WO2018018915A1 - Pcb板、pcb板的制造方法及移动终端 - Google Patents

Pcb板、pcb板的制造方法及移动终端 Download PDF

Info

Publication number
WO2018018915A1
WO2018018915A1 PCT/CN2017/078874 CN2017078874W WO2018018915A1 WO 2018018915 A1 WO2018018915 A1 WO 2018018915A1 CN 2017078874 W CN2017078874 W CN 2017078874W WO 2018018915 A1 WO2018018915 A1 WO 2018018915A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
pcb board
layer
dissipation layer
detection trace
Prior art date
Application number
PCT/CN2017/078874
Other languages
English (en)
French (fr)
Inventor
陈鑫锋
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Publication of WO2018018915A1 publication Critical patent/WO2018018915A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the printed circuit board [PCB]

Definitions

  • the present invention relates to the field of mobile terminal technologies, and in particular, to a PCB board, a PCB board manufacturing method, and a mobile terminal.
  • the detection trace will generate heat due to the current flowing through it.
  • the heat dissipation effect of the detection trace is poor, which affects the service life of the detection trace.
  • the inventors have found in practice that the fast charging function of the mobile terminal can be realized by increasing the charging current.
  • the current is usually a direct detection of the resistor in the circuit.
  • the resistance of the resistor is large, this inevitably affects the current in the circuit.
  • the inventor detects the current by setting a detection trace instead of a resistor on the PCB. Since the detection trace has a certain impedance, a large amount of heat is generated when a current flows through the detection trace, and the heat dissipation difference of the trace is detected. This is not conducive to improving the service life of the detection trace.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention provides a PCB board, which is advantageous for improving the heat dissipation effect of the detection trace.
  • the present invention also provides a method of manufacturing a PCB board which can be used to manufacture the above PCB board.
  • the present invention also proposes a mobile terminal including the above PCB board.
  • the PCB board according to the embodiment of the present invention includes a board body; the detecting trace is disposed on the board body, the detecting trace has a copper exposed portion, and the exposed copper portion is provided with a heat dissipation layer.
  • the detection trace has a copper exposed portion, and a heat dissipation layer is laid on the exposed copper portion, so that when a current is passed through the detection trace, the heat generated by the heat generated by the trace can be detected.
  • the reliable heat dissipation of the detection trace is realized, which is beneficial to improving the heat dissipation effect of the detection trace, thereby improving the service life of the detection trace and reducing the maintenance cost of the PCB.
  • a gold treatment layer is disposed between the surface of the exposed copper portion and the heat dissipation layer.
  • the heat dissipation layer is a thermally conductive silicone layer.
  • the heat dissipation layer is coated with a heat dissipating graphite layer.
  • the area of the heat dissipation graphite layer is larger than the area of the heat dissipation layer.
  • the heat dissipation layer is located at a center position below the heat dissipation graphite layer.
  • the heat dissipation graphite layer is laid at an edge of the heat dissipation layer and surrounds the heat dissipation layer in a circumferential direction of the heat dissipation layer.
  • the plate body is provided with a metal block, and the heat dissipation layer is in contact with the metal block.
  • the board body is provided with a shielding cover, and the shielding cover is in contact with the heat dissipation layer.
  • the PCB board is the above-mentioned PCB board, and the manufacturing method includes the following steps: S10: performing a copper leakage treatment on the detection trace of the board body to form The exposed copper portion; S20: laying a heat dissipation layer on the exposed copper portion.
  • a copper leakage process is performed on the detection trace of the board body to form a copper exposed portion, and a heat dissipation layer is laid on the exposed copper portion, and when a current is passed through the detection trace, The heat generated by detecting the heat generated by the trace can be transmitted to the heat dissipation layer through the exposed copper portion, thereby realizing reliable heat dissipation of the detection trace and improving the heat dissipation effect of the detection trace.
  • the step S10 comprises the following sub-steps:
  • a mobile terminal includes: a housing; and the above-described PCB board, the PCB board is disposed in the housing, and the heat dissipation layer is in contact with the housing.
  • the mobile terminal of the embodiment of the present invention by providing the above-mentioned PCB board, when the current in the detection trace has a current flow, the heat transferred to the heat dissipation layer by the detection trace can be further transmitted from the heat dissipation layer to the housing, thereby further passing through the shell.
