WO2018016477A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2018016477A1 WO2018016477A1 PCT/JP2017/025917 JP2017025917W WO2018016477A1 WO 2018016477 A1 WO2018016477 A1 WO 2018016477A1 JP 2017025917 W JP2017025917 W JP 2017025917W WO 2018016477 A1 WO2018016477 A1 WO 2018016477A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- circumferential main
- main groove
- lug
- inner circumferential
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0304—Asymmetric patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0302—Tread patterns directional pattern, i.e. with main rolling direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
- B60C11/0309—Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1236—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1272—Width of the sipe
- B60C11/1281—Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1307—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
- B60C11/1315—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls having variable inclination angles, e.g. warped groove walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1307—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
- B60C11/1323—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0346—Circumferential grooves with zigzag shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1204—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
- B60C2011/1209—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
Definitions
- the present invention relates to a pneumatic tire provided with a tread pattern.
- a conventional pneumatic tire As a conventional pneumatic tire, it has a plurality of circumferential main grooves extending in the tire circumferential direction and a land portion formed between two circumferential main grooves adjacent in the tire width direction, There is known one in which a plurality of lug grooves or sipes communicating with the circumferential main grooves on both sides of the land portion are provided in the tire circumferential direction (see Patent Document 1). In the tire of Patent Document 1, it is said that noise can be reduced while maintaining wet performance.
- An object of the present invention is to provide a pneumatic tire excellent in wet performance during traveling.
- One aspect of the present invention is a pneumatic tire having a tread pattern
- the tread pattern is An inner circumferential main groove having a groove wall extending in the tire circumferential direction while varying the angle with respect to the tread with a predetermined amplitude;
- An outer circumferential main groove having a groove wall extending in the tire circumferential direction while changing an angle with respect to the tread surface with a predetermined amplitude on one side in the tire width direction from the inner circumferential main groove;
- An inner lug groove extending from the inner circumferential main groove toward the outer circumferential main groove partway in the region of the land portion between the inner circumferential main groove and the outer circumferential main groove;
- An outer lug groove extending from the outer circumferential main groove toward the middle of the land portion between the inner circumferential main groove and the outer circumferential main groove toward the inner circumferential main groove;
- a sipe that communicates the end of the inner lug groove on the outer circumferential main groove side and the end of the outer lug
- the distance between the pair of ridge lines formed by the chamfered surface and the tread surface is preferably equal to the groove width of the inner lug groove and the groove width of the outer lug groove.
- the center position in the width direction of the sipe may coincide with the center position in the groove width direction of the inner lug groove and the outer lug groove. preferable.
- the inner lug groove is formed by an angle formed between a groove wall of the inner circumferential main groove on the outer circumferential main groove side and the tread surface on the outer circumferential main groove side of the inner circumferential main groove. It extends from a position that is larger than the average of the maximum and minimum angles between the wall and the tread,
- the outer lug groove is formed on the inner circumferential main groove side of the outer circumferential main groove so that the angle formed by the groove wall on the inner circumferential main groove side of the outer circumferential main groove and the tread surface is the outer lug groove. It is preferable to extend from a position larger than the average value of the maximum value and the minimum value of the angle formed by the wall and the musical score.
- the inner lug groove is formed by an angle formed between a groove wall of the inner circumferential main groove on the outer circumferential main groove side and the tread surface on the outer circumferential main groove side of the inner circumferential main groove. Extending from a position smaller than the average of the maximum and minimum values of the angle between the wall and the tread, The outer lug groove is formed on the inner circumferential main groove side of the outer circumferential main groove so that the angle formed by the groove wall on the inner circumferential main groove side of the outer circumferential main groove and the tread surface is the outer lug groove. It is preferable to extend from a position smaller than the average value of the maximum value and the minimum value of the angle between the wall and the tread.
- the tread pattern is An inner circumferential main groove having a groove wall extending in the tire circumferential direction while varying the angle with respect to the tread with a predetermined amplitude;
- a first outer circumferential main groove having a groove wall extending in the tire circumferential direction while changing an angle with respect to the tread surface with a predetermined amplitude on the first side in the tire width direction from the inner circumferential main groove;
- a first inner lug groove extending from the inner circumferential main groove toward the first outer circumferential main groove partway in a land area between the inner circumferential main groove and the first outer circumferential main groove.
- a first outer lug groove that extends from the first outer circumferential main groove toward the middle of the land portion between the inner circumferential main groove and the first outer circumferential main groove toward the inner circumferential main groove.
- a first sipe that communicates an end of the first inner lug groove on the first outer circumferential main groove side and an end of the first outer lug groove on the inner circumferential main groove side;
- a second outer circumference having a groove wall extending in the tire circumferential direction while changing an angle with respect to the tread with a predetermined amplitude on a second side opposite to the first side in the tire width direction from the inner circumferential main groove.
- a second inner lug groove that extends from the inner circumferential main groove toward the second outer circumferential main groove partway in the land area between the inner circumferential main groove and the second outer circumferential main groove.
- a second outer lug groove extending from the second outer circumferential main groove toward the middle of the land area between the inner circumferential main groove and the second outer circumferential main groove toward the inner circumferential main groove.
- a second sipe that communicates an end of the second inner lug groove on the second outer circumferential main groove side and an end of the second outer lug groove on the inner circumferential main groove side;
- the pneumatic tire has a predetermined mounting direction to the vehicle, The pneumatic tire is mounted so that the first side is inside the vehicle, In the first inner lug groove, an angle formed between the groove wall on the first side of the inner circumferential main groove and the tread surface is formed by the groove wall on the first side of the inner circumferential main groove and the tread surface. Extending from a position that is greater than the average of the maximum and minimum angles, The first outer lug groove has an angle formed between the groove wall on the second side of the first outer circumferential main groove and the tread surface, and the groove wall on the second side of the first outer circumferential main groove It is preferable to extend from a position larger than the average value of the maximum value and the minimum value of the angle formed with the tread.
- the pneumatic tire has a predetermined mounting direction to the vehicle, The pneumatic tire is mounted so that the second side is outside the vehicle, In the second inner lug groove, an angle formed between the groove wall on the second side of the inner circumferential main groove and the tread surface is an angle between the groove wall on the second side of the inner circumferential main groove and the tread surface. Extending from a position smaller than the average of the maximum and minimum angles, The second outer lug groove has an angle formed between the groove wall on the first side of the second outer circumferential main groove and the tread surface and the groove wall on the first side of the second outer circumferential main groove. It is preferable to extend from a position smaller than the average value of the maximum value and the minimum value of the angle formed with the tread.
- the length of the first outer lug groove is LA and the length of the first inner lug groove is LB, it is preferable that 1.8 ⁇ LA / LB ⁇ 2.2.
- the distance between the pair of ridge lines formed by the first chamfered surface and the tread surface is preferably equal to the groove width of the first inner lug groove and the groove width of the first outer lug groove.
- the distance between the pair of ridge lines formed by the second chamfered surface and the tread surface is preferably equal to the groove width of the second inner lug groove and the groove width of the second outer lug groove.
- FIG. 2 is a developed plan view between ground contact ends of an example of a tread pattern of the tire shown in FIG. 1.
- FIG. 3 is a cross-sectional view taken along arrow III-III in FIG. 2.
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3.
- FIG. 5 is a cross-sectional view taken along line VV in FIG. 2.
- FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5.
- a pneumatic tire (hereinafter referred to as a tire) 1 is a tire for a passenger car.
- a well-known thing can be used for the structure and rubber member of the tire 1 of this embodiment.
- the tire 1 includes a tread portion 2, a sidewall 3, a bead 4, a carcass layer 5, and a belt layer 6.
- the tire 1 may have an inner liner layer or the like.
- the sidewall 3 and the bead 4 are disposed on both sides in the tire width direction so as to sandwich the tread portion 2 and form a pair.
- the tread portion 2, the bead 4, the belt layer 6, the inner liner layer, and the like known ones can be used.
- the tire 1 of the present embodiment has a tread pattern 10 that is characteristic of the present embodiment formed in the tread portion 2.
- FIG. 2 is a developed plan view between the ground ends of the tread pattern 10 of the tire 1 of the present embodiment.
- the tire 1 having the tread pattern 10 can be suitably used for a passenger car tire.
- the mounting direction of the tire to be mounted toward the outside of the vehicle is predetermined.
- the tire 1 is attached to the vehicle according to this indication because, for example, marks or letters indicating the vehicle outer side or the vehicle inner side are displayed on the surface of the sidewall 3 as information.
- reference sign CL indicates a tire equator line
- a region of the tread pattern 10 on the left side (first side) in FIG. 2 from the tire equator line CL indicates a half-tread region 11 a mounted on the vehicle inner side.
- a region of the tread pattern 10 on the right side (second side) of FIG. 2 from the tire equator line CL indicates a half-tread region 11b mounted on the vehicle outer side.
- a direction that is inside the vehicle when mounted on the vehicle is referred to as a vehicle inside
- a direction that is outside the vehicle is referred to as a vehicle outside.
- the tread pattern 10 contacts the road surface in a region indicated by a contact width 11w in a state where the tire 1 is mounted on the vehicle.
- the contact width 11w is the contact surface when the tire 1 is grounded on a horizontal plane under the condition that the tire 1 is assembled to a normal rim, filled with air with a normal internal pressure of 180 kPa, and 88% of the normal load is a load.
- the regular rim here refers to an “applied rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO.
- the normal internal pressure means “maximum air pressure” defined in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “INFLATION PRESSURES” defined in ETRTO. 180 kPa when the tire is for a passenger car.
- the normal load means “maximum load capacity” defined in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “LOAD CAPACITY” defined in ETRTO.
- the tire width direction W refers to the rotation center axis direction of the tire 1
- the tire circumferential direction R refers to the rotation direction of the tread surface when the tire 1 is rotated about the tire rotation center axis.
- FIG. 2 shows these directions.
- the tread pattern 10 includes a corrugated circumferential main groove group, a lug groove / sipe combination group, shoulder lug grooves 41 and 43, and the like.
- the corrugated circumferential main groove group includes an inner circumferential main groove 13, an outer circumferential main groove 15 (first outer circumferential main groove), and an outer circumferential main groove 17 (second outer circumferential main groove). .
- the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 each extend annularly in the tire circumferential direction.
- the inner circumferential main groove 13 is provided along the tire equator line CL, and is shared by both the half tread regions 11a and 11b.
- the outer circumferential main groove 15 is located away from the inner circumferential main groove 13 on the vehicle inner side in the tire width direction.
- the outer circumferential main groove 17 is located away from the vehicle outer side with respect to the inner circumferential main groove 13 in the tire width direction.
- Each of the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 has two groove walls, and two edges extending in the tire circumferential direction by intersecting the two groove walls and the tread surface. Are formed respectively.
- the vehicle inner edge of the inner circumferential main groove 13 is 13A
- the vehicle outer edge is 13B
- the vehicle inner edge of the outer circumferential main groove 15 is 15A
- the vehicle outer edge is 15B
- the outer circumferential main groove 17 is.
- the vehicle inner edge is 17A and the vehicle outer edge is 17B.
- the positions in the tire width direction of the edges 13A, 13B, 15A, 15B, 17A, and 17B vary with a predetermined amplitude according to the positions in the tire circumferential direction, and the edges 13A, 13B, 15A, 15B, 17A, and 17B are In the tire circumferential direction, it extends in a wave shape. For this reason, the length of the edges 13A, 13B, 15A, 15B, 17A, and 17B is longer than that of the circumferential main groove having a straight shape extending linearly in the tire circumferential direction, and the wet performance is improved by increasing the edges. .
- the inner circumferential main groove 13 and the outer circumferential main grooves 15, 17 all have a constant tire width direction groove width 13w, 15w, 17w.
- the groove width 13w is an interval between the edges 13A and 13B in the tire width direction
- the groove width 15w is an interval between the edges 15A and 15B in the tire width direction
- the groove width 17w is an interval between the edges 17A and 17B in the tire width direction. It is an interval.
- the groove widths 13w, 15w, and 17w may be equal to or different from each other.
- the total sum of the groove widths 13w, 15w, and 17w is preferably 20 to 35% of the ground contact width 11w.
