WO2018012567A1 - 複合材料の製造方法及び複合材料 - Google Patents

複合材料の製造方法及び複合材料 Download PDF

Info

Publication number
WO2018012567A1
WO2018012567A1 PCT/JP2017/025481 JP2017025481W WO2018012567A1 WO 2018012567 A1 WO2018012567 A1 WO 2018012567A1 JP 2017025481 W JP2017025481 W JP 2017025481W WO 2018012567 A1 WO2018012567 A1 WO 2018012567A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
producing
material according
fiber
fibers
Prior art date
Application number
PCT/JP2017/025481
Other languages
English (en)
French (fr)
Inventor
茂 堀江
信彦 松本
孝介 池内
染谷 昌男
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020197001517A priority Critical patent/KR102086309B1/ko
Priority to CN201780042355.9A priority patent/CN109415517B/zh
Priority to JP2018527651A priority patent/JP6536749B2/ja
Priority to US16/317,922 priority patent/US10597500B2/en
Priority to EP17827690.3A priority patent/EP3486274A4/en
Publication of WO2018012567A1 publication Critical patent/WO2018012567A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/04Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • B29C2043/561Compression moulding under special conditions, e.g. vacuum under vacuum conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0094Geometrical properties

Definitions

  • the present invention relates to a method for producing a composite material and the composite material.
  • Composite materials are used as structural materials in many technical fields such as aerospace, aircraft, wind power generation, automobiles and maritime applications. Since such a composite material is lighter than a metal material, demand in the automobile industry or the like is expected mainly for the purpose of improving fuel consumption.
  • thermoplastic resin For applications in the automobile industry, materials using thermoplastic resins are being studied from the viewpoint of productivity and recyclability.
  • thermoplastic resin has a high viscosity
  • voids are generated at the interface between the resin and the reinforcing material, and the reinforcing material becomes non-uniform. there were.
  • Patent Document 1 discloses a method of impregnating with a monomer having a low viscosity such as ⁇ -caprolactam or cyclic butylene terephthalate and then polymerizing by ring-opening polymerization It has been known. With such polymerization, since there is no gas that is substantially generated in the polymerization, a composite material without voids can be produced. On the other hand, since the polymerization is from a monomer, it cannot be sufficiently high molecular weight and high strength cannot be obtained. There was a problem that the kind of was limited.
  • Patent Document 2 a chain extender is added to a reactive prepolymer having a low viscosity to increase the molecular weight after impregnation, but a step of mixing the prepolymer and the chain extender is necessary before impregnating the fiber. There was a problem in workability.
  • Patent Document 3 describes a method of obtaining a composite material having high mechanical strength by impregnating a reinforcing fiber with an oligomer of polyamide and performing pultrusion molding. In this method, small molecules generated during polymerization of the prepolymer remain, so that the progress of the polymerization becomes insufficient, and voids may be generated, which may cause deterioration in physical properties of the composite material.
  • An object of the present invention is to provide a method for producing a high-strength composite material.
  • the present inventors have made a composite material manufacturing method including a step of combining a resin precursor and a reinforcing fiber and a step of polymerizing the resin precursor.
  • the present inventors have found that a high-strength composite material can be obtained and have completed the present invention. It has also been found that in the above method, a composite material having extremely high strength can be obtained when the polymerization is carried out under pressure (under reduced pressure). That is, the present invention is as follows.
  • a method for producing a composite material comprising a step of combining a resin precursor and a reinforcing fiber, and a step of subjecting the resin precursor to condensation polymerization.
  • ⁇ 2> The method for producing a composite material according to ⁇ 1>, wherein the resin precursor is an oligomer of a thermoplastic resin.
  • ⁇ 3> The method for producing a composite material according to ⁇ 1> or ⁇ 2>, wherein the resin precursor has a viscosity of 1 to 100 Pa ⁇ s.
  • ⁇ 4> The composite according to any one of ⁇ 1> to ⁇ 3>, wherein the resin precursor includes at least one member selected from the group consisting of polyamide, polyester, polycarbonate, polyether, polysulfide, and ketone tree. It is a manufacturing method of material.
  • ⁇ 5> The composite material according to any one of ⁇ 1> to ⁇ 4>, wherein the reinforcing fiber includes at least one of the group consisting of glass fiber, carbon fiber, basalt fiber, SiC fiber, and organic fiber. It is a manufacturing method.
  • ⁇ 6> The method for producing a composite material according to any one of ⁇ 1> to ⁇ 5>, wherein the proportion of the reinforcing fibers in the composite material is 1 to 90% by volume.
  • ⁇ 7> The method for producing a composite material according to any one of ⁇ 1> to ⁇ 6>, wherein the reinforcing fiber is a discontinuous fiber.
  • ⁇ 8> The method for producing a composite material according to ⁇ 7>, wherein the discontinuous fibers include at least one or more members selected from the group consisting of rovings, nonwoven fabrics, and tapes.
  • the discontinuous fibers have a fiber length of 0.5 mm to 100 mm.
  • the continuous fiber is a unidirectional fiber, a woven fabric, a knitted fabric, or a braid.
  • ⁇ 12> The method for producing a composite material according to any one of ⁇ 1> to ⁇ 11>, wherein in the compounding step, the compounding is performed by any of an immersion method, an impregnation method, and a kneading method.
  • ⁇ 13> The method for producing a composite material according to any one of ⁇ 1> to ⁇ 12>, wherein a reaction temperature in the polymerization step is 100 ° C. to 400 ° C.
  • ⁇ 14> The method for producing a composite material according to any one of ⁇ 1> to ⁇ 13>, wherein the reduced pressure of the reaction in the polymerization step is 0 to 0.095 MPa.
  • ⁇ 15> The method for producing a composite material according to any one of ⁇ 1> to ⁇ 14>, wherein pressurization is simultaneously performed in the polymerization step.
  • ⁇ 16> The method for producing a composite material according to ⁇ 15>, wherein the pressing method is a vacuum press method.
  • ⁇ 17> The method for producing a composite material according to ⁇ 16>, wherein the pressure of the vacuum pressing method is 0.1 to 30 MPa.
  • ⁇ 18> A composite material produced by the method according to any one of ⁇ 1> to ⁇ 17>.
  • thermoplastic resin composite material having high mechanical properties can be produced by the production method of the present invention.
  • Example 4 is a cross-sectional SEM photograph of the composite material (without voids) obtained in Example 2.
  • 6 is a cross-sectional SEM photograph of the composite material (with voids) obtained in Comparative Example 2.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described.
  • the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • This invention is a manufacturing method of a composite material including the process of compounding a resin precursor and a reinforced fiber, and the process of polymerizing the said resin precursor. Since it is configured as described above, according to the method for manufacturing a composite material according to the present embodiment, a resin material is sufficiently impregnated between the reinforcing fibers, and there are few voids, and a composite material having high mechanical properties is manufactured. Can do. Moreover, this composite material is excellent in productivity and recyclability.
  • the composite material of this embodiment is a material containing a thermoplastic resin and reinforcing fibers.
  • a resin obtained by a condensation reaction is preferable, and examples thereof include polyamide, polyester, polycarbonate, polyether, polysulfide, and ketone-based resin. These resins may be used alone or in combination.
  • the resin precursor is not particularly limited as long as the resin can be obtained by polymerization, and may be a monomer constituting the resin, but is preferably an oligomer in which monomers are bonded.
  • the oligomer is preferable when the reactive monomer as a constituent unit is obtained by a condensation polymerization reaction because the present invention works more effectively.
  • the resin precursor is heated under reduced pressure conditions, the remaining terminal functional groups are further subjected to condensation polymerization, and the molecular weight is increased, so that the resin precursor can be in a thermoplastic resin (polymer) state.
  • the melt viscosity of the resin precursor is not limited, but it is preferably 1 to 100 Pa ⁇ s at the temperature at which the resin precursor and the reinforcing fiber are combined, and preferably 1 to 80 Pa ⁇ s. It is more preferable that
  • the resin precursor preferably has a plurality of different types of functional group ends derived from the constituent components.
