WO2018024182A1 - 一种三维石墨烯-Si-MoS2复合材料的制备方法 - Google Patents

一种三维石墨烯-Si-MoS2复合材料的制备方法 Download PDF

Info

Publication number
WO2018024182A1
WO2018024182A1 PCT/CN2017/095364 CN2017095364W WO2018024182A1 WO 2018024182 A1 WO2018024182 A1 WO 2018024182A1 CN 2017095364 W CN2017095364 W CN 2017095364W WO 2018024182 A1 WO2018024182 A1 WO 2018024182A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional graphene
mos
gas
preparing
layer
Prior art date
Application number
PCT/CN2017/095364
Other languages
English (en)
French (fr)
Inventor
杨与畅
Original Assignee
福建新峰二维材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建新峰二维材料科技有限公司 filed Critical 福建新峰二维材料科技有限公司
Publication of WO2018024182A1 publication Critical patent/WO2018024182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation of a negative electrode material for a lithium ion battery, in particular to a method for preparing a three-dimensional graphene-Si-MoS 2 composite material.
  • Lithium-ion battery has the characteristics of high voltage, high specific energy, no memory effect, long cycle life and no environmental pollution. It is the most widely used rechargeable mobile power source. So far, it has been widely used in mobile phones and notebook computers. Digital cameras, electronic translators, etc.
  • Lithium-ion battery anode materials are the core of current lithium-ion battery research.
  • the negative electrode materials of commercial lithium ion batteries are mostly graphite materials.
  • Graphite has a crystalline layered structure, which is easy to intercalate and deintercalate lithium ions, forming an interlayer compound LiC6, which is a stable negative electrode material.
  • the theoretical specific capacity of the graphite anode is only 372 mAh/g, which limits the further development of the lithium ion battery.
  • Si has a specific capacity of up to 4200 mAh/g, which seems to be an ideal high specific capacity and safe anode material, but Si has a volume change of 320% in the lithium removal process, which often leads to Si active materials.
  • the powder is detached from the coated collector, and the charge and discharge characteristics are lost.
  • Si is an intrinsic semiconductor material. If it is not doped or coated, its conductivity is much worse than that of carbon materials such as graphite. Therefore, an effective conductive network cannot be formed to achieve efficient and rapid charge and discharge.
  • MoS 2 is a hexagonal inorganic layered compound which is formed by stacking S-Mo-S units, and the atoms in the layers are connected by stable covalent bonds, while the layers are weakly van der Waals. Combine.
  • a negative electrode material for lithium ion batteries, MoS 2 reaches the theoretical capacity of 800mAh / g, which is a special layered structure facilitates embedding and extracting lithium ions.
  • its cycle stability is extremely low due to its low electron/ion conductivity and its severe volume expansion during deintercalation of lithium.
  • MoS2 reacts with Li + to form insoluble Li 2 S. Li 2 S catalyzes the decomposition of the electrolyte to form a thick polymer layer, resulting in irreversible capacity loss. The reason for its poor cycle stability.
  • the object of the present invention is to provide a method for preparing a three-dimensional graphene-Si-MoS 2 composite material, which can solve the problem that the graphene is easily agglomerated, difficult to disperse, and it is difficult to obtain a high specific surface area, and the MoS 2 is solved in the cycle process.
  • the problem that the medium particles are easy to aggregate and their volume expansion during the lithium deintercalation process solves the problem of powdering and peeling of the Si active material.
  • the present invention provides the following technical solutions:
  • a method for preparing a three-dimensional graphene-Si-MoS 2 composite material comprising the steps of:
  • depositing the Si layer on the three-dimensional graphene is specifically deposited by LPCVD: placing the three-dimensional graphene into the LPCVD reaction chamber, and introducing a shielding gas, the shielding gas is argon, hydrogen or helium, and the flow control in 300-600sccm, the reaction chamber maintained at a pressure 20-50Pa, maintaining the temperature at 600-700 deg.] C, when the temperature reaches the set temperature, to the reaction chamber through the reaction gas SiH 4, flow control 50-150sccm, After the reaction for 30-300 seconds, the reaction gas and the shielding gas are turned off, and after cooling, a three-dimensional graphene-supported Si layer is obtained, and the thickness of the Si layer is 10-200 nm.