- the sum total of the groove widths 13w, 15w, and 17w is 20% or more of the ground contact width 11w, sufficient drainage performance is obtained, and wet performance is improved.
- the total sum of the groove widths 13w, 15w, and 17w is 35% or less of the ground contact width 11w, the width of the land portion between the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 is reduced. The rigidity of the land portion can be ensured within an appropriate range.
- the inner circumferential main groove 13 and the outer circumferential main grooves 15, 17 are grooves recessed inward in the tire radial direction from the tread surface of the tread portion 2, and have bottom portions 13b, 15b, 17b, respectively.
- the bottom portions 13b, 15b, and 17b have constant widths that are narrower than the groove widths 13w, 15w, and 17w, respectively, in the tire width direction.
- the width of the bottom portion 13b is a distance in the tire width direction between a pair of trough lines formed by a pair of groove walls of the inner circumferential main groove 13 and a bottom surface of the inner circumferential main groove 13 intersecting each other. is there.
- the width of the bottom portion 15b is an interval in the tire width direction between a pair of valley lines formed by the pair of groove walls of the outer circumferential main groove 15 and the bottom surface of the outer circumferential main groove 15 intersecting each other.
- the width of the bottom portion 17b is an interval in the tire width direction between a pair of valley lines formed by the pair of groove walls of the outer circumferential main groove 17 and the bottom surface of the outer circumferential main groove 17 intersecting each other.
- the bottom 13b of the vehicle inner valley is 13C
- the vehicle inner valley of the bottom 15b is 15C
- the vehicle outer valley of 15D the vehicle inner valley of the bottom 17b
- the vehicle The outer valley line is 17D.
- the valley lines 13C, 13D, 15C, 15D, 17C, and 17D extend in a wavy shape in the tire circumferential direction by changing the position in the tire width direction with a predetermined amplitude according to the position in the tire circumferential direction. It should be noted that the waveform wavelengths of the valley lines 13C, 13D, 15C, 15D, 17C, and 17D are shorter than the waveform wavelengths of the edges 13A, 13B, 15A, 15B, 17A, and 17B.
- the groove walls of the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 include a rotation center axis and are cut along a plane along the tire radial direction perpendicular to the tire width direction W and the tire circumferential direction R.
- the groove cross-sectional shapes of the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 are inclined in a straight line or curved shape, and the inclination of the groove wall is the same in the groove depth direction. It is formed so as to vary with a predetermined amplitude according to the position in the direction.
- the groove walls of the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 are intersecting lines formed by this groove wall and a plane that contacts the tread surface at the edges 13A, 13B, 15A, 15B, 17A, and 17B. However, it is formed to have a wave shape that varies with a predetermined amplitude in the tire width direction according to the position in the tire circumferential direction.
- the groove walls of the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 may be formed so that the wave-shaped wavelength becomes shorter from the tread surface toward the inner side in the tire radial direction. For this reason, the total length of the edge becomes longer as the wear of the tire 1 progresses, and the edge effect increases as the wear of the tire 1 progresses. Thereby, the fall of the wet performance at the time of wear can be suppressed.
- the wavelengths and amplitudes of the wave shapes of the edges 13A, 13B, 15A, 15B, 17A, and 17B may be the same or different.
- the waveform wavelengths at the edges 13A, 13B, 15A, 15B, 17A, and 17B are equal to each other, it is preferable that there is no difference in the phase of the waveform at the same position in the tire circumferential direction, but there may be a difference in phase. .
- the width of the inner land portion between the circumferential main groove 15 and the inner land portion between the inner circumferential main groove 13 and the outer circumferential main groove 17 can be made constant regardless of the position in the tire circumferential direction. . For this reason, uneven wear can be suppressed.
- the wavelength and amplitude of the wave shapes of the valley lines 13C, 13D, 15C, 15D, 17C, and 17D may be the same or different. If the wavy wavelengths of the edges 13A, 13B, 15A, 15B, 17A, and 17B are equal to each other, and the wavy wavelengths of the valley lines 13C, 13D, 15C, 15D, 17C, and 17D are equal to each other, tire wear may occur.
- the phases of the edges of the inner circumferential main groove 13 and the outer circumferential main grooves 15 and 17 when traveling can be made uniform.
- the wavelengths of the valley lines 13C, 13D, 15C, 15D, 17C, and 17D are half the wavelengths of the edges 13A, 13B, 15A, 15B, 17A, and 17B, respectively.
- the wavelength may be smaller or longer than / 2.
- only one of the circumferential main grooves in the corrugated circumferential main groove group may have a trough having a wavelength shorter than the wavelength of the edge.
- any of the circumferential main grooves in the corrugated circumferential main groove group may have a trough line having a wavelength equal to the wavelength of the edge or longer than the wavelength of the edge.
- the edges 13A, 13B, 15A, 15B, 17A, and 17B may be chamfered from the viewpoint of increasing the contact pressure and improving the wet performance.
- the groove width is the distance in the tire width direction between two intersecting lines between two extended surfaces obtained by extending two groove walls of the circumferential main groove outward in the tire radial direction and the tread surface. is there.
- the lug groove / sipe combination group includes a plurality of lug grooves / sipe combination bodies 20 provided between the inner circumferential main groove 13 and the outer circumferential main groove 15 at intervals in the tire circumferential direction, And a plurality of lug groove / sipe combination bodies 30 provided between the inner circumferential main groove 13 and the outer circumferential main groove 17 at intervals in the direction.
- the plurality of lug groove / sipe combination bodies 20 are provided so as to connect the groove wall on the vehicle inner side of the inner circumferential main groove 13 and the groove wall on the vehicle outer side of the outer circumferential main groove 15.
- Each lug groove / sipe combination 20 includes a lug groove 21 (first outer lug groove) at both ends, a lug groove 23 (first inner lug groove), and a central sipe 25 (first sipe).
- the lug groove means a groove having a groove width of 1.5 mm or more and a groove depth of 5 mm or more. Further, in the present embodiment, the sipe means a width less than 1.5 mm.
- the lug groove 21 extends from the outer groove wall of the outer circumferential main groove 15 toward the vehicle outer side.
- the lug groove 21 extends from the position where the angle ⁇ 1 (see FIG. 3) between the groove wall on the vehicle outer side of the outer circumferential main groove 15 and the tread surface is larger than the average of the maximum value and the minimum value of the angle ⁇ 1 to the vehicle outer side. It is preferable that it extends toward.
- the angle ⁇ 1 extends from the position where the angle ⁇ 1 becomes the maximum value toward the outside of the vehicle. That is, as shown in FIG. 2, it is preferable that the edge 15B and the valley line 15D extend from the position where the distance in the tire width direction is the widest toward the outside of the vehicle.
- the angle formed by the groove wall and the tread surface is an angle formed by the groove wall in the tire radial direction cross section and a plane in contact with the tread surface at the edge.
- FIG. 3 shows an example in which the angle ⁇ 1 formed by the groove wall on the vehicle outer side of the outer circumferential main groove 15 and the tread surface is the maximum.
- the minimum value of the angle ⁇ 1 is equal to the angle ⁇ 4 in FIG.
- the lug groove 23 extends from the groove wall on the vehicle inner side of the inner circumferential main groove 13 toward the vehicle inner side.
- the lug groove 23 extends from the position where the angle ⁇ 2 (see FIG. 3) formed by the groove wall on the vehicle inner side of the inner circumferential main groove 13 and the tread surface is larger than the average of the maximum value and the minimum value of the angle ⁇ 2 toward the inside of the vehicle. It is preferable to extend. In particular, it preferably extends from the position where the angle ⁇ 2 is maximized toward the inside of the vehicle. That is, as shown in FIG. 2, it is preferable that the edge 13A and the valley line 13C extend toward the vehicle inner side from the position where the distance in the tire width direction is the largest.
- FIG. 3 shows an example in which the angle ⁇ 2 formed by the vehicle inner side groove wall of the inner circumferential main groove 13 and the tread is the maximum. According to one embodiment, the minimum value of the angle ⁇ 2 is equal to the angle ⁇ 3 in FIG.
- FIG. 3 is a cross-sectional view taken along arrow III-III in FIG.
- the sipe 25 is provided between the end of the lug groove 21 outside the vehicle and the end of the lug groove 23 inside the vehicle, and connects the lug groove 21 and the lug groove 23.
- the lug groove 21 is shallower than the outer circumferential main groove 15, and the sipe 25 is shallower than the lug groove 21.
- the lug groove 23 is shallower than the inner circumferential main groove 13, and the sipe 25 is shallower than the lug groove 23.
- the sipe 25 is chamfered at a portion connecting each of the pair of sipe walls of the sipe 25 and the tread surface, and an inclined surface 25a in which a space between the sipe walls is widened toward the tread surface. 25b is formed.
- water flows between the lug groove 21 and the lug groove 23 through the gap surrounded by the road surface and the inclined surfaces 25a and 25b in a state where the tread is in contact with the road surface. enable. For this reason, drainage between the inner circumferential main groove 13 and the outer circumferential main groove 15 becomes possible.
- the length of the sipe 25 is preferably 53 to 58% of the lug groove / sipe combination 20.
- the length of the sipe 25 is less than 53%, the effect of drainage performance by the chamfered sipe 25 cannot be sufficiently exhibited.
- the length of the sipe 25 exceeds 58%, the rigidity of the land portion between the inner circumferential main groove 13 and the outer circumferential main groove 15 cannot be maintained in an appropriate range.
- the distance between the edge 25A between the inclined surface 25a and the tread surface and the edge 25B between the inclined surface 25b and the tread surface is preferably equal to the groove width of the lug groove 21 and the groove width of the lug groove 23.
- the center position between the sipe walls of the sipe 25 (the center position in the width direction) preferably coincides with the center position of the lug grooves 21 and 23 in the groove width direction. . Thereby, water becomes easy to flow and drainage nature becomes good.
- the inclined surfaces 25a and 25b are preferably provided between the position where the depth of the groove wall of the sipe 25 from the tread surface is 0.5 to 3.0 mm and the tread surface. Since the inclined surfaces 25a and 25b are provided from a position having a depth of 0.5 mm or more, the drainage can be improved and the wet performance can be improved while sufficiently increasing the ground pressure. On the other hand, by providing the inclined surfaces 25a and 25b within a depth of 3.0 mm or less from the tread surface, the rigidity of the land portion between the inner circumferential main groove 13 and the outer circumferential main groove 15 is ensured and wet performance is achieved. Can be improved.
- the lug groove 21 extends toward the vehicle outer side from the position where the angle formed by the groove wall on the vehicle outer side of the outer circumferential main groove 15 and the tread surface is maximized, and the lug groove 23 is the vehicle of the inner circumferential main groove 13.
- the drainage performance of the inner circumferential main groove 13 and the outer circumferential main groove 15 can be enhanced by extending toward the vehicle inner side from the position where the angle formed between the inner groove wall and the tread surface is maximized. That is, at the above position, the inclination of the groove wall with respect to the groove bottom becomes gentle, the groove cross-sectional areas of the inner circumferential main groove 13 and the outer circumferential main groove 15 are minimized at this portion, and the drainage performance along the groove wall is deteriorated. Therefore, by providing the lug groove in this portion, drainage can be promoted from the circumferential main groove to the lug groove. In particular, by increasing the drainage performance inside the vehicle, wet performance, for example, wet maneuverability can be enhanced.
- the plurality of lug grooves / sipe combination bodies 30 are provided so as to connect the groove wall on the vehicle outer side of the inner circumferential main groove 13 and the groove wall on the vehicle inner side of the outer circumferential main groove 17.
- Each lug groove / sipe combination 30 includes a lug groove 31 (second inner lug groove) at both ends, a lug groove 33 (second outer lug groove), and a central sipe 35 (second sipe).
- the lug groove 31 extends from the groove wall on the vehicle outer side of the inner circumferential main groove 13 toward the vehicle outer side.
- the lug groove 31 is directed from the position where the angle ⁇ 3 (see FIG. 5) formed by the groove wall on the vehicle outer side of the inner circumferential main groove 13 and the tread surface is smaller than the average of the maximum value and the minimum value of the angle ⁇ 3 toward the inside of the vehicle. It is preferable to extend.