  • the resin precursor can have two types of functional group ends (X, Y).
  • X, Y For example, the following formula ( A composition containing two or more of 1) to (3) may be used, or Formula (2) alone may be used.
  • X-C-X Formula (1) X-C-Y Formula (2) Y-C-Y Formula (3)
  • C shown in the above formulas (1) to (3) is a polycondensate of monomer structural units which are raw materials of the thermoplastic resin. As the number of monomer structural units increases, the molecular weight increases and the viscosity at the time of heating and melting increases, but the number of structural units is not particularly limited. However, the melt viscosity of the resin precursor is preferably 100 Pa ⁇ s or less, and therefore the number of monomer structural units (degree of polymerization) is preferably a value that realizes such a melt viscosity. C may be aliphatic, aromatic or heterocyclic, and a mixture of two or more of these may be used. Examples of mixing when the resin precursor is a composition containing two or more of the above (1) to (3) include, for example, mixing of formula (1) and formula (2), formula (1) and formula (2) Mixing of (3), mixing of formula (1), formula (2) and formula (3) may be mentioned.
  • the resin precursor preferably contains at least one or more members selected from the group consisting of polyamide, polyester, polycarbonate, polyether, polysulfide, and ketone-based resin precursors. Among these, polyamide, polyester, and polycarbonate oligomers are more preferable. These resin precursors may be used alone or in combination of two or more.
  • the polyamide resin is composed of two types of components, that is, a diamine component and a dicarboxylic acid component, and the resin precursors represented by the above formulas (1) to (3) are also composed of similar components.
  • a constituent component of the polyamide resin it is also possible to use amino acids or peptides having both amino groups and carboxyl groups as terminal functional groups.
  • polyester resin is composed of two types of components, that is, a diol component and a dicarboxylic acid component, and the resin precursors represented by the above formulas (1) to (3) are also composed of similar components.
  • a constituent component of the polyester resin an amino acid, a peptide, or the like having both a hydroxy group and a carboxyl group as terminal functional groups can be used.
  • the polycarbonate resin is composed of two types of constituent components, that is, a diol component and a carbonic acid diester component or phosgene, and the resin precursors represented by the above formulas (1) to (3) are also composed of similar constituent components.
  • the type of the diamine component is not particularly limited. Specifically, tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine , Aliphatic diamines such as dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis ( Aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, bis Alicyclic diamines such as aminomethyl) tricyclo
  • the type of the dicarboxylic acid component is not particularly limited, but aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid; succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelain Acid, sebacic acid, 1,10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,16-hexadecanedicarboxylic acid, 1,18-octadecane Aliphatic dicarboxylic acids such as dicarboxylic acid, oxalic acid and malonic acid can be mentioned.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid
  • succinic acid gluta
  • the type of carbonic acid diester is not particularly limited, and specific examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, and the like. It is done.
  • the polyether resin can be obtained by condensing, as a raw material, a compound having a skeleton having an aromatic ring such as a diol compound having an alkyl group such as ethylene glycol, a hydroquinone derivative, or a bisphenol derivative.
  • the polysulfide resin can be obtained by condensing a compound such as p-bromothiophenol as a raw material.
  • the above-mentioned ketone resin is a polyether ketone resin such as PEK (polyether ketone), PEEK (polyether ether ketone), PEKK (polyether ketone ketone), etc., using a compound having a fluorine group and a compound having a hydroxy group as raw materials. Obtained by condensation.
  • PEK polyether ketone
  • PEEK polyether ether ketone
  • PEKK polyether ketone ketone
  • the polymerization reaction is preferably a condensation reaction.
  • the condensation reaction is not limited to a specific reaction method, but is generally performed by a method in which the degree of polymerization is suppressed to a certain level or less in the process of synthesizing a condensation reaction type resin, and many unreacted functional groups are left. That is, it is carried out by setting the temperature and pressure conditions during the reaction to milder conditions than the synthesis conditions of the thermoplastic resin obtained by ordinary condensation polymerization.
  • a polyamide resin precursor is obtained by condensation polymerization of a diamine component and a dicarboxylic acid component, which are polyamide raw materials.
  • a polyamide resin precursor can be produced by a method in which a nylon salt composed of a diamine component and a dicarboxylic acid component is heated in a pressurized state in the presence of water and polymerized in a molten state.
  • the polyamide resin precursor can also be produced by a method in which a diamine component is directly added to a dicarboxylic acid component in a molten state and polycondensed under normal pressure or under pressure. Meanwhile, polycondensation proceeds while the reaction system is heated so that the reaction temperature does not fall below the melting point of the oligoamide and polyamide produced.
  • a phosphorus atom-containing compound may be added to the polycondensation reaction system in order to accelerate the amidation reaction and suppress coloring.
  • the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, potassium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphone Phosphonic acid compounds such as acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate,
  • Phosphonic acid compounds Phosphonic acid compounds; phosphorous acid, sodium hydrogen phosphite, sodium phosphite, lithium phosphite, potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, pyro-subite
  • phosphorous acid compounds such as phosphoric acid.
  • metal hypophosphites such as sodium hypophosphite, potassium hypophosphite and lithium hypophosphite are particularly preferably used for promoting the amidation reaction, and sodium hypophosphite is particularly preferred. preferable.
  • the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
  • an alkali metal compound may be allowed to coexist in the polycondensation reaction system.
  • alkali metal compound alkali metal hydroxides and alkali metal acetates are usually used.
  • the above phosphorus atom-containing compound containing an alkali metal is excluded.
  • Specific examples of the alkali metal compound include, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate, and the like. At least one selected from sodium hydroxide and sodium acetate is preferred. These can be used alone or in combination of two or more.
  • the polymerization proceeds further after the resin precursor is combined with the reinforcing fiber.
  • the polymerization is a condensation polymerization
  • the amount of the functional groups X and Y is slightly shifted from the equivalent amount.
  • the value of x / y when the equivalent of X is x and the equivalent of Y is y is usually 0.90 to x / y to 1.1, more preferably 0.95 to x / y to 1.05. More preferably, 0.99 to x / y to 1.01.
  • a method of adding an appropriate amount of a monomer component having only one functional group can be used.
  • the addition amount of the monomer having only one functional group is 0.1 to 10% equivalent, preferably 0.5 to 5% equivalent, more preferably 0.6 to the monomer component having two or more functional groups. 3% equivalent.
  • the reinforcing fiber preferably includes at least one or more members selected from the group consisting of glass fiber, carbon fiber, basalt fiber, SiC fiber, and organic fiber.
  • inorganic fibers such as glass fibers, carbon fibers, basalt fibers, and SiC fibers
  • organic fibers such as aramid fibers and hemp fibers.
  • inorganic fibers such as glass fiber, carbon fiber, basalt fiber, and SiC fiber
  • the proportion of the reinforcing fiber in the composite material is preferably 1 to 90% by volume.
  • the compounding ratio of the reinforcing fiber in the composite material obtained by combining the resin precursor and the reinforcing fiber and polymerizing the resin precursor is 1 to 90% by volume of the reinforcing fiber with respect to the molded body volume.
  • the range is preferable, and from the viewpoint of obtaining workability and high mechanical strength, the range is more preferably 20 to 70% by volume, and further preferably 25 to 55% by volume. In order to obtain high strength, it is better to have a high blending ratio of reinforcing fibers.
  • the blending ratio of reinforcing fibers increases, the matrix resin can be sufficiently impregnated in the gaps between the reinforcing fibers. As a result, voids may occur in the resulting composite material.
  • the strength of the composite material rapidly decreases.
  • the resin can be completely impregnated between the reinforcing fibers, so that the reinforcement is performed without causing a decrease in strength due to void generation.
  • the mixing ratio of the fibers can be increased.
  • the lower limit value of the mixing ratio of the reinforcing fibers can be 40% by volume or more, 45% by volume or more, or 50% by volume or more.