  • a shielding gas the shielding gas is argon, hydrogen or helium
  • the flow control in 300-600sccm
  • the reaction chamber maintained at a pressure 20-50Pa, maintaining the temperature at 600-700 deg.] C, when the temperature reaches the
  • the depositing the MoS 2 on the Si layer comprises:
  • the three-dimensional graphene loaded with the Si layer is immersed in the reaction solution, and the reaction solution is hydrothermally reacted at a temperature of 200-250 ° C for 20-30 h; after the reaction is completed, the three-dimensional graphene is taken out and repeatedly rinsed; after the rinsing, the three-dimensional graphene is placed. In an atmosphere filled with inert gas, it is annealed at a temperature of 320-400 ° C for 1-5 h to obtain a composite material uniformly loaded with MoS 2 on the surface of the Si layer of three-dimensional graphene.
  • the molybdate is sodium molybdate or ammonium molybdate.
  • the inert gas is argon, nitrogen, or a mixed gas of argon and nitrogen.
  • the deposition on the nano Si MoS 2 is deposited by magnetron sputtering in particular MoS 2: depositing a Si-dimensional graphene layer into the coating chamber, the coating chamber is evacuated to a vacuum and heating the three-dimensional graphene When the vacuum reaches 1 ⁇ 10 -4 -1 ⁇ 10 -3 Pa and the temperature reaches 200-300 °C, the working gas is introduced, the gas flow rate is controlled at 20-500 sccm, the process vacuum is controlled at 0.1-1 Pa, and the target power is set.
  • the working gas is ionized, the gas ions bombard the MoS2 target, and the target atoms are sputtered and deposited on the three-dimensional graphene, and the sputtering time is 1-10 min; finally, the three-dimensional graphene-Si-MoS 2 composite material is obtained. .
  • the working gas is Ar gas.
  • the specific steps of preparing the three-dimensional graphene are as follows:
  • the carbon source gas is one or more of methane, methanol, ethanol or ethane
  • the shielding gas is argon or helium
  • the metal etching solution in the step 3) is a FeCl 3 solution, ammonium persulfate or a mixed solution of HCl and H 2 O 2 .
  • the three-dimensional graphene-Si-MoS 2 composite material provided by the present invention has a specific surface area of three-dimensional graphene which is several hundred thousand times higher than that of two-dimensional graphene, and Si and MoS 2 are uniformly distributed in The surface of the three-dimensional graphene has good dispersibility, which avoids the aggregation of Si and MoS 2 nanoparticles during the cycle, and effectively buffers the volume expansion during the cycle, and also effectively prevents the heavy accumulation of graphene.
  • FIG. 1 is a schematic flow chart of a preparation method according to the present invention.
  • FIG. 2 is a cycle diagram of a three-dimensional graphene-Si-MoS 2 composite material provided at a current density of 100 mA/g according to the present invention
  • FIG. 3 is a graph of charge and discharge cycles of the three-dimensional graphene-Si-MoS 2 composite material provided by the present invention at different current densities.
  • the three-dimensional graphene material prepared by the invention is different in structure from the two-dimensional graphene, and has a three-dimensional hollow porous network structure, the mesh wall is graphene, the layered structure graphite and the porous graphite carbon foam have super Low-density surface area, high thermal conductivity, high temperature resistance, corrosion resistance, ductility, flexibility, etc., single layer transparent and high quality.
  • the preparation method of the present invention is prepared as follows:
  • a single layer of three-dimensional graphene is obtained, and the surface of the nickel mesh/graphene structure is coated with PMMA; then it is placed in a solution of HCl and H 2 O 2 in a volume ratio of 1:3 to remove the metal nickel, and rinsed with deionized water. Then, the graphene/PMMA sample is placed in acetone to remove PMMA; then washed with ethanol and deionized water for 10 minutes; finally, the cleaned three-dimensional graphene is freeze-dried to obtain a structurally complete three-dimensional graphene;