- the angle ⁇ 3 extends from the position where the angle ⁇ 3 is minimized toward the outside of the vehicle. That is, as shown in FIG. 2, it is preferable to extend toward the vehicle outer side from the position where the distance between the edge 13B and the valley line 13D in the tire width direction is the narrowest.
- the lug groove 33 extends from the groove wall on the vehicle inner side of the outer circumferential main groove 17 toward the vehicle inner side.
- the lug groove 33 extends from the position where the angle ⁇ 4 (see FIG. 5) formed by the groove wall on the vehicle inner side of the outer circumferential main groove 17 and the tread surface is smaller than the average of the maximum value and the minimum value of the angle ⁇ 4 toward the inside of the vehicle. It is preferable to extend.
- the angle ⁇ 4 extends from the position where the angle ⁇ 4 is minimized toward the inside of the vehicle. That is, as shown in FIG. 2, it is preferable to extend toward the vehicle inner side from the position where the distance between the edge 17A and the valley line 17C in the tire width direction is the narrowest.
- FIG. 5 shows an example in which the angle ⁇ 4 formed by the groove wall on the vehicle inner side of the outer circumferential main groove 17 and the tread is the minimum angle.
- the maximum value of ⁇ 4 is equal to ⁇ 1 shown in FIG.
- LC> LD More preferably, it is preferable that 1.03 ⁇ LC / LD ⁇ 1.2. When 1.03 ⁇ LC / LD, sufficient wet performance can be exhibited. On the other hand, when LC / LD ⁇ 1.2, the wear resistance can be improved.
- FIG. 5 is a cross-sectional view taken along line VV in FIG.
- the sipe 35 is provided between the end of the lug groove 31 on the vehicle inner side and the end of the lug groove 33 on the outer side of the vehicle, and connects the lug groove 31 and the lug groove 33.
- the lug groove 31 is shallower than the inner circumferential main groove 13
- the sipe 35 is shallower than the lug groove 31.
- the lug groove 33 is shallower than the outer circumferential main groove 17, and the sipe 35 is shallower than the lug groove 33.
- FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
- the sipe 35 is chamfered at a portion connecting each of the pair of sipe walls of the sipe 35 and the tread surface, and an inclined surface 35a in which an interval between the sipe walls is widened toward the tread surface. 35b is formed.
- water flows between the lug groove 31 and the lug groove 33 through the gap surrounded by the road surface and the inclined surfaces 35a and 35b in a state where the tread is in contact with the road surface. enable. For this reason, drainage between the inner circumferential main groove 13 and the outer circumferential main groove 17 becomes possible.
- the length of the sipe 35 is preferably 48 to 53% of the lug groove / sipe combination 30. If the length of the sipe 35 is less than 48%, the effect of drainage performance by the chamfered sipe 35 cannot be sufficiently exhibited. On the other hand, if the length of the sipe 35 exceeds 53%, the rigidity of the land portion between the inner circumferential main groove 13 and the outer circumferential main groove 17 cannot be maintained in an appropriate range.
- the distance between the edge 35A between the inclined surface 35a and the tread surface and the edge 35B between the inclined surface 35b and the tread surface is preferably equal to the groove width of the lug groove 31 and the groove width of the lug groove 33.
- the center position of the sipe 35 in the groove width direction preferably coincides with the center position of the lug grooves 31 and 33 in the groove width direction.
- the inclined surfaces 35a and 35b are preferably provided from a position where the depth from the tread surface of the groove wall of the sipe 35 is 0.5 to 3.0 mm. Since the inclined surfaces 35a and 35b are provided from a position having a depth of 0.5 mm or more, the drainage can be improved and the wet performance can be improved while sufficiently increasing the ground pressure. On the other hand, by providing the inclined surfaces 35a and 35b within a depth of 3.0 mm or less from the tread surface, the rigidity of the land portion between the inner circumferential main groove 13 and the outer circumferential main groove 17 is secured, and the wet performance. Can be improved.
- the lug groove 31 extends toward the vehicle outer side from the position where the angle formed by the groove wall on the vehicle outer side of the inner circumferential main groove 13 and the tread surface is minimized, and the lug groove 33 is a vehicle of the outer circumferential main groove 17.
- the inner circumferential wall 13, the outer circumferential main groove 17, and the lug groove / sipe combination 30 are enclosed by extending toward the vehicle inner side from the position where the angle formed between the inner groove wall and the tread surface is minimized. It is possible to increase the rigidity of the land portion. That is, the portion along the groove wall of the land portion between the inner circumferential main groove 13 and the outer circumferential main groove 17 has a higher land portion rigidity as the angle between the groove wall and the tread surface increases.
- connection portion of the lug groove / sipe combination 30 is provided in a portion where the angle between the groove wall and the tread is smaller, and the lug groove / sipe combination 30 is connected to the portion where the angle between the groove wall and the tread is large and the rigidity is high. Since no portion is provided, a portion having a large angle between the groove wall and the tread and a high rigidity can be a land portion without a lug groove. In particular, since the rigidity of the land portion can be increased on the outside of the vehicle that is prone to uneven wear, it is preferable to provide the connection portion of the lug groove / sipe combination 30 at a portion where the angle formed by the groove wall and the tread surface is smaller.
- a shoulder lug groove 41 may be provided on the vehicle inner side than the outer circumferential main groove 15. It is preferable that the shoulder lug groove 41 does not communicate with the outer circumferential main groove 15. Further, as shown in FIG. 2, a shoulder lug groove 43 may be further provided on the vehicle outer side than the outer circumferential main groove 17. It is preferable that the shoulder lug groove 43 does not communicate with the outer circumferential main groove 17. Thereby, the flow of air from the outer circumferential main groove 15 to the shoulder lug groove 41 and the flow of air from the outer circumferential main groove 17 to the shoulder lug groove 43 can be prevented, and the noise performance can be improved.
- Example 10 In order to examine the effect of the tread pattern 10 of the tire 1 of the present embodiment, a tire was manufactured as a prototype. The tire size was 195 / 65R15. The tire was provided with a tread pattern having the specifications shown in Tables 1A and B below with a rim of 15 ⁇ 6.0 J. The vehicle used to examine the tire performance was an FF vehicle with an engine displacement of 2 liters. The internal pressure condition was 230 (kPa) for both the front and rear wheels. Waveform wavelengths and amplitudes of the inner circumferential main groove and the two outer circumferential main grooves were the same, and the phases were aligned.
- Comparative Example 1 the inner lug groove corresponding to the lug groove 23 and the lug groove 31 is provided, but the inner lug groove and the outer circumferential direction are provided via the sipe without providing the outer lug groove corresponding to the lug groove 21 and the lug groove 33.
- the main groove was connected. Sipe was chamfered.
- Comparative Example 2 the inner lug groove and the outer lug groove were provided, but no chamfered surface was provided on the sipe connecting the inner lug groove and the outer lug groove.
- both the inner lug grooves (the lug grooves 23 and the lug grooves 31) and the outer lug grooves (the lug grooves 21 and the lug grooves 33) are provided, and the sipe that connects the inner lug grooves and the outer lug grooves.
- a chamfered surface was provided.
- Tables 1A and B show the sizes of ⁇ 1 and ⁇ 2 with respect to the average (large / small with respect to the average), the sizes with respect to the average of ⁇ 3 and ⁇ 4 (large / small with respect to the average), LA / LB, and LC / LD. It was as follows. In Comparative Example 1 and Examples 1 to 10, the distance between the pair of edges formed by the chamfered surface (inclined surface) of the sipe and the tread surface was made equal to the groove width of the lug groove.
- wet performance and wear resistance performance were evaluated as follows.
- a braking distance from 100 km / h was measured on a wet road surface having a water depth of 1 mm at an outdoor tire test site.
- the reciprocal of the measured value of the tire of Comparative Example 1 was set to 100, and the reciprocal of the measured value of the other examples was indexed to evaluate the wet performance.
- a larger index value means better wet performance.
- the abrasion resistance was measured by measuring the distance traveled until the wear indicator provided in the circumferential main groove was exposed.
- the running distance of the tire of Comparative Example 1 was set to 100, and the running distances of other examples were indexed to evaluate the wear resistance. The larger the index value, the better the wear resistance performance.
- the evaluation results are shown in Tables 1A and 1B.
- wet performance is enhanced by providing the inner lug groove and the outer lug groove inside the vehicle at positions where angle ⁇ 1 and angle ⁇ 2 are larger than the average of angle ⁇ 1 and angle ⁇ 2. I understand that.
- Example 2 and Example 3 wear resistance performance is provided by providing the inner lug groove and the outer lug groove outside the vehicle at positions where the angle ⁇ 3 and the angle ⁇ 4 are smaller than the average of the angles ⁇ 3 and ⁇ 4. It turns out that becomes high. Comparing Examples 3 to 7, it can be seen that when LA / LB is 1.8 or more, the wet performance is excellent. On the other hand, when LA / LB is 2.2 or less, it can be seen that the wear resistance is excellent. Comparing Examples 5 and 8 to 10, it can be seen that when LC / LD is 1.1 or more, the wet performance is excellent. On the other hand, when the LC / LD is 1.2 or less, it can be seen that the wear resistance is excellent.
- the tread pattern of the above-described embodiment includes an inner circumferential main groove 13, an outer circumferential main groove 15, an outer circumferential main groove 17, and a sipe combination in both half tread regions 11 a and 11 b. 20 and 30, but the tread pattern of one embodiment includes one of the outer circumferential main groove 15 and the outer circumferential main groove 17 and one of the sipe combination bodies 20 and 30 in any one half-tread region. It can also be a tread pattern. Since the sipe combination bodies 20 and 30 have a sipe having a chamfered inclined surface, they have a drainage function and can exhibit an edge effect as a sipe. Furthermore, since the rigidity of the land part provided with the sipe combination bodies 20 and 30 is higher than the rigidity of the land part provided with the chamfer without chamfering, uneven wear can be suppressed.
- the distance between the pair of ridge lines formed by the chamfered surface of the sipe and the tread surface is equal to the groove width of the inner lug groove and the groove width of the outer lug groove.
- the center position of the sipe in the width direction of the sipe is the same as the center position of the inner lug groove and the outer lug groove in the groove width direction. It is preferable to improve drainage.
- the inner lug groove has an angle formed between the groove wall on the outer circumferential main groove side and the tread surface of the inner circumferential main groove, and the groove wall and tread surface on the outer circumferential main groove side of the inner circumferential main groove.
- the outer lug groove extends from a position larger than the average value of the maximum and minimum angles, and the angle between the groove wall on the inner circumferential main groove side of the outer circumferential main groove and the tread surface is the outer circumferential groove.
- the inner circumferential main groove or the outer circumferential direction Since drainage can be promoted from the main groove to the outer lug groove or the inner lug groove, wet performance can be enhanced.
- the inner lug groove has an angle formed between the groove wall on the outer circumferential main groove side and the tread surface of the inner circumferential main groove, and the groove wall and tread surface on the outer circumferential main groove side of the inner circumferential main groove.
- the outer lug groove extends from a position smaller than the average value of the maximum and minimum angles, and the angle between the groove wall of the outer circumferential main groove on the inner circumferential main groove side and the tread surface is the outer circumferential groove.
