1面または前記第2面に含まれない前記金属基材の面の少なくとも一部に酸化アルミニウムの粉末を溶射して形成された、前記絶縁層につながる追加絶縁層をさらに備えると好適である。金属基材の第1面でも第2面でもない面の少なくとも一部に追加絶縁層を備え、その追加絶縁層が上述の絶縁層とつながっていると、絶縁性を一層高めることができる。なお、溶射によってこのような追加絶縁層を形成することは、容易に実施することができる。
さらに、これらの態様において、前記金属基材の前記第1面以外の面が、前記第2面に搭載されている半導体回路素子とともに絶縁材料である封止剤によって封止されており、前記封止剤と前記第1面上に形成した前記絶縁層とによって前記金属基材を覆う絶縁表面を有していると好適である。このような構成においては、金属基材が外界から絶縁されているため、従来の半導体モジュールのように回路素子を搭載したリードフレームもしくは金属ブロックの下部に樹脂からなる絶縁層を形成する必要がなくなり、成型自体が容易になる。
本発明においては、半導体モジュールを製造する製造方法も提供される。すなわち、第1面と第2面とを有する金属基材の前記第1面上に酸化アルミニウムの粉末を溶射することにより絶縁層を形成するステップと、前記絶縁層を熱処理することによって前記絶縁層の熱伝導率を上昇させるステップと、前記金属基材の前記第2面に直接的または間接的に接するように半導体回路素子を搭載するステップとを含む半導体モジュールの製造方法が提供される。また、第1面と第2面とを有する金属基材の前記第1面上に酸化アルミニウムの粉末を溶射することにより絶縁層を形成するステップと、前記絶縁層の結晶構造を六方晶系にするステップと、前記金属基材の前記第2面に直接的または間接的に接するように半導体回路素子を搭載するステップとを含む半導体モジュールの製造方法が提供される。
本発明のいずれかの態様によれば、金属基材には熱伝導性に優れた絶縁層が備えられるので、良好な絶縁性を保ちつつ、半導体回路素子が生成する熱を効率よく放熱させ得る半導体モジュールを実現することができる。
本発明の実施形態にかかる半導体モジュールの構成を示す断面図である。 本発明の実施形態にかかる半導体モジュールの構成を示す断面図である。 本発明の実施形態にかかる半導体モジュールの構成を示す断面図である。 本発明の実施形態にかかる半導体モジュールの製造工程における各段階の構造を示す断面図である。 本発明の実施形態にかかる半導体モジュールの製造工程における各段階の構造を示す断面図である。 本発明の実施形態にかかる半導体モジュールの作製方法において、絶縁層と追加絶縁層とを形成する工程における金属基材の状態を示す断面図である モールド半導体モジュールの従来例(第1例)を示す断面図である。 モールド半導体モジュールの従来例(第2例)を示す断面図である。 モールド半導体モジュールの従来例(第3例)を示す断面図である。
次に、本発明の実施態様について説明する。以下の説明に際し、全図にわたり、特に言及がない限り、共通する部分または要素には、共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示されていない。
<第1実施形態>
以下、図面を参照しながら本発明の半導体モジュールの実施形態である第1の実施形態について詳細に説明する。図1は、本実施形態において提供される半導体モジュール100の構成を示す断面図である。半導体モジュール100には、金属基材1が備えられている。この金属基材1の図における下面すなわち第1面1Aには、絶縁層7が形成されている。これに対し、金属基材1の図における上面すなわち第2面1Bには、直接的または間接的に接するように半導体回路素子2,2が搭載されている。
より具体的には、本実施形態の半導体モジュール100においては、この金属基材1は銅板によって作製される。金属基材1の形状は、例えば、概ね1mm以上4mm以下の厚みを有する平板状であり、その平面視において正方形または長方形である。絶縁層7は、酸化アルミニウムの粉末を溶射法により堆積させて形成された層または膜(以下、総称して、単に「層」ともいう)である。すなわち、絶縁層7は、金属基材1の第1面1Aに酸化アルミニウムの粉末を溶射することによって200μmの厚みを有するように形成され、その後に熱処理が施されて熱伝導率が高められている。ここで、絶縁層7の結晶構造をX線回折装置によって分析すると、酸化アルミニウムの六方晶系の回折ピークを確認することができる。
