WO2018021148A1 - 印刷配線板 - Google Patents
印刷配線板 Download PDFInfo
- Publication number
- WO2018021148A1 WO2018021148A1 PCT/JP2017/026326 JP2017026326W WO2018021148A1 WO 2018021148 A1 WO2018021148 A1 WO 2018021148A1 JP 2017026326 W JP2017026326 W JP 2017026326W WO 2018021148 A1 WO2018021148 A1 WO 2018021148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- supply layer
- coupling element
- capacitive coupling
- wiring
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0236—Electromagnetic band-gap structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0218—Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/023—Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
- H05K1/0231—Capacitors or dielectric substances
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/115—Via connections; Lands around holes or via connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09218—Conductive traces
- H05K2201/09254—Branched layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/0929—Conductive planes
- H05K2201/093—Layout of power planes, ground planes or power supply conductors, e.g. having special clearance holes therein
Definitions
- the present disclosure relates to a printed wiring board having an electromagnetic band gap structure.
- a noise suppressing component or a multilayer printed wiring board having noise propagation suppression can be considered.
- a capacitor is usually used to reduce power supply system noise in a multilayer printed wiring board.
- an electromagnetic bandgap (EBG) structure is used for the power supply layer-ground layer.
- EBG electromagnetic bandgap
- the printed wiring board of the present disclosure includes a power supply layer and a ground layer.
- the power supply layer pattern formed in the power supply layer includes a branch that is a DC power supply path that connects adjacent EBG unit cells, and a power supply layer electrode.
- a capacitive coupling element including a capacitive coupling element body is arranged with an interlayer so as to face the power supply layer electrode.
- the power supply layer pattern further includes power supply layer wiring formed so as to extend from the power supply layer electrode and surround at least a part of the periphery of the electrode, or a capacitive coupling element extends from the capacitive coupling element body.
- the power supply layer pattern and the capacitive coupling element have an EBG structure in which EBG unit cells are connected periodically via vias connected to at least one of the power supply layer wiring and the capacitive coupling element wiring.
- FIG. 1 is an explanatory diagram illustrating an embodiment of a printed wiring board according to the present disclosure.
- 2A is an explanatory view showing an embodiment of the EBG structure provided on the printed wiring board shown in FIG. 1
- FIG. 2B is an explanatory view showing a power supply layer pattern included in the EBG structure.
- FIG. 2C is an explanatory diagram showing a capacitive coupling element included in the EBG structure.
- FIG. 3 is an equivalent circuit of a resonance circuit portion included in the EBG unit cell constituting the EBG structure shown in FIG.
- FIG. 4 is a graph showing electromagnetic field simulation results for obtaining the resonance frequency of the resonance circuit in the EBG unit cell shown in FIG.
- FIG. 5A is an explanatory view showing another embodiment of the EBG structure, FIG.
- FIG. 5B is an explanatory view showing a power supply layer pattern included in the EBG structure
- FIG. 5C is a view showing the EBG structure. It is explanatory drawing which shows the capacitive coupling element contained.
- FIG. 6 is a graph showing electromagnetic field simulation results for obtaining the resonance frequency of the resonance circuit of the EBG unit cell shown in FIG.
- EBG equivalent series inductance
- the EBG structure provided in the printed wiring board according to the present disclosure has a two-layer structure of the power supply electrode by adding a capacitive coupling element to the power supply layer even if no via is formed between the power supply layer and the ground layer. Further downsizing can be realized.
- the printed wiring board of the present disclosure will be described in detail.
- FIG. 1 shows a printed wiring board according to an embodiment of the present disclosure.
- a printed wiring board 1 shown in FIG. 1 includes a power supply layer 2 and a ground layer 3, and the power supply layer 2 has an EBG structure 4 in a part thereof.
- the power supply layer 2 and the ground layer 3 are formed with a solid pattern including a conductive material such as copper, for example.
- the thickness of the power supply layer 2 is not particularly limited, and is about 18 to 70 ⁇ m, for example.
- the thickness of the ground layer 3 is not particularly limited, and is about 18 to 70 ⁇ m, for example.
- An insulating layer 5 is formed between the power supply layer 2 and the ground layer 3, on the upper surface of the power supply layer 2, and on the lower surface of the ground layer 3.