  • the body realizes heat dissipation for detecting the traces, thereby further improving the heat dissipation effect on the detection traces.
  • the PCB board is provided with metal blocks, and the metal blocks are respectively in contact with the heat dissipation layer and the housing.
  • the PCB board is provided with a shielding cover, and the shielding cover is in contact with the heat dissipation layer and the housing, respectively.
  • the mobile terminal is a mobile phone, a tablet, a notebook or a gaming machine.
  • FIG. 1 is a schematic illustration of a PCB board in accordance with some embodiments of the present invention.
  • FIG. 2 is a schematic view of a PCB board in accordance with further embodiments of the present invention.
  • FIG. 3 is a schematic diagram of a PCB board in accordance with still further embodiments of the present invention.
  • FIG. 4 is a schematic diagram of a PCB board in accordance with still further embodiments of the present invention.
  • FIG. 5 is a schematic diagram of detection when detecting a trace detection current according to some embodiments of the present invention.
  • FIG. 6 is a flow chart of a method of fabricating a PCB board in accordance with some embodiments of the present invention.
  • Plate body 1 detection trace 2; heat dissipation layer 3; metal block 4; shield cover 5; heat-dissipating graphite layer 6.
  • the terms “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise specifically defined and defined. They may be mechanically connected, or they may be electrically connected or communicate with each other; they may be directly connected or indirectly connected through an intermediate medium, and may be internal communication of two elements or interaction of two elements unless otherwise specified; Limited. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a PCB board 100 which may be used in a mobile terminal such as a mobile phone, a tablet, a notebook computer, a game machine, or the like, is described below with reference to FIGS.
  • the PCB board 100 may include a board body 1, a detection trace 2, and a heat dissipation layer 3.
  • the detection trace 2 is disposed on the board 1.
  • the detection trace 2 can be used in place of a resistor to detect current in the circuit. It should be noted here that the working principle and specific implementation manner of detecting the current by detecting the trace 2 are well known to those skilled in the art, and will not be described in detail herein.
  • the detection trace 2 has a copper exposed portion.
  • the detection trace 2 is subjected to a copper exposure treatment to realize the setting of detecting the exposed copper portion on the trace 2.
  • the heat-dissipating layer 3 is laid on the exposed copper portion, whereby the detecting trace 2 has a copper exposed portion and the heat-dissipating layer 3 is laid on the exposed copper portion, thereby detecting the trace 2
  • the heat generated by detecting the heat generated by the trace 2 can be transferred to the heat dissipation layer 3 through the exposed copper portion. Therefore, the reliable heat dissipation of the detection trace 2 is realized, and the heat dissipation effect of the detection trace 2 is improved, which is advantageous for prolonging the service life of the detection trace 2.
  • the detection trace 2 by detecting that the trace 2 has a copper exposed portion and laying the heat dissipation layer 3 on the exposed copper portion, when the current on the detection trace 2 passes, the detection trace 2 generates heat.
  • the heat can be transferred to the heat dissipation layer 3 through the exposed copper portion, thereby realizing reliable heat dissipation of the detection trace 2, which is beneficial to improving the heat dissipation effect of the detection trace 2, thereby improving the service life of the detection trace 2 and reducing the PCB board. 100 maintenance costs.
  • a gold treatment layer is disposed between the surface of the exposed copper portion and the heat dissipation layer 3, whereby not only the heat of the detection trace 2 can be transmitted through the gold treatment layer by providing the gold treatment layer.
  • the heat dissipation effect of the detection trace 2 is not affected, and the gold treatment layer can also prevent the exposed copper portion from being oxidized, thereby reliably protecting the exposed copper portion and prolonging the use of the detection trace 2. life.
  • the heat sink layer 3 is a thermally conductive silicone layer. Therefore, not only the reliable heat dissipation of the detection trace 2 is facilitated, but also the thermal grease layer laid on the exposed copper portion has good insulation property, and the phenomenon that the detection trace 2 is short-circuited during use can be avoided.
  • the heat dissipation layer 3 is laid with a heat dissipating graphite layer 6. Therefore, when there is current flow in the detection trace 2, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the heat dissipation graphite layer 6, thereby further implementing the detection trace through the heat dissipation graphite layer.
  • the heat dissipation of 2 can further improve the heat dissipation effect on the detection trace 2.
  • the area of the heat dissipation graphite layer 6 is larger than the area of the heat dissipation layer 3.