  • the Si layer is obtained by a LPCVD (Low Pressure Chemical Vapor Deposition) method.
  • the process of preparing nano-Si layer by LPCVD the three-dimensional graphene obtained in the above 1) is placed in a LPCVD reaction chamber, a protective gas is introduced, and the air pressure in the reaction chamber is maintained at 20 Pa, and the temperature is set to 600 ° C when the temperature reaches the set temperature.
  • the reaction gas is reacted for a set time, and after the reaction is completed, the reaction gas and the shielding gas are turned off, and after cooling, a Si layer supported on the three-dimensional graphene is obtained; wherein the shielding gas is argon gas, and the flow rate is controlled at 300 sccm.
  • the reaction gas is SiH 4 gas, the flow rate is controlled at 50 sccm; the reaction time is 300 S; the thickness of the Si layer is 10 nm;
  • the three-dimensional graphene obtained in the step 2) is immersed in the reaction solution obtained in the step 3), and the solution is moved.
  • hydrothermal reaction was carried out at 200 ° C for 28 h; after the reaction was completed, the mixture was repeatedly rinsed with distilled water and ethanol for 3 times, and then the sample was placed in an argon-filled environment at 360 ° C. Annealing for 3 h; finally obtaining a three-dimensional graphene-Si-MoS2 composite.
  • the Si layer is obtained by a LPCVD (Low Pressure Chemical Vapor Deposition) method.
  • the process of preparing nano-Si layer by LPCVD the three-dimensional graphene obtained in the above 1) is placed in the LPCVD reaction chamber, and 500 sccm of helium gas is introduced, and the pressure in the reaction chamber is maintained at 20 Pa, and the temperature is set at 620 ° C when the temperature reaches 620 ° C. After that, 50 sccm of SiH 4 gas is introduced, and after 60 seconds, the SiH 4 gas is turned off, the helium gas is turned off, and after cooling, Si particles of about 10 nm are loaded on the three-dimensional graphene;
  • the working gas is introduced, the gas flow rate is controlled at 20-500 sccm, the process vacuum is controlled at 0.1-1 Pa, the target power is set at 50-200 W, the working gas is ionized, and the gas ion bombardment target
  • the target atom is sputtered and deposited on the substrate for a sputtering time of 1-10 min; the coating target is a MoS 2 target, and the working gas is Ar gas, and finally a three-dimensional graphene-Si-MoS 2 composite material is obtained. .
  • Dimensional graphene -Si-MoS 2 composite material of the present invention provides, as a stable structure and large specific surface area of the three-dimensional graphene, Si, MoS 2 can be uniformly dispersed in the surface of the three-dimensional structure of the graphene, this avoids Si, MoS 2 The particles accumulate during the cycle, which also effectively prevents the heavy accumulation of graphene sheets.
  • the special layered structure of MoS 2 facilitates the deintercalation of lithium ions, and the three-dimensional graphene sandwiches Si, which can effectively buffer. Volume expansion of silicon during charging and discharging and pulverization and spalling of silicon active material.
  • the three-dimensional graphene-Si-MoS 2 composite material prepared in the above specific embodiment is made into a lithium ion battery as a negative electrode material of a lithium ion battery, and its specific capacity reaches 2000 mAh/g, and the first charge and discharge coulombic efficiency reaches 82%. After repeated charge and discharge cycles, the capacity was not significantly attenuated, and the coulombic efficiency was maintained at about 97%, as shown in Figure 2; the charge and discharge cycles at different current densities also showed excellent cycle stability, indicating that it has a good rate. Performance, as shown in Figure 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种三维石墨烯-Si-MoS2复合材料的制备方法,所述方法包括以下步骤:1)制备三维石墨烯;2)在三维石墨烯上沉积Si层;3)在Si层上沉积MoS2,得到三维石墨烯-Si-MoS2复合材料。本发明提供的三维石墨烯-Si-MoS2复合材料,其三维石墨烯的比表面积比二维石墨烯高出几十万倍,Si、MoS2均匀分布于三维石墨烯表面,分散性好,这样既避免了Si及MoS2纳米粒子在循环过程中聚集,又能有效缓冲其在循环过程中的体积膨胀,同时也有效防止了石墨烯的重堆积,从而提高了其循环稳定性;本发明制得的锂离子电池比容量达到2000mAh/g,首次库仑效率达到82%,经过200多次循环放比容量没有明显衰减,容量保持率达到97%,表现出优良的循环稳定性。