- the insulating layer 5 is not particularly limited as long as it is made of an insulating material.
- the insulating material include organic resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. These organic resins may be used in combination of two or more.
- a reinforcing material may be blended in the organic resin.
- the reinforcing material include insulating fabric materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Two or more reinforcing materials may be used in combination.
- the insulating material may include inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide.
- the printed wiring board 1 shown in FIG. 1 has an EBG structure 4 in a part of the power supply layer 2.
- An embodiment of the EBG structure 4 will be described based on FIGS. 2 (A) to (C).
- FIG. 2A shows a part of the EBG structure 4 provided on the printed wiring board 1 shown in FIG.
- the EBG structure 4 is formed by a plurality of EBG unit cells 41.
- FIG. 2A shows three EBG unit cells 41 that are arranged side by side in the direction along the branch 422 in the EBG structure 4 shown in FIG.
- the EBG structure 4 is formed of a power supply layer pattern 42 and a capacitive coupling element 43, and the power supply layer pattern 42 includes a power supply layer electrode 421 and a branch 422 as shown in FIG. That is, the power supply layer pattern 42 is distinguished into a power supply layer electrode 421 and a branch 422 by forming a slit in a part of the power supply layer 2.
- the power supply layer electrode 421 has a substantially rectangular shape and is connected at a part of the branch 422.
- a capacitive coupling element 43 is disposed so as to overlap the power supply layer electrode 421, and both are capacitively coupled.
- a capacitive coupling element wiring 432 extends from a part of the capacitive coupling element 43, and is connected to the branch 422 through the via 44 at the tip thereof.
- the capacitive coupling element 43 includes a capacitive coupling element main body 431 and capacitive coupling element wiring 432.
- the capacitive coupling element 43 is made of a conductive material such as copper, for example.
- the capacitive coupling element 43 may be the same conductive material as the power supply layer pattern 42.
- the capacitive coupling element body 431 has a substantially rectangular shape and is approximately the same size as the power supply layer electrode 421.
- the capacitive coupling element wiring 432 extends from the corner portion 431a of the capacitive coupling element main body 431 in the direction in which the branch 422 extends.
- the power supply layer electrode 421 and the capacitive coupling element 43 are capacitively coupled via the insulating layer 5.
- a part of the power supply layer electrode 421 and the branch 422 are connected, and at the same time, connected to the branch 422 through a via at the tip of the capacitive coupling element wiring 432 extending from the capacitive coupling element 43.
- the via is formed of a conductive material such as copper.
- FIG. 3 shows an equivalent circuit of a resonance circuit portion included in the EBG unit cell 41 constituting the EBG structure 4.
- each symbol is as follows.
- Lb an inductance component of the branch portion.
- Cs Coupling capacitance between the power supply layer pattern and the capacitive coupling element.
- Lv Inductance component of the via portion connecting the power supply layer pattern and the capacitive coupling element.
- Lw Inductance component of the capacitive coupling element wiring portion connecting the capacitive coupling element to the via.
- the thickness between the power supply layer pattern 42 and the capacitive coupling element 43 is not particularly limited. In order to have a coupling capacitance Cs between the power supply layer pattern 42 and the capacitive coupling element 43, the thickness between the power supply layer pattern 42 and the capacitive coupling element 43 may be 25 ⁇ m or less. In order to have a sufficient coupling capacity Cs, the thickness between the layers may be 10 to 20 ⁇ m or less.
- the EBG structure 4 is resonated by using the inductance Lb generated in the branch 422 formed so that the capacitive coupling Cs is connected via the inductances Lv and Lw and surrounds at least a part of the power supply layer electrode 421.
- the path of the capacitive coupling element wiring 432 is lengthened so as to surround at least a part of the capacitive coupling element main body 431 in the capacitive coupling element 43, and the inductance Lw is increased. Thereby, since the capacitive coupling Cs can be apparently increased, the parallel resonance frequency can be lowered.
- the EBG unit cell 41 can be made small, and as a result, the EBG structure 4 can be miniaturized.
- the size of the EBG unit cell 41 is substantially rectangular, for example, the length and width are each 3 mm or less, and may be 1.5 mm or less.