  • the heat dissipating graphite layer 6 is laid over the heat dissipating layer 3, and the area of the heat dissipating graphite layer 6 is larger than the area of the heat dissipating layer 3, and the heat dissipating layer 3 is located at a center position below the heat dissipating graphite layer 6.
  • the heat dissipating graphite layer 6 is laid at the edge of the heat dissipation layer 3 and at least partially surrounds the heat dissipation layer 3 in the circumferential direction of the heat dissipation layer 3.
  • the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be transferred to the heat dissipation graphite layer 6 through the heat dissipation layer 3, and further through the heat dissipation graphite layer 6 to the surrounding environment. Radiant heat to further heat the graphite layer 6 The heat dissipation effect of the detection trace 2 is detected.
  • the plate body 1 is provided with a metal block 4, and the heat dissipation layer 3 is in contact with the metal block 4.
  • the heat dissipation layer 3 is in direct contact with the metal block 4; of course, in other embodiments, the heat dissipation layer 3 and the metal block 4 may also be in indirect contact, for example, the heat dissipation layer 3 and the metal block 4 are in indirect contact through the heat dissipation graphite layer 6.
  • the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the metal block 4, thereby further implementing the detection trace 2 through the metal block 4.
  • the heat dissipation can further improve the heat dissipation effect on the detection trace 2.
  • the board body 1 is provided with a shielding cover 5, and the shielding cover 5 is in contact with the heat dissipation layer 3.
  • the heat dissipation layer 3 is in direct contact with the shielding cover 5; of course, in other embodiments, the heat dissipation layer 3 and the shielding cover 5 may also be in indirect contact, for example, between the heat dissipation layer 3 and the shielding cover 5 through the above-mentioned heat dissipation graphite layer and/or Or the metal block 4 is in indirect contact.
  • the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the shield cover 5, thereby further implementing the detection trace 2 through the shield cover 5.
  • the heat dissipation can further improve the heat dissipation effect on the detection trace 2.
  • the PCB board 100 of the present embodiment includes a board body 1, a detection trace 2, and a heat dissipation layer 3.
  • the heat dissipation layer 3 is a thermal grease layer.
  • the detecting trace 2 is disposed on the board body 1, and the detecting trace 2 has a copper exposed portion, and the exposed copper portion is provided with a heat dissipation layer 3, and the surface of the exposed copper portion is cooled.
  • a gold treatment layer is provided between the layers 3.
  • a heat dissipating graphite layer 6 is laid on the heat dissipation layer 3. Therefore, when the current in the detection trace 2 is circulated, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the heat dissipation graphite layer 6, thereby further detecting the heat through the graphite layer 6.
  • the heat dissipation of line 2 can further improve the pair Detect the heat dissipation effect of the trace 2.
  • the area of the heat dissipation graphite layer 6 is larger than the area of the heat dissipation layer 3.
  • the PCB board 100 of the present embodiment includes a board body 1, a detection trace 2, and a heat dissipation layer 3.
  • the heat dissipation layer 3 is a thermal grease layer.
  • the detecting trace 2 is disposed on the board body 1, and the detecting trace 2 has a copper exposed portion, and the exposed copper portion is provided with a heat dissipation layer 3, a surface of the exposed copper portion and heat dissipation.
  • a gold treatment layer is provided between the layers 3.
  • the plate body 1 is provided with a metal block 4, and the heat dissipation layer 3 is in contact with the metal block 4. Therefore, when there is current flow in the detection trace 2, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the metal block 4, thereby further implementing the detection trace 2 through the metal block 4.
  • the heat dissipation can further improve the heat dissipation effect on the detection trace 2.
  • the PCB board 100 of the present embodiment includes a board body 1, a detection trace 2, and a heat dissipation layer 3.
  • the heat dissipation layer 3 is a thermal grease layer.
  • the detecting trace 2 is disposed on the board body 1, the detecting trace 2 has a copper exposed portion, the exposed copper portion is covered with a heat dissipation layer 3, and the surface of the exposed copper portion and the heat dissipation layer 3 are There is a gold treatment layer between them.
  • the board body 1 is provided with a shield cover 5, and the shield cover 5 is in contact with the heat dissipation layer 3, thereby detecting the heat transferred from the trace 2 to the heat dissipation layer 3 during the use of the detection trace 2,
  • the heat dissipation layer 3 can be further transferred to the shielding cover 5 to further dissipate heat from the detection trace 2 through the shielding cover 5, thereby further improving the heat dissipation effect on the detection trace 2.
