CN112014445A - 一种三元复合材料及其应用 - Google Patents

一种三元复合材料及其应用 Download PDF

Info

Publication number
CN112014445A
CN112014445A CN202010919924.7A CN202010919924A CN112014445A CN 112014445 A CN112014445 A CN 112014445A CN 202010919924 A CN202010919924 A CN 202010919924A CN 112014445 A CN112014445 A CN 112014445A
Authority
CN
China
Prior art keywords
gas
composite material
ternary composite
graphene foam
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010919924.7A
Other languages
English (en)
Inventor
邵绍峰
林纪栋
夏雨萱
刘星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN202010919924.7A priority Critical patent/CN112014445A/zh
Publication of CN112014445A publication Critical patent/CN112014445A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种三元复合材料,该三元复合材料以三维石墨烯泡沫为基底,其表面负载二氧化钛纳米球;其中,二氧化钛纳米球中点嵌有石墨烯量子点。本发明制备得到的GQD‑TiO2‑GM复合材料具有三维孔道结构,其具有较大的比表面积,有助于提高对甲醛气体的响应强度和灵敏度。此外,TiO2纳米晶粒与石墨烯量子点和石墨烯泡沫形成了GQD‑TiO2‑GM异质(p‑n‑p)结,能够在降低传感器工作温度和提高气敏性能等方面起到巨大的作用。