- the inner circumferential main The connecting portion of the inner lug groove and the outer lug groove is not provided at a position where the rigidity of the land portion is higher than the average value of the maximum value and the minimum value of the angle between the groove wall on the groove side and the tread surface. A decrease in rigidity of the land portion can be suppressed and wear can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
空気入りタイヤのトレッドパターンは、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝および外側周方向主溝と、内側周方向主溝から外側周方向主溝に向かって延びる内側ラグ溝と、外側周方向主溝から内側周方向主溝に向かって延びる外側ラグ溝と、内側ラグ溝と外側ラグ溝とを連通させるサイプと、を備え、踏面上のサイプの延びる方向に沿ってサイプの壁に1対の面取り面が設けられている。
Description
本発明は、トレッドパターンが設けられた空気入りタイヤに関する。
従来の空気入りタイヤとして、タイヤ周方向に延びる複数の周方向主溝と、タイヤ幅方向に隣接する2本の周方向主溝の間に形成された陸部とを備え、陸部の領域に、陸部の両側の周方向主溝と連通するラグ溝又はサイプがタイヤ周方向にわたって複数設けられたものが知られている(特許文献1参照)。特許文献1のタイヤでは、ウェット性能を維持しつつ騒音を低減することができる、とされている。
しかし、特許文献1のタイヤでは、周方向主溝の幅がタイヤ周方向の位置によって変動するため、タイヤ周方向の位置によって排水性能が変動し、全体としてウェット性能が悪くなるおそれがある。
本発明は、走行時のウェット性能に優れた空気入りタイヤを提供することを目的とする。
本発明の一態様は、トレッドパターンを有する空気入りタイヤであって、
前記トレッドパターンは、
踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝と、
前記内側周方向主溝よりもタイヤ幅方向の一方の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する外側周方向主溝と、
前記内側周方向主溝から前記外側周方向主溝に向かって前記内側周方向主溝と前記外側周方向主溝との間の陸部の領域の途中まで延びる内側ラグ溝と、
前記外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記外側周方向主溝との間の陸部の領域の途中まで延びる外側ラグ溝と、
前記内側ラグ溝の前記外側周方向主溝側の端部と前記外側ラグ溝の前記内側周方向主溝側の端部とを連通させるサイプと、を備え、
前記踏面上の前記サイプの延びる方向に沿って前記サイプの壁に1対の面取り面が設けられることにより、前記サイプの幅がトレッド表面に向かって広がっている、ことを特徴とする。
前記トレッドパターンは、
踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝と、
前記内側周方向主溝よりもタイヤ幅方向の一方の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する外側周方向主溝と、
前記内側周方向主溝から前記外側周方向主溝に向かって前記内側周方向主溝と前記外側周方向主溝との間の陸部の領域の途中まで延びる内側ラグ溝と、
前記外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記外側周方向主溝との間の陸部の領域の途中まで延びる外側ラグ溝と、
前記内側ラグ溝の前記外側周方向主溝側の端部と前記外側ラグ溝の前記内側周方向主溝側の端部とを連通させるサイプと、を備え、
前記踏面上の前記サイプの延びる方向に沿って前記サイプの壁に1対の面取り面が設けられることにより、前記サイプの幅がトレッド表面に向かって広がっている、ことを特徴とする。
前記面取り面と踏面とのなす1対の稜線の間の間隔は、前記内側ラグ溝の溝幅および前記外側ラグ溝の溝幅と等しいことが好ましい。
前記サイプの、前記内側ラグ溝及び前記外側ラグ溝との接続部において、前記サイプの幅方向の中心位置は、前記内側ラグ溝及び前記外側ラグ溝の溝幅方向の中心位置と一致することが好ましい。
前記内側ラグ溝は、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、
前記外側ラグ溝は、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度が、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記譜面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びていることが好ましい。
前記外側ラグ溝は、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度が、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記譜面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びていることが好ましい。
前記内側ラグ溝は、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、
前記外側ラグ溝は、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度が、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びていることが好ましい。
前記外側ラグ溝は、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度が、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びていることが好ましい。
本発明の他の一態様は、トレッドパターンを有する空気入りタイヤであって、
前記トレッドパターンは、
踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝と、
前記内側周方向主溝よりもタイヤ幅方向の第1の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する第1外側周方向主溝と、
前記内側周方向主溝から前記第1外側周方向主溝に向かって前記内側周方向主溝と前記第1外側周方向主溝との間の陸部の領域の途中まで延びる第1内側ラグ溝と、
前記第1外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記第1外側周方向主溝との間の陸部の領域の途中まで延びる第1外側ラグ溝と、
前記第1内側ラグ溝の前記第1外側周方向主溝側の端部と前記第1外側ラグ溝の前記内側周方向主溝側の端部とを連通させる第1サイプと、
前記内側周方向主溝よりもタイヤ幅方向の第1の側と反対側の第2の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する第2外側周方向主溝と、
前記内側周方向主溝から前記第2外側周方向主溝に向かって前記内側周方向主溝と前記第2外側周方向主溝との間の陸部の領域の途中まで延びる第2内側ラグ溝と、
前記第2外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記第2外側周方向主溝との間の陸部の領域の途中まで延びる第2外側ラグ溝と、
前記第2内側ラグ溝の前記第2外側周方向主溝側の端部と前記第2外側ラグ溝の前記内側周方向主溝側の端部とを連通させる第2サイプと、
を備え、
前記踏面上の前記第1サイプの延びる方向に沿って前記第1サイプの壁に1対の第1面取り面が設けられることにより、前記第1サイプの幅がトレッド表面に向かって広がっており、
前記踏面上の前記第2サイプの延びる方向に沿って前記第2サイプの壁に1対の第2面取り面が設けられることにより、前記第2サイプの幅がトレッド表面に向かって広がっている、ことを特徴とする。
前記トレッドパターンは、
踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝と、
前記内側周方向主溝よりもタイヤ幅方向の第1の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する第1外側周方向主溝と、
前記内側周方向主溝から前記第1外側周方向主溝に向かって前記内側周方向主溝と前記第1外側周方向主溝との間の陸部の領域の途中まで延びる第1内側ラグ溝と、
前記第1外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記第1外側周方向主溝との間の陸部の領域の途中まで延びる第1外側ラグ溝と、
前記第1内側ラグ溝の前記第1外側周方向主溝側の端部と前記第1外側ラグ溝の前記内側周方向主溝側の端部とを連通させる第1サイプと、
前記内側周方向主溝よりもタイヤ幅方向の第1の側と反対側の第2の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する第2外側周方向主溝と、
前記内側周方向主溝から前記第2外側周方向主溝に向かって前記内側周方向主溝と前記第2外側周方向主溝との間の陸部の領域の途中まで延びる第2内側ラグ溝と、
前記第2外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記第2外側周方向主溝との間の陸部の領域の途中まで延びる第2外側ラグ溝と、
前記第2内側ラグ溝の前記第2外側周方向主溝側の端部と前記第2外側ラグ溝の前記内側周方向主溝側の端部とを連通させる第2サイプと、
を備え、
前記踏面上の前記第1サイプの延びる方向に沿って前記第1サイプの壁に1対の第1面取り面が設けられることにより、前記第1サイプの幅がトレッド表面に向かって広がっており、
前記踏面上の前記第2サイプの延びる方向に沿って前記第2サイプの壁に1対の第2面取り面が設けられることにより、前記第2サイプの幅がトレッド表面に向かって広がっている、ことを特徴とする。
前記空気入りタイヤは、車両への装着向きが予め定められており、
前記第1の側は、前記車両内側になるように前記空気入りタイヤは装着され、
前記第1内側ラグ溝は、前記内側周方向主溝の第1の側の溝壁と踏面とのなす角度が、前記内側周方向主溝の第1の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、
前記第1外側ラグ溝は、前記第1外側周方向主溝の第2の側の溝壁と踏面とのなす角度が、前記第1外側周方向主溝の第2の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びていることが好ましい。
前記第1の側は、前記車両内側になるように前記空気入りタイヤは装着され、
前記第1内側ラグ溝は、前記内側周方向主溝の第1の側の溝壁と踏面とのなす角度が、前記内側周方向主溝の第1の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、
前記第1外側ラグ溝は、前記第1外側周方向主溝の第2の側の溝壁と踏面とのなす角度が、前記第1外側周方向主溝の第2の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びていることが好ましい。
前記空気入りタイヤは、車両への装着向きが予め定められており、
前記第2の側は、前記車両外側になるように前記空気入りタイヤは装着され、
前記第2内側ラグ溝は、前記内側周方向主溝の第2の側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の第2の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、
前記第2外側ラグ溝は、前記第2外側周方向主溝の第1の側の溝壁と前記踏面とのなす角度が、前記第2外側周方向主溝の第1の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びていることが好ましい。
前記第2の側は、前記車両外側になるように前記空気入りタイヤは装着され、
前記第2内側ラグ溝は、前記内側周方向主溝の第2の側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の第2の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、
前記第2外側ラグ溝は、前記第2外側周方向主溝の第1の側の溝壁と前記踏面とのなす角度が、前記第2外側周方向主溝の第1の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びていることが好ましい。
前記第1外側ラグ溝の長さをLA、前記第1内側ラグ溝の長さをLBとしたとき、1.8≦LA/LB≦2.2であることが好ましい。
前記第2内側ラグ溝の長さをLC、前記第2外側ラグ溝の長さをLDとしたとき、1.0<LC/LD≦1.2であることが好ましい。
前記第1面取り面と踏面とのなす1対の稜線の間の間隔は、前記第1内側ラグ溝の溝幅および前記第1外側ラグ溝の溝幅と等しいことが好ましい。
前記第2面取り面と踏面とのなす1対の稜線の間の間隔は、前記第2内側ラグ溝の溝幅および前記第2外側ラグ溝の溝幅と等しいことが好ましい。
本発明によれば、ウェット性能に優れた空気入りタイヤが得られる。
以下、本発明の実施形態にかかる空気入りタイヤを詳細に説明する。
図1に、本実施形態の空気入りタイヤ1の断面図を示す。
空気入りタイヤ(以下、タイヤという)1は、乗用車用タイヤである。
本実施形態のタイヤ1の構造及びゴム部材は、公知のものを用いることができる。
図1に、本実施形態の空気入りタイヤ1の断面図を示す。
空気入りタイヤ(以下、タイヤという)1は、乗用車用タイヤである。
本実施形態のタイヤ1の構造及びゴム部材は、公知のものを用いることができる。
タイヤ1は、図1に示すように、トレッド部2と、サイドウォール3と、ビード4と、カーカス層5と、ベルト層6とを有する。この他に、図示されないが、タイヤ1は、インナライナ層等を有してもよい。サイドウォール3及びビード4は、トレッド部2を挟むようにタイヤ幅方向の両側に配されて対を成している。
トレッド部2、ビード4、ベルト層6、インナライナ層等は、公知のものを用いることができる。
トレッド部2、ビード4、ベルト層6、インナライナ層等は、公知のものを用いることができる。