  • the PCB board 100 of the present embodiment includes a board body 1, a detection trace 2, and a heat dissipation layer 3.
  • the heat dissipation layer 3 is a thermal grease layer.
  • the detecting trace 2 is disposed on the board body 1, the detecting trace 2 has a copper exposed portion, the exposed copper portion is covered with a heat dissipation layer 3, and the surface of the exposed copper portion and the heat dissipation layer 3 are provided with gold treatment.
  • Floor the surface of the exposed copper portion and the heat dissipation layer 3 are provided with gold treatment.
  • a heat dissipating graphite layer 6 is disposed on the heat dissipation layer 3, and an area of the heat dissipating graphite layer 6 is larger than an area of the heat dissipation layer 3.
  • the plate body 1 is provided with a metal block 4, and the heat dissipation graphite layer 6 is in contact with the metal block 4. Therefore, when there is current flow in the detection trace 2, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transferred from the heat dissipation layer 3 to the heat dissipation graphite layer 6, and further transferred to the metal block 4, thereby further passing The metal block 4 realizes heat dissipation to the detection trace 2, thereby further improving the heat dissipation effect on the detection trace 2.
  • the plate body 1 is provided with a shielding cover 5, and the shielding cover 5 is in contact with the metal block 4. Therefore, during the use of the detecting wire 2, the heat generated by detecting the heat generated by the wire 2 can be sequentially transmitted to the exposed copper portion and the gold.
  • the processing layer, the heat dissipation layer 3, the heat dissipation graphite layer 6, the metal block 4, and the shielding cover 5 are used to achieve multiple heat dissipation, thereby improving the heat dissipation effect on the detection trace 2.
  • a method of manufacturing a PCB board 100 includes the following steps:
  • the copper trace is processed by the copper trace of the detection trace 2 of the board body 1 to form a copper exposed portion, and the heat dissipation layer 3 is laid on the exposed copper portion, when the trace 2 is detected.
  • the heat generated by detecting the heat generated by the trace 2 can be transmitted to the heat dissipation layer 3 through the exposed copper portion, thereby The reliable heat dissipation of the detection trace 2 is realized, and the heat dissipation effect of the detection trace 2 is improved.
  • step S10 comprises the following sub-steps:
  • the surface of the exposed copper portion is subjected to gold treatment. Therefore, by performing gold treatment on the surface of the exposed copper portion to form the gold treatment layer, not only the heat of the detection trace 2 can be transmitted to the heat dissipation layer 3 through the gold treatment layer, thereby ensuring that the heat dissipation effect of the detection trace 2 is not affected. Moreover, the gold treatment layer can also function to prevent the exposed copper portion from being oxidized, thereby reliably protecting the exposed copper portion and prolonging the service life of the detection trace 2.
  • a mobile terminal includes: a housing and the above-described PCB board 100.
  • the PCB board 100 is disposed in the housing, and the heat dissipation layer 3 is in contact with the housing, thereby detecting current flow in the detection trace 2.
  • the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the housing, thereby further dissipating heat to the detection trace 2 through the housing, thereby further improving the heat dissipation effect on the detection trace 2. .
  • the mobile terminal of the embodiment of the present invention by providing the PCB board 100 described above, when the current in the detection trace 2 is circulated, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted from the heat dissipation layer 3 to the housing. Therefore, the heat dissipation of the detection trace 2 is further realized by the housing, and the heat dissipation effect on the detection trace 2 can be further improved.
  • the PCB board 100 is provided with a metal block 4, and the metal block 4 is in contact with the heat dissipation layer 3 and the housing, respectively. Therefore, when there is current flow in the detection trace 2, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted to the housing through the metal block 4, thereby further achieving heat dissipation to the detection trace 2 through the housing. Further, the heat dissipation effect on the detection trace 2 can be further improved.
  • the PCB board 100 is provided with a shielding cover 5, and the shielding cover 5 is in contact with the heat dissipation layer 3 and the housing, respectively. Therefore, when there is current flow in the detection trace 2, the heat transferred from the detection trace 2 to the heat dissipation layer 3 can be further transmitted to the housing through the shield cover, thereby further achieving heat dissipation to the detection trace 2 through the housing. Further, the heat dissipation effect on the detection trace 2 can be further improved.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种PCB板(100)、PCB板(100)的制造方法及移动终端。PCB板(100)包括板体(1);检测走线(2),该检测走线(2)设在板体(1)上,该检测走线(2)上具有露铜部,该露铜部上铺设有散热层(3)。