図1に示すように、半導体回路素子2,2は、例えばIGBTなどのパワー半導体であって、はんだによって金属基材1の第2面1Bに接合され、直接的または間接的に金属基材1の第2面1Bに接している。そして、半導体回路素子2,2の接続用端子(図示しない)は、ボンデイングワイヤー4によりリードフレーム6に電気的に接続されている。このボンデイングワイヤー4には、125〜500μmの線径のアルミワイヤーが使用される。そして、上述の各要素、すなわち、絶縁層7が形成された金属基材1、半導体回路素子2,2、リードフレーム6、およびボンデイングワイヤー4が封止剤5によって封止されている。この封止剤5は、エポキシ樹脂に無機フィラーを混入させたものが用いられる。
このようにして構成される半導体モジュール100は、絶縁材料である封止剤5によって、金属基材1の第1面1A以外のすべての面が半導体回路素子2,2とともに覆われることにより封止されている。このため、この半導体モジュール100の表面には、電気的な接続のためのリードフレーム6の端部62を除き、封止剤5及び第1面1Aに形成した絶縁層7のみが外界と接している。すなわち、半導体モジュール100の表面は金属基材1を外界から絶縁する絶縁表面となっている。
<第1実施形態の変形例1>
上述の第1実施形態の変形例1として、複数の金属基材を集積して用いる半導体モジュール200について説明する。図2は、半導体モジュール200の構造を示す断面図である。半導体モジュール200は、第1実施形態の金属基材1と同様に作製されたそれぞれの金属基材12,14上に、金属基材1と同様に半導体回路素子22,24が搭載されている。半導体回路素子22,24は、ボンデイングワイヤー4によって相互にまたはリードフレーム6に接続され、金属基材1上の半導体回路素子22,24、リードフレーム6、およびボンデイングワイヤー4が封止剤5によって封止されることにより、単一の半導体モジュール200が形成されている。それぞれの金属基材12,14を覆うように、絶縁層72,74が形成されている。半導体モジュール200の表面には、端子となるリードフレーム6の端部62以外には、封止剤5か絶縁層72,74かのいずれかが外界と接している。つまり、半導体モジュール200の表面は、金属基材1を外界から絶縁する絶縁表面となっている。
なお、これらの絶縁層72,74は、絶縁層7(図1)と同様に、金属基材12,14のそれぞれに酸化アルミニウムを溶射することによって形成され、その後に熱処理を施して熱伝導率が高められている。絶縁層72,74をX線回折装置によって分析すると、酸化アルミニウムの六方晶の回折ピークを確認することができる。
このような構成の半導体モジュール200では、半導体回路素子22によって生成される熱が主として金属基材12および絶縁層72を通じて放熱される。また、半導体回路素子24によって生成される熱は、主として金属基材14および絶縁層74を通じて放熱される。このように、半導体モジュール200において複数の金属基材12,14を用いることができるのは、絶縁層72,74それぞれに十分な絶縁性と十分な熱伝導率とを実現することができているからである。その結果、本実施形態によれば、熱伝導率の小さい絶縁層を用いる場合との比較の上で金属基材12,14の大きさを小さくすることが可能になる。すなわち、熱伝導率が高められたまたは六方晶となった絶縁層を用いると、熱伝導率の不十分な絶縁層を大きな面積の金属基板または基板上に形成して熱抵抗を低下させるような半導体モジュールと比較して、金属基材12,14のみならずパッケージ全体をも小型化することができる。その結果、半導体モジュールの省資源化および軽量化を図ることができる。
また、このように小型化された金属基材12,14を用いることができると、金属基材12,14を相互に絶縁することもできる。このため、半導体回路素子22,22と半導体回路素子24,24とが相互に絶縁されているような構成とすることもできる。つまり、これまで別個の半導体モジュールとして供給されていたような構成を単一のパッケージに実装するといった柔軟な構成を有する半導体モジュールを実現することができる。そうすると、上述のような絶縁層を用いることは、例えば、放熱のために電気機器に備えられる外部ヒートシンク(図示しない)などの放熱用の外部の部材を共有するような利用方法にもつながるため、半導体モジュールを利用する電気機器の省資源化および軽量化にも資することとなる。
<第1実施形態の変形例2>
上述の第1実施形態の変形例2として、金属基材の第1面からも第2面からも区別される別の面に追加絶縁層が形成される半導体モジュール300について説明する。図3は、半導体モジュール300の構造を示す断面図である。半導体モジュール300は、図1の金属基材1と同様に作製された金属基材1を備えている。この金属基材1の第2面1Bには、半導体モジュール100の金属基材1と同様に半導体回路素子26,26が搭載されている。半導体回路素子26,26は、ボンデイングワイヤー4によって相互にまたはリードフレーム6に接続され、これらが封止剤5によって封止されて半導体モジュール300となっている。