Description

一种三维石墨烯-Si-MoS2复合材料的制备方法 技术领域
本发明涉及一种锂离子电池负极材料的制备,尤其涉及一种三维石墨烯-Si-MoS2复合材料的制备方法。
背景技术
锂离子电池具有电压高、比能量高、无记忆效应,循环寿命长,无环境污染等特点,是目前使用最广泛的可充电移动电源,至今为止,它已被广泛应用于手机、笔记本电脑、数码相机、电子翻译器等方面。锂离子电池负极材料是目前锂离子电池研究的核心。商业锂离子电池的负极材料多为石墨材料。石墨具有结晶的层状结构,易于锂离子在其中的嵌入和脱嵌,形成层间化合物LiC6,是一种性能稳定的负极材料。但石墨负极理论比容量仅为372mAh/g,限制了锂离子电池的进一步发展。
现有的Si具有高达4200mAh/g的比容量,看起来是理想的高比容量且安全的负极材料,但是Si在嵌锂脱锂过程中会有320%的体积变化,这往往导致Si活性材料粉化,而从涂覆的集电极上脱落,失去充放电特性。另外,Si是一种本征半导体材料,不进行掺杂或者包覆改性的话,其导电性远比石墨等碳材料要差,因此,不能形成有效的导电网络,实现有效快速地充放电。
MoS2是六方晶系无机层状化合物,它由S-Mo-S单元堆叠形成层状,层内原子之间由稳定的共价键连接,而层与层之间则由较弱的范德华力结合。作为锂离子电池负极材料,MoS2的理论容量达到800mAh/g,其特殊的层状结构利于锂离子的嵌入与脱出。然而,由于其本身低的电子/离子电导率及在脱嵌锂过程中严重的体积膨胀使得其循环稳定性极低。此外,在电池反应过程中,MoS2与Li+发生反应生成了难溶的Li2S,Li2S又催化了电解液的分解从而形成了厚的聚合物层导致了不可逆的容量损失,这也是其循环稳定性差的原因。
因此,需要研发一种循环稳定性极高、性能好等优点的复合材料。
发明内容
本发明的目的在于提供了一种三维石墨烯-Si-MoS2复合材料的制备方法,其能够解决解决石墨烯易团聚、难分散、很难获得高比表面积的问题,解决MoS2在循环过程中颗粒容易聚集及其在锂脱嵌过程中体积膨胀等问题,解决Si活性材料的粉化和剥落问题。
为实现上述目的,本发明提供了如下的技术方案:
一种三维石墨烯-Si-MoS2复合材料的制备方法,所述方法包括以下步骤:
1)制备三维石墨烯;
2)在三维石墨烯上沉积Si层;
3)在Si层上沉积MoS2,得到三维石墨烯-Si-MoS2复合材料。
优选的,所述在三维石墨烯上沉积Si层具体为通过LPCVD法沉积:将三维石墨烯放入LPCVD反应室,通入保护气体,所述保护气体为氩气、氢气或氦气,流量控制在300-600sccm,使反应室中的气压保持在20-50Pa,温度保持在600-700℃,当温度达到设定温度后,往反应室内通入SiH4反应气体,流量控制在50-150sccm,反应30-300S后关闭反应气体和保护气体,冷却后即得到三维石墨烯负载Si层,所述Si层的厚度为10-200nm。
优选的,所述在Si层上沉积MoS2具体包括:
将钼酸盐、去离子水和硫代乙酰胺溶解后形成均匀的反应溶液,所述钼酸盐和去离子水溶液的浓度为1-5mg/ml,所述硫代乙酰胺和钼酸盐的质量比为1:1-1:5;
将负载有Si层的三维石墨烯浸渍到反应溶液中,将反应溶液在200-250℃温度下水热反应20-30h;反应结束后,取出三维石墨烯反复漂洗;漂洗后将三维石墨烯放入充满惰性气体保护的环境中,在320-400℃温度下退火1-5h,得到三维石墨烯的Si层表面上均匀负载MoS2的复合材料。
优选的,所述钼酸盐为钼酸钠或钼酸铵。
优选的,所述惰性气体为氩气,氮气,或氩气和氮气混合气体。
优选的,所述在纳米Si上沉积MoS2具体为通过磁控溅射沉积MoS2:将沉积有Si层的三维石墨烯放入镀膜室,对镀膜室进行抽真空及对三维石墨烯进行加热,当真空达到1×10-4-1×10-3Pa,温度达到200-300℃时,通入工作气体,气体流量控制在20-500sccm,工艺真空度控制在0.1-1Pa,靶功率设置50-200W,此时工作气体产生电离,气体离子轰击MoS2靶材,将靶原子溅出沉积在三维石墨烯上,溅射时间1-10min;,最终得到三维石墨烯-Si-MoS2复合材料。