Description

一种三元复合材料及其应用
技术领域
本发明涉及一种用于气体传感器的三元复合材料,尤其涉及一种石墨烯量子点修饰的三元复合材料及制备的气敏传感元件。
背景技术
呼吸作为人体重要的生理过程,是人体内环境与外界交换物质的途径之一。呼出气体中包含大量人体新陈代谢的产物,各项研究表明呼出物的种类和浓度在一定程度上能反映人体健康状态。通过检测呼出气中的标志物能及时诊断人体的健康状态,对疾病的发生、发展过程进行监测,从而达到疾病预防的目的。世界各国政府都将疾病尤其是癌症、糖尿病等重大疾病的早发现、早诊断作为首要的医疗目标。呼气VOCs检测作为一种潜力巨大的新型无创检测方法,已成为当今世界重大疾病诊断的前沿研究。2017年,以色列理工学院Haick教授团队从5个不同国家(中国、以色列、法国、美国和拉脱维亚)选取1404名受试者的呼气样本进行检测。为了满足呼吸检测的要求,研究人员已经研究了各种呼气传感器用于检测人体呼出的挥发性有机化合物。作为最常见的挥发性有机化合物之一,呼气中的甲醛含量升高表明人体中枢神经系统受到损害,甚至是患上癌症,甲醛已被国际癌症研究机构列为“致癌物”。因此,能够有效准确地检测甲醛的气体传感器的研究对呼气检测分析显得尤为重要。当前研究快速、准确可靠、简单易行的呼气甲醛检测方法成为国内外竞争焦点,提出的甲醛检测方法很多,主要有色谱法、极谱法、光谱法、传感器法等,每种方法都有其各自的特点。比色法虽然简单、成本低,但灵敏度不高、选择性不好、采样周期长、无法对甲醛浓度的快速波动迅速作出反应。色谱法、极谱法通常需要有毒试剂,测试过程干扰因素多,不适于现场测试。光谱法可以现场检测,但是需要的仪器巨大、复杂且检测成本偏高。传感器法检测甲醛操作方便、体积小、可现场检测,是当前具有重要发展潜力的甲醛检测方法。近年来,因具备纳米尺寸效应,可控的物理、化学特性,低成本制造,可高灵敏度、快速响应且检测成本低等优点,基于纳米材料的VOCs(volatile organic compounds,挥发性有机物)气体传感器成为呼气VOCs检测的研究热点。然而,基于金属氧化物半导体的气体传感器往往需要较高的工作温度(200~400℃) 才可以使器件获得较好的传感性能。这意味着该类型的气体传感器工作时需要消耗大量的能量,而且较高的工作温度会降低气体传感器的稳定性和工作寿命。其次,这种传统的基于金属氧化物半导体的气体传感器还普遍存在灵敏度低、可重复性差等问题,使得该类型的传感器难以得到广泛的应用,这也是制约气体传感器技术发展的关键因素。
发明内容
本发明的目的是为了解决现有技术中存在的缺陷,提供一种新型的复合材料,能够用于气敏传感器,制备过程环保、制备成本低,且能够降低工作温度、提高气敏性能。
为了达到上述目的,本发明提供了一种三元复合材料,该三元复合材料以三维石墨烯泡沫为基底,其表面负载二氧化钛纳米球;其中,二氧化钛纳米球中点嵌有石墨烯量子点;三元复合材料中石墨烯泡沫的平均孔径为240~260μm,孔壁的长度为170~190μm,孔壁的平均厚度为1.5~3μm;二氧化钛纳米球的平均粒径为300~400nm; 石墨烯量子点的平均粒径为3~5nm。
进一步的,通过XPS表面元素分析:三元复合材料中二氧化钛纳米球的元素占比为20~25%,石墨烯量子点元素占比为10~25%,三维石墨烯泡沫元素占比为55~65%。
在部分实施例中,作为优选的,三元复合材料中二氧化钛纳米球的元素占比为25%,石墨烯量子点元素占比为10%,三维石墨烯泡沫元素占比为65%。
本发明还提供了上述三元复合材料在甲醛气体检测上的应用。
更为具体的,该应用即为采用上述三元复合材料制备得到气敏传感元件,通过在气敏传感元件表面负载有上述三元复合材料。
进一步的,气敏传感元件的叉指电极采用金叉指电极或铂金叉指电极,电极中正方形接触垫的长和宽为1~2mm,两个接触垫的距离为2.5~3.5mm,且彼此对称,叉指阵列中叉指的间距为0.5~1.5um,叉指阵列部分的长度为1~2mm。气敏传感器件制备过程详见文献(Nanoscale, 2011,3,4283)。