本実施形態のタイヤ1は、図2に示すように、トレッド部2に本実施形態の特徴とするトレッドパターン10が形成されている。図2は、本実施形態のタイヤ1のトレッドパターン10の接地端間の平面展開図である。トレッドパターン10を有するタイヤ1は、乗用車用タイヤに好適に用いることができる。
本実施形態のタイヤ1は、車両外側に向けて装着するタイヤの装着向きが予め定められている。タイヤの装着の向きは、例えば、サイドウォール3の表面に車両外側あるいは車両内側を示すマークや文字等が情報として表示されているので、この表示に従ってタイヤ1は、車両に装着される。図2において、符号CLはタイヤ赤道線を示し、タイヤ赤道線CLより図2の紙面左側(第1の側)のトレッドパターン10の領域は、車両内側に装着される半トレッド領域11aを示す。タイヤ赤道線CLより図2の紙面右側(第2の側)のトレッドパターン10の領域は、車両外側に装着される半トレッド領域11bを示す。以下の説明では、タイヤ幅方向のうち、車両に装着されたときに車両の内側となる方向を車両内側といい、車両の外側となる方向を車両外側という。
トレッドパターン10は、タイヤ1が車両に装着された状態で、図2に示すように、接地幅11wで示す領域において路面に接地する。
ここで、接地幅11wは、タイヤ1を正規リムに組み付け、正規内圧180kPaの空気を充填し、正規荷重の88%を負荷荷重とした条件においてタイヤ1を水平面に接地させたときの接地面のタイヤ幅方向の幅である。なお、ここでいう正規リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、正規内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいうが、タイヤが乗用車用である場合は180kPaとする。また、正規荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。
ここで、接地幅11wは、タイヤ1を正規リムに組み付け、正規内圧180kPaの空気を充填し、正規荷重の88%を負荷荷重とした条件においてタイヤ1を水平面に接地させたときの接地面のタイヤ幅方向の幅である。なお、ここでいう正規リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、正規内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいうが、タイヤが乗用車用である場合は180kPaとする。また、正規荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。
本実施形態においてタイヤ幅方向Wとは、タイヤ1の回転中心軸方向をいい、タイヤ周方向Rとは、タイヤ回転中心軸を中心にタイヤ1を回転させるときのトレッド表面の回転方向をいう。図2にこれらの方向を記している。
トレッドパターン10は、波型周方向主溝群と、ラグ溝/サイプ組合体群と、ショルダーラグ溝41、43等を備えている。
(波型周方向主溝群)
波型周方向主溝群は、内側周方向主溝13と外側周方向主溝15(第1外側周方向主溝)、外側周方向主溝17(第2外側周方向主溝)とを含む。内側周方向主溝13および外側周方向主溝15、17は、それぞれタイヤ周方向に環状に延在する。
内側周方向主溝13は、タイヤ赤道線CLに沿って設けられ、両半トレッド領域11a、11bに共有されている。外側周方向主溝15は、タイヤ幅方向において内側周方向主溝13に対して車両内側に離れて位置する。外側周方向主溝17は、タイヤ幅方向において内側周方向主溝13に対して車両外側に離れて位置する。
波型周方向主溝群は、内側周方向主溝13と外側周方向主溝15(第1外側周方向主溝)、外側周方向主溝17(第2外側周方向主溝)とを含む。内側周方向主溝13および外側周方向主溝15、17は、それぞれタイヤ周方向に環状に延在する。
内側周方向主溝13は、タイヤ赤道線CLに沿って設けられ、両半トレッド領域11a、11bに共有されている。外側周方向主溝15は、タイヤ幅方向において内側周方向主溝13に対して車両内側に離れて位置する。外側周方向主溝17は、タイヤ幅方向において内側周方向主溝13に対して車両外側に離れて位置する。
内側周方向主溝13および外側周方向主溝15、17は、それぞれ2つの溝壁を有しており、この2つの溝壁と踏面とが交差することにより、タイヤ周方向に延びる2つのエッジがそれぞれ形成されている。内側周方向主溝13の車両内側のエッジを13A、車両外側のエッジを13Bとし、外側周方向主溝15の車両内側のエッジを15A、車両外側のエッジを15Bとし、外側周方向主溝17の車両内側のエッジを17A、車両外側のエッジを17Bとする。エッジ13A、13B、15A、15B、17A、17Bのタイヤ幅方向の位置は、タイヤ周方向の位置に応じて所定の振幅で変動しており、エッジ13A、13B、15A、15B、17A、17Bは、タイヤ周方向に波形状に延びている。このため、タイヤ周方向に直線状に延びるストレート形状である周方向主溝と比べて、エッジ13A、13B、15A、15B、17A、17Bの長さが長くなり、エッジ増加によりウェット性能が向上する。
一方、内側周方向主溝13および外側周方向主溝15、17は、いずれも、一定のタイヤ幅方向の溝幅13w、15w、17wを有している。このため、溝幅が変動する場合と比較して排水性能を向上することができる。ここで、溝幅13wはエッジ13A、13Bのタイヤ幅方向の間隔であり、溝幅15wはエッジ15A、15Bのタイヤ幅方向の間隔であり、溝幅17wはエッジ17A、17Bのタイヤ幅方向の間隔である。なお、溝幅13w、15w、17wは、互いに等しく又は異なっていてもよい。
溝幅13w、15w、17wの総和は、接地幅11wの20~35%であることが好ましい。溝幅13w、15w、17wの総和が接地幅11wの20%以上であることによって、十分な排水性能が得られ、ウェット性能が向上する。また、溝幅13w、15w、17wの総和が接地幅11wの35%以下であることによって、内側周方向主溝13と外側周方向主溝15、17との間の陸部の幅の低下が抑制でき、この陸部の剛性を適切な範囲に確保することができる。
内側周方向主溝13および外側周方向主溝15、17は、トレッド部2の踏面からタイヤ径方向内側に凹んだ溝であり、それぞれ底部13b、15b、17bを有している。底部13b、15b、17bは、それぞれタイヤ幅方向に溝幅13w、15w、17wよりも狭い一定の幅を有する。ここで、底部13bの幅とは、内側周方向主溝13の一対の溝壁と内側周方向主溝13の底面とが交差することにより形成される一対の谷線のタイヤ幅方向の間隔である。また、底部15bの幅とは、外側周方向主溝15の一対の溝壁と外側周方向主溝15の底面とが交差することにより形成される一対の谷線のタイヤ幅方向の間隔であり、底部17bの幅とは、外側周方向主溝17の一対の溝壁と外側周方向主溝17の底面とが交差することにより形成される一対の谷線のタイヤ幅方向の間隔である。底部13bの車両内側の谷線を13C、車両外側の谷線を13D、底部15bの車両内側の谷線を15C、車両外側の谷線を15D、底部17bの車両内側の谷線を17C、車両外側の谷線を17Dとする。谷線13C、13D、15C、15D、17C、17Dは、タイヤ周方向の位置に応じてタイヤ幅方向の位置が所定の振幅で変動することで、タイヤ周方向に波形状に延びている。なお、谷線13C、13D、15C、15D、17C、17Dの波形状の波長は、エッジ13A、13B、15A、15B、17A、17Bの波形状の波長よりも短い。このため、内側周方向主溝13および外側周方向主溝15、17の溝壁は、回転中心軸を含み、タイヤ幅方向W及びタイヤ周方向Rに直交するタイヤ径方向に沿った平面で切断した内側周方向主溝13および外側周方向主溝15、17の溝断面形状において、直線状あるいは曲線形状で傾斜しており、この溝壁の傾きが溝深さ方向の同じ位置で、タイヤ周方向の位置に応じて所定の振幅で変動するように形成されている。
内側周方向主溝13および外側周方向主溝15、17の溝壁は、この溝壁と、エッジ13A、13B、15A、15B、17A、17Bにおいて踏面に接する平面と、により形成される交線が、タイヤ周方向の位置に応じてタイヤ幅方向に所定の振幅で変動する波形状となるように形成されている。この波形状の波長が踏面からタイヤ径方向内側に向かうほど短くなるように、内側周方向主溝13および外側周方向主溝15、17の溝壁が形成されていてもよい。このため、タイヤ1の摩耗が進行するに連れてエッジの合計長さが長くなり、タイヤ1の摩耗が進行するにつれてエッジ効果が増加する。これにより摩耗時のウェット性能の低下を抑えることができる。
なお、エッジ13A、13B、15A、15B、17A、17Bの波形状の波長および振幅は、互いに等しくてもよいし、異なっていてもよい。エッジ13A、13B、15A、15B、17A、17Bにおける波形状の波長が互いに等しい場合、タイヤ周方向の同じ位置における波形状の位相に差がないことが好ましいが、位相に差があってもよい。エッジ13A、13B、15A、15B、17A、17Bの波形状の波長および振幅が互いに等しく、かつ、タイヤ周方向の同じ位置における波形状の位相に差がない場合、内側周方向主溝13と外側周方向主溝15との間の内側陸部、内側周方向主溝13と外側周方向主溝17との間の内側陸部の幅をタイヤ周方向の位置によらず一定とすることができる。このため、偏摩耗を抑制することができる。
谷線13C、13D、15C、15D、17C、17Dの波形状の波長および振幅は、互いに等しくてもよいし、異なっていてもよい。エッジ13A、13B、15A、15B、17A、17Bの波形状の波長が互いに等しく、かつ、谷線13C、13D、15C、15D、17C、17Dの波形状の波長が互いに等しい場合、タイヤの摩耗が進行したときの内側周方向主溝13および外側周方向主溝15、17のエッジの位相を揃えることができる。
なお、図2においては、谷線13C、13D、15C、15D、17C、17Dの波長は、それぞれエッジ13A、13B、15A、15B、17A、17Bの波長の1/2となっているが、1/2よりも小さい波長または長い波長であってもよい。
また、波型周方向主溝群のいずれかの周方向主溝のみが、エッジの波長よりも短い波長の谷線を有してもよい。また、波型周方向主溝群のいずれかの周方向主溝が、エッジの波長と等しい又はエッジの波長よりも長い波長の谷線を有してもよい。
また、波型周方向主溝群のいずれかの周方向主溝のみが、エッジの波長よりも短い波長の谷線を有してもよい。また、波型周方向主溝群のいずれかの周方向主溝が、エッジの波長と等しい又はエッジの波長よりも長い波長の谷線を有してもよい。
さらに、図2には示さないが、エッジ13A、13B、15A、15B、17A、17Bには、接地圧を上げてウェット性能を高める観点から、面取りがされていてもよい。なお、面取りがされている場合、溝幅は、周方向主溝の2つの溝壁をタイヤ径方向外側に延長した2つの延長面と踏面との2つの交線同士のタイヤ幅方向の間隔である。
(ラグ溝/サイプ組合体群)
ラグ溝/サイプ組合体群は、タイヤ周方向に間隔を空けて内側周方向主溝13と外側周方向主溝15との間に設けられた複数のラグ溝/サイプ組合体20と、タイヤ周方向に間隔を空けて内側周方向主溝13と外側周方向主溝17との間に設けられた複数のラグ溝/サイプ組合体30と、を備える。
ラグ溝/サイプ組合体群は、タイヤ周方向に間隔を空けて内側周方向主溝13と外側周方向主溝15との間に設けられた複数のラグ溝/サイプ組合体20と、タイヤ周方向に間隔を空けて内側周方向主溝13と外側周方向主溝17との間に設けられた複数のラグ溝/サイプ組合体30と、を備える。
複数のラグ溝/サイプ組合体20は、内側周方向主溝13の車両内側の溝壁と、外側周方向主溝15の車両外側の溝壁とを接続するように設けられている。ラグ溝/サイプ組合体20のそれぞれは、両端のラグ溝21(第1外側ラグ溝)、ラグ溝23(第1内側ラグ溝)および中央部のサイプ25(第1サイプ)を備える。
本実施形態において、ラグ溝とは溝幅が1.5mm以上であり、溝深さが5mm以上のものをいう。また、本実施形態においてサイプは幅1.5mm未満のものをいう。
本実施形態において、ラグ溝とは溝幅が1.5mm以上であり、溝深さが5mm以上のものをいう。また、本実施形態においてサイプは幅1.5mm未満のものをいう。
ラグ溝21は、外側周方向主溝15の車両外側の溝壁から車両外側へ向かって延在している。ラグ溝21は、外側周方向主溝15の車両外側の溝壁と、踏面とのなす角度θ1(図3参照)が、角度θ1の最大値と最小値の平均よりも大きい位置から車両外側へ向かって延在することが好ましい。特に、角度θ1が最大値となる位置から車両外側へ向かって延在することが好ましい。すなわち、図2に示すように、エッジ15Bと谷線15Dのタイヤ幅方向の間隔が最も広くなる位置から車両外側へ向かって延在することが好ましい。ここで、溝壁と踏面とのなす角度とは、図3に示すように、タイヤ径方向断面における溝壁と、エッジにおいて踏面に接する平面と、のなす角度である。なお、図3は、、外側周方向主溝15の車両外側の溝壁と、踏面とのなす角度θ1が最大である例を示している。また、一実施形態によれば、外側周方向主溝15と外側周方向主溝17の波形状の振幅が等しい場合、角度θ1の最小値は、図5では、角度θ4に等しい。
ラグ溝23は、内側周方向主溝13の車両内側の溝壁から車両内側へ向かって延在している。ラグ溝23は、内側周方向主溝13の車両内側の溝壁と踏面とのなす角度θ2(図3参照)が、角度θ2の最大値と最小値の平均よりも大きい位置から車両内側へ向かって延在することが好ましい。特に、角度θ2が最大となる位置から車両内側へ向かって延在することが好ましい。すなわち、図2に示すように、エッジ13Aと谷線13Cのタイヤ幅方向の間隔が最も広くなる位置から車両内側へ向かって延在することが好ましい。なお、図3は、内側周方向主溝13の車両内側の溝壁と、踏面とのなす角度θ2が最大である例を示している。また、一実施形態によれば、角度θ2の最小値は、図5では、角度θ3に等しい。
ラグ溝23は、内側周方向主溝13の車両内側の溝壁から車両内側へ向かって延在している。ラグ溝23は、内側周方向主溝13の車両内側の溝壁と踏面とのなす角度θ2(図3参照)が、角度θ2の最大値と最小値の平均よりも大きい位置から車両内側へ向かって延在することが好ましい。特に、角度θ2が最大となる位置から車両内側へ向かって延在することが好ましい。すなわち、図2に示すように、エッジ13Aと谷線13Cのタイヤ幅方向の間隔が最も広くなる位置から車両内側へ向かって延在することが好ましい。なお、図3は、内側周方向主溝13の車両内側の溝壁と、踏面とのなす角度θ2が最大である例を示している。また、一実施形態によれば、角度θ2の最小値は、図5では、角度θ3に等しい。
ラグ溝21の長さをLA、ラグ溝23の長さをLBとするとき、LA>LBであることが好ましい。より好ましくは、LAがLBの約2倍であり、1.9≦LA/LB≦2.1であることが好ましい。1.9≦LA/LBであると充分にウェット性能を発揮することができる。一方、LA/LB≦2.1であると、耐摩耗性を良好にすることができる。