Description

PCB板、PCB板的制造方法及移动终端 技术领域
本发明涉及移动终端技术领域,尤其是涉及一种PCB板、PCB板的制造方法及移动终端。
背景技术
PCB板上设有检测走线,检测走线中会因有电流流过而发热,检测走线的散热效果差,这影响了检测走线的使用寿命。
发明内容
本申请是基于发明人对以下事实和问题的发现和认识作出的:
发明人在实际研究中发现可通过提高充电电流的方法来实现移动终端的快速充电功能。在对电流进行检测时,通常是直接检测电路中的电阻器,然而由于电阻器的阻值较大,这必然影响了电路中的电流。发明人通过在PCB板上设置代替电阻器的检测走线以检测电流,由于检测走线具有一定的阻抗,当检测走线中有电流流过时会产生大量的热量,检测走线的散热差,这不利于提高检测走线的使用寿命。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种PCB板,有利于提高检测走线的散热效果。
本发明还提出一种PCB板的制造方法,可用于制造上述PCB板。
本发明还提出一种包括上述PCB板的移动终端。
根据本发明实施例的PCB板包括板体;检测走线,所述检测走线设在板体上,所述检测走线上具有露铜部,所述露铜部上铺设有散热层。
根据本发明实施例的PCB板,通过使得检测走线具有露铜部,并在露铜部上铺设散热层,从而当检测走线上有电流通过时,检测走线发热产生的热量可 通过露铜部传递至散热层,从而实现对检测走线的可靠散热,这有利于提高检测走线的散热效果,继而提高检测走线的使用寿命,降低了PCB板的维修成本。
根据本发明的一些实施例,所述露铜部的表面与所述散热层之间设有化金处理层。
根据本发明的一些实施例,所述散热层为导热硅脂层。
根据本发明的一些实施例,所述散热层上铺设有散热石墨层。
可选地,所述散热石墨层的面积大于所述散热层的面积。
进一步地,所述散热层位于所述散热石墨层的下方的中心位置处。
可选地,所述散热石墨层铺设在所述散热层的边缘处且在所述散热层的周向上环绕所述散热层。
根据本发明的一些实施例,所述板体上设有金属块,所述散热层与所述金属块接触。
根据本发明的一些实施例,所述板体上设有屏蔽盖,所述屏蔽盖与所述散热层接触。
根据本发明实施例的PCB板的制造方法,所述PCB板为上述的PCB板,所述制造方法包括如下步骤:S10:对所述板体的所述检测走线进行漏铜处理,以形成所述露铜部;S20:在所述露铜部上铺设散热层。
根据本发明实施例的PCB板的制造方法,通过对板体的检测走线进行漏铜处理以形成露铜部,并在露铜部上铺设散热层,当检测走线上有电流通过时,检测走线发热产生的热量可通过露铜部传递至散热层,从而实现对检测走线的可靠散热,提高检测走线的散热效果。
根据本发明的一些实施例,所述步骤S10包括如下子步骤:
S11:对所述板体的所述检测走线进行漏铜处理,以形成所述露铜部;
S12:对所述露铜部的表面进行化金处理。
根据本发明实施例的移动终端,包括:壳体;和上述的PCB板,所述PCB板设在所述壳体内,所述散热层与所述壳体接触。
根据本发明实施例的移动终端,通过设置上述的PCB板,当检测走线内具有电流流通时,检测走线传递至散热层的热量,可进一步由散热层传递至壳体,从而进一步通过壳体实现对检测走线的散热,进而可进一步提高对检测走线的散热效果。
根据本发明的一些实施例,所述PCB板上设有金属块,所述金属块分别与所述散热层、所述壳体接触。
根据本发明的一些实施例,所述PCB板上设有屏蔽盖,所述屏蔽盖分别与所述散热层、所述壳体接触。
根据本发明的一些实施例,所述移动终端为手机、平板电脑、笔记本电脑或游戏机。
附图说明
图1是根据本发明一些实施例的PCB板的示意图;
图2是根据本发明另一些实施例的PCB板的示意图;
图3是根据本发明再一些实施例的PCB板的示意图;
图4是根据本发明又一些实施例的PCB板的示意图;
图5是根据本发明一些实施例的检测走线检测电流时的检测示意图;
图6是根据本发明一些实施例的PCB板的制造方法的流程图。
附图标记:
PCB板100;
板体1;检测走线2;散热层3;金属块4;屏蔽盖5;散热石墨层6。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对 本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“水平”、“顶”、“底”“内”、“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图5描述根据本发明实施例的PCB板100,PCB板100可用在移动终端例如手机、平板电脑、笔记本电脑或游戏机等上。
如图1-图4所示,根据本发明实施例的PCB板100可以包括板体1、检测走线2和散热层3。
具体地,如图1-图4所示,检测走线2设在板体1上。具体而言,例如如图5所示,检测走线2可以代替电阻器用于检测电路中的电流。此处需要说明的是,利用检测走线2检测电流的工作原理及具体实现方式已被本领域技术人员所熟知,此处不再详细说明。
检测走线2上具有露铜部。例如,对检测走线2进行露铜处理以实现检测走线2上露铜部的设置。如图1-图4所示,露铜部上铺设有散热层3,由此,通过使检测走线2具有露铜部并在露铜部上铺设散热层3,从而当检测走线2上有电流通过时,检测走线2发热产生的热量可通过露铜部传递至散热层3, 从而实现对检测走线2的可靠散热,提高检测走线2的散热效果,这有利于延长检测走线2的使用寿命。
根据本发明实施例的PCB板100,通过使得检测走线2具有露铜部,并在露铜部上铺设散热层3,从而当检测走线2上有电流通过时,检测走线2发热产生的热量可通过露铜部传递至散热层3,从而实现对检测走线2的可靠散热,这有利于提高检测走线2的散热效果,继而提高检测走线2的使用寿命,降低了PCB板100的维修成本。
根据本发明的一些实施例,露铜部的表面与散热层3之间设有化金处理层,由此,通过设置化金处理层不但可以使得检测走线2的热量通过化金处理层传递至散热层3,保证检测走线2的散热效果不受影响,而且化金处理层还可以起到防止露铜部被氧化的作用,从而可靠地保护露铜部,延长检测走线2的使用寿命。