  • a non-continuous fiber can be used as the reinforcing fiber.
  • the shape of the discontinuous fiber is preferably such that the ratio of the fiber length to the fiber diameter is 50 or more, and more preferably 1000 or more.
  • the reinforcing fiber for example, it is preferable to include at least one or more members selected from the group consisting of roving, non-woven fabric, and tape.
  • the continuous fiber refers to a reinforcing fiber that constitutes a composite material and that is continuously connected without interruption. And a discontinuous fiber refers to other than the said continuous fiber.
  • the fiber length of the discontinuous fibers is preferably 0.5 mm to 100 mm. From the viewpoint of maintaining the high mechanical strength of the composite material and maintaining the forming, the thickness is more preferably 10 to 80 mm, and further preferably 20 to 50 mm.
  • continuous fibers can be used, and in this case, unidirectional fibers, woven fabrics, knitted fabrics, and braids are more preferable.
  • Such woven fabrics, knitted fabrics and braids are preferably continuous fibers which are, for example, biaxial or polyaxial woven fabrics, knitted fabrics and braids.
  • the degree of reinforcement of the composite material is improved, and a molded product that exhibits more excellent mechanical properties can be produced.
  • the non-woven fabric is a sheet in which reinforcing fibers are overlapped and bonded in a three-dimensional structure, and examples thereof include random mats, paper materials, and felts.
  • glass fiber glass fiber roving, glass fiber nonwoven fabric, glass fiber woven fabric, glass fiber knitted fabric, glass fiber tape, and the like can be used, and glass fiber short fibers such as glass fiber milled fiber may be included.
  • glass fibers include E glass, S glass, and C glass, and E glass is particularly preferable.
  • the cross section of the glass fiber monofilament may be circular or flat such as elliptical.
  • carbon fiber various forms made of carbon fiber similar to the above glass fiber can be used.
  • pitch-type made from coal tar pitch or petroleum pitch
  • PAN-type made from polyacrylonitrile
  • rayon-type made from cellulose fiber.
  • any carbon fiber can be used in the present embodiment.
  • the step of compounding the resin precursor and the reinforcing fiber is a step in which the resin precursor is present around each reinforcing fiber.
  • the compounding method may be any method that can realize a state in which a resin precursor exists around each reinforcing fiber, and examples thereof include a mixing method such as an immersion method, an impregnation method, and a kneading method. It is not limited. Examples of the dipping method include a pultrusion method, a prepreg method, and a winding method. Examples of the impregnation method include impregnation with a press, a double belt press, or the like, or a transfer molding method.
  • the step of combining the resin precursor and the reinforcing fiber does not require any special operation as long as a state in which the resin precursor exists around each reinforcing fiber is realized.
  • the resin precursor and the reinforcing fiber are appropriately dispersed.
  • a molten resin precursor may be added to the reinforcing fiber (poured or sprinkled).
  • the resin precursor may be in a liquid form or a solid form such as a powder.
  • the kneading method is preferably any one of stirring, melt kneading, and roll kneading. From the viewpoint of productivity, when the reinforcing fiber is in a form in which roving is cut, a method of melt kneading under a temperature condition at which the resin melts using a stirrer, a single-screw or twin-screw kneader, a roll kneader or the like is more preferable. preferable. *
  • the polymerization reaction depends on the type of the resin precursor, but is preferably a condensation reaction.
  • the reaction temperature of the polymerization reaction is preferably 100 ° C. to 400 ° C.
  • the temperature of the polymerization reaction is adjusted according to the type of resin precursor, that is, the type of component (monomer) of the resin raw material and the degree of polymerization of the resin precursor. From the viewpoint of more easily performing this, or from the viewpoint of enhancing the impregnation property of the resin into the reinforcing fiber, 150 to 400 ° C is more preferable, and 200 to 400 ° C is further preferable.
  • Such a polymerization reaction temperature is also preferable, for example, for removing small molecules generated by condensation polymerization under reduced pressure conditions or for removing small molecules (monomers) that are difficult to melt at a temperature.
  • the step of polymerizing the resin precursor is not particularly limited, but can be performed under vacuum (in a reduced pressure atmosphere).
  • the degree of vacuum (degree of reduced pressure) in the polymerization reaction is not limited as long as small molecules can be removed, and is preferably 0 to 0.095 MPa, more preferably 0 to 0.08 MPa, still more preferably 0 to 0.02 MPa, and particularly
  • the pressure is preferably 0.0001 to 0.01 MPa.
  • the said vacuum degree (decompression degree) shows an absolute pressure here.
  • the step of combining the resin precursor and the reinforcing fiber and the step of polymerizing the resin precursor may be performed sequentially or simultaneously.
  • the composite material when the composite material is pressurized (pressed) during the polymerization reaction, a high-strength composite material can be obtained.
  • the strength of the composite material can be further increased.
  • the degree of vacuum is preferably 0.08 MPa or less, more preferably 0.01 MPa or less, further preferably 0.009 MPa or less, and 0.005 MPa or less from the viewpoint of strength. It is particularly preferred.
  • a vacuum press method it is preferable to employ a vacuum press method. In this case, molding can be performed at the same time.
  • the vacuum pressing method is more preferably a continuous pressing method or a multistage pressing method. If the multi-stage press method is used, a batch type of a plurality of materials can be vacuum-pressed at once, so that the disadvantage of mass productivity can be compensated. Moreover, it can also carry out by the continuous press method which is excellent in mass productivity.
  • condensation polymerization proceeds by kneading the resin precursor and the reinforcing fibers while reducing the space in the kneader.
  • a method other than the above for example, by using a Va-RTM apparatus or a vacuum press machine, a form in which the resin precursor is supplied to the reinforcing fiber at the time of vacuum (reduced pressure) heating is used.
  • a fiber-reinforced composite material can also be obtained by simultaneously performing condensation polymerization.
  • the apparatus which can be made into a vacuum (reduced pressure) condition at the time of the polymerization reaction of the resin precursor (at the time of heating in the condensation polymerization reaction) is not particularly specified, there is a method using a Va-RTM apparatus, a vacuum press machine or the like. By polymerizing using these apparatuses, a fiber-reinforced composite material having no voids and excellent mechanical strength can be obtained.
  • the fiber reinforced composite material can be simultaneously formed into a plate shape or a sheet shape.
  • the pressure applied to the fiber-reinforced composite material during the condensation polymerization reaction of the resin precursor is not particularly limited, but from the viewpoint of removing voids remaining in the composite material to be molded 0.1 to 30 MPa is preferable, and 0.5 to 30 MPa is more preferable. From the viewpoint of using general-purpose equipment, it is more preferably 0.5 to 10 MPa, and particularly preferably 0.5 to 5 MPa.
  • the composite material obtained by this embodiment has high strength, and particularly has high bending strength and bending elastic modulus.
  • the bending strength and the bending elastic modulus can be evaluated by conducting a bending property test on the composite material formed into a plate shape.
  • the bending characteristic test can be performed by, for example, a three-point bending test using Autograph AG5000B (manufactured by Shimadzu Corporation).
  • the bending strength of the composite material in which the reinforcing fibers are glass fibers is preferably 500 MPa or more, and more preferably 500 to 800 MPa.
  • the flexural modulus is preferably 28 GPa or more, and more preferably 28 to 50 GPa.
  • thermoplastic composite materials of the examples and comparative examples were prepared by three-point bending using an autograph AG5000B (manufactured by Shimadzu Corporation).
  • the measurement temperature was 25 ° C.
  • ⁇ Preparation of resin precursor A> To prepare a polyamide resin precursor, 90 g of dicarboxylic acid, sebacic acid, 80 mg of sodium acetate and 80 mg of sodium hypophosphite monohydrate as additives were added to the reaction vessel and flowed with nitrogen gas. While melting at 145 ° C. There, 60.1 g of a mixture of metaxylylenediamine and paraxylylenediamine as a diamine component was slowly added dropwise. After the dropping, the temperature was raised to 200 to 230 ° C., and the resin precursor A was obtained by melting and stirring under normal pressure for 20 to 30 minutes.