优选的,所述工作气体为Ar气。
优选的,所述制备三维石墨烯具体步骤如下:
1)提供基底;
2)在流速为300-600s.c.c.m的保护气和氢气,温度800~1300℃条件下,去除基底表面氧化物层后再通入碳源气体,2-10分钟后关闭碳源气体,将得到的样品以冷却速率为200-300℃/min冷却至室温,关闭保护气和氢气;
3)在得到的样品的表面涂布上PMMA,然后将其放入金属刻蚀液中去除金属基底,再用去离子水漂洗;
4)将上述样品放入丙酮或甲苯中,去除PMMA,接着用乙醇、去离子水依次浸泡清洗;
5)最后将清洗干净的样品进行冷冻干燥,得到结构完整的三维石墨烯。
优选的,所述的碳源气体为甲烷、甲醇、乙醇或乙烷中的一种或多种,所述的保护气为氩气或氖气。
优选的,所述步骤3)中金属刻蚀液为FeCl3溶液、过硫酸铵或HCl和H2O2的混合溶液。
本发明的有益效果:(1)本发明提供的三维石墨烯-Si-MoS2复合材料,其三维石墨烯的比表面积比二维石墨烯高出几十万倍,Si、MoS2均匀分布于三维石墨烯表面,分散性好,这样既避免了Si及MoS2纳米粒子在循环过程中聚 集,又能有效缓冲其在循环过程中的体积膨胀,同时也有效防止了石墨烯的重堆积,从而提高了其循环稳定性;(2)因为MoS2特殊的层状结构,将其置于Si的外层,既有利于锂离子的脱嵌,又能有效缓冲纳米Si在循环过程中的体积膨胀,延长电池的寿命;(3)本发明制得的锂离子电池比容量达到2000mAh/g,首次库仑效率达到82%,经过200多次循环放比容量没有明显衰减,容量保持率达到97%,表现出优良的循环稳定性;(4)该锂离子电池即使在大电流条件下充放电,电极仍能保持稳定的循环行为,表现出优异的高倍率性能。
附图说明
图1  为本发明所述制备方法的流程示意图;
图2  为本发明提供的三维石墨烯-Si-MoS2复合材料在100mA/g电流密度下的循环曲线图;
图3  为本发明提供的三维石墨烯-Si-MoS2复合材料在不同电流密度时的充放电循环曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明制备的三维石墨烯材料,在结构上不同于二维的石墨烯,它具有三维空心多孔网状结构,网壁为石墨烯,为层状结构的石墨以及多孔的石墨碳泡沫,具有超低密度表面积、高导热、耐高温、耐腐蚀、延展性、柔韧性好等优点,单层透明且质量较高。
如图1所示,本发明所述的制备方法制备如下:
S101:制备三维石墨烯;
S102:在三维石墨烯上沉积Si层;
S103:在Si层上沉积MoS2,得到三维石墨烯-Si-MoS2复合材料。
具体的本发明可以采用以下实施方式:
实施例1
1)制备三维石墨烯:
将镍网(孔径0.01mm)放置在水平管式炉中,通入氩气(流速500s.c.c.m)和氢气(200s.c.c.m.)、1000℃条件下,加热10分钟,去除表面氧化物层后,再通入甲烷气体(5s.c.c.m.),5分钟后,关闭甲烷气体,保持氩气和氢气的流速不变,将样品以200℃/min的速率快速冷却至室温,关闭氩气和氢气,制得单层三维石墨烯,在镍网/石墨烯结构表面涂布上PMMA;然后将其放入HCl和H2O2体积比为1:3的溶液中将金属镍去掉,用去离子水漂洗一下;接着将石墨烯/PMMA样品放入丙酮中,将PMMA去除;再用乙醇、去离子水依次浸泡清洗10min;最后将清洗干净的三维石墨烯进行冷冻干燥,得到结构完整的三维石墨烯;
2)在三维石墨烯上沉积Si层;
Si层通过LPCVD(低压力化学气相沉积法)方法制得。LPCVD制备纳米Si层过程:将上述1)得到的三维石墨烯放入LPCVD反应室,通入保护气体,抽真空使反应室中的气压保持在20Pa,温度设置600℃,当温度达到设定温度后,通入反应气体在设定时间内反应,反应结束后关闭反应气体和保护气体,冷却后即得到三维石墨烯上负载的Si层;其中,所述保护气体为氩气,流量控制在300sccm;所述反应气体为SiH4气体,流量控制在50sccm;所述反应时间为300S;Si层的厚度为10nm;