この金属基材1の第1面1Aまたは第2面1B以外の面、具体的には、図3に示した金属基材1の側面1Cの一部には、追加絶縁層76が設けられている。この追加絶縁層76は、第1面1Aに加えてその側面1Cにも酸化アルミニウムを溶射することによって、第1面1Aの絶縁層7とつながるように形成される。追加絶縁層76にも、絶縁層7と同様に熱処理が施されて、追加絶縁層76も絶縁層7と同様に高い熱伝導率を示すようにされている。追加絶縁層76をX線回折装置によって分析すると、酸化アルミニウムの六方晶の回折ピークが確認できる。ここで、金属基材1の絶縁層7は半導体モジュール300の表面(図の下方)に露出していて、半導体モジュール300のリードフレーム6の端部62以外の表面は金属基材1を外界から絶縁する絶縁表面となっている。これに対して、金属基材1の追加絶縁層76は封止剤5に覆われていて外界と接していない。
このような構成の半導体モジュール300では、金属基材1と外界のヒートシンク(図示しない)との間での放電経路となり得る金属基材1の側面1Cにも追加絶縁層76が配置されるため、良好な絶縁性が実現され得る。さらに、第1面1Aと側面1Cとの稜線部分をすべて絶縁層により覆う構成にすることもできる。この構成は放電経路となりやすい稜線部分を適切に絶縁することができるため特に有用である。
<第2実施形態>
次に、本発明の半導体モジュールの製造方法の実施形態について図4および図5を参照して説明する。図4および図5は、本実施形態にかかる半導体モジュール100の製造工程における各段階の構造を示す断面図である。
半導体モジュール100を作製するには、まず、金属基材1を作製する(図4(a))。この金属基材1は、例えばプレス加工(打ち抜き加工)によって必要な形状に成形される。次に、マスクMによって適宜遮蔽しながら、金属基材1の第1面1A上に絶縁層7aを形成する(図4(b))。この絶縁層7aは、酸化アルミニウムの粉末を溶射法を用いて堆積させることにより形成される。具体的には、大気もしくは減圧下の雰囲気において、マスク6によって不要な部位への付着を防止しつつ、金属基材1に向けて一方向から原料粉末7Aが溶射される。この際の原料粉末としては、代表的には、α−アルミナ粉末すなわちコランダム(例えば99.7%の純度のアルミナ粉)が用いられる。こうして金属基材1の一方の面(第1面)上に絶縁層7aが形成された絶縁金属ブロック1bが作製される。この処理に用いる溶射法としては絶縁材料の溶射に適するプラズマ溶射方法が採用されることが望ましいが、他の溶射法を用いることもできる。絶縁層7aの厚みは、溶射処理の条件のうち、原料粉末の供給速度と溶射時間とによって適宜調整され得る。
次に、絶縁金属ブロック1bが、炉または対流式オーブンによって加熱される(図4(d))。この熱処理は、大気または窒素を雰囲気として、500℃以上1084℃(銅の融点)以下のいずれかの温度によって行なわれる。なお、前述の温度は、熱処理中に絶縁層7aが到達する温度である。この熱処理によって、絶縁層7aの原子配列が六方晶となり、その熱伝導率が高められる。こうして絶縁層7が得られる。
次に、金属基材1のもう一方の面すなわち図において上方に記載される第2面上に半導体回路素子2,2が搭載される(図5(a))。ここで、半導体回路素子2,2は、金属基材1の第2面にはんだ付けにより接合させる。このはんだ付けは、ペレット状のはんだを用いて水素還元が可能な炉において行なわれる。水素還元が可能な炉を使う理由は、水素還元によって金属基材1のもう一方の面(第2面)の酸化膜を除去して表面を活性化することにより、はんだとの濡れ性を向上させるためである。はんだ材料として、例えば、SnPbAgからなる高温はんだ、SnAgCu系やSnCuNi系からなる鉛フリーはんだが用いられる。はんだ付けの温度は、接合工程に用いられるはんだの融点に応じて適宜設定される。また、この接合のはんだ層にボイド(気泡)が残留すると熱抵抗が高くなる。そこで、本実施形態では、ボイドが生成されないように、はんだが溶融している状態で到達真空度が10Torrすなわち約1330Pa以下となるように減圧し、そのまま温度を下げてはんだを固化させて接合を完了する。