  • the melt viscosity of the resin precursor A obtained above is measured using a capillary rheometer (Capillograph: manufactured by Toyo Seiki Co., Ltd.), and the temperature is 220 ° C. and the shear rate is 1200 s ⁇ 1. ⁇ It was s.
  • the resin precursor A having a melt viscosity of 72 Pa ⁇ s was used.
  • Example 1 A glass fiber roving having a diameter of 12 ⁇ m was cut into 40 mm and spread on a rectangular parallelepiped press mold having a size of 100 mm (W) ⁇ 100 mm (D) ⁇ 1.5 mm (H). Further, a resin precursor A (melt viscosity is 72 Pa ⁇ s) pulverized into a powder form was added to the mold. A press mold filled with 70% by volume of this resin precursor and 30% by volume of glass fiber is heated and pressed at 260 ° C. and 3.5 MPa for 30 minutes under reduced pressure conditions of 0.01 MPa to form a plate shape. A molded fiber reinforced composite material was obtained. Table 1 shows the physical properties of the obtained composite material.
  • Example 2 A fiber-reinforced composite material was obtained in the same manner as in Example 1 except that the resin precursor A was 55% by volume and the glass fiber was 45% by volume. Table 1 shows the physical properties of the obtained composite material.
  • a cross-sectional SEM photograph (SEM-EDX: JSM-6460LA (manufactured by JEOL Ltd.)) of the obtained composite material is shown in FIG. In FIG. 1, the white circle is the cross section of the glass fiber. Compared to Example 1, the glass fiber volume content in the composite material was high, and an improvement in bending strength could be confirmed.
  • Example 3 A fiber-reinforced composite material was obtained in the same manner as in Example 2 except that the pressure reduction condition during the hot pressing was changed to 0.001 MPa. Table 1 shows the physical properties of the obtained composite material. It was confirmed that the bending strength was further improved by changing the depressurization condition during the hot pressing to 0.001 MPa.
  • thermoplastic resin B ⁇ Preparation of thermoplastic resin B> The condensation polymerization reaction of dicarboxylic acid and diamine was advanced with the same raw material composition as resin precursor A. After dropwise addition of the diamine, the temperature was raised to 250 ° C., and the pressure was further reduced to 0.05 MPa to remove water generated from the reaction system, thereby obtaining a thermoplastic resin B having a high degree of polymerization.
  • the melt viscosity of the thermoplastic resin B obtained above is measured using a capillary rheometer (Capillograph: manufactured by Toyo Seiki Co., Ltd.), and the temperature is 220 ° C. and the shear rate is 1200 s ⁇ 1 at 380 Pa ⁇ s. there were.
  • Example 1 A fiber-reinforced composite material was obtained in the same manner as in Example 1 except that the thermoplastic resin B was used instead of the resin precursor A. Table 1 shows the physical properties of the obtained composite material.
  • Comparative Example 2 A fiber-reinforced composite material was obtained in the same manner as in Example 2 except that the thermoplastic resin B was used instead of the resin precursor A. Table 1 shows the physical properties of the obtained composite material. Further, FIG. 2 shows a cross-sectional SEM photograph of the obtained composite material (imaging conditions are the same as those in Example 2). In FIG. 2, the white circle is the cross section of the glass fiber. Even when compared with Comparative Example 1 as well as Example 2, the bending strength was inferior.
  • thermoplastic resin B having a high melt viscosity cannot be completely impregnated into the used glass fiber roving and has a void (portion enclosed by an ellipse / circle in FIG. 2). Conceivable. And since the fiber content of the comparative example 2 is larger than the comparative example 1, it is thought that the influence by a void became more remarkable in the comparative example 2.
  • Comparative Example 3 A fiber-reinforced composite material was obtained in the same manner as in Example 3 except that the thermoplastic resin B was used instead of the resin precursor A. Table 1 shows the physical properties of the obtained composite material.
  • Example 3 By changing the depressurization condition at the time of heating press to 0.001 MPa, no void was confirmed by visual inspection of the cross-sectional photograph (not shown), but compared to Example 3, the value of bending strength was inferior.