3)配制反应溶液
将30mg钼酸钠(Na2MoO4·2H2O)和60mg硫代乙酰胺(C2H5NS)溶于30ml的去离子水中,形成均匀的反应溶液;
4)将三维石墨烯浸渍到反应溶液中进行水热反应及退火
将步骤2)得到的三维石墨烯浸渍到步骤3)得到的反应溶液中,将溶液移 入聚四氟乙烯内胆的不锈钢反应釜中,在200℃下进行水热反应28h;反应结束后,用蒸馏水和乙醇反复漂冼3次,然后将样品放入充满氩气的环境中360℃退火3h;最终得到三维石墨烯-Si-MoS2复合材料。
实施例2
1)制备三维石墨烯
将铜网(孔径0.01mm)放置在水平管式炉中,通入氩气(流速600s.c.c.m)和氢气(250s.c.c.m.)、900℃条件下,加热20分钟,去除表面氧化物层后,再通入甲烷气体(10s.c.c.m.),5分钟后,关闭甲烷气体,保持氩气和氢气的流速不变,将样品以250℃/min的速率快速冷却至室温,关闭氩气和氢气,制得单层三维石墨烯,在镍网/石墨烯结构表面涂布上PMMA;然后将其放入HCl和H2O2体积比为1:3的溶液中将金属镍去掉,用去离子水漂洗一下;接着将石墨烯/PMMA样品放入丙酮中,将PMMA去除;再用乙醇、去离子水依次浸泡清洗10min;最后将清洗干净的三维石墨烯进行冷冻干燥,得到结构完整的三维石墨烯;
2)在三维石墨烯上沉积Si层
Si层通过LPCVD(低压力化学气相沉积法)方法制得。LPCVD制备纳米Si层过程:将上述1)得到的三维石墨烯放入LPCVD反应室,通入500sccm氦气,抽真空使反应室中的气压保持在20Pa,温度设置620℃,当温度达到620℃后,通入50sccm的SiH4气体,反应60S后关闭SiH4气体,关闭氦气,冷却后即得到三维石墨烯上负载约10nm的Si颗粒;
3)在Si层上沉积MoS2,得到三维石墨烯-Si-MoS2复合材料
采用磁控溅射制备MoS2:将2)得到的三维石墨烯放入镀膜室,对腔室进行抽真空及基底加热,本底真空达到1×10-4-1×10-3Pa,当三维石墨烯的温度达到200-300℃时,通入工作气体,气体流量控制在20-500sccm,工艺真空度控制在0.1-1Pa,靶功率设置50-200W,工作气体产生电离,气体离子轰击靶材,将靶原子溅出沉积在基底上,溅射时间1-10min;所述镀膜靶材为MoS2靶材, 所述工作气体为Ar气,最终得到三维石墨烯-Si-MoS2复合材料。
本发明提供的三维石墨烯-Si-MoS2复合材料,因为三维石墨烯的结构稳定和超大比表面积,Si、MoS2能够均匀的分散在三维结构石墨烯表面,这样既避免了Si、MoS2粒子在循环过程中聚集,也有效防止了石墨烯片层的重堆积;同时MoS2的特殊层状结构,利于锂离子的脱嵌,其和三维石墨烯将Si夹在中间,能有效缓冲了充放电过程中硅的体积膨胀和硅活性材料的粉化和剥落。
将上述具体实施例制得的三维石墨烯-Si-MoS2复合材料作为锂离子电池的负极材料制成锂离子电池,其比容量达到2000mAh/g,首次充放电库仑效率达到82%,经过200多次的充放电循环后,容量没有明显衰减,且库仑效率保持在97%左右,如图2所示;在不同电流密度的充放电循环也表现出优异循环稳定性,说明其具有良好的倍率性能,如图3所示。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述方法包括以下步骤:
    1)制备三维石墨烯;
    2)在三维石墨烯上沉积Si层;
    3)在Si层上沉积MoS2,得到三维石墨烯-Si-MoS2复合材料。
  2. 根据权利要求1所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述在三维石墨烯上沉积Si层具体为通过LPCVD法沉积:将三维石墨烯放入LPCVD反应室,通入保护气体,所述保护气体为氩气、氢气或氦气,流量控制在300-600sccm,使反应室中的气压保持在20-50Pa,温度保持在600-700℃,当温度达到设定温度后,往反应室内通入SiH4反应气体,流量控制在50-150sccm,反应30-300S后关闭反应气体和保护气体,冷却后即得到三维石墨烯负载Si层,所述Si层的厚度为10-200nm。