气敏传感元件通过以下方法制备得到:
(1)制备表面负载有三维石墨烯泡沫的气敏传感器件;
(2)制备钛前驱体溶胶溶液:在钛前驱体溶液中加入石墨烯量子点,搅拌制备溶胶溶液;
(3)对负载三维石墨烯泡沫的气敏传感器件进行提拉镀膜;
(4)干燥;
(5)采用后置热蒸法制备三元复合材料;
(6)热处理。
更为具体的,本发明气敏传感元件制备方法如下:
(1)用丙酮清洗的石墨烯泡沫包裹的镍基片(泡沫厚0.5毫米,尺寸为1.0*1.0厘米)焊接在传感器装置上。为了清洁镍表面,将传感器器件置于25~50 sccm H2和50~100 sccm Ar环境中,并以每分钟5℃的速率升温至1000℃,保持15~45分钟;
(2)在步骤(1)后在环境压力下通过鼓泡H2/Ar气体混合物将乙醇蒸汽引入石英管。20~40分钟后,关闭乙醇蒸汽,并将系统冷却至室温;
(3)将步骤(2)中的传感器件在90℃下用盐酸溶液将镍基片蚀刻成三维石墨烯泡沫,用去离子水和丙酮清洗三次;
(4)将步骤(3)中含有3D石墨烯泡沫的传感器装置在120℃的烘箱中干燥。
(5)调配前驱体溶胶溶液。将1~3克四氯化钛溶于5~10毫升乙醇中,将10~40毫克石墨烯量子点加入到钛前驱体溶液中。在上述混合溶液中,超声辅助滴入0.2~0.8毫升浓盐酸,并机械搅拌混合溶液持续8~24小时。
(6)提拉镀膜。将步骤(4)中负载石墨烯泡沫的传感器件垂直浸入上述混合溶液中20~60秒,以10~30毫米/分钟的速度提拉2~8次。
(7)将步骤(6)中传感器件每次提拉镀膜后在60℃下干燥20~60分钟。
(8)运用后置热蒸法制备三元复合材料传感器件。将步骤(7)中干燥后的传感器器件放入密闭容器中,调控密闭容器的温度为120~150℃,75%~95%相对湿度的水蒸气热处理传感器件24~96小时。
(9)将步骤(8)合成的石墨烯量子点/二氧化钛纳米球/石墨烯泡沫复合材料在氮气气氛下,573~773K下热处理1~3小时,最终获得三元复合材料传感器件。
本发明相比现有技术具有以下优点:
1. 本发明制备得到的GQD-TiO2-GM复合材料具有三维孔道结构,其具有较大的比表面积,有助于提高对甲醛气体的响应强度和灵敏度。此外,TiO2纳米晶粒与石墨烯量子点和石墨烯泡沫形成了GQD-TiO2-GM异质(p-n-p)结,能够在降低传感器工作温度和提高气敏性能等方面起到巨大的作用。
2、本发明的甲醛气体传感器三维多级孔道异质结构为气敏材料,并通过构建平面式气体传感器,有效地解决了传统的气体传感器中存在的操作温度高、灵敏度低、选择性差、可重复性差等问题。
3、本发明利用后置热蒸法合成具有GQD-TiO2-GM异质异质结构的气敏材料,该材料的比表面积大,能够提供大量的活性位点,使发生反应的活化能降低,因此降低了器件对操作温度的要求,进而降低了器件的功耗,有利于器件传感性能的可重复性和长期的稳定性。
4、相比传统的气体传感器,本发明提出了一种工作温度低(150℃)、灵敏度高、可重复性强的甲醛气体传感器及其成本低廉、方法简单且可大规模生产的制备方法。
5、本发明首次制备了石墨烯量子点功能化二氧化钛纳米球/石墨烯泡沫传感材料,由于石墨烯泡沫原位生长在平面传感器件上,石墨烯量子点功能化二氧化钛纳米球与石墨烯泡沫充分接触,利用石墨烯量子点嵌入在二氧化钛纳米球中并于石墨烯泡沫相互紧密作用,有效提高了电子传输能力和气敏活性,解决了二氧化钛纳米球气敏活性不高及阻抗不稳定的技术问题,同时由于石墨烯量子点良好的导电性,均匀分散在纳米球中,此外,纳米球均匀分散在石墨烯泡沫表面,极大地增大了电子传递能力,解决了气敏基质材料阻抗随气体变化而快速响应的技术问题。
附图说明
图1为本发明实施例1中所采用的衬底材料石墨烯泡沫的SEM图;
图2为本发明实施例1制备得到的三元复合材料的SEM图;