図3は図2のIII-III矢視断面図である。図3に示すように、サイプ25は、ラグ溝21の車両外側の端部とラグ溝23の車両内側の端部との間に設けられ、ラグ溝21とラグ溝23とを接続している。なお、ラグ溝21は外側周方向主溝15よりも浅く、サイプ25はラグ溝21よりも浅い。また、ラグ溝23は内側周方向主溝13よりも浅く、サイプ25はラグ溝23よりも浅い。
図4は図3のIV-IV矢視断面図である。図4に示すように、サイプ25には、サイプ25の一対のサイプ壁のそれぞれと踏面とを接続する部分に面取りが施され、サイプ壁間の間隔が踏面に向けて広がった傾斜面25a、25bが形成されている。このように、サイプ25に面取りを施すことで、踏面が路面に接地した状態で、路面および傾斜面25a、25bにより囲まれる隙間を通じてラグ溝21とラグ溝23との間で水が流れることを可能にする。このため、内側周方向主溝13と外側周方向主溝15との間での排水が可能となる。
サイプ25の長さは、ラグ溝/サイプ組合体20の53~58%であることが好ましい。サイプ25の長さが53%未満であると、面取りしたサイプ25による排水性能の効果が十分に発揮できない。一方、サイプ25の長さが58%を越えると、内側周方向主溝13と外側周方向主溝15との間の陸部の剛性を適切な範囲に維持できない。
傾斜面25aと踏面とのエッジ25Aと、傾斜面25bと踏面とのエッジ25Bとの間隔は、ラグ溝21の溝幅およびラグ溝23の溝幅と等しいことが好ましい。エッジ25A、25B間の間隔をラグ溝21の溝幅およびラグ溝23の溝幅と合わせることで、水が流れやすくなり、排水性が良くなる。
ラグ溝21、23とサイプ25との接続部において、サイプ25のサイプ壁間の中心位置(幅方向の中心位置)は、ラグ溝21、23の溝幅方向の中心位置と一致することが好ましい。これにより、水が流れやすくなり、排水性が良くなる。
傾斜面25a、25bは、サイプ25の溝壁の踏面からの深さが0.5~3.0mmの位置から踏面までの間に設けられていることが好ましい。傾斜面25a、25bが0.5mm以上の深さの位置から設けられていることで、接地圧を十分に高くしつつ排水性を上げてウェット性能を向上させることができる。一方、傾斜面25a、25bを踏面から深さ3.0mm以下の範囲に設けることで、内側周方向主溝13と外側周方向主溝15との間の陸部の剛性を確保してウェット性能を向上させることができる。
ラグ溝21が外側周方向主溝15の車両外側の溝壁と踏面とのなす角度が最大となる位置から車両外側へ向かって延在するとともに、ラグ溝23が内側周方向主溝13の車両内側の溝壁と踏面とのなす角度が最大となる位置から車両内側へ向かって延在することで、内側周方向主溝13および外側周方向主溝15の排水性能を高めることができる。すなわち、上記位置では、溝壁の溝底に対する傾きが緩やかとなり、内側周方向主溝13および外側周方向主溝15の溝断面積がこの部分で最小になり溝壁に沿った排水性能が悪化するため、この部分にラグ溝を設けることで、周方向主溝からラグ溝へ排水を促すことができる。特に車両内側で排水性能を高めることで、ウェット性能、例えばウェット操縦性能を高めることができる。
複数のラグ溝/サイプ組合体30は、内側周方向主溝13の車両外側の溝壁と、外側周方向主溝17の車両内側の溝壁とを接続するように設けられている。ラグ溝/サイプ組合体30のそれぞれは、両端のラグ溝31(第2内側ラグ溝)、ラグ溝33(第2外側ラグ溝)および中央部のサイプ35(第2サイプ)を備える。
ラグ溝31は、内側周方向主溝13の車両外側の溝壁から車両外側へ向かって延在している。ラグ溝31は、内側周方向主溝13の車両外側の溝壁と踏面とのなす角度θ3(図5参照)が、角度θ3の最大値と最小値の平均よりも小さい位置から車両内側へ向かって延在することが好ましい。特に、角度θ3が最小となる位置から車両外側へ向かって延在することが好ましい。すなわち、図2に示すように、エッジ13Bと谷線13Dのタイヤ幅方向の間隔が最も狭くなる位置から車両外側へ向かって延在することが好ましい。なお、図5は、内側周方向主溝13の車両外側の溝壁と、踏面とのなす角度θ3が最小値の角度である例を示している。また、一実施形態によれば、角度θ3の最大値は、図3に示す角度θ2に等しい。
ラグ溝33は、外側周方向主溝17の車両内側の溝壁から車両内側へ向かって延在している。ラグ溝33は、外側周方向主溝17の車両内側の溝壁と踏面とのなす角度θ4(図5参照)が、角度θ4の最大値と最小値の平均よりも小さい位置から車両内側へ向かって延在することが好ましい。特に、角度θ4が最小となる位置から車両内側へ向かって延在することが好ましい。すなわち、図2に示すように、エッジ17Aと谷線17Cのタイヤ幅方向の間隔が最も狭くなる位置から車両内側へ向かって延在することが好ましい。なお、図5は、外側周方向主溝17の車両内側の溝壁と、踏面とのなす角度θ4は最小値の角度である例を示している。また、一実施形態によれば、外側周方向主溝15と外側周方向主溝17の波形状の振幅が等しい場合、θ4の最大値は、図3に示すθ1に等しい。
ラグ溝33は、外側周方向主溝17の車両内側の溝壁から車両内側へ向かって延在している。ラグ溝33は、外側周方向主溝17の車両内側の溝壁と踏面とのなす角度θ4(図5参照)が、角度θ4の最大値と最小値の平均よりも小さい位置から車両内側へ向かって延在することが好ましい。特に、角度θ4が最小となる位置から車両内側へ向かって延在することが好ましい。すなわち、図2に示すように、エッジ17Aと谷線17Cのタイヤ幅方向の間隔が最も狭くなる位置から車両内側へ向かって延在することが好ましい。なお、図5は、外側周方向主溝17の車両内側の溝壁と、踏面とのなす角度θ4は最小値の角度である例を示している。また、一実施形態によれば、外側周方向主溝15と外側周方向主溝17の波形状の振幅が等しい場合、θ4の最大値は、図3に示すθ1に等しい。
ラグ溝31の長さをLC、ラグ溝33の長さをLDとするとき、LC>LDであることが好ましい。より好ましくは、1.03≦LC/LD≦1.2であることが好ましい。1.03≦LC/LDであると十分にウェット性能を発揮することができる。一方、LC/LD≦1.2であると、耐摩耗性を良好にすることができる。
図5は図2のV-V矢視断面図である。図5に示すように、サイプ35は、ラグ溝31の車両内側の端部とラグ溝33の車両外側の端部との間に設けられ、ラグ溝31とラグ溝33とを接続している。なお、ラグ溝31は内側周方向主溝13よりも浅く、サイプ35はラグ溝31よりも浅い。また、ラグ溝33は外側周方向主溝17よりも浅く、サイプ35はラグ溝33よりも浅い。
図6は図5のVI-VI矢視断面図である。図6に示すように、サイプ35には、サイプ35の一対のサイプ壁のそれぞれと踏面とを接続する部分に面取りが施され、サイプ壁間の間隔が踏面に向けて広がった傾斜面35a、35bが形成されている。このように、サイプ35に面取りを施すことで、踏面が路面に接地した状態で、路面および傾斜面35a、35bにより囲まれる隙間を通じてラグ溝31とラグ溝33との間で水が流れることを可能にする。このため、内側周方向主溝13と外側周方向主溝17との間での排水が可能となる。
サイプ35の長さは、ラグ溝/サイプ組合体30の48~53%であることが好ましい。サイプ35の長さが48%未満であると、面取りしたサイプ35による排水性能の効果が十分に発揮できない。一方、サイプ35の長さが53%を越えると、内側周方向主溝13と外側周方向主溝17との間の陸部の剛性を適切な範囲に維持できない。
傾斜面35aと踏面とのエッジ35Aと、傾斜面35bと踏面とのエッジ35Bとの間隔は、ラグ溝31の溝幅およびラグ溝33の溝幅と等しいことが好ましい。エッジ35A、35B間の間隔をラグ溝31の溝幅およびラグ溝33の溝幅と合わせることで、水が流れやすくなり、排水性が良くなる。
ラグ溝31、33とサイプ35との接続部において、サイプ35の溝幅方向の中心位置は、ラグ溝31、33の溝幅方向の中心位置と一致することが好ましい。これにより、水が流れやすくなり、排水性が良くなる。
傾斜面35a、35bは、サイプ35の溝壁の踏面からの深さが0.5~3.0mmの位置から設けられていることが好ましい。傾斜面35a、35bが0.5mm以上の深さの位置から設けられていることで、接地圧を十分に高くしつつ排水性を上げてウェット性能を向上させることができる。一方、傾斜面35a、35bを踏面から深さ3.0mm以下の範囲に設けることで、内側周方向主溝13と外側周方向主溝17との間の陸部の剛性を確保してウェット性能を向上させることができる。
ラグ溝31が内側周方向主溝13の車両外側の溝壁と踏面とのなす角度が最小となる位置から車両外側へ向かって延在するとともに、ラグ溝33が外側周方向主溝17の車両内側の溝壁と踏面とのなす角度が最小となる位置から車両内側へ向かって延在することで、内側周方向主溝13、外側周方向主溝17およびラグ溝/サイプ組合体30により囲まれる陸部の剛性を高めることができる。すなわち、内側周方向主溝13と外側周方向主溝17との間の陸部の溝壁に沿った部分は、溝壁と踏面とのなす角度が大きいほど陸部の剛性が高く、溝壁と踏面とのなす角度が小さいほど剛性が低くなる。溝壁と踏面とのなす角度がより小さい部分にラグ溝/サイプ組合体30の接続部分を設け、溝壁と踏面とのなす角度が大きく剛性が高い部分にラグ溝/サイプ組合体30の接続部分を設けないので、溝壁と踏面とのなす角度が大きく剛性が高い部分をラグ溝の無い陸部とすることができる。特に偏摩耗しやすい車両外側で陸部の剛性を高めることができるので、溝壁と踏面とのなす角度がより小さい部分にラグ溝/サイプ組合体30の接続部分を設けることが好ましい。
なお、図2に示すように、外側周方向主溝15よりも車両内側には、ショルダーラグ溝41が設けられていてもよい。ショルダーラグ溝41は外側周方向主溝15に連通しないことが好ましい。
また、図2に示すように、外側周方向主溝17よりも車両外側には、さらにショルダーラグ溝43が設けられていてもよい。ショルダーラグ溝43は外側周方向主溝17に連通しないことが好ましい。これにより、外側周方向主溝15からショルダーラグ溝41への空気の流れ、外側周方向主溝17からショルダーラグ溝43への空気の流れを防ぎ、騒音性能を向上させることができる。
また、図2に示すように、外側周方向主溝17よりも車両外側には、さらにショルダーラグ溝43が設けられていてもよい。ショルダーラグ溝43は外側周方向主溝17に連通しないことが好ましい。これにより、外側周方向主溝15からショルダーラグ溝41への空気の流れ、外側周方向主溝17からショルダーラグ溝43への空気の流れを防ぎ、騒音性能を向上させることができる。
(実施例)
本実施形態のタイヤ1のトレッドパターン10の効果を調べるために、タイヤを試作した。
タイヤサイズは、195/65R15とした。リムは15×6.0Jとして、以下の表1A,Bに示す仕様のトレッドパターンを設けたタイヤを作製した。タイヤ性能を調べるために用いた車両はエンジン排気量が2リットルクラスのFF車を用いた。内圧条件は、前輪、後輪ともに230(kPa)とした。内側周方向主溝および2つの外側周方向主溝の波形状の波長および振幅は同一とし、位相をそろえた。
本実施形態のタイヤ1のトレッドパターン10の効果を調べるために、タイヤを試作した。
タイヤサイズは、195/65R15とした。リムは15×6.0Jとして、以下の表1A,Bに示す仕様のトレッドパターンを設けたタイヤを作製した。タイヤ性能を調べるために用いた車両はエンジン排気量が2リットルクラスのFF車を用いた。内圧条件は、前輪、後輪ともに230(kPa)とした。内側周方向主溝および2つの外側周方向主溝の波形状の波長および振幅は同一とし、位相をそろえた。
比較例1ではラグ溝23及びラグ溝31に対応する内側ラグ溝を設けたものの、ラグ溝21及びラグ溝33に対応する外側ラグ溝を設けずにサイプを介して内側ラグ溝と外側周方向主溝とを接続した。サイプには面取り面を設けた。比較例2では内側ラグ溝および外側ラグ溝を設けたものの、内側ラグ溝と外側ラグ溝とを接続するサイプに面取り面を設けなかった。
実施例1~10では、いずれも内側ラグ溝(ラグ溝23及びラグ溝31)および外側ラグ溝(ラグ溝21及びラグ溝33)を設けるとともに、内側ラグ溝と外側ラグ溝とを接続するサイプに面取り面を設けた。θ1、θ2の平均に対する大きさ(平均に対して大きい/小さい)、θ3、θ4の平均に対する大きさ(平均に対して大きい/小さい)、LA/LB、LC/LDは表1A,Bに示すとおりとした。
なお、比較例1および実施例1~10において、サイプの面取り面(傾斜面)と踏面とにより形成される1対のエッジ間の距離は、ラグ溝の溝幅と等しくなるようにした。
なお、比較例1および実施例1~10において、サイプの面取り面(傾斜面)と踏面とにより形成される1対のエッジ間の距離は、ラグ溝の溝幅と等しくなるようにした。
試作したタイヤのタイヤ性能として、ウェット性能、耐摩耗性能を下記のようにして評価した。
ウェット性能は、屋外のタイヤ試験場の水深1mmであるウェット路面において、時速100kmからの制動距離を測定した。比較例1のタイヤの測定値の逆数を100としてその他の例の測定値の逆数を指数化してウェット性能の評価を行った。指数値が大きいほどウェット性能が優れていることを意味する。
耐摩耗性能は、周方向主溝に設けられたウェアインジケータが露出するまで走行した距離を測定した。比較例1のタイヤの走行距離を100としてその他の例の走行距離を指数化して耐摩耗性能の評価を行った。指数値が大きいほど耐摩耗性能が優れていることを意味する。
評価結果を、表1A,1Bに示す。
ウェット性能は、屋外のタイヤ試験場の水深1mmであるウェット路面において、時速100kmからの制動距離を測定した。比較例1のタイヤの測定値の逆数を100としてその他の例の測定値の逆数を指数化してウェット性能の評価を行った。指数値が大きいほどウェット性能が優れていることを意味する。
耐摩耗性能は、周方向主溝に設けられたウェアインジケータが露出するまで走行した距離を測定した。比較例1のタイヤの走行距離を100としてその他の例の走行距離を指数化して耐摩耗性能の評価を行った。指数値が大きいほど耐摩耗性能が優れていることを意味する。
評価結果を、表1A,1Bに示す。
比較例1、比較例2および実施例1を対比すると、内側ラグ溝および外側ラグ溝を設けるとともに、内側ラグ溝と外側ラグ溝とを接続するサイプに面取り面を設けることで、ウェット性能が向上するとともに、耐摩耗性能が高まることが分かる。
実施例1と実施例2とを対比すると、車両内側の内側ラグ溝および外側ラグ溝を角度θ1および角度θ2が角度θ1および角度θ2の平均よりも大きい位置に設けることで、ウェット性能が高くなることがわかる。
また、実施例2と実施例3とを対比すると、車両外側の内側ラグ溝および外側ラグ溝を角度θ3および角度θ4が角度θ3および角度θ4の平均よりも小さい位置に設けることで、耐摩耗性能が高くなることがわかる。
実施例3~7を対比すると、LA/LBを1.8以上とすることで、ウェット性能に優れることがわかる。一方、LA/LBを2.2以下とすることで、耐摩耗性能に優れることがわかる。