- FIG. 4 is a graph showing the electromagnetic field simulation result for obtaining the resonance frequency of the resonance circuit in the EBG unit cell 41. From this resonance analysis result, it can be seen that the EBG structure 4 can set a blocking region that suppresses electromagnetic noise propagation in a band near 2.4 GHz even though the EBG unit cell is 1.95 mm ⁇ 1.85 mm.
- FIG. 5A shows a part of the EBG structure 4 provided on the printed wiring board 1 shown in FIG. As shown in FIG. 5A, the EBG structure 4 'is formed of a plurality of EBG unit cells 41'.
- FIG. 5A shows the EBG unit cell 41 ′ extracted from the EBG structure 4 shown in FIG. 1 and arranged in a line along the branch 422.
- the EBG unit cell 41 ′ shown in FIG. 5A and the EBG unit cell 41 shown in FIG. 2A include a power supply layer wiring 423 provided in the power supply layer pattern and a capacitive coupling element wiring provided in the capacitive coupling element.
- the length of 432 ′ is different. That is, in the EBG unit cell 41 shown in FIG. 2A, there is no power supply layer wiring in the power supply layer pattern 42 as shown in FIG. 2B, and the capacitive coupling element 43 as shown in FIG.
- the capacitive coupling element wiring 432 has a length of substantially one side of a substantially rectangular capacitive coupling element body 431.
- the power supply layer wiring 423 of the power supply layer pattern 42 ′ and the capacitive coupling element wiring 432 ′ of the capacitive coupling element 43 ′ are shown in FIGS.
- the power supply layer electrode 421 ′ having a substantially rectangular shape and the capacitive coupling element body 431 ′ having a substantially rectangular shape are surrounded by a substantially one side and a substantially half circumference, respectively.
- the power supply layer pattern 42 ′ is formed by forming slits in a part of the power supply layer 2, thereby providing power supply layer electrodes 421 ′, branches 422 ′, and power supply layer wirings. 423.
- the power supply layer electrode 421 ' has a substantially rectangular shape.
- the power supply layer wiring 423 has a length of approximately one side of the power supply layer electrode 421 ′ from one corner 421 a of the power supply layer electrode 421 ′ to one adjacent corner 421 b.
- the branch 422 ′ is connected to one corner of the power supply layer electrode 421 ′ at the tip thereof via the adjacent power supply layer wiring 423.
- the connection between the branch 422 ′ and one corner of the power supply layer electrode 421 ′ may be directly connected at a part of both without passing through the adjacent power supply layer wiring 423.
- the capacitive coupling element main body 431 ' has a substantially rectangular shape and is approximately the same size as the power supply layer electrode 421'.
- the capacitive coupling element wiring 432 ′ is formed so as to surround the circumference of the capacitive coupling element main body 431 ′ by a half or more so as to be substantially at the same position as one corner 421 a of the branch 422 ′.
- the power supply layer electrode 421 ′ and the capacitive coupling element 43 ′ are capacitively coupled via the insulating layer 5.
- a part of the power supply layer electrode 421 ′ and the branch 422 ′ are connected through the adjacent power supply layer wiring 423.
- the tip of the capacitive coupling element wiring 432 ′ extending from the capacitive coupling element 43 ′ is connected to the branch 422 ′ via a via.
- the via is formed of a conductive material such as copper.
- the equivalent circuit of the resonant circuit portion included in the EBG unit cell 41 ′ constituting the EBG structure 4 ′ is equivalent to the equivalent circuit of the resonant circuit portion included in the EBG unit cell 41 constituting the EBG structure 4 shown in FIG. Is the same.
- the power supply layer pattern 42 ′ the power supply layer wiring 423 that does not exist in the power supply layer pattern 42 is formed.
- the capacitive coupling element 43 ′ has a longer path for the capacitive coupling element wiring 432 ′ than the capacitive coupling element 43. Therefore, the inductance Lw, which is the sum of both inductance components, can be made larger in the EBG unit cell 41 ′ than in the EBG unit cell 41.
- the capacitive coupling Cs can be apparently increased, and as a result, the parallel resonance frequency can be lowered.
- the EBG unit cell 41 ' can be made smaller, and as a result, the EBG structure 4' can be further downsized.