次に、ボンデイングワイヤー4によりパワー半導体2とリードフレーム6との接続を行なう(図5(b))。このボンデイングワイヤー4による接続処理は、リードフレーム6および半導体回路素子2,2それぞれの接続パッド(図示しない)を公知の超音波接合法によって接続して行なわれる。最後に、トランスファー成型方式によって樹脂による封止処理を行う(図5(c))。この封止処理は、まず、図5(b)に示した回路部品を金型(図示しない)の内部に配置する。この際、金型の温度を予め170〜180℃程度にしておく。次いで、適切な温度に予熱しておいた成型用樹脂をプランジャーにてその金型内に流し込む。この成型樹脂の材料は公知の任意の樹脂材料を用いることができる。本実施形態では、エポキシ樹脂に無機フィラーを混入させたものが採用される。なお、この成型樹脂の材料は、成型前にはタブレット状の外観になっている。無機フィラーとしては、酸化珪素、酸化アルミニウム、窒化珪素、窒化アルミニウム、窒化ホウ素からなる群の1種類以上の材質の粒子または粉体が適用可能である。成型樹脂の材質としては、他の要求性能を満たす限り熱伝導率が高いものほど望ましい。その一例としては、熱伝導率が0.5〜5W/m・Kの材質が好適な材料として挙げられる。成型用樹脂を流し込んだ数十秒後には成型樹脂の硬化が開始する。この直後に成型樹脂によって封止された回路部品を金型から取り外した上で、後硬化(ボストキュア)処理が行われる。この後硬化処理は、成型樹脂によって封止された回路部品を恒温槽によって加熱することによって行なわれる。以上のようにして、封止処理が完了し、半導体モジュール100の製造工程が完了する(図5(c)、図1)。
<第2実施形態の変形例1>
本実施形態は、半導体モジュール300(図3)のように追加絶縁層76が採用された変形例1について説明する。この追加絶縁層76を得るためには、上述の図4(c)に対応する工程において、マスクMによって被覆する範囲と溶射ノズル(図示しない)によって膜を堆積させる方向とを適宜調整することによって、所望の範囲に追加絶縁層76aが形成される。
図6は、上述の様子を示している。金属基材1の側面1Cの一部をマスクMから露出させた状態で、酸化アルミニウムの粉末が原料粉末7A及び7Bとして溶射される。この際、溶射ノズルの方向を調整して、金属基材1の第1面1Aに正対する原料粉末7Aの方向に加えて斜め方向の原料粉末7Bも利用することによって、金属基材1上には、絶縁層7aに加えて側面1Cに追加絶縁層76aも形成される。この金属基材1の側面のうち、絶縁層によって覆う範囲は、例えば、側面と第1面との間の稜線からマスクMから溶射の噴流に曝露させる範囲として定まる。この範囲は、金属基材1と、図示しないヒートシンクなどの放熱手段との間に生じ得る電位差など、絶縁のための条件を勘案して決定される。この絶縁金属ブロック1cの絶縁層7aおよび追加絶縁層76aの熱伝導率は、上述の熱処理と同様に熱処理を施すことによって高められる。こうして、金属基材1の第1面1A上に絶縁層7が形成され、側面1Cに追加絶縁層76が形成された絶縁金属ブロック1cが作製される。
<他の変形例>
以上に説明した本発明の第1実施形態および第2実施形態及びそれらの変形例は、具体的な実施の態様に応じて種々の変形を行なうことができる。
まず、絶縁層7の厚みは、半導体モジュールの用途に依存して適宜調整される。例えば、パワー半導体の半導体モジュールでは、絶縁層7の厚みの下限値として好ましい値は10μmである。また、絶縁層7の厚みの上限値として好ましい値は、特に高電圧にて用いる半導体モジュールでは、例えば500μmであり、それ以外の場合には、例えば200μmである。より具体的には、絶縁層7が厚み200μmとなるように形成されると、5kV以上の交流破壊電圧と、1200Vの定格電圧とを共に実現するようなパワー素子の半導体モジュールを実現することができる。
また、絶縁層7の熱伝導率は、典型的には、熱処理の条件を変更することによって種々変更することができる。例えば、炉において熱処理を行なう場合に熱処理の温度を高めると、一般に、絶縁層の熱伝導率が高くなる。また、仮に同じ温度であっても、熱処理の時間を長くすると、その熱伝導率が高くなる。
この熱処理による絶縁層の到達温度は、例えば1000℃とすることができる。それ以外にも、例えば1500℃とすることができる。また、ここでの熱処理は、典型的には、金属基材に絶縁層が溶射された後に行われるが、本発明の実施の形態は、そのような順序を限定するものではない。
金属基材1の材質、形状および製法は、半導体回路素子に流す電流量などの電気的要件、発熱量などの熱的要件、重量やサイズなどの形状的要件などに応じて変更することができる。この金属基材1の材質の決定には、上述の絶縁層の熱処理の温度を考慮することもできる。すなわち、上述の実施形態では銅板を用いる金属基材を説明したが、金属基材はこれに限定されない。典型的には、アルミニウム基板、鉄基板、モリブデン基板、銅の合金による基板、あるいは板状ではない基材が用いられ得る。これらの基材の材質は、熱伝導率や熱膨張率など作製時または動作時の熱物性観点など種々の条件を加味して選択される。