実施例5、8~10を対比すると、LC/LDを1.1以上とすることで、ウェット性能に優れることがわかる。一方、LC/LDを1.2以下とすることで、耐摩耗性能に優れることがわかる。
実施例1と実施例2とを対比すると、車両内側の内側ラグ溝および外側ラグ溝を角度θ1および角度θ2が角度θ1および角度θ2の平均よりも大きい位置に設けることで、ウェット性能が高くなることがわかる。
また、実施例2と実施例3とを対比すると、車両外側の内側ラグ溝および外側ラグ溝を角度θ3および角度θ4が角度θ3および角度θ4の平均よりも小さい位置に設けることで、耐摩耗性能が高くなることがわかる。
実施例3~7を対比すると、LA/LBを1.8以上とすることで、ウェット性能に優れることがわかる。一方、LA/LBを2.2以下とすることで、耐摩耗性能に優れることがわかる。
実施例5、8~10を対比すると、LC/LDを1.1以上とすることで、ウェット性能に優れることがわかる。一方、LC/LDを1.2以下とすることで、耐摩耗性能に優れることがわかる。
以上、本実施形態の空気入りタイヤについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよい。
上述の実施形態のトレッドパターンは、図2に示すように、両半トレッド領域11a,11bに、内側周方向主溝13、外側周方向主溝15、外側周方向主溝17、及びサイプ組合体20、30を備えるが、一実施形態のトレッドパターンは、いずれか一方の半トレッド領域において、外側周方向主溝15及び外側周方向主溝17の一方、サイプ組合体20、30の一方を備えるトレッドパターンとすることもできる。サイプ組合体20、30は、面取りした傾斜面を備えるサイプを有するので、排水機能があり、しかも、サイプとしてエッジ効果を発揮することができる。さらに、サイプ組合体20、30が設けられた陸部の剛性は、面取りのないサイプが設けられる陸部の剛性に比べて高くなるので、偏摩耗を抑制することができる。
このとき、新品のタイヤにおいて、サイプの面取り面とトレッド部の踏面とのなす1対の稜線の間の間隔は、内側ラグ溝の溝幅および外側ラグ溝の溝幅と等しいことが、排水性を向上させる点から好ましく、また、サイプの、内側ラグ溝及び外側ラグ溝との接続部において、サイプの幅方向の中心位置は、内側ラグ溝及び外側ラグ溝の溝幅方向の中心位置と一致することが排水性を向上させる点から好ましい。
また、内側ラグ溝は、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度が、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、外側ラグ溝は、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度が、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びている構成の場合、内側周方向主溝あるいは外側周方向主溝から外側ラグ溝あるいは内側ラグ溝へ排水を促すことができるので、ウェット性能を高めることができる。
また、内側ラグ溝は、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度が、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、外側ラグ溝は、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度が、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びる構成の場合、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい、陸部の剛性の高い位置には、内側ラグ溝及び外側ラグ溝の接続部分が設けられないので、陸部の剛性の低下を抑制でき摩耗を抑制することができる。
また、内側ラグ溝は、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度が、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、外側ラグ溝は、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度が、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びている構成の場合、内側周方向主溝あるいは外側周方向主溝から外側ラグ溝あるいは内側ラグ溝へ排水を促すことができるので、ウェット性能を高めることができる。
また、内側ラグ溝は、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度が、内側周方向主溝の、外側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、外側ラグ溝は、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度が、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びる構成の場合、外側周方向主溝の、内側周方向主溝側の溝壁と踏面とのなす角度の最大値と最小値の平均値よりも大きい、陸部の剛性の高い位置には、内側ラグ溝及び外側ラグ溝の接続部分が設けられないので、陸部の剛性の低下を抑制でき摩耗を抑制することができる。
1 空気入りタイヤ
2 トレッド部
3 サイドウォール
4 ビード
5 カーカス層
6 ベルト層
10 トレッドパターン
11a、11b 半トレッド領域
13 内側周方向主溝
13A、13B、15A、15B、17A、17B、25A、25B、35A、35B エッジ
13C、13D、15C、15D、17C、17D 谷線
13b、15b、17b 底部
15,17 外側周方向主溝
20、30 サイプ組合体
21、23、31、33 ラグ溝
25、35 サイプ
25a、25b、35a、35b 傾斜面
41、43 ショルダーラグ溝
2 トレッド部
3 サイドウォール
4 ビード
5 カーカス層
6 ベルト層
10 トレッドパターン
11a、11b 半トレッド領域
13 内側周方向主溝
13A、13B、15A、15B、17A、17B、25A、25B、35A、35B エッジ
13C、13D、15C、15D、17C、17D 谷線
13b、15b、17b 底部
15,17 外側周方向主溝
20、30 サイプ組合体
21、23、31、33 ラグ溝
25、35 サイプ
25a、25b、35a、35b 傾斜面
41、43 ショルダーラグ溝
Claims (12)
- トレッドパターンを有する空気入りタイヤであって、
前記トレッドパターンは、
踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝と、
前記内側周方向主溝よりもタイヤ幅方向の一方の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する外側周方向主溝と、
前記内側周方向主溝から前記外側周方向主溝に向かって前記内側周方向主溝と前記外側周方向主溝との間の陸部の領域の途中まで延びる内側ラグ溝と、
前記外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記外側周方向主溝との間の陸部の領域の途中まで延びる外側ラグ溝と、
前記内側ラグ溝の前記外側周方向主溝側の端部と前記外側ラグ溝の前記内側周方向主溝側の端部とを連通させるサイプと、を備え、
前記踏面上の前記サイプの延びる方向に沿って前記サイプの壁に1対の面取り面が設けられることにより、前記サイプの幅がトレッド表面に向かって広がっている、ことを特徴とする空気入りタイヤ。 - 前記面取り面と踏面とのなす1対の稜線の間の間隔は、前記内側ラグ溝の溝幅および前記外側ラグ溝の溝幅と等しい、請求項1に記載の空気入りタイヤ。
- 前記サイプの、前記内側ラグ溝及び前記外側ラグ溝との接続部において、前記サイプの幅方向の中心位置は、前記内側ラグ溝及び前記外側ラグ溝の溝幅方向の中心位置と一致する、請求項1又は2に記載の空気入りタイヤ。
- 前記内側ラグ溝は、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、
前記外側ラグ溝は、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度が、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びている、請求項1~3のいずれか1項に記載の空気入りタイヤ。 - 前記内側ラグ溝は、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の、前記外側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、
前記外側ラグ溝は、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度が、前記外側周方向主溝の、前記内側周方向主溝側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びている、請求項1~3のいずれか1項に記載の空気入りタイヤ。 - トレッドパターンを有する空気入りタイヤであって、
前記トレッドパターンは、
踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する内側周方向主溝と、
前記内側周方向主溝よりもタイヤ幅方向の第1の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する第1外側周方向主溝と、
前記内側周方向主溝から前記第1外側周方向主溝に向かって前記内側周方向主溝と前記第1外側周方向主溝との間の陸部の領域の途中まで延びる第1内側ラグ溝と、
前記第1外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記第1外側周方向主溝との間の陸部の領域の途中まで延びる第1外側ラグ溝と、
前記第1内側ラグ溝の前記第1外側周方向主溝側の端部と前記第1外側ラグ溝の前記内側周方向主溝側の端部とを連通させる第1サイプと、
前記内側周方向主溝よりもタイヤ幅方向の第1の側と反対側の第2の側において、踏面に対する角度を所定の振幅で変動させながらタイヤ周方向に延びる溝壁を有する第2外側周方向主溝と、
前記内側周方向主溝から前記第2外側周方向主溝に向かって前記内側周方向主溝と前記第2外側周方向主溝との間の陸部の領域の途中まで延びる第2内側ラグ溝と、
前記第2外側周方向主溝から前記内側周方向主溝に向かって前記内側周方向主溝と前記第2外側周方向主溝との間の陸部の領域の途中まで延びる第2外側ラグ溝と、
前記第2内側ラグ溝の前記第2外側周方向主溝側の端部と前記第2外側ラグ溝の前記内側周方向主溝側の端部とを連通させる第2サイプと、
を備え、
前記踏面上の前記第1サイプの延びる方向に沿って前記第1サイプの壁に1対の第1面取り面が設けられることにより、前記第1サイプの幅がトレッド表面に向かって広がっており、
前記踏面上の前記第2サイプの延びる方向に沿って前記第2サイプの壁に1対の第2面取り面が設けられることにより、前記第2サイプの幅がトレッド表面に向かって広がっている、ことを特徴とする空気入りタイヤ。 - 前記空気入りタイヤは、車両への装着向きが予め定められており、
前記第1の側は、前記車両内側になるように前記空気入りタイヤは装着され、
前記第1内側ラグ溝は、前記内側周方向主溝の第1の側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の第1の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延び、
前記第1外側ラグ溝は、前記第1外側周方向主溝の第2の側の溝壁と前記踏面とのなす角度が、前記第1外側周方向主溝の第2の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも大きい位置から延びている、請求項6に記載の空気入りタイヤ。 - 前記空気入りタイヤは、車両への装着向きが予め定められており、
前記第2の側は、前記車両外側になるように前記空気入りタイヤは装着され、
前記第2内側ラグ溝は、前記内側周方向主溝の第2の側の溝壁と前記踏面とのなす角度が、前記内側周方向主溝の第2の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延び、
前記第2外側ラグ溝は、前記第2外側周方向主溝の第1の側の溝壁と前記踏面とのなす角度が、前記第2外側周方向主溝の第1の側の溝壁と前記踏面とのなす角度の最大値と最小値の平均値よりも小さい位置から延びている、請求項6又は7に記載の空気入りタイヤ。 - 前記第1外側ラグ溝の長さをLA、前記第1内側ラグ溝の長さをLBとしたとき、1.8≦LA/LB≦2.2である、請求項6~8のいずれか一項に記載の空気入りタイヤ。
- 前記第2内側ラグ溝の長さをLC、前記第2外側ラグ溝の長さをLDとしたとき、1.0<LC/LD≦1.2である、請求項6~9のいずれか一項に記載の空気入りタイヤ。
- 前記第1面取り面と踏面とのなす1対の稜線の間の間隔は、前記第1内側ラグ溝の溝幅および前記第1外側ラグ溝の溝幅と等しい、請求項6~10のいずれか一項に記載の空気入りタイヤ。
- 前記第2面取り面と踏面とのなす1対の稜線の間の間隔は、前記第2内側ラグ溝の溝幅および前記第2外側ラグ溝の溝幅と等しい、請求項6~11のいずれか一項に記載の空気入りタイヤ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17830993.6A EP3489039B1 (en) | 2016-07-19 | 2017-07-18 | Pneumatic tire |
CN201780040110.2A CN109414965B (zh) | 2016-07-19 | 2017-07-18 | 充气轮胎 |
US16/319,245 US11465448B2 (en) | 2016-07-19 | 2017-07-18 | Pneumatic tire |
JP2017538250A JP6493542B2 (ja) | 2016-07-19 | 2017-07-18 | 空気入りタイヤ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-141223 | 2016-07-19 | ||
JP2016141223 | 2016-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016477A1 true WO2018016477A1 (ja) | 2018-01-25 |
Family
ID=60992577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025917 WO2018016477A1 (ja) | 2016-07-19 | 2017-07-18 | 空気入りタイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11465448B2 (ja) |