- FIG. 6 is a graph showing the electromagnetic field simulation result for obtaining the resonance frequency of the resonance circuit of the EBG unit cell 41 '. From this resonance analysis result, it can be seen that the EBG structure 4 ′ can set a blocking region for suppressing electromagnetic noise propagation in a band near 2.4 GHz even though the EBG unit cell is 1.5 mm square.
- the printed wiring board of the present disclosure is not limited to the above-described embodiment.
- the above-described EBG structure 4 and EBG structure 4 ′ have a substantially rectangular power supply layer electrode and a capacitive coupling element body.
- the shapes of the power supply layer electrode and the capacitive coupling element main body are not limited, and may be, for example, circular, polygonal (pentagonal or hexagonal), or other shapes having a dent.
- the number of EBG unit cells constituting the EBG structure is not particularly limited. Usually, it may be about 2 to 4 in the direction along the branch.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
Lb:ブランチ部分のインダクタンス成分。
Cs:電源層パターンと容量結合素子との結合容量。
Lv:電源層パターンと容量結合素子とを接続するビア部分のインダクタンス成分。
Lw:容量結合素子からビアまでを接続する容量結合素子配線部分のインダクタンス成分。
2 電源層
3 グラウンド層
4 EBG構造
41、41’ EBG単位セル
42、42’ 電源層パターン
421、421’ 電源層電極
421a、421b 角部
422、422’ ブランチ
423 電源層配線
43、43’ 容量結合素子
431、431’ 容量結合素子本体
431a 角部
432、432’ 容量結合素子配線
44、44’ ビア
5 絶縁層
Claims (4)
- 電源層およびグラウンド層を含み、
電源層に形成される電源層パターンが、隣接するEBG単位セル間を接続する直流給電路であるブランチと、電源層電極とを含み、
容量結合素子本体を含む容量結合素子が、前記電源層電極と対向するように層間を設けて配置され、
前記電源層パターンが、前記電源層電極から延在して該電極周囲の少なくとも一部を囲むように形成された電源層配線をさらに含むか、前記容量結合素子が、前記容量結合素子本体から延在して該本体周囲の少なくとも一部を囲むように形成された容量結合素子配線をさらに含むか、あるいは前記電源層パターンが前記電源層配線をさらに含みかつ前記容量結合素子が前記容量結合素子配線をさらに含み、
前記電源層パターンと前記容量結合素子とが、前記電源層配線および前記容量結合素子配線の少なくとも一方に接続されたビアを介して接続されるEBG単位セルが周期的に配置されたEBG構造を有する印刷配線板。 - 前記電源層電極および前記容量結合素子本体が略矩形で略同じ大きさを有しており、
前記ブランチが、スリットを形成することによって区別されている電源層電極の1つの角部から隣接する一方の角部近傍まで延在し、
前記容量結合素子配線が、容量結合素子本体の角部からブランチが延在している方向に延在し、
ブランチと容量結合素子配線とが、それぞれの先端部でビアを介して接続されている請求項1に記載の印刷配線板。 - 前記電源層電極および前記容量結合素子本体が略矩形で略同じ大きさを有しており、前記電源層配線が電源層電極周囲を少なくとも略一辺の長さを有しており、前記容量結合素子配線が容量結合素子本体周囲を少なくとも半周囲み、
電源層配線と容量結合素子配線とが、それぞれの先端部でビアを介して接続されている請求項1に記載の印刷配線板。 - 前記電源層パターンと前記容量結合素子との層間の厚みが25μm以下である請求項1~3のいずれかに記載の印刷配線板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780046116.0A CN109479378B (zh) | 2016-07-27 | 2017-07-20 | 印刷布线板 |
KR1020197002262A KR102176897B1 (ko) | 2016-07-27 | 2017-07-20 | 인쇄 배선판 |
JP2018529826A JP6611065B2 (ja) | 2016-07-27 | 2017-07-20 | 印刷配線板 |
US16/320,392 US10791622B2 (en) | 2016-07-27 | 2017-07-20 | Printed wiring board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-147672 | 2016-07-27 | ||
JP2016147672 | 2016-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018021148A1 true WO2018021148A1 (ja) | 2018-02-01 |
Family
ID=61016056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026326 WO2018021148A1 (ja) | 2016-07-27 | 2017-07-20 | 印刷配線板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10791622B2 (ja) |