また、上述の各実施形態では、金属基材は、板状で正方形または長方形の形状のものを用いて説明したが、金属基材の形状がそれらの形状に限定されるものではない。板状でないものとしては、ブロック形状またはアングル形状の基材が用いられ得る。さらに、金属基材の形状を板状のものに限ったとしても、その平面形状はさまざまな形状とすることができる。例示すれば、正方形の個別の領域を頂点部分で互いにつなげた形状、あるいは長方形の外形とくり貫いた開口部とを持つ形状を採用することも可能である。そして、このような基材は、上述のプレス加工を用いて形状が切り出されてもよいが、その加工方法も特に限定されない。また、金属基材における第1面と第2面は、必ずしも板状基板の厚みを規定する二つの主面に限定されるものではない。
上述の各実施形態において、半導体回路素子を金属基材に接合する態様は特段限定されない。上述のはんだペレットによる接合のほか、クリームはんだによる接合、銀ペーストなどのダイボンド樹脂材による接合、ダイボンドフィルムによる接合、導電性接着剤による接合などの任意の接合手法を用いることができる。
上述の各実施形態は、半導体回路素子(チップまたはダイ)の種類を特段限定するものではない。例えば、半導体ウエハーからIGBTやMOS等のトランジスタ素子、またはダイオード素子といった回路要素を切り出すことにより、単一の回路要素を搭載する半導体モジュールを形成することができる。また、図1に示す半導体モジュール100のように、複数の半導体回路素子が単一片の金属基材に搭載されるときであっても、半導体回路素子の種類は任意に組み合わせることができる。例えば、同一種類の半導体を並列や直列またはそれらの組み合わせの形態によって接続して、電流容量をさまざまに設定することができる。種類の異なる半導体素子を用いる例として、IPM(インテリジェントパワーモジュール)とすることができる。すなわち、インバータ用途のIGBTと、そのIGBTとは別種の半導体回路素子である還流ダイオードまたはフリーホイーリングダイオードとを単一片の金属基材に搭載する構成とすることができる。また、種類の異なる半導体素子を用いる別の例として、コンバータのためのダイオードとインバータのためのトランジスタとを同一の基材に搭載することにより、小型の半導体モジュールを実現することができる。
上述の各実施形態において、封止剤5による封止を説明したが、他の封止手法を用いるように実施することができる。具体的には、例えば、固化される樹脂のみならず、シリコーンゲルなどの流動性を有する封止剤を用いることができる。
そして、上述のいずれかの実施形態やその変形例を含む半導体モジュールそれ自体や製造方法によって製造された半導体モジュールを用いる電気機器も本発明の実施形態の一態様である。この電気機器によれば、例えば、放熱のために電気機器に備えられる外部ヒートシンク(図示しない)などの放熱用の部材を簡易なものとすることができるため、電気機器の省資源化および軽量化にも資することとなる。
以上、本発明の実施形態について、具体的に説明した。上述の各実施形態は、発明を説明するために記載されたものであり、本出願の発明の範囲は、特許請求の範囲の記載に基づいて定められるべきものである。また、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
本発明は、低コストで製造し得る熱伝導率の高い絶縁層を提供することにより、半導体モジュールの放熱性を高めて、半導体装置の高性能化に大きく貢献するものである。
1,12,14 金属基材
1b 絶縁金属ブロック
1A 第1面
1B 第2面
2 半導体回路素子
3 駆動IC
4 ボンデイングワイヤー
5 成型樹脂
6 リードフレーム
62 端部
7,72,74 絶縁層
7a 絶縁層(熱処理前)
76 追加絶縁層
76a 追加絶縁層(熱処理前)
7A,7B 原料粉末
8 ヒートシンク
M マスク

Claims (15)

  1. 第1面および第2面を有する金属基材と、
    前記金属基材の前記第1面上に酸化アルミニウムの粉末を溶射して形成され、六方晶系の結晶構造を有する絶縁層と、
    前記金属基材の前記第2面に直接的または間接的に接して搭載されている半導体回路素子と
    を備える
    半導体モジュール。
  2. 複数の半導体回路素子が1つの金属基材に搭載される
    請求項1記載の半導体モジュール。
  3. 半導体回路素子を搭載した前記金属基材が複数集積されて1つの半導体モジュールをなしている
    請求項1または請求項に記載の半導体モジュール。
  4. 前記第1面または前記第2面に含まれない前記金属基材の面の少なくとも一部に酸化アルミニウムの粉末を溶射して形成された、前記絶縁層につながる追加絶縁層をさらに備える
    請求項1乃至請求項のいずれかに記載の半導体モジュール。
  5. 前記金属基材の前記第1面以外の面が、前記第2面に搭載されている半導体回路素子とともに絶縁材料である封止剤によって封止されており、