  • the bending characteristics of “Tepex dynalite 101” manufactured by Bond Laminates with glass cloth impregnated with nylon 66 were also measured in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 3.
  • “Tepex dynalite 101” is a composite material using a continuous fiber fabric as a reinforcing fiber. Table 1 shows the physical properties of the obtained composite material.
  • thermoplastic resin composite material obtained by impregnating glass fiber with a precursor of a thermoplastic resin, that is, an oligomer, and then polymerizing under reduced pressure is a material exhibiting high mechanical properties. It could be confirmed. In particular, a composite material having an extremely high bending strength was obtained when the pressure reduction condition at the time of hot pressing was 0.001 MPa.
  • thermoplastic resin composite material obtained by the production method of the present invention is excellent in rigidity and strength, and can be used for various applications, particularly members such as aircraft and automobiles that require weight reduction and high strength. It can be preferably applied in the use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

樹脂前駆体と強化繊維を複合化する工程、且つ前記樹脂前駆体を重合反応する工程を含む複合材料の製造方法により本課題を解決した。即ち、前記製造方法により、高強度の熱可塑性樹脂複合材料が得られた。

Description

複合材料の製造方法及び複合材料
 本発明は、複合材料の製造方法及び該複合材料に関する。
 複合材料は、構造材料として航空宇宙、航空機、風力発電、自動車および海事用途等の多くの技術分野において使用されている。このような複合材料は金属材料よりも軽量であるため、主に燃費向上等の目的で自動車産業等での需要が期待されている。
 自動車産業等での適用には、生産性とリサイクル性の観点から、熱可塑性樹脂を用いた材料が検討されている。しかし、熱可塑性樹脂は粘度が高いため、繊維などの強化材料を加えた場合、樹脂と強化材料との界面に空隙が生じ、また強化材料が不均一になるため、機械強度が低下する問題があった。また、これらの問題の為、実質的に強化材料の高充填が不可能であった。
 強化材料として、例えば強化用繊維に対する含浸性を高める事を目的として、特許文献1では、ε―カプロラクタムや環状ブチレンテレフタレートのような粘度が低いモノマーで含浸した後、開環重合でポリマー化する方法が知られている。このような重合であれば、重合において実質発生するガスがないため、空隙のない複合材料を製造できる一方、モノマーからの重合であるため十分に高分子量化できず高い強度が得られない、樹脂の種類が限定されるといった問題があった。
 特許文献2では、粘度が低い反応性のプレポリマーに鎖延長剤を添加し、含浸後に高分子量化をしているが、繊維に含浸する前にプレポリマーと鎖延長剤をミキサーする工程が必要であり作業性に課題があった。
 特許文献3では、強化用繊維にポリアミドのオリゴマーを含浸し、引抜成形することで高い機械強度の複合材を得る方法が記述されている。この方法ではプレポリマーの重合時に生成する小分子が残存するため、重合の進行が不十分となり、また空隙が生じる可能性があり、複合材料の物性が劣る懸念があった。
特表2011-516654号公報 特表2015-501360号公報 特開昭63-82731号公報
 本発明は、高強度の複合材料の製造方法を提供することを課題とする。
 本発明者らは、かかる課題を解決すべく鋭意検討を重ねた結果、樹脂前駆体と強化繊維を複合化する工程、及び前記樹脂前駆体を重合させる工程を含む複合材料の製造方法によれば高強度の複合材料を得られることを見出し、本発明を完成するに至った。
 また、前記方法において、重合を真空下(減圧下)で加圧しながら行うときわめて高強度の複合材料を得られることも判明した。
 即ち本発明は以下の通りである。
<1> 樹脂前駆体と強化繊維を複合化する工程、及び前記樹脂前駆体を縮合重合させる工程を含む、複合材料の製造方法である。
<2> 前記樹脂前駆体が、熱可塑性樹脂のオリゴマーである、<1>に記載の複合材料の製造方法である。
<3> 前記樹脂前駆体の粘度が、1~100Pa・sである、<1>又は<2>に記載の複合材料の製造方法である。
<4> 前記樹脂前駆体が、ポリアミド、ポリエステル、ポリカーボネート、ポリエーテル、ポリスルフィド、及びケトン系樹からなる群のうち、少なくとも一種以上を含む、<1>~<3>のいずれかに記載の複合材料の製造方法である。
<5> 前記強化繊維が、ガラス繊維、炭素繊維、バサルト繊維、SiC繊維および有機繊維からなる群のうち、少なくとも一種以上を含む、<1>~<4>のいずれかに記載の複合材料の製造方法である。
<6> 複合材料における前記強化繊維の割合が、1~90体積%である、<1>~<5>のいずれかに記載の複合材料の製造方法である。
<7> 前記強化繊維が、非連続繊維である、<1>~<6>のいずれかに記載の複合材料の製造方法である。
<8> 前記非連続繊維が、ロービング、不織布、及びテープからなる群のうち、少なくとも一種以上を含む、<7>に記載の複合材料の製造方法である。
<9> 前記非連続繊維の繊維長が、0.5mm~100mmである、<7>又は<8>に記載の複合材料の製造方法である。
<10> 前記強化繊維が、連続繊維である、<1>~<6>のいずれかに記載の複合材料の製造方法である。
<11> 前記連続繊維が、一方向繊維、織物、編み物又は組物である、<10>に記載の複合材料の製造方法である。
<12> 前記複合化する工程において、複合化が浸漬法、含浸法、及び混練法のいずれかによって行われる、<1>~<11>のいずれかに記載の複合材料の製造方法である。
<13> 前記重合させる工程における反応温度が、100℃~400℃である、<1>~<12>のいずれかに記載の複合材料の製造方法である。
<14> 前記重合させる工程における反応の減圧度が、0~0.095MPaである、<1>~<13>のいずれかに記載の複合材料の製造方法である。
<15> 前記重合させる工程において、同時に加圧を行う、<1>~<14>のいずれか記載の複合材料の製造方法である。
<16> 前記加圧方法が、真空プレス法である、<15>に記載の複合材料の製造方法である。
<17> 前記真空プレス法の圧力が、0.1~30MPaである、<16>に記載の複合材料の製造方法である。
<18> <1>~<17>のいずれかに記載の方法で製造した複合材料である。
 本発明の製造方法により、高い機械物性を有する熱可塑性樹脂複合材料を製造することができる。
実施例2で得られた複合材料(ボイドなし)の断面SEM写真である。 比較例2で得られた複合材料(ボイドあり)の断面SEM写真である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本発明は、樹脂前駆体と強化繊維を複合化する工程、及び前記樹脂前駆体を重合させる工程を含む、複合材料の製造方法である。
 上記のように構成されているため、本実施形態に係る複合材料の製造方法によれば、強化繊維間に樹脂が十分に含浸され、空隙が少なく、高い機械物性を有する複合材料を製造することができる。また、この複合材料は、生産性やリサイクル性に優れる。
 本実施形態の複合材料は、熱可塑性樹脂と強化繊維を含む材料である。本実施形態において、熱可塑性樹脂の具体例としては、縮合反応により得られる樹脂が好ましく、例えば、ポリアミド、ポリエステル、ポリカーボネート、ポリエーテル、ポリスルフィド、及びケトン系樹脂などが挙げられる。
 これらの樹脂は1種のみを用いてもよいし、複数を混合して用いてもよい。
(樹脂前駆体)
 樹脂前駆体は、重合することによって樹脂が得られるものであればよく、樹脂を構成する単量体であってもよいが、単量体が結合したオリゴマーであることが好ましい。
 該オリゴマーは、構成単位である反応性モノマーが縮合重合反応することで得られるものである場合には、本発明がより効果的に働くため好ましい。このような樹脂前駆体は、減圧条件下で加熱されることで残りの末端官能基がさらに縮合重合し、分子量が増加することで熱可塑性樹脂(ポリマー)の状態となり得る。
 樹脂が熱可塑性樹脂である場合、前記樹脂前駆体の溶融粘度に限定はないが、樹脂前駆体と強化繊維を複合化する温度において1~100Pa・sであることが好ましく、1~80Pa・sであることがより好ましい。