在本发明的一些实施例中,散热层3为导热硅脂层。由此,不但有利于对检测走线2的可靠散热,而且铺设在露铜部上的导热硅脂层具有良好的绝缘性,可避免检测走线2在使用过程中出现短路的现象。
根据本发明的一些实施例,散热层3上铺设有散热石墨层6。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至散热石墨层6,从而进一步通过散热石墨层实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
可选地,散热石墨层6的面积大于散热层3的面积。例如,如图4所示,散热石墨层6铺设在散热层3的上方,且散热石墨层6的面积大于散热层3的面积,散热层3位于散热石墨层6的下方的中心位置处。当然,本发明不限于此,在其它实施例中,散热石墨层6铺设在散热层3的边缘处且在散热层3的周向上至少部分环绕散热层3。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可通过散热层3传递至散热石墨层6,并进一步通过散热石墨层6向四周的环境中辐射热量,从而进一步提高散热石墨层6 对检测走线2的散热效果。
作为本发明的一些实施例,参照图3所示,板体1上设有金属块4,散热层3与金属块4接触。例如,散热层3与金属块4直接接触;当然,在其它实施例中,散热层3与金属块4还可以间接接触,例如散热层3与金属块4通过上述散热石墨层6间接接触。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至金属块4,从而进一步通过金属块4实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
在另一些实施例中,如图2所示,板体1上设有屏蔽盖5,屏蔽盖5与散热层3接触。例如,散热层3与屏蔽盖5直接接触;当然,在其它实施例中,散热层3与屏蔽盖5还可以是间接接触,例如散热层3与屏蔽盖5之间通过上述散热石墨层和/或金属块4间接接触。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至屏蔽盖5,从而进一步通过屏蔽盖5实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
下面参考图1-图4对本发明多个具体实施例的PCB板100的结构进行详细说明。
实施例1
如图1和4所示,本实施例的PCB板100包括板体1、检测走线2和散热层3。散热层3为导热硅脂层。
具体地,如图1和图4所示,检测走线2设在板体1上,检测走线2上具有露铜部,露铜部上铺设有散热层3,露铜部的表面与散热层3之间设有化金处理层。
散热层3上铺设有散热石墨层6。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至散热石墨层6,从而进一步通过散热石墨层6实现对检测走线2的散热,进而可进一步提高对 检测走线2的散热效果。
散热石墨层6的面积大于散热层3的面积。
实施例2
如图1和图3所示,本实施例的PCB板100包括板体1、检测走线2和散热层3。散热层3为导热硅脂层。
具体地,如图1和图3所示,检测走线2设在板体1上,检测走线2上具有露铜部,露铜部上铺设有散热层3,露铜部的表面与散热层3之间设有化金处理层。
板体1上设有金属块4,散热层3与金属块4接触。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至金属块4,从而进一步通过金属块4实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
实施例3
如图1和图2所示,本实施例的PCB板100包括板体1、检测走线2和散热层3。散热层3为导热硅脂层。
具体地,如图2所示,检测走线2设在板体1上,检测走线2上具有露铜部,露铜部上铺设有散热层3,露铜部的表面与散热层3之间设有化金处理层。
如图2所示,板体1上设有屏蔽盖5,屏蔽盖5与散热层3接触,由此,在检测走线2的使用过程中,检测走线2传递至散热层3的热量,可进一步由散热层3传递至屏蔽盖5,从而进一步通过屏蔽盖5实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
实施例4
如图1所示,本实施例的PCB板100包括板体1、检测走线2和散热层3。 散热层3为导热硅脂层。
具体地,检测走线2设在板体1上,检测走线2上具有露铜部,露铜部上铺设有散热层3,露铜部的表面与散热层3之间设有化金处理层。
散热层3上铺设有散热石墨层6,散热石墨层6的面积大于散热层3的面积。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可通过散热层3传递至散热石墨层6,并进一步通过散热石墨层6向四周的环境中辐射热量,从而进一步提高散热石墨层6对检测走线2的散热效果。
板体1上设有金属块4,散热石墨层6与金属块4接触。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至散热石墨层6,并进一步传递至金属块4,从而进一步通过金属块4实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
板体1上设有屏蔽盖5,屏蔽盖5与金属块4接触,由此,在检测走线2的使用过程中,检测走线2发热产生的热量可依次传递至露铜部、化金处理层、散热层3、散热石墨层6、金属块4和屏蔽盖5,以实现多重散热,从而提高对检测走线2的散热效果。
下面参考图6描述根据本发明实施例的PCB板100的制造方法,PCB板100为上述实施例中的PCB板100。
如图6所示,根据本发明实施例的PCB板100的制造方法包括如下步骤:
S10:对板体1的检测走线2进行漏铜处理,以形成露铜部;
S20:在露铜部上铺设散热层3。由此,当检测走线2上有电流通过时,检测走线2发热产生的热量可通过露铜部传递至散热层3,从而实现对检测走线2的可靠散热,提高检测走线2的散热效果。
根据本发明实施例的PCB板100的制造方法,通过对板体1的检测走线2进行漏铜处理以形成露铜部,并在露铜部上铺设散热层3,当检测走线2上有电流通过时,检测走线2发热产生的热量可通过露铜部传递至散热层3,从而 实现对检测走线2的可靠散热,提高检测走线2的散热效果。
根据本发明的一些实施例,步骤S10包括如下子步骤:
S11:对板体1的检测走线2进行漏铜处理,以形成露铜部;
S12:对露铜部的表面进行化金处理。由此通过对露铜部的表面进行化金处理以形成化金处理层不但可以使得检测走线2的热量通过化金处理层传递至散热层3,保证检测走线2的散热效果不受影响,而且化金处理层还可以起到防止露铜部被氧化的作用,从而可靠地保护露铜部,延长检测走线2的使用寿命。
根据本发明实施例的移动终端,包括:壳体和上述的PCB板100,PCB板100设在壳体内,且散热层3与壳体接触,由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至壳体,从而进一步通过壳体实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
根据本发明实施例的移动终端,通过设置上述的PCB板100,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步由散热层3传递至壳体,从而进一步通过壳体实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
具体地,PCB板100上设有金属块4,金属块4分别与散热层3、壳体接触。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步通过金属块4传递至壳体,从而进一步通过壳体实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
在另一些实施例中,PCB板100上设有屏蔽盖5,屏蔽盖5分别与散热层3、壳体接触。由此,当检测走线2内具有电流流通时,检测走线2传递至散热层3的热量,可进一步通过屏蔽盖传递至壳体,从而进一步通过壳体实现对检测走线2的散热,进而可进一步提高对检测走线2的散热效果。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接 接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一些实施例”、“示例”或“具体示例”、等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种PCB板,其特征在于,包括:
    板体;
    检测走线,所述检测走线设在板体上,所述检测走线上具有露铜部,所述露铜部上铺设有散热层。
  2. 根据权利要求1所述的PCB板,其特征在于,所述露铜部的表面与所述散热层之间设有化金处理层。
  3. 根据权利要求1-2中任一项所述的PCB板,其特征在于,所述散热层为导热硅脂层。
  4. 根据权利要求1-3中任一项所述的PCB板,其特征在于,所述散热层上铺设有散热石墨层。
  5. 根据权利要求4所述的PCB板,其特征在于,所述散热石墨层的面积大于所述散热层的面积。
  6. 根据权利要求5所述的PCB板,其特征在于,所述散热层位于所述散热石墨层的下方的中心位置处。
  7. 根据权利要求4所述的PCB板,其特征在于,所述散热石墨层铺设在所述散热层的边缘处且在所述散热层的周向上环绕所述散热层。
  8. 根据权利要求1-7中任一项所述的PCB板,其特征在于,所述板体上设有金属块,所述散热层与所述金属块接触。
  9. 根据权利要求1-8中任一项所述的PCB板,其特征在于,所述板体上设有屏蔽盖,所述屏蔽盖与所述散热层接触。
  10. 一种PCB板的制造方法,其特征在于,所述PCB板为根据权利要求1-9中任一项所述的PCB板,所述制造方法包括如下步骤:
    S10:对所述板体的所述检测走线进行漏铜处理,以形成所述露铜部;
    S20:在所述露铜部上铺设散热层。
  11. 根据权利要求10所述的种PCB板的制造方法,其特征在于,所述步骤 S10包括如下子步骤:
    S11:对所述板体的所述检测走线进行漏铜处理,以形成所述露铜部;
    S12:对所述露铜部的表面进行化金处理。
  12. 一种移动终端,其特征在于,包括:
    壳体;和
    根据权利要求1-9中任一项所述的PCB板,所述PCB板设在所述壳体内,所述散热层与所述壳体接触。
  13. 根据权利要求12所述的移动终端,其特征在于,所述PCB板上设有金属块,所述金属块分别与所述散热层、所述壳体接触。
  14. 根据权利要求12所述的移动终端,其特征在于,所述PCB板上设有屏蔽盖,所述屏蔽盖分别与所述散热层、所述壳体接触。
  15. 根据权利要求12所述的移动终端,其特征在于,所述移动终端为手机、平板电脑、笔记本电脑或游戏机。
PCT/CN2017/078874 2016-07-28 2017-03-30 Pcb板、pcb板的制造方法及移动终端 WO2018018915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610608626.XA CN106231781B (zh) 2016-07-28 2016-07-28 Pcb板、pcb板的制造方法及移动终端
CN201610608626.X 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018018915A1 true WO2018018915A1 (zh) 2018-02-01