    前記封止剤と前記第1面上に形成した前記絶縁層とによって前記金属基材を覆う絶縁表面を有している
    請求項1乃至請求項のいずれかに記載の半導体モジュール。
  6. 前記絶縁層は、熱伝導率が1W/m・K以上30W/m・K以下であり、厚さが10μm以上500μm以下である
    請求項1乃至請求項のいずれかに記載の半導体モジュール。
  7. 前記絶縁層は、熱伝導率が10W/m・K以上30W/m・K以下であり、厚さが10μm以上300μm以下である
    請求項1乃至請求項のいずれかに記載の半導体モジュール。
  8. 第1面と第2面とを有する金属基材の前記第1面上に酸化アルミニウムの粉末を溶射することにより絶縁層を形成するステップと、
    前記絶縁層の結晶構造を六方晶系にするステップと、
    前記金属基材の前記第2面に直接的または間接的に接するように半導体回路素子を搭載するステップと
    を含む
    半導体モジュールの製造方法。
  9. 半導体回路素子を搭載する前記ステップにおいて、複数の半導体回路素子が1つの金属基材に搭載される
    請求項に記載の半導体モジュールの製造方法。
  10. 半導体回路素子を搭載した前記金属基材を複数集積して、1つの半導体モジュールを形成するステップをさらに含む
    請求項8または請求項に記載の半導体モジュールの製造方法。
  11. 絶縁層を形成する前記ステップが、前記第1面または前記第2面に含まれない前記金属基材の面の少なくとも一部に酸化アルミニウムの粉末を溶射して、前記絶縁層につながる追加絶縁層を形成するものである
    請求項乃至請求項10のいずれかに記載の半導体モジュールの製造方法
  12. 半導体回路素子を搭載する前記ステップより後に、前記金属基材の前記第1面以外の面を、前記第2面に搭載されている半導体回路素子とともに絶縁材料である封止剤によって封止し、前記封止剤と前記第1面に形成した前記絶縁層とによって前記金属基材を覆う絶縁表面を形成するステップをさらに含む
    請求項乃至請求項11のいずれかに記載の半導体モジュールの製造方法。
  13. 絶縁層を形成する前記ステップが、前記絶縁層の厚さを10μm以上500μm以下にするものであり、
    前記絶縁層の熱伝導率が1W/m・K以上30W/m・K以下である
    請求項乃至請求項12のいずれかに記載の半導体モジュールの製造方法。
  14. 絶縁層を形成する前記ステップが、前記絶縁層の厚さを10μm以上300μm以下にするものであり、
    前記絶縁層の熱伝導率が10W/m・K以上30W/m・K以下である
    請求項乃至請求項12のいずれかに記載の半導体モジュールの製造方法。
  15. 請求項1乃至請求項のいずれかに記載の半導体モジュール、または、請求項乃至請求項14のいずれかに記載の製造方法によって製造された半導体モジュールを備える
    電気機器。
JP2009266264A 2009-11-24 2009-11-24 半導体モジュールおよびその製造方法ならびに電気機器 Active JP5246143B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266264A JP5246143B2 (ja) 2009-11-24 2009-11-24 半導体モジュールおよびその製造方法ならびに電気機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266264A JP5246143B2 (ja) 2009-11-24 2009-11-24 半導体モジュールおよびその製造方法ならびに電気機器

Publications (2)

Publication Number Publication Date
JP2011114010A JP2011114010A (ja) 2011-06-09
JP5246143B2 true JP5246143B2 (ja) 2013-07-24

Family

ID=44236142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266264A Active JP5246143B2 (ja) 2009-11-24 2009-11-24 半導体モジュールおよびその製造方法ならびに電気機器

Country Status (1)

Country Link
JP (1) JP5246143B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012004593B4 (de) * 2011-11-02 2020-10-01 Fuji Electric Co., Ltd. Leistungswandler