  3. 根据权利要求1所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述在Si层上沉积MoS2具体包括:
    将钼酸盐、去离子水和硫代乙酰胺溶解后形成均匀的反应溶液,所述钼酸盐和去离子水溶液的浓度为1-5mg/ml,所述硫代乙酰胺和钼酸盐的质量比为1:1-1:5;
    将负载有Si层的三维石墨烯浸渍到反应溶液中,将反应溶液在200-250℃温度下水热反应20-30h;反应结束后,取出三维石墨烯反复漂洗;漂洗后将三维石墨烯放入充满惰性气体保护的环境中,在320-400℃温度下退火1-5h,得到三维石墨烯的Si层表面上均匀负载MoS2的复合材料。
  4. 根据权利要求3所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于:所述钼酸盐为钼酸钠或钼酸铵。
  5. 根据权利要求3所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于:所述惰性气体为氩气,氮气,或氩气和氮气混合气体。
  6. 根据权利要求1所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述在纳米Si上沉积MoS2具体为通过磁控溅射沉积MoS2:将沉积有Si层的三维石墨烯放入镀膜室,对镀膜室进行抽真空及对三维石墨烯进行加热,当真空达到1×10-4-1×10-3Pa,温度达到200-300℃时,通入工作气体,气体流量控制在20-500sccm,工艺真空度控制在0.1-1Pa,靶功率设置50-200W,此时工作气体产生电离,气体离子轰击MoS2靶材,将靶原子溅出沉积在三维石墨烯上,溅射时间1-10min;,最终得到三维石墨烯-Si-MoS2复合材料。
  7. 根据权利要求6所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述工作气体为Ar气。
  8. 根据权利要求1所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述制备三维石墨烯具体步骤如下:
    1)提供基底;
    2)在流速为300-600s.c.c.m的保护气和氢气,温度800~1300℃条件下,去除基底表面氧化物层后再通入碳源气体,2-10分钟后关闭碳源气体,将得到的样品以冷却速率为200-300℃/min冷却至室温,关闭保护气和氢气;
    3)在得到的样品的表面涂布上PMMA,然后将其放入金属刻蚀液中去除金属基底,再用去离子水漂洗;
    4)将上述样品放入丙酮或甲苯中,去除PMMA,接着用乙醇、去离子水依次浸泡清洗;
    5)最后将清洗干净的样品进行冷冻干燥,得到结构完整的三维石墨烯。
  9. 根据权利要求8所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述的碳源气体为甲烷、甲醇、乙醇或乙烷中的一种或多种,所述的保护气为氩气或氖气。
  10. 根据权利要求8所述的三维石墨烯-Si-MoS2复合材料的制备方法,其特征在于,所述步骤3)中金属刻蚀液为FeCl3溶液、过硫酸铵或HCl和H2O2的混合溶液。
PCT/CN2017/095364 2016-08-01 2017-08-01 一种三维石墨烯-Si-MoS2复合材料的制备方法 WO2018024182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610620030.1A CN107681122A (zh) 2016-08-01 2016-08-01 一种三维石墨烯‑Si‑MoS2复合材料的制备方法
CN201610620030.1 2016-08-01