图3为本发明实施例1制备得到的三元复合材料中的石墨烯量子点修饰的多孔氧化钛纳米球的SEM图;
图4为本发明实施例1制备得到的三元复合材料的X射线衍射图;
图5为本发明实施例1制备得到的气敏传感元件低温检测不同浓度甲醛气体响应的测试示意图;
图6为本发明实施例1制备得到的气敏传感元件在不同湿度下对1ppm甲醛的传感性能图;
图7为本发明实施例1制备得到的气敏传感元件的传感选择性图。
图8为本发明实施例2制备得到的气敏传感元件低温检测不同浓度甲醛气体响应的测试示意图,图8中各峰对应的甲醛测试浓度顺序和图5一致:1ppm,2ppm,5ppm,10ppm,20ppm,30ppm,40ppm,50ppm。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
实施例1
本发明实施例提供了一种低温检测低浓度甲醛的气敏传感材料,该传感材料为石墨烯量子点、二氧化钛纳米球和石墨烯泡沫三元复合材料。该传感材料能够在低温条件下检测到亚ppm级的甲醛气体。本发明未采用贵金属纳米颗粒,大大降低了制备成本。
在一个优选的实施例中,该气敏材料的基底材料为石墨烯泡沫,该石墨烯泡沫以焊接在传感器件上的泡沫镍为生长基质,乙醇为碳源,采用化学气相沉积法合成了石墨烯泡沫。
传感器装置包括铂叉指电极阵列,每个铂叉指的宽度为10微米,长度为1mm。叉指电极间距为8微米,叉指与叉指之间交叉重叠800微米。
用丙酮清洗的镍泡沫(泡沫厚0.5毫米,尺寸为1.0*1.0厘米)焊接在传感器装置上。为了清洁镍表面,将传感器器件置于25 sccm H2和50 sccm Ar环境中,并以每分钟5℃的速率升温至1000℃,保持45分钟。然后在环境压力下通过鼓泡H2/Ar气体混合物将乙醇蒸汽引入石英管。25分钟后,关闭乙醇蒸汽,并将系统冷却至室温。然后,在90℃下用盐酸溶液将镍基片蚀刻成三维石墨烯泡沫,用去离子水和丙酮清洗三次。最后,将含有3D石墨烯泡沫的传感器装置在120℃的烘箱中干燥。
将1克四氯化钛溶于5毫升乙醇中,将10毫克石墨烯量子点加入到钛前驱体溶液中。在上述混合溶液中,超声辅助滴入0.2毫升浓盐酸,并机械搅拌混合溶液持续8小时。
接着将负载石墨烯泡沫的传感器件垂直浸入上述混合溶液中20秒,以10毫米/分钟的速度提拉2次。然后,将传感器器件在60℃下干燥20分钟。
将干燥后的传感器器件放入密闭容器中,调控密闭容器的温度为120℃,75%相对湿度的水蒸气热处理传感器件96小时。然后,将合成的石墨烯量子点/二氧化钛纳米球/石墨烯泡沫复合材料在氮气气氛下,573K下热处理3小时,即得表面负载三元复合材料GQD-TiO2-GM的甲醛传感器。
如图1至图4所示,该三元复合材料中石墨烯泡沫的孔径平均值为240μm,孔壁长度平均值为170μm,孔壁的厚度平均值为1.5μm;二氧化钛纳米球的平均粒径为300nm;石墨烯量子点的平均粒径为3nm。
通过XPS表面元素分析:
三元复合材料中二氧化钛纳米球的元素占比为25%,石墨烯量子点元素占比为10%,三维石墨烯泡沫元素占比为65%。
在传感测量过程中,液体VOCs通过进样口进入加热器蒸发,通过调节载气流量和液体VOCs注入的速度和剂量来控制蒸汽浓度。
传感性能测试
将本实施例制备的三元复合材料GQD-TiO2-GM的甲醛传感器性能测试如图5所示。先将气敏传感器在一定的电流下工作,等到初始基线平稳之后,再通入相应浓度的甲醛气体,待气敏传感器电阻下降并达到平衡之后,向测试腔体内通入空气,直到基线重新恢复稳定,相应的气敏测试数据由电脑采集,气敏测试完成。三元复合材料GQD-TiO2-GM的甲醛传感器在150℃下对浓度为1-50ppm的甲醛的实时响应曲线如图5所示。从图5中可知,随着每种气体浓度的增加,三元复合GQD-TiO2-GM传感器的表面呈现快速增大趋势。虽然该环境中存在着干扰气体O2和C2H6O,但是干扰气体对电流输出影响却很小;当甲醛气体浓度为1-50ppm时,三元复合GQD-TiO2-GM传感器对甲醛的输出特性曲线的相关特性很好。