JP6024750B2 (ja) * 2012-07-17 2016-11-16 富士電機株式会社 半導体モジュール
JP6155060B2 (ja) * 2013-03-14 2017-06-28 日本碍子株式会社 放熱基板の製造方法
JP6105983B2 (ja) * 2013-03-14 2017-03-29 日本碍子株式会社 放熱基板の製造方法
WO2014175062A1 (ja) * 2013-04-24 2014-10-30 富士電機株式会社 パワー半導体モジュールおよびその製造方法、電力変換器
JP2015023211A (ja) 2013-07-22 2015-02-02 ローム株式会社 パワーモジュールおよびその製造方法
JP6491875B2 (ja) * 2014-12-24 2019-03-27 トーカロ株式会社 電気絶縁膜の形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837988A (ja) * 1981-08-31 1983-03-05 株式会社東芝 電気絶縁基板
JPS62133061A (ja) * 1985-12-03 1987-06-16 Kobe Steel Ltd 絶縁金属基板及びその製造方法
JP3294772B2 (ja) * 1996-10-29 2002-06-24 東芝セラミックス株式会社 焼成用道具材及びその製造方法
JP3390661B2 (ja) * 1997-11-13 2003-03-24 三菱電機株式会社 パワーモジュール
JP2007305772A (ja) * 2006-05-11 2007-11-22 Fuji Electric Device Technology Co Ltd 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
JP2011114010A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
US8450845B2 (en) Semiconductor device
US9520377B2 (en) Semiconductor device package including bonding layer having Ag3Sn
JP6332439B2 (ja) 電力変換装置
JP5246143B2 (ja) 半導体モジュールおよびその製造方法ならびに電気機器
JP4023397B2 (ja) 半導体モジュールおよびその製造方法
JP6024750B2 (ja) 半導体モジュール
JPWO2014175062A1 (ja) パワー半導体モジュールおよびその製造方法、電力変換器
US9385107B2 (en) Multichip device including a substrate
JP5895220B2 (ja) 半導体装置の製造方法
US9627350B2 (en) Method for manufacturing semiconductor device
JP2007305772A (ja) 半導体装置および半導体装置の製造方法
JP2003124400A (ja) 半導体パワーモジュールおよびその製造方法
CN111276447B (zh) 双侧冷却功率模块及其制造方法
JP2019067986A (ja) 電力用半導体装置
JP4784150B2 (ja) 半導体装置および、半導体装置の製造方法
KR20150108685A (ko) 반도체모듈 패키지 및 그 제조 방법
US11626351B2 (en) Semiconductor package with barrier to contain thermal interface material
JP5954374B2 (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
JP5316397B2 (ja) 配線基板およびその製造方法ならびに半導体モジュール
JP5630375B2 (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
JP6472568B2 (ja) 半導体装置の製造方法
JP2014030059A (ja) 絶縁基板、その製造方法、半導体モジュールおよび半導体装置
JP2012209469A (ja) 電力用半導体装置
JP4492257B2 (ja) 半導体モジュールおよびその製造方法
US20230154811A1 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5246143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250