EP (1) | EP3489039B1 (ja) |
JP (1) | JP6493542B2 (ja) |
CN (1) | CN109414965B (ja) |
WO (1) | WO2018016477A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020050311A (ja) * | 2018-09-28 | 2020-04-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
WO2020066404A1 (ja) * | 2018-09-28 | 2020-04-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2020055356A (ja) * | 2018-09-28 | 2020-04-09 | 横浜ゴム株式会社 | 空気入りタイヤ |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017208010A1 (de) * | 2017-05-11 | 2018-11-15 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen |
JP6988349B2 (ja) * | 2017-10-05 | 2022-01-05 | 住友ゴム工業株式会社 | タイヤ |
JP7070493B2 (ja) * | 2019-04-08 | 2022-05-18 | 横浜ゴム株式会社 | 空気入りタイヤ |
DE102020212455A1 (de) * | 2020-10-01 | 2022-04-07 | Continental Reifen Deutschland Gmbh | Nutzfahrzeugreifen |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158916A (ja) * | 1998-11-27 | 2000-06-13 | Bridgestone Corp | 空気入りタイヤ |
JP2004203269A (ja) * | 2002-12-26 | 2004-07-22 | Bridgestone Corp | 空気入りタイヤ |
JP2010095196A (ja) * | 2008-10-17 | 2010-04-30 | Sumitomo Rubber Ind Ltd | 重荷重用タイヤ |
JP2013132966A (ja) * | 2011-12-26 | 2013-07-08 | Sumitomo Rubber Ind Ltd | 重荷重用空気入りタイヤ |
WO2014030476A1 (ja) * | 2012-08-20 | 2014-02-27 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2014040184A (ja) * | 2012-08-22 | 2014-03-06 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2014076764A (ja) * | 2012-10-11 | 2014-05-01 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2015134581A (ja) * | 2014-01-17 | 2015-07-27 | 横浜ゴム株式会社 | 空気入りタイヤ |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680002A (ja) * | 1992-09-01 | 1994-03-22 | Yokohama Rubber Co Ltd:The | 重荷重用空気入りラジアルタイヤ |
JPH0740712A (ja) | 1993-06-29 | 1995-02-10 | Bridgestone Corp | 空気入りタイヤ |
US5538060A (en) * | 1994-12-27 | 1996-07-23 | The Goodyear Tire & Rubber Company | Pneumatic tire having tread portion including blocks |
JP4587795B2 (ja) * | 2004-12-01 | 2010-11-24 | 株式会社ブリヂストン | 空気入りタイヤ |
CN101360619B (zh) * | 2005-12-21 | 2010-05-19 | 株式会社普利司通 | 充气轮胎 |
JP4938387B2 (ja) * | 2006-08-31 | 2012-05-23 | 東洋ゴム工業株式会社 | 空気入りタイヤ |
JP4631932B2 (ja) * | 2008-05-23 | 2011-02-16 | 横浜ゴム株式会社 | 空気入りタイヤ |
EP2546077B1 (en) * | 2010-03-12 | 2014-12-31 | Bridgestone Corporation | Pneumatic tire |
JP4826681B1 (ja) * | 2010-11-17 | 2011-11-30 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP5140146B2 (ja) * | 2010-12-09 | 2013-02-06 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP5291739B2 (ja) * | 2011-03-02 | 2013-09-18 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP5342586B2 (ja) * | 2011-03-25 | 2013-11-13 | 住友ゴム工業株式会社 | 重荷重用空気入りタイヤ |
JP2013035501A (ja) * | 2011-08-10 | 2013-02-21 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
MX2014003784A (es) * | 2011-09-29 | 2014-07-24 | Michelin & Cie | Neumatico con banda de rodadura que tiene traccion mejorada sobre nieve y tracción en seco. |
EP2620299B1 (en) * | 2012-01-26 | 2015-06-17 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
JP5671503B2 (ja) * | 2012-08-09 | 2015-02-18 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP5695613B2 (ja) * | 2012-08-10 | 2015-04-08 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP5698776B2 (ja) * | 2013-02-14 | 2015-04-08 | 住友ゴム工業株式会社 | 重荷重用空気入りタイヤ |
US9662941B2 (en) * | 2013-03-06 | 2017-05-30 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
WO2015079858A1 (ja) * | 2013-11-27 | 2015-06-04 | 横浜ゴム株式会社 | 空気入りタイヤ |
US10730351B2 (en) * | 2014-05-22 | 2020-08-04 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
JP2015223967A (ja) * | 2014-05-28 | 2015-12-14 | 住友ゴム工業株式会社 | 重荷重用空気入りタイヤ |
-
2017
- 2017-07-18 CN CN201780040110.2A patent/CN109414965B/zh active Active
- 2017-07-18 EP EP17830993.6A patent/EP3489039B1/en active Active
- 2017-07-18 WO PCT/JP2017/025917 patent/WO2018016477A1/ja unknown
- 2017-07-18 JP JP2017538250A patent/JP6493542B2/ja active Active
- 2017-07-18 US US16/319,245 patent/US11465448B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158916A (ja) * | 1998-11-27 | 2000-06-13 | Bridgestone Corp | 空気入りタイヤ |
JP2004203269A (ja) * | 2002-12-26 | 2004-07-22 | Bridgestone Corp | 空気入りタイヤ |
JP2010095196A (ja) * | 2008-10-17 | 2010-04-30 | Sumitomo Rubber Ind Ltd | 重荷重用タイヤ |
JP2013132966A (ja) * | 2011-12-26 | 2013-07-08 | Sumitomo Rubber Ind Ltd | 重荷重用空気入りタイヤ |
WO2014030476A1 (ja) * | 2012-08-20 | 2014-02-27 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2014040184A (ja) * | 2012-08-22 | 2014-03-06 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2014076764A (ja) * | 2012-10-11 | 2014-05-01 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2015134581A (ja) * | 2014-01-17 | 2015-07-27 | 横浜ゴム株式会社 | 空気入りタイヤ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3489039A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020050311A (ja) * | 2018-09-28 | 2020-04-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
WO2020066404A1 (ja) * | 2018-09-28 | 2020-04-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2020055356A (ja) * | 2018-09-28 | 2020-04-09 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP7139851B2 (ja) | 2018-09-28 | 2022-09-21 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP7196508B2 (ja) | 2018-09-28 | 2022-12-27 | 横浜ゴム株式会社 | 空気入りタイヤ |
US11999199B2 (en) | 2018-09-28 | 2024-06-04 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
CN109414965A (zh) | 2019-03-01 |
US20190275842A1 (en) | 2019-09-12 |
JP6493542B2 (ja) | 2019-04-03 |
EP3489039B1 (en) | 2021-03-10 |
EP3489039A4 (en) | 2020-02-19 |
US11465448B2 (en) | 2022-10-11 |
JPWO2018016477A1 (ja) | 2018-07-19 |
EP3489039A1 (en) | 2019-05-29 |
CN109414965B (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6493542B2 (ja) | 空気入りタイヤ | |
US9555669B2 (en) | Pneumatic tire | |
JP5447748B1 (ja) | 空気入りタイヤ | |
RU2436686C2 (ru) | Пневматическая шина | |
JP5630594B1 (ja) | 空気入りタイヤ | |
US9738120B2 (en) | Pneumatic tire | |
JP6762267B2 (ja) | タイヤ | |
JP6701919B2 (ja) | 空気入りタイヤ | |
JP2013189129A (ja) | 空気入りタイヤ | |
JP6287554B2 (ja) | 空気入りタイヤ | |
JPWO2014136500A1 (ja) | 空気入りタイヤ | |
CA2877642C (en) | Pneumatic tire | |
WO2016027648A1 (ja) | 空気入りタイヤ | |
US11358416B2 (en) | Tire | |
CN111516434A (zh) | 轮胎 | |
CN111137072B (zh) | 轮胎 | |
JP2010247549A (ja) | 空気入りタイヤ | |
JP5282479B2 (ja) | 空気入りタイヤ | |
JP7110720B2 (ja) | タイヤ | |
JP6346932B2 (ja) | 空気入りタイヤ | |
JP7388904B2 (ja) | 空気入りタイヤ | |
JP6368063B2 (ja) | 空気入りタイヤ | |
JP5852703B2 (ja) | 重荷重用タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017538250 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017830993 Country of ref document: EP Effective date: 20190219 |