JP (1) | JP6611065B2 (ja) |
KR (1) | KR102176897B1 (ja) |
CN (1) | CN109479378B (ja) |
TW (1) | TWI659676B (ja) |
WO (1) | WO2018021148A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018073956A (ja) * | 2016-10-27 | 2018-05-10 | 京セラ株式会社 | 中継用印刷配線板 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111800937B (zh) * | 2020-06-19 | 2021-12-21 | 苏州浪潮智能科技有限公司 | 一种电磁带隙结构及pcb板 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131509A (ja) * | 2006-11-22 | 2008-06-05 | Nec Tokin Corp | Ebg構造体及びノイズフィルタ |
JP2013232613A (ja) * | 2012-04-05 | 2013-11-14 | Sony Corp | 配線基板及び電子機器 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7215007B2 (en) * | 2003-06-09 | 2007-05-08 | Wemtec, Inc. | Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards |
US20050224912A1 (en) * | 2004-03-17 | 2005-10-13 | Rogers Shawn D | Circuit and method for enhanced low frequency switching noise suppression in multilayer printed circuit boards using a chip capacitor lattice |
US7626216B2 (en) * | 2005-10-21 | 2009-12-01 | Mckinzie Iii William E | Systems and methods for electromagnetic noise suppression using hybrid electromagnetic bandgap structures |
TW200818451A (en) * | 2006-06-02 | 2008-04-16 | Renesas Tech Corp | Semiconductor device |
TW200808136A (en) | 2006-07-26 | 2008-02-01 | Inventec Corp | A layout design for a multilayer printed circuit board |
US20080158840A1 (en) * | 2006-12-27 | 2008-07-03 | Inventec Corporation | DC power plane structure |
US7839654B2 (en) * | 2007-02-28 | 2010-11-23 | International Business Machines Corporation | Method for ultimate noise isolation in high-speed digital systems on packages and printed circuit boards (PCBS) |
WO2008115881A1 (en) * | 2007-03-16 | 2008-09-25 | Rayspan Corporation | Metamaterial antenna arrays with radiation pattern shaping and beam switching |
KR100838246B1 (ko) * | 2007-06-22 | 2008-06-17 | 삼성전기주식회사 | 전자기 밴드갭 구조물이 구비된 인쇄회로기판 |
KR100871346B1 (ko) | 2007-06-22 | 2008-12-01 | 삼성전기주식회사 | 전자기 밴드갭 구조물 및 인쇄회로기판 |
DE102008002568B4 (de) * | 2007-06-22 | 2012-12-06 | Samsung Electro - Mechanics Co., Ltd. | Elektromagnetische Bandabstandstruktur und Leiterplatte |
KR100838244B1 (ko) * | 2007-06-22 | 2008-06-17 | 삼성전기주식회사 | 전자기 밴드갭 구조물 및 인쇄회로기판 |
US8169790B2 (en) * | 2007-08-07 | 2012-05-01 | Samsung Electro-Mechanics Co., Ltd. | Electromagnetic bandgap structure and printed circuit board |
WO2009067197A2 (en) * | 2007-11-16 | 2009-05-28 | Rayspan Corporation | Filter design methods and filters based on metamaterial structures |
TWI375499B (en) * | 2007-11-27 | 2012-10-21 | Asustek Comp Inc | Improvement method for ebg structures and multi-layer board applying the same |
DE102008045055A1 (de) * | 2007-12-07 | 2009-06-10 | Samsung Electro-Mechanics Co., Ltd., Suwon | Elektromagnetische Bandgap-Struktur und Leiterplatte |