Family

ID=57535215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078874 WO2018018915A1 (zh) 2016-07-28 2017-03-30 Pcb板、pcb板的制造方法及移动终端

Country Status (2)

Country Link
CN (2) CN106231781B (zh)
WO (1) WO2018018915A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231781B (zh) * 2016-07-28 2018-05-22 广东欧珀移动通信有限公司 Pcb板、pcb板的制造方法及移动终端
CN106455461B (zh) * 2016-12-27 2019-09-06 成都芯通软件有限公司 一种pcb电路板散热装置及机箱
CN107846775A (zh) * 2017-12-22 2018-03-27 珠海市航达科技有限公司 一种高导热悬空印制电路板及其生产方法
CN107949160A (zh) * 2017-12-22 2018-04-20 珠海市航达科技有限公司 一种热电分离的高导热悬空印制电路板及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888567A (zh) * 2014-04-16 2014-06-25 深圳酷比通信设备有限公司 一种智能手机及其主板组件
CN204206718U (zh) * 2014-08-20 2015-03-11 林士刚 一种具有散热兼屏蔽功能的行车安全预警器
CN205029960U (zh) * 2015-10-23 2016-02-10 建业科技电子(惠州)有限公司 一种防止漏v-cut的pcb板
CN205179142U (zh) * 2015-12-01 2016-04-20 深圳市添正弘业科技有限公司 一种改进的散热型手机主板
CN106231781A (zh) * 2016-07-28 2016-12-14 广东欧珀移动通信有限公司 Pcb板、pcb板的制造方法及移动终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060082994A1 (en) * 2004-10-18 2006-04-20 Harvatek Corporation LED lamp
JP5422818B2 (ja) * 2008-12-04 2014-02-19 コーア株式会社 電流検出用抵抗器の実装基板
CN201887040U (zh) * 2010-11-26 2011-06-29 深圳市晶凯电子技术有限公司 以pcb为基板的qfn/dfn封装之集成电路
CN202841681U (zh) * 2012-08-21 2013-03-27 惠州市德赛西威汽车电子有限公司 一种具有散热功能的pcb
US9961805B2 (en) * 2013-09-25 2018-05-01 Continental Automotive Gmbh Electric component and method for producing same
CN203573424U (zh) * 2013-10-25 2014-04-30 福建升腾资讯有限公司 一种基于多媒体pos的散热优化的主板及终端
CN205093035U (zh) * 2015-11-05 2016-03-16 重庆蓝岸通讯技术有限公司 一种pcb中用于检测的短路电阻封装结构
CN205124121U (zh) * 2015-11-30 2016-03-30 胜华电子(惠阳)有限公司 一种pcb线路板
CN105555018A (zh) * 2016-02-16 2016-05-04 广东欧珀移动通信有限公司 一种印刷电路板及电子终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888567A (zh) * 2014-04-16 2014-06-25 深圳酷比通信设备有限公司 一种智能手机及其主板组件
CN204206718U (zh) * 2014-08-20 2015-03-11 林士刚 一种具有散热兼屏蔽功能的行车安全预警器
CN205029960U (zh) * 2015-10-23 2016-02-10 建业科技电子(惠州)有限公司 一种防止漏v-cut的pcb板
CN205179142U (zh) * 2015-12-01 2016-04-20 深圳市添正弘业科技有限公司 一种改进的散热型手机主板
CN106231781A (zh) * 2016-07-28 2016-12-14 广东欧珀移动通信有限公司 Pcb板、pcb板的制造方法及移动终端

Also Published As

Publication number Publication date
CN108391369B (zh) 2019-07-23
CN106231781B (zh) 2018-05-22
CN108391369A (zh) 2018-08-10
CN106231781A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018018915A1 (zh) Pcb板、pcb板的制造方法及移动终端
US10756000B2 (en) Heat dissipation assembly and electronic device
CN204069618U (zh) 一种电磁屏蔽罩及电路板
WO2021115249A1 (zh) 电路板装置以及电子设备
JP2013004636A5 (zh)
WO2016107133A1 (zh) 直接导热的软硬结合电路板
WO2015196340A1 (zh) 一种芯片散热结构和终端设备
WO2019192147A1 (zh) 一种印刷电路板及移动设备
KR20160120486A (ko) 회로기판 및 회로기판 제조방법
JP2019521528A (ja) フレキシブル回路基板及びその製造方法
JP2015088649A (ja) チップ支持基板の配線部裏面に放熱器設置の面領域を設定する方法およびチップ支持基板並びにチップ実装構造体
JP2007049015A (ja) 電子機器構造と、電子機器構造が用いられた電子機器
TWM486933U (zh) 電子基板散熱結構
CN201709079U (zh) 屏蔽散热结构
CN102510657B (zh) 多层电路板及包括其的电子装置
CN203691739U (zh) 一种双层屏蔽罩及终端
CN107613641B (zh) Pcb板组件及具有其的移动终端
TWI619212B (zh) 用於半導體裝置之接合線式散熱結構
US10582613B2 (en) Printed circuit board and mobile device
TW201919465A (zh) 基板結構
CN203167516U (zh) 电子遮蔽盖的导电导热装置
CN207531165U (zh) 一种多层pcb板的散热结构
TWM491959U (zh) 光源裝置
TWI595827B (zh) 電子裝置
JP2021129059A (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833222

Country of ref document: EP

Kind code of ref document: A1