气敏传感器的不同湿度条件下的性能测试:
以本实施例制备的三元复合材料GQD-TiO2-GM的甲醛气敏传感器进行不同湿度条件下的性能测试。先将气敏传感器在150℃下工作,等到初始基线平稳之后,再通入不同湿度条件下如50%,70%以及90%的浓度为1ppm的甲醛气体,待气敏传感器电阻下降并达到平衡之后,向测试腔体中通入空气,直到基线重新恢复稳定,气敏测试完成。从图6可知,气敏传感器随着湿度不断升高,灵敏度会有所降低。但是,当湿度为90%时,灵敏度仍然很高,对1ppm的甲醛气体灵敏度为31.5,并能够实现对甲醛气体的快速检测。
从图7可知气敏传感器具有优异的选择性。图7显示了三元复合材料气敏传感器在150℃条件下对不同目标气体的选择性,从图7可以看出气敏传感器对甲醛的灵敏度远高于对氨气,苯,异丙醇,乙醚,丙酮,乙醇,甲苯的灵敏度,是其他目标气体灵敏度的3倍以上,这表明三元复合材料气敏传感器对甲醛气体具有优异的选择性。
实施例2
本发明实施例提供了一种低温检测低浓度甲醛的气敏传感材料,该传感材料为石墨烯量子点、二氧化钛纳米球和石墨烯泡沫三元复合材料。该传感材料能够在低温条件下检测到亚ppm级的甲醛气体。本发明未采用贵金属纳米颗粒,大大降低了制备成本。
在一个优选的实施例中,该气敏材料的基底材料为石墨烯泡沫,该石墨烯泡沫以焊接在传感器件上的泡沫镍为生长基质,乙醇为碳源,采用化学气相沉积法合成了石墨烯泡沫。
传感器装置包括铂叉指电极阵列,每个铂叉指的宽度为10微米,长度为1mm。叉指电极间距为8微米,叉指与叉指之间交叉重叠800微米。
用丙酮清洗的镍泡沫(泡沫厚0.5毫米,尺寸为1.0*1.0厘米)焊接在传感器装置上。为了清洁镍表面,将传感器器件置于50 sccm H2和100 sccm Ar环境中,并以每分钟5℃的速率升温至1000℃,保持15分钟。然后在环境压力下通过鼓泡H2/Ar气体混合物将乙醇蒸汽引入石英管。25分钟后,关闭乙醇蒸汽,并将系统冷却至室温。然后,在90℃下用盐酸溶液将镍基片蚀刻成三维石墨烯泡沫,用去离子水和丙酮清洗三次。最后,将含有3D石墨烯泡沫的传感器装置在120℃的烘箱中干燥。
将3克四氯化钛溶于10毫升乙醇中,将40毫克石墨烯量子点加入到钛前驱体溶液中。在上述混合溶液中,超声辅助滴入0.8毫升浓盐酸,并机械搅拌混合溶液持续24小时。
接着将负载石墨烯泡沫的传感器件垂直浸入上述混合溶液中60秒,以30毫米/分钟的速度提拉8次。然后,将传感器器件在60℃下干燥60分钟。
将干燥后的传感器器件放入密闭容器中,调控密闭容器的温度为150℃,95%相对湿度的水蒸气热处理传感器件24小时。然后,将合成的石墨烯量子点/二氧化钛纳米球/石墨烯泡沫复合材料在氮气气氛下,773K下热处理1小时,即得表面负载三元复合材料GQD-TiO2-GM的甲醛传感器。
该三元复合材料中石墨烯泡沫的孔径平均值为260μm,孔壁长度平均值为190μm,孔壁的厚度平均值为3μm;二氧化钛纳米球的平均粒径为400nm; 石墨烯量子点的平均粒径为5nm。
通过XPS表面元素分析:三元复合材料中二氧化钛纳米球的元素占比为20%,石墨烯量子点元素占比为25%,三维石墨烯泡沫元素占比为55%。
在传感测量过程中,液体VOCs通过进样口进入加热器蒸发,通过调节载气流量和液体VOCs注入的速度和剂量来控制蒸汽浓度。
传感性能测试