 前記樹脂前駆体は、構成成分に由来する異なった複数種類の官能基末端を有することが好ましく、例えば、2種類の官能基末端(X、Y)を有することができ、例えば、以下の式(1)~(3)のうち2種類以上を含む組成物であってもよいし、又は、式(2)単体でもよい。
 X-C-X 式(1)
 X-C-Y 式(2)
 Y-C-Y 式(3)
 前記式(1)~(3)で示したCは前記熱可塑性樹脂の原料であるモノマー構成単位の重縮合物である。モノマー構成単位数は増加するほど分子量が大きくなり加熱溶融時の粘度が高まるが、構成単位数は特に限定されない。もっとも、樹脂前駆体の溶融粘度は、100Pa・s以下であることが好ましく、したがって、モノマー構成単位数(重合度)はそのような溶融粘度を実現する値であることが好ましい。また、Cは脂肪族系でも芳香族系でも複素環系でもよく、またこれらの2種以上を混合して用いても良い。
 樹脂前駆体が上記(1)~(3)のうち2種類以上を含む組成物である場合の混合例としては、例えば、式(1)と式(2)の混合、式(1)と式(3)の混合、式(1)、式(2)及び式(3)の混合が挙げられる。
 上記樹脂前駆体は、ポリアミド、ポリエステル、ポリカーボネート、ポリエーテル、ポリスルフィド、及びケトン系樹脂の前駆体からなる群のうち、少なくとも一種以上を含むことが好ましい。中でも、ポリアミド、ポリエステル、ポリカーボネートのオリゴマーがより好ましい。これらの樹脂前駆体は単独で用いても良く、2種類以上含んで用いても良い。
(ポリアミド樹脂)
 ポリアミド樹脂は、ジアミン成分とジカルボン酸成分の2種類の構成成分からなり、前記式(1)~(3)で示される樹脂前駆体も同様の構成成分からなる。また、ポリアミド樹脂の構成成分としては、アミノ基とカルボキシル基の両方を末端官能基として有するアミノ酸やペプチド等を用いる事も可能である。
(ポリエステル樹脂)
 ポリエステル樹脂は、ジオール成分とジカルボン酸成分の2種類の構成成分からなり、前記式(1)~(3)で示される樹脂前駆体も同様の構成成分からなる。また、ポリエステル樹脂の構成成分としては、ヒドロキシ基とカルボキシル基の両方を末端官能基として有するアミノ酸やペプチド等を用いる事も可能である。
(ポリカーボネート樹脂)
 ポリカーボネート樹脂は、ジオール成分と、炭酸ジエステル成分もしくはホスゲンの2種類の構成成分からなり、前記式(1)~(3)で示される樹脂前駆体も同様の構成成分からなる。
 上記ジアミン成分は、その種類は特に限定されないが、具体的にはテトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン;メタキシリレンジアミン、パラキシリレンジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類;等を例示することができ、これらのジアミンに由来する構成単位は、1種又は2種以上含有することができる。特に、優れた靭性を得る観点からはメタキシリレンジアミン又はメタキシリレンジアミンとパラキシリレンジアミンとの混合物等の芳香族骨格のものであることがより好ましい。
 上記ジカルボン酸成分は、その種類は特に制限されないが、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸、1,14-テトラデカンジカルボン酸、1,16-ヘキサデカンジカルボン酸、1,18-オクタデカンジカルボン酸、シュウ酸、マロン酸等の脂肪族ジカルボン酸が挙げられる。
 上記ジオール成分は、その種類は特に限定されないが、1,1'-ビフェニル-4,4'-ジオール、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルファイド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、2,2-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン[=ビスフェノールC]、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン[=ビスフェノールZ]、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、α,ω-ビス[2-(p-ヒドロキシフェニル)エチル]ポリジメチルシロキサン、α,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、および4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール等が挙げられる。
 上記炭酸ジエステルは、その種類は特に限定されないが、具体的にはジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。
 上記ポリエーテル樹脂は、エチレングリコール等のアルキル基を骨格に持つジオール化合物、ヒドロキノン誘導体、ビスフェノール誘導体等の芳香環を骨格に持つ化合物を原料として縮合することで得られる。
 上記ポリスルフィド樹脂は、p-ブロモチオフェノール等の化合物を原料として縮合する事で得られる。
 上記ケトン系樹脂はPEK(ポリエーテルケトン)、PEEK(ポリエーテルエーテルケトン)、PEKK(ポリエーテルケトンケトン)等のポリエーテルケトン樹脂であり、フッ素基を有する化合物とヒドロキシ基を有する化合物を原料として縮合することで得られる。
 前記重合反応は、縮合反応であることが好ましい。縮合反応は、特定の反応方法に限定されないが、一般的には縮合反応型の樹脂を合成する過程で重合度をある一定以下に抑え、未反応の官能基を多く残す方法で行われる。つまり、通常の縮合重合で得られる熱可塑性樹脂の合成条件より反応時の温度条件、圧力条件をより穏和な条件とすることで行われる。
 例えば、1つの実施形態として、ポリアミドの樹脂前駆体は、ポリアミドの原料であるジアミン成分とジカルボン酸成分との縮合重合によって得られる。例えば、ジアミン成分とジカルボン酸成分とからなるナイロン塩を水の存在下に加圧状態で昇温し、溶融状態で重合させる方法によりポリアミドの樹脂前駆体を製造することができる。また、ジアミン成分を溶融状態のジカルボン酸成分に直接加えて、常圧下又は加圧下で重縮合する方法によってもポリアミドの樹脂前駆体を製造することができる。その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
 ポリアミドの樹脂前駆体の製造では、アミド化反応促進、及び着色抑制のため、重縮合反応系内にリン原子含有化合物を添加してもよい。リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸等のホスフィン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸マグネシウム、次亜リン酸カルシウム、次亜リン酸エチル等のジ亜リン酸化合物;ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸カリウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等のホスホン酸化合物;亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル等の亜ホスホン酸化合物;亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等が挙げられる。
 これらの中でも、特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩が、アミド化反応を促進するため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。なお、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 また、重縮合反応速度の制御の観点から、重縮合反応系内に更にアルカリ金属化合物を共存させてもよい。
 アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩が通常使用される。但し、アルカリ金属を含む上記リン原子含有化合物は除く。アルカリ金属化合物の具体例としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム等が挙げられ、水酸化ナトリウム及び酢酸ナトリウムから選ばれる少なくとも1種が好ましい。これらは1種又は2種以上を組み合わせて用いることができる。
 本実施形態では、樹脂前駆体を強化繊維と複合化した後にさらに重合を進めるが、重合が縮合重合である場合、重合が進みすぎると、脱離成分が多くなり除去困難になり空隙要因となる、得られる樹脂が所望のものより可撓性や靱性に乏しくなる、などの弊害が生じることがある。このため、最大重合度を調整する必要がある。このような手法として、上記の官能基XとYの量を当量から若干ずらす方法がある。Xの当量をx、Yの当量をyとした時のx/yの値は、通常0.90~x/y~1.1、より好ましくは、0.95~x/y~1.05、さらに好ましくは0.99~x/y~1.01とする。
 前記、最大重合度を調整する方法として、官能基を一つしか有しないモノマー成分を適量添加する方法もとりうる。官能基を一つしか有しないモノマーの添加量は官能基を二つ以上有するモノマー成分に対し、0.1~10%当量、好ましくは0.5~5%当量、さらに好ましくは0.6~3%当量である。
 本実施形態においては、強化繊維としては、ガラス繊維、炭素繊維、バサルト繊維、SiC繊維および有機繊維からなる群のうち、少なくとも一種以上を含むことが好ましい。例えば、ガラス繊維、炭素繊維、バサルト繊維、SiC繊維等の無機繊維や、アラミド繊維、麻繊維等の有機繊維を用いることがより好ましい。中でも、ガラス繊維、炭素繊維、バサルト繊維、SiC繊維等の無機繊維を用いることがさらに好ましく、ガラス繊維や炭素繊維を用いることが特に好ましい。