Publications (1)

Publication Number Publication Date
WO2018024182A1 true WO2018024182A1 (zh) 2018-02-08

Family

ID=61073754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095364 WO2018024182A1 (zh) 2016-08-01 2017-08-01 一种三维石墨烯-Si-MoS2复合材料的制备方法

Country Status (2)

Country Link
CN (1) CN107681122A (zh)
WO (1) WO2018024182A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422906A (zh) * 2020-02-29 2020-07-17 合肥国轩高科动力能源有限公司 一种硅烯和二硫化钼锂电池负极复合材料的制备方法
CN112014445A (zh) * 2020-09-04 2020-12-01 南京信息工程大学 一种三元复合材料及其应用
CN112893833A (zh) * 2021-01-14 2021-06-04 武汉千星铄金科技有限公司 一种Ag-MoS2复合材料及其制备方法
CN113629230A (zh) * 2021-08-05 2021-11-09 合肥国轩电池材料有限公司 一种锂离子电池负极材料及其制备方法
CN114084876A (zh) * 2021-11-22 2022-02-25 安徽师范大学 一种一维多层纳米链复合材料及其制备方法和在锂离子电池中的应用
CN114695951A (zh) * 2022-03-19 2022-07-01 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种复合固态电解质的制备方法
CN115701463A (zh) * 2021-08-02 2023-02-10 安徽璜峪电磁技术有限公司 一种多级结构构筑的复合材料及其制备方法和应用
CN116072879A (zh) * 2023-04-07 2023-05-05 河南工学院 一种锂离子电池电极材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598406A (zh) * 2018-04-18 2018-09-28 中航锂电技术研究院有限公司 碳包覆MoS2/硅复合材料的制备方法和应用
CN109686954A (zh) * 2018-12-27 2019-04-26 陕西科技大学 一种C-O-Mo键桥接单片锥形MoS2/NG钠离子负极材料及其制备方法
CN111987291B (zh) * 2020-08-07 2022-12-13 河北大学 用于电化学储锂的金属硫化物复合电极的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171502A1 (en) * 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
CN103730643A (zh) * 2012-10-16 2014-04-16 海洋王照明科技股份有限公司 硅/石墨烯复合电极材料及其制备方法与锂离子电池
CN104835964A (zh) * 2015-05-14 2015-08-12 哈尔滨工业大学 一种三维大孔石墨烯-碳纳米管-二硫化钼复合材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966812B (zh) * 2014-12-01 2017-02-22 天津大学 三维多孔类石墨烯负载二硫化钼复合材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171502A1 (en) * 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
CN103730643A (zh) * 2012-10-16 2014-04-16 海洋王照明科技股份有限公司 硅/石墨烯复合电极材料及其制备方法与锂离子电池
CN104835964A (zh) * 2015-05-14 2015-08-12 哈尔滨工业大学 一种三维大孔石墨烯-碳纳米管-二硫化钼复合材料及其制备方法和应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422906A (zh) * 2020-02-29 2020-07-17 合肥国轩高科动力能源有限公司 一种硅烯和二硫化钼锂电池负极复合材料的制备方法
CN112014445A (zh) * 2020-09-04 2020-12-01 南京信息工程大学 一种三元复合材料及其应用
CN112893833A (zh) * 2021-01-14 2021-06-04 武汉千星铄金科技有限公司 一种Ag-MoS2复合材料及其制备方法
CN115701463A (zh) * 2021-08-02 2023-02-10 安徽璜峪电磁技术有限公司 一种多级结构构筑的复合材料及其制备方法和应用
CN113629230A (zh) * 2021-08-05 2021-11-09 合肥国轩电池材料有限公司 一种锂离子电池负极材料及其制备方法
CN113629230B (zh) * 2021-08-05 2022-12-27 合肥国轩电池材料有限公司 一种锂离子电池负极材料及其制备方法
CN114084876A (zh) * 2021-11-22 2022-02-25 安徽师范大学 一种一维多层纳米链复合材料及其制备方法和在锂离子电池中的应用
CN114084876B (zh) * 2021-11-22 2023-09-01 乌海瑞森新能源材料有限公司 一种一维多层纳米链复合材料及其制备方法和在锂离子电池中的应用
CN114695951A (zh) * 2022-03-19 2022-07-01 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种复合固态电解质的制备方法
CN114695951B (zh) * 2022-03-19 2024-04-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种复合固态电解质的制备方法
CN116072879A (zh) * 2023-04-07 2023-05-05 河南工学院 一种锂离子电池电极材料及其制备方法
CN116072879B (zh) * 2023-04-07 2023-07-07 河南工学院 一种锂离子电池电极材料及其制备方法

Also Published As

Publication number Publication date
CN107681122A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2018024182A1 (zh) 一种三维石墨烯-Si-MoS2复合材料的制备方法
CN107768608B (zh) 有效缓冲硅体积效应的锂离子电池负极材料的制备方法
WO2018024183A1 (zh) 一种三维石墨烯/MoS2复合材料的制备方法
Xie et al. Core-shell yolk-shell Si@ C@ Void@ C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance
Liu et al. Surface coating constraint induced anisotropic swelling of silicon in Si–Void@ SiO x nanowire anode for lithium‐ion batteries
Susantyoko et al. Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes
Tao et al. Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries
Xu et al. Adina Rubella‐Like Microsized SiO@ N‐Doped Carbon Grafted with N‐Doped Carbon Nanotubes as Anodes for High‐Performance Lithium Storage
WO2018170976A1 (zh) 锂离子电池多孔结构Si/Cu复合电极及其制造方法
CN104103821B (zh) 硅碳负极材料的制备方法
CN110534710B (zh) 硅/碳复合材料及其制备方法和应用
CN111653737B (zh) 一种具有梯度预锂化结构的氧化硅复合材料及其制备方法、应用
CN112875680B (zh) 一种片状Fe基合金催化生长碳纳米管阵列的制备方法
CN107768607B (zh) 一种锂离子电池负极材料的制备方法
TWI682574B (zh) 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
Lu et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook
CN103811721A (zh) 一种锂电池负极片的制备方法
TWI690112B (zh) 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
Cheng et al. Propelling performance of silicon thin film lithium ion battery by appropriate dopants
CN114497476B (zh) 一种锂离子电池用膨胀石墨纳米硅复合负极材料及其制备方法
Habibi et al. Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@ Void@ C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance
Zhang et al. Si@ Cu composite anode material prepared by magnetron sputtering for high-capacity lithium-ion batteries
CN107069000B (zh) 一种锂离子电池硅碳锰复合负极材料及其制备方法
CN117199328A (zh) 一种高硅含量的硅碳负极材料及其制备方法
Wang et al. Glancing angle deposition of large-scale helical Si@ Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836364

Country of ref document: EP

Kind code of ref document: A1