TWI397931B (zh) * | 2008-02-29 | 2013-06-01 | Ind Tech Res Inst | 電容裝置 |
JP5380919B2 (ja) * | 2008-06-24 | 2014-01-08 | 日本電気株式会社 | 導波路構造およびプリント配線板 |
KR100956689B1 (ko) * | 2008-06-27 | 2010-05-10 | 삼성전기주식회사 | 전자기 밴드갭 구조물 및 인쇄회로기판 |
US8890761B2 (en) * | 2008-08-01 | 2014-11-18 | Nec Corporation | Structure, printed circuit board, antenna, transmission line to waveguide converter, array antenna, and electronic device |
US20100060527A1 (en) * | 2008-09-10 | 2010-03-11 | International Business Machines Corporation | Electromagnetic band gap tuning using undulating branches |
JP5516407B2 (ja) * | 2008-09-11 | 2014-06-11 | 日本電気株式会社 | 構造体、アンテナ、通信装置、及び電子部品 |
US8288660B2 (en) * | 2008-10-03 | 2012-10-16 | International Business Machines Corporation | Preserving stopband characteristics of electromagnetic bandgap structures in circuit boards |
KR100999550B1 (ko) * | 2008-10-08 | 2010-12-08 | 삼성전기주식회사 | 전자기 밴드갭 구조물 |
DE102008051531B4 (de) * | 2008-10-14 | 2013-04-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Elektrisches System mit einer Vorrichtung zur Unterdrückung der Ausbreitung einer elektromagnetischen Störung |
FI124128B (fi) * | 2008-10-28 | 2014-03-31 | Tellabs Oy | Suodatinrakenne |
KR101018807B1 (ko) * | 2008-12-02 | 2011-03-03 | 삼성전기주식회사 | 전자기 밴드갭 구조물 및 회로 기판 |
KR101018796B1 (ko) * | 2008-12-02 | 2011-03-03 | 삼성전기주식회사 | 전자기 밴드갭 구조물 및 회로 기판 |
JP5326649B2 (ja) * | 2009-02-24 | 2013-10-30 | 日本電気株式会社 | アンテナ、アレイアンテナ、プリント基板、及びそれを用いた電子装置 |
KR101055457B1 (ko) * | 2009-04-07 | 2011-08-08 | 포항공과대학교 산학협력단 | 전자기 밴드갭 구조물 및 이를 포함하는 인쇄회로기판 |
KR101055483B1 (ko) * | 2009-04-07 | 2011-08-08 | 포항공과대학교 산학협력단 | 전자기 밴드갭 구조물 및 이를 포함하는 인쇄회로기판 |
CN101667567B (zh) | 2009-07-06 | 2011-08-17 | 深圳先进技术研究院 | 电磁干扰隔离装置 |
KR101007288B1 (ko) * | 2009-07-29 | 2011-01-13 | 삼성전기주식회사 | 인쇄회로기판 및 전자제품 |
KR101072591B1 (ko) * | 2009-08-10 | 2011-10-11 | 삼성전기주식회사 | Emi 노이즈 저감 인쇄회로기판 |
KR101021548B1 (ko) * | 2009-09-18 | 2011-03-16 | 삼성전기주식회사 | 전자기 밴드갭 구조를 구비하는 인쇄회로기판 |
KR101023541B1 (ko) * | 2009-09-22 | 2011-03-21 | 삼성전기주식회사 | Emi 노이즈 저감 인쇄회로기판 |
KR101021551B1 (ko) * | 2009-09-22 | 2011-03-16 | 삼성전기주식회사 | 전자기 밴드갭 구조를 구비하는 인쇄회로기판 |
KR101092590B1 (ko) * | 2009-09-23 | 2011-12-13 | 삼성전기주식회사 | 전자기 밴드갭 구조를 구비하는 인쇄회로기판 |
KR101308970B1 (ko) * | 2009-12-21 | 2013-09-17 | 한국전자통신연구원 | 불요 전자파 및 노이즈 억제를 위한 다층 인쇄 회로 기판 |
KR101044789B1 (ko) * | 2010-01-04 | 2011-06-29 | 삼성전기주식회사 | 전자기 밴드갭 구조물 및 회로 기판 |
JP2013058585A (ja) | 2011-09-08 | 2013-03-28 | Oki Printed Circuits Co Ltd | 多層プリント配線板 |
JP2013183082A (ja) | 2012-03-02 | 2013-09-12 | Oki Printed Circuits Co Ltd | 多層プリント配線板 |
JP5694251B2 (ja) | 2012-07-27 | 2015-04-01 | 株式会社東芝 | Ebg構造体および回路基板 |
KR20140102462A (ko) * | 2013-02-14 | 2014-08-22 | 한국전자통신연구원 | 전자기 밴드갭 구조물 및 상기 전자기 밴드갭 구조물의 제조 방법 |
CN104080263A (zh) * | 2013-03-29 | 2014-10-01 | 鸿富锦精密工业(深圳)有限公司 | 堆叠式电磁能隙结构 |
JP5660168B2 (ja) | 2013-07-25 | 2015-01-28 | 日本電気株式会社 | 導波路構造、プリント配線板、及びそれを用いた電子装置 |