将本实施例制备的三元复合材料GQD-TiO2-GM的甲醛传感器性能测试如图8所示。先将气敏传感器在一定的电流下工作,等到初始基线平稳之后,再通入相应浓度的甲醛气体,待气敏传感器电阻下降并达到平衡之后,向测试腔体内通入空气,直到基线重新恢复稳定,相应的气敏测试数据由电脑采集,气敏测试完成。三元复合材料GQD-TiO2-GM的甲醛传感器在150℃下对浓度为1-50ppm的甲醛的实时响应曲线如图8所示。从图8中可知,随着每种气体浓度的增加,三元复合GQD-TiO2-GM传感器的表面呈现快速增大趋势。虽然该环境中存在着干扰气体O2和C2H6O,但是干扰气体对电流输出影响却很小;当甲醛气体浓度为1-50ppm时,三元复合GQD-TiO2-GM传感器对甲醛的输出特性曲线的相关特性很好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种三元复合材料,其特征在于,所述三元复合材料以三维石墨烯泡沫为基底,其表面负载二氧化钛纳米球;所述二氧化钛纳米球中点嵌有石墨烯量子点;所述三元复合材料中石墨烯泡沫的平均孔径为240~260μm,孔壁的长度为170~190μm,孔壁的平均厚度为1.5~3μm;二氧化钛纳米球的平均粒径为300~400nm; 石墨烯量子点的平均粒径为3~5nm。
2.根据权利要求1所述的三元复合材料,其特征在于,所述三元复合材料中二氧化钛纳米球的元素占比为20~25%,石墨烯量子点元素占比为10~25%,三维石墨烯泡沫元素占比为55~65%。
3.根据权利要求2所述的三元复合材料,其特征在于,所述三元复合材料中二氧化钛纳米球的元素占比为25%,石墨烯量子点元素占比为10%,三维石墨烯泡沫元素占比为65%。
4.权利要求1至3任一所述三元复合材料在甲醛气体检测上的应用。
5.采用权利要求1至3任一所述的三元复合材料制备得到的气敏传感元件,其特征在于,所述气敏传感元件表面负载有所述三元复合材料。
6.根据权利要求5所述的气敏传感元件,其特征在于,所述气敏传感元件的叉指电极采用金叉指电极或铂金叉指电极;所述气敏传感元件通过以下方法制备得到:
(1)制备表面负载有三维石墨烯泡沫的气敏传感器件;
(2)制备钛前驱体溶胶溶液:在钛前驱体溶液中加入石墨烯量子点,搅拌制备溶胶溶液;
(3)对负载三维石墨烯泡沫的气敏传感器件进行提拉镀膜;
(4)干燥;
(5)采用后置热蒸法制备三元复合材料;
(6)热处理。
7.根据权利要求6所述的气敏传感元件,其特征在于,所述步骤(2)中钛前驱体溶胶溶液以1~3克四氯化钛溶于5~10毫升乙醇中,并加入10~40毫克石墨烯量子点,超声条件下机械搅拌并辅助滴入0.2~0.8毫升浓盐酸制备得到;所述步骤(5)中采用的后置热蒸法将步骤(4)干燥后的气敏传感器件放入密闭容器中,调控密闭容器内相对湿度为75%~95%,温度为120℃~150℃,进行水蒸气热处理24~96小时,即得表面负载有所述三元复合材料的气敏传感元件。
8.根据权利要求6所述的气敏传感元件,其特征在于,所述步骤(1)表面负载有三维石墨烯泡沫气敏传感器件的具体方法如下:
a、用丙酮清洗的石墨烯包裹的镍基片焊接在气敏传感器件上;
b、传感器件在90℃下用盐酸溶液将镍基片蚀刻成三维石墨烯泡沫,用去离子水和丙酮清洗三次;
c、将表面负载有三维石墨烯泡沫的气敏传感器件置于烘箱中干燥。
9.根据权利要求6所述的气敏传感元件,其特征在于,所述步骤(3)中提拉镀膜的具体步骤为:将负载三维石墨烯泡沫的气敏传感器件气敏垂直浸入所述前驱体溶胶溶液中20~60秒,以10~30毫米/分钟的速度提拉2~8次。
10.根据权利要求6所述的气敏传感元件,其特征在于,所述步骤(6)中热处理采用氮气气氛,573~773K下热处理1~3小时。
CN202010919924.7A 2020-09-04 2020-09-04 一种三元复合材料及其应用 Pending CN112014445A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010919924.7A CN112014445A (zh) 2020-09-04 2020-09-04 一种三元复合材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010919924.7A CN112014445A (zh) 2020-09-04 2020-09-04 一种三元复合材料及其应用