 また、前記強化繊維の複合材料中の割合は、1~90体積%であることが好ましい。即ち、樹脂前駆体と強化繊維を複合化し、前記樹脂前駆体を重合することで得られた複合材料中の強化繊維の配合比率は、成形体体積に対して、強化繊維1~90体積%の範囲であることが好ましく、作業性や高い機械強度を得る観点から、20~70体積%の範囲であることがより好ましく、25~55体積%であることがさらに好ましい。
 高い強度を得るためには強化繊維の配合比率は高い方がよいが、一方で、強化繊維の配合比率が高まると、マトリックスである樹脂が強化繊維の間に存在する隙間等に十分に含浸できず、その結果、得られる複合材料中にボイドが発生することがある。このようなボイドが発生すると、複合材料の強度は急激に低下する。しかしながら、本実施形態の方法によれば、強化繊維の配合比率が高い場合であっても、強化繊維間にも樹脂を完全に含浸させることができるので、ボイド発生による強度低下を招くことなく強化繊維の配合比率を高めることができる。そのような観点からは、強化繊維の配合比率の下限値は、40体積%以上とすることもできるし、45体積%以上とすることもできるし、50体積%以上とすることもできる。
 前記強化繊維としては、非連続繊維を用いることができる。非連続繊維の形状としては、繊維長さと繊維直径との比が50以上であるものが好ましく、1000以上であることがより好ましい。強化繊維として、例えば、ロービング、不織布、及びテープからなる群のうち、少なくとも一種以上を含むことが好ましい。なお、連続繊維とは、複合材料を構成する強化繊維であって、かつ、途切れることなく連続的につながっている強化繊維を指す。そして、非連続繊維とは、前記連続繊維以外を指す。
 また、前記の非連続繊維の繊維長は、0.5mm~100mmであることが好ましい。複合材料の高い機械強度を保持し賦形成を維持する観点から、10~80mmであることがより好ましく、20~50mmがさらに好ましい。
 前記強化繊維としては、連続繊維を用いることもでき、この場合、一方向繊維、織物、編み物及び組物であることがより好ましい。このような織物、編み物及び組物として、例えば二軸または多軸の織物、編み物、及び組物である連続繊維が好ましい。
 前記の非連続繊維又は連続繊維を用いることにより、複合材料の補強度が向上し、より優れた機械的特性を発揮する成形体の製造が可能になる。
 前記不織布は、強化繊維を3次元構造に重ねあわせ結合したシートであり、例えばランダムマット、紙材、フェルト等が挙げられる。
 前記ガラス繊維としては、ガラス繊維ロービング、ガラス繊維不織布、ガラス繊維織物、ガラス繊維編み物及びガラス繊維テープ等を用いることができ、ガラス繊維ミルドファイバー等のガラス繊維短繊維を含んでいてもよい。このようなガラス繊維として、例えば、Eガラス、Sガラス、Cガラス等が挙げられ、なかでもEガラスが好ましい。また、ガラス繊維モノフィラメントの断面は円形でも、楕円形等の扁平形状でもよい。
 前記炭素繊維は、上記のガラス繊維同様の炭素繊維で作製された様々な形態のものを用いる事ができる。
 具体的には、炭素繊維には、コールタールピッチや石油ピッチを原料にした「ピッチ系」と、ポリアクリロニトリルを原料とする「PAN系」と、セルロース繊維を原料とする「レーヨン系」の3種類があり、どの炭素繊維でも本実施形態に用いることができる。
(樹脂前駆体と強化繊維を複合化する工程)
 樹脂前駆体と強化繊維を複合化する工程は、各強化繊維の周囲に樹脂前駆体が存在するような状態とする工程である。複合化する方法は、各強化繊維の周囲に樹脂前駆体が存在するような状態を実現できるものであればよく、例えば浸漬法、含浸法、混練法等の混合方法が挙げられるが、これらに限定されない。浸漬法としては、例えばプルトルージョン法、プリプレグ法、ワインディング法等が挙げられる。含浸法としては、例えばプレス機、ダブルベルトプレス機等での含浸、またはトランスファーモールド法が挙げられる。
 なお、樹脂前駆体と強化繊維を複合化する工程は、各強化繊維の周囲に樹脂前駆体が存在するような状態が実現される限り特段の操作を行う必要はなく、例えば、適度に分散させた強化繊維に溶融状態の樹脂前駆体を添加する(注ぎ入れる、振り入れる)等などであってもよい。
 また、複合化する際、樹脂前駆体は、液状であってもよいし、粉末等の固体状であってもよい。
 さらに、前記混練法は、撹拌、溶融混練、ロール混練のいずれかであることが好ましい。生産性の観点から、強化繊維がロービングをカットした形態である場合、攪拌機、単軸または二軸混練機、ロール混練機などを用いて、樹脂が溶融する温度条件下で溶融混練する方法がより好ましい。 
(前記樹脂前駆体を重合させる工程)
 本実施形態においては、樹脂前駆体と強化繊維とを上記のようにして複合化した後、例えば、前駆体中に含まれる官能基が縮合重合する温度より高温の条件にするなどして、重合させ、重合度を高めポリマー化することで、高い機械強度を示す複合材料を得る。
 前記樹脂前駆体を重合させる工程において、重合反応は樹脂前駆体の種類によるが、縮合反応であることが好ましい。
 重合反応の反応温度は、100℃~400℃であることが好ましい。重合反応の温度は、樹脂前駆体の種類、すなわち樹脂原料の構成成分(モノマー)の種類や樹脂前駆体の重合度によって調整するが、後述するように減圧条件下で重合を行う場合には、これをより容易に行う観点から、もしくは強化繊維への樹脂の含浸性を高めると言った観点から150~400℃がより好ましく、200~400℃がさらに好ましい。このような重合反応温度は、例えば、減圧条件下で縮合重合に伴い発生する小分子の除去、あるいは、温度溶融しにくい小分子(モノマー)の除去においても、好ましい。
 また、前記樹脂前駆体を重合させる工程は、特に限定はされないが、真空下(減圧雰囲気下)で行うことができる。重合反応時に減圧条件にすることで、縮合によって発生する小分子を反応系中から取り除き、効率的にポリマー化を進めることができると共に、高強度の複合材料を得ることができる。前記重合反応の際の真空度(減圧度)は、小分子が取り除ける事ができればよく、好ましくは0~0.095MPa、より好ましくは0~0.08MPa、さらに好ましくは0~0.02MPa、特に好ましくは0.0001~0.01MPaである。尚、ここで上記真空度(減圧度)は、絶対圧力を示す。
 上記の樹脂前駆体と強化繊維を複合化する工程と、前記樹脂前駆体を重合させる工程は、順次に実施してもよいし、同時に実施してもよい。
 また、前記重合反応の際に複合材料を加圧(プレス)すると、高強度の複合材料を得ることができる。特に、真空下でプレスしながら重合反応を進めると、複合材料の強度をより高めることができる。その際の真空度は、強度の観点から、0.08MPa以下であることが好ましく、0.01MPa以下であることがより好ましく、0.009MPa以下であることがさらに好ましく、0.005MPa以下であることが特に好ましい。
 具体的には、真空プレス法を採用することが好ましく、この場合には成形も同時に行うことができる。真空プレス法は、連続プレス法、又は多段プレス法であることがより好ましい。多段プレス法であれば、バッチ式で複数の材料を一括して真空プレスできるので、量産性の欠点を補うことができる。また、さらに量産性に優れる連続プレス法で行うこともできる。
 複合化する工程と重合させる工程を同時に実施する場合、生産性、強度の観点から、複合化と重合反応を真空下で行うことが好ましい。
 具体的な方法としては、混練機中の空間を減圧状態にして樹脂前駆体と強化繊維を混練することで縮合重合が進行する方法が好ましい。
 上記以外の方法としては、例えばVa-RTM装置、または真空プレス機を用いて、真空(減圧)加熱時に強化繊維に対して樹脂前駆体を供給する形態を採る事で、真空下で複合化と縮合重合を同時に行い、繊維強化複合材料を得ることも出来る。
 樹脂前駆体の重合反応時(縮合重合反応における加熱時)に真空(減圧)条件にすることができる装置は、特に特定されないが、Va-RTM装置、真空プレス機等を用いた方法がある。これらの装置を用いて重合することで、空隙がなく機械強度に優れる繊維強化複合材料が得られる。
 また、Va-RTM装置、真空プレス機等を用いた樹脂前駆体の縮合重合反応では、同時に繊維強化複合材料を板状もしくはシート状等の形状に成形することができる。
 Va-RTM装置、真空プレス機等を用いた場合、樹脂前駆体の縮合重合反応中に繊維強化複合材料にかかる圧力は,特に限定されないが、成形される複合材料に残る空隙を除去する観点から、0.1~30MPaであることが好ましく、0.5~30MPaであることがより好ましい。汎用設備を使う観点では、0.5~10MPaであることがさらに好ましく、0.5~5MPaであることが特に好ましい。
 本実施形態により得られた複合材料は、高強度であり、特に高い曲げ強度と曲げ弾性率を有する。曲げ強度と曲げ弾性率は、板状に成形された複合材料に対して、曲げ特性試験を行うことにより評価することができる。曲げ特性試験は、例えば、オートグラフAG5000B(島津製作所製)を使用し、3点曲げ試験により実施することができる。
 本実施形態において、強化繊維がガラス繊維である複合材料の曲げ強度は、500MPa以上であることが好ましく、500~800MPaであることがより好ましい。また、曲げ弾性率は、28GPa以上が好ましく、28~50GPaであることがより好ましい。
 以下、実施例及び比較例を示し、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<曲げ特性試験>
 実施例、比較例の熱可塑性複合材料の曲げ特性試験は、オートグラフAG5000B(島津製作所製)を使用し、3点曲げで実施した。試験片形状は、高さh=1.5mm、幅b=15mm、長さl=60mmで曲げスパンは40mmであった。測定温度は25℃で行った。
<樹脂前駆体Aの調製>