JP6168943B2 (ja) * | 2013-09-20 | 2017-07-26 | 株式会社東芝 | Ebg構造体、半導体デバイスおよび回路基板 |
JP5929969B2 (ja) * | 2014-06-12 | 2016-06-08 | ヤマハ株式会社 | プリント回路基板及びプリント回路基板におけるノイズ低減方法 |
JP6894602B2 (ja) * | 2014-11-28 | 2021-06-30 | 国立大学法人 岡山大学 | 印刷配線板およびその製造方法 |
US10178758B2 (en) * | 2014-11-28 | 2019-01-08 | National University Corporation Okayama University | Printed wiring board and method of producing the same |
-
2017
- 2017-07-20 CN CN201780046116.0A patent/CN109479378B/zh active Active
- 2017-07-20 US US16/320,392 patent/US10791622B2/en active Active
- 2017-07-20 WO PCT/JP2017/026326 patent/WO2018021148A1/ja active Application Filing
- 2017-07-20 KR KR1020197002262A patent/KR102176897B1/ko active IP Right Grant
- 2017-07-20 JP JP2018529826A patent/JP6611065B2/ja active Active
- 2017-07-26 TW TW106125105A patent/TWI659676B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131509A (ja) * | 2006-11-22 | 2008-06-05 | Nec Tokin Corp | Ebg構造体及びノイズフィルタ |
JP2013232613A (ja) * | 2012-04-05 | 2013-11-14 | Sony Corp | 配線基板及び電子機器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018073956A (ja) * | 2016-10-27 | 2018-05-10 | 京セラ株式会社 | 中継用印刷配線板 |
Also Published As
Publication number | Publication date |
---|---|
CN109479378A (zh) | 2019-03-15 |
KR102176897B1 (ko) | 2020-11-10 |
TWI659676B (zh) | 2019-05-11 |
TW201811128A (zh) | 2018-03-16 |
US10791622B2 (en) | 2020-09-29 |
KR20190021400A (ko) | 2019-03-05 |
CN109479378B (zh) | 2021-04-23 |
JPWO2018021148A1 (ja) | 2019-07-18 |
US20190246494A1 (en) | 2019-08-08 |
JP6611065B2 (ja) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006067939A1 (ja) | 積層コンデンサおよびその実装構造 | |
JP6168943B2 (ja) | Ebg構造体、半導体デバイスおよび回路基板 | |
US7498815B2 (en) | Array antenna for magnetic resonance applications | |
JP2016006816A (ja) | トランスおよび多層基板 | |
JP6611065B2 (ja) | 印刷配線板 | |
US10542622B2 (en) | Printed wiring board | |
CN107404300B (zh) | 层叠型电子部件 | |
JP2020043172A (ja) | 電子機器 | |
JP2011061126A (ja) | 回路基板 | |
JP2013012528A (ja) | プリント基板 | |
US8125794B2 (en) | Multilayer printed wiring board and electronic device using the same | |
JP6624026B2 (ja) | 積層型電子部品 | |
JP6804261B2 (ja) | 中継用印刷配線板 | |
JP6884616B2 (ja) | 印刷配線板 | |
KR102064075B1 (ko) | 고주파 인덕터 | |
JP5005915B2 (ja) | 積層型誘電体共振器及び積層型誘電体フィルタ | |
US8802995B2 (en) | Electronic component including multilayer substrate | |
JP6744201B2 (ja) | 印刷配線板 | |
JP2006303020A (ja) | コンデンサ内蔵プリント配線板 | |
JP2009049242A (ja) | 電子部品内蔵基板 | |
US20150114688A1 (en) | Printed circuit board | |
JP2011071792A (ja) | 積層型誘電体フィルタ | |
JP2010278602A (ja) | 積層型誘電体フィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17834156 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197002262 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018529826 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17834156 Country of ref document: EP Kind code of ref document: A1 |