Publications (1)

Publication Number Publication Date
CN112014445A true CN112014445A (zh) 2020-12-01

Family

ID=73515353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010919924.7A Pending CN112014445A (zh) 2020-09-04 2020-09-04 一种三元复合材料及其应用

Country Status (1)

Country Link
CN (1) CN112014445A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816526A (zh) * 2020-12-31 2021-05-18 西安工业大学 三维石墨烯气体敏感传感器及其制备方法
CN113075266A (zh) * 2021-03-25 2021-07-06 南京信息工程大学 一种NGQD/Fe2O3/石墨烯泡沫复合薄膜及其制备方法与应用
CN116429850A (zh) * 2023-06-14 2023-07-14 南京信息工程大学 基于稀土金属掺杂卟啉COFs/碳基量子点/In2O3复合薄膜的传感器及制法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188454A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific And Industrial Research Process for preparation of nanoporous graphene and graphene quantum dots
WO2018024182A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯-Si-MoS2复合材料的制备方法
CN108398408A (zh) * 2018-02-02 2018-08-14 上海理工大学 一种用于甲醛气体检测的复合气敏材料及其制备方法
CN110265230A (zh) * 2019-07-04 2019-09-20 江苏省特种设备安全监督检验研究院 一种镍钴-功能化石墨烯量子点@氧化还原石墨烯复合材料及其制备方法与应用
US20200262745A1 (en) * 2016-03-21 2020-08-20 Corning Incorporated Transparent substrates comprising three-dimensional porous conductive graphene films and methods for making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188454A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific And Industrial Research Process for preparation of nanoporous graphene and graphene quantum dots
US20200262745A1 (en) * 2016-03-21 2020-08-20 Corning Incorporated Transparent substrates comprising three-dimensional porous conductive graphene films and methods for making the same
WO2018024182A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯-Si-MoS2复合材料的制备方法
CN108398408A (zh) * 2018-02-02 2018-08-14 上海理工大学 一种用于甲醛气体检测的复合气敏材料及其制备方法
CN110265230A (zh) * 2019-07-04 2019-09-20 江苏省特种设备安全监督检验研究院 一种镍钴-功能化石墨烯量子点@氧化还原石墨烯复合材料及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SHAOFENG SHAO等: "NGQDs modified nanoporous TiO2/graphene foam nanocomposite for excellent sensing response to formaldehyde at high relative humidity", 《APPLIED SURFACE SCIENCE》 *
WENJING YUAN等: "Graphene-based gas sensors", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
YI XIA等: "3D Architectured Graphene/Metal Oxide Hybrids for", 《SENSORS》 *
季顺宁等: "《传感器与自动检测技术》", 31 July 2018, 机械工业出版社 *
赵丽等: "《食品安全检测新方法》", 31 March 2019, 厦门大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816526A (zh) * 2020-12-31 2021-05-18 西安工业大学 三维石墨烯气体敏感传感器及其制备方法
CN112816526B (zh) * 2020-12-31 2022-10-21 西安工业大学 三维石墨烯气体敏感传感器及其制备方法
CN113075266A (zh) * 2021-03-25 2021-07-06 南京信息工程大学 一种NGQD/Fe2O3/石墨烯泡沫复合薄膜及其制备方法与应用
CN113075266B (zh) * 2021-03-25 2022-05-17 南京信息工程大学 一种NGQD/Fe2O3/石墨烯泡沫复合薄膜及其制备方法与应用
CN116429850A (zh) * 2023-06-14 2023-07-14 南京信息工程大学 基于稀土金属掺杂卟啉COFs/碳基量子点/In2O3复合薄膜的传感器及制法和应用
CN116429850B (zh) * 2023-06-14 2023-09-22 南京信息工程大学 基于稀土金属掺杂卟啉COFs/碳基量子点/In2O3复合薄膜的传感器及制法和应用

Similar Documents

Publication Publication Date Title
Alizadeh et al. Breath acetone sensors as non-invasive health monitoring systems: A review
US10837956B2 (en) Sensor technology for diagnosing tuberculosis
Masikini et al. Metal oxides: Application in exhaled breath acetone chemiresistive sensors
Righettoni et al. Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis
CN112014445A (zh) 一种三元复合材料及其应用
Guntner et al. E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer?
Konvalina et al. Effect of humidity on nanoparticle-based chemiresistors: a comparison between synthetic and real-world samples
US20170184564A1 (en) Sensor for nitric oxide detection
CN112229879A (zh) TiO2-Ti3C2Tx复合薄膜气体传感器及其制备方法和用途
CN106770485B (zh) 一种导电内核敏感层及分子筛除湿层的传感器及制备方法
CN108732214A (zh) 基于PdO@In2O3复合物纳米敏感材料的丙酮气体传感器及其制备方法
JP2013117546A (ja) ガスセンサ
CN110095506A (zh) Au/SnS2二氧化氮气体传感器及制备工艺和应用
Aroutiounian Hydrogen peroxide semiconductor sensors
CN110596217A (zh) NiTa2O6为敏感电极的糖尿病诊断用全固态丙酮传感器及其制备方法
CN113075266B (zh) 一种NGQD/Fe2O3/石墨烯泡沫复合薄膜及其制备方法与应用
CN109459474A (zh) 一种金纳米粒子/三维石墨烯复合材料的制备及应用
CN112255277A (zh) 基于分枝状异质结阵列丙酮气体传感器、制备方法及应用
Petralia et al. A miniaturized electrochemical system based on nickel oxide species for glucose sensing applications
Lekha et al. Non-invasive prediction of diabetes through breath analysis: a literature review
CN113072062B (zh) 一种石墨烯量子点/ZnO/小球藻复合薄膜及其制备方法与应用
US20190361001A1 (en) Molybdenum trioxide and nano silicon chips for acetone detection
CN115656288B (zh) 表面包覆纳米铜的泡沫铜及其作为无酶葡萄糖检测传感器的用途
Jiang et al. Nanocrystalline composed SnO 2 inverse opal for highly sensitive acetone gas sensor at ppb-level
CN117990747A (zh) 一种基于纳米Co3O4空心球的新型氨气传感器及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201