 ポリアミド樹脂の前駆体を調製するために、ジカルボン酸であるセバシン酸を90g、さらに添加剤として酢酸ナトリウム80mg、次亜リン酸ナトリウム一水和物80mgを反応容器中に加え、窒素ガスでフローしつつ145℃で溶融した。そこにジアミン成分としてメタキシリレンジアミンとパラキシリレンジアミンとの混合物60.1gをゆっくり滴下した。滴下後は温度を200~230℃に昇温し、常圧下で20~30分溶融攪拌を行うことで、樹脂前駆体Aを得た。
 上記で得られた樹脂前駆体Aの溶融粘度は、キャピラリーレオメータ(キャピログラフ:(株)東洋精機製)を使用して測定し、温度:220℃、せん断速度:1200s-1の条件で20~80Pa・sであった。下記の実施例1~3の熱可塑性複合材料では、樹脂前駆体Aの溶融粘度が72Pa・sのものを使用した。
(実施例1)
 直径12μmのガラス繊維ロービングを40mmにカットし、大きさ100mm(W)×100mm(D)×1.5mm(H)の直方体型プレス金型に敷き詰めた。さらに金型中に粉末状に粉砕した樹脂前駆体A(溶融粘度は72Pa・s)を加えた。この樹脂前駆体70体積%とガラス繊維30体積%が充填されたプレス金型を0.01MPaの減圧条件で、260℃、3.5MPaの条件で加熱プレスを30分行うことで、板状に成形された繊維強化複合材料を得た。得られた複合材料の物性を表1に示した。
(実施例2)
 樹脂前駆体Aを55体積%、ガラス繊維を45体積%とした以外は、実施例1と同様にして繊維強化複合材料を得た。得られた複合材料の物性を表1に示した。また、得られた複合材料の断面SEM写真(SEM-EDX:JSM‐6460LA(日本電子株式会社製))を図1に示す。図1において、白色状の丸がガラス繊維の断面である。
 実施例1に比して、複合材料中のガラス繊維体積含有率が高く、曲げ強度の向上を確認できた。
(実施例3)
 加熱プレスの際の減圧条件を、0.001MPaに変更した以外は、実施例2と同様にして繊維強化複合材料を得た。得られた複合材料の物性を表1に示した。
 加熱プレスの際の減圧条件を、0.001MPaに変更したことで、さらなる曲げ強度の向上を確認できた。
<熱可塑性樹脂Bの調製>
 樹脂前駆体Aと同様の原料組成でジカルボン酸とジアミンの縮合重合反応を進めた。ジアミンの滴下後は、温度を250℃に昇温し、さらに0.05MPaに減圧し反応系から発生する水を除去することで重合度が高い熱可塑性樹脂Bを得た。
 上記で得られる熱可塑性樹脂Bの溶融粘度は、キャピラリーレオメータ(キャピログラフ:(株)東洋精機製)を使用して測定し、温度:220℃、せん断速度:1200s-1の条件で380Pa・sであった。
(比較例1)
 樹脂前駆体Aの替わりに、熱可塑性樹脂Bを用いた以外は、実施例1と同様にして繊維強化複合材料を得た。得られた複合材料の物性を表1に示した。
(比較例2)
 樹脂前駆体Aの替わりに、熱可塑性樹脂Bを用いた以外は、実施例2と同様にして繊維強化複合材料を得た。得られた複合材料の物性を表1に示した。また、得られた複合材料の断面SEM写真(撮影条件は実施例2と同じ)を図2に示す。図2において、白色状の丸がガラス繊維の断面である。
 実施例2だけではなく、比較例1に比しても、曲げ強度の値が劣る結果になった。この原因としては、溶融粘度の大きな熱可塑性樹脂Bは、使用したガラス繊維ロービング内部に完全に含浸できずに、ボイド(図2において楕円/円で囲った部分)となった部位があるためと考えられる。そして、比較例1より比較例2の方が繊維の含有量が大きいため、比較例2においてはボイドによる影響がより顕著となったと考えられる。
(比較例3)
 樹脂前駆体Aの替わりに、熱可塑性樹脂Bを用いた以外は、実施例3と同様にして繊維強化複合材料を得た。得られた複合材料の物性を表1に示した。加熱プレスの際の減圧条件を、0.001MPaに変更したことで、その断面写真(図示せず)の目視検査でボイドは確認されなかったが、実施例3に比して、曲げ強度の値が劣る結果になった。
(参考例)
 ナイロン66をガラスクロスに含浸したBond Laminates製「Tepex dynalite 101」についても実施例1~3、比較例1~3と同様に曲げ特性を測定した。「Tepex dynalite 101」は、強化繊維として、連続繊維織物を用いた複合材料である。得られた複合材料の物性を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、熱可塑性樹脂の前駆体、即ちオリゴマーをガラス繊維に含浸後、減圧下でポリマー化して得られる繊熱可塑性樹脂複合材料は、高い機械物性を示す材料であることが確認できた。
 特に、加熱プレス時の減圧条件を0.001MPaとした場合には、きわめて高い曲げ強度を有する複合材料が得られた。
 以上説明したとおり、本発明の製造方法で得られる熱可塑性樹脂複合材料は、剛性、強度に優れており、各種用途に使用でき、とりわけ航空機、自動車等の軽量化と高強度が求められる部材等の用途で好ましく適用できる。
 本願は、2016年7月15日又は2017年5月9日に日本国特許庁に出願された日本特許出願(特願2016-139900、特願2017-093103)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (18)

  1.  樹脂前駆体と強化繊維を複合化する工程、及び前記樹脂前駆体を縮合重合させる工程を含む、複合材料の製造方法。
  2.  前記樹脂前駆体が、熱可塑性樹脂のオリゴマーである、請求項1に記載の複合材料の製造方法。
  3.  前記樹脂前駆体の粘度が、1~100Pa・sである、請求項1又は2に記載の複合材料の製造方法。
  4.  前記樹脂前駆体が、ポリアミド、ポリエステル、ポリカーボネート、ポリエーテル、ポリスルフィド、及びケトン系樹からなる群のうち、少なくとも一種以上を含む、請求項1~3のいずれか一項に記載の複合材料の製造方法。
  5.  前記強化繊維が、ガラス繊維、炭素繊維、バサルト繊維、SiC繊維および有機繊維からなる群のうち、少なくとも一種以上を含む、請求項1~4のいずれか一項に記載の複合材料の製造方法。
  6.  複合材料における前記強化繊維の割合が、1~90体積%である、請求項1~5のいずれか一項に記載の複合材料の製造方法。
  7.  前記強化繊維が、非連続繊維である、請求項1~6のいずれか一項に記載の複合材料の製造方法。
  8.  前記非連続繊維が、ロービング、不織布、及びテープからなる群のうち、少なくとも一種以上を含む、請求項7に記載の複合材料の製造方法。
  9.  前記非連続繊維の繊維長が、0.5mm~100mmである、請求項7又は8に記載の複合材料の製造方法。
  10.  前記強化繊維が、連続繊維である、請求項1~6のいずれか一項に記載の複合材料の製造方法。
  11.  前記連続繊維が、一方向繊維、織物、編み物又は組物である、請求項10に記載の複合材料の製造方法。
  12.  前記複合化する工程において、複合化が浸漬法、含浸法、及び混練法のいずれかによって行われる、請求項1~11のいずれか一項に記載の複合材料の製造方法。
  13.  前記重合させる工程における反応温度が、100℃~400℃である、請求項1~12のいずれか一項に記載の複合材料の製造方法。
  14.  前記重合させる工程が、減圧度が、0~0.095MPaの減圧下で行われる、請求項1~13のいずれか一項に記載の複合材料の製造方法。
  15.  前記重合させる工程において、同時に加圧を行う、請求項1~14のいずれか一項に記載の複合材料の製造方法。
  16.  前記加圧方法が、真空プレス法である、請求項15に記載の複合材料の製造方法。
  17.  前記真空プレス法の圧力が、0.1~30MPaである、請求項16に記載の複合材料の製造方法。
  18.  請求項1~17のいずれか一項に記載の方法で製造した複合材料。
PCT/JP2017/025481 2016-07-15 2017-07-13 複合材料の製造方法及び複合材料 WO2018012567A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197001517A KR102086309B1 (ko) 2016-07-15 2017-07-13 복합 재료의 제조 방법 및 복합 재료
CN201780042355.9A CN109415517B (zh) 2016-07-15 2017-07-13 复合材料的制造方法和复合材料
JP2018527651A JP6536749B2 (ja) 2016-07-15 2017-07-13 複合材料の製造方法及び複合材料
US16/317,922 US10597500B2 (en) 2016-07-15 2017-07-13 Method for producing composite material and composite material
EP17827690.3A EP3486274A4 (en) 2016-07-15 2017-07-13 PROCESS FOR PRODUCING COMPOSITE MATERIAL AND COMPOSITE MATERIAL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-139900 2016-07-15
JP2016139900 2016-07-15
JP2017-093103 2017-05-09
JP2017093103 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018012567A1 true WO2018012567A1 (ja) 2018-01-18

Family

ID=60952075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025481 WO2018012567A1 (ja) 2016-07-15 2017-07-13 複合材料の製造方法及び複合材料

Country Status (7)

Country Link
US (1) US10597500B2 (ja)
EP (1) EP3486274A4 (ja)
JP (1) JP6536749B2 (ja)
KR (1) KR102086309B1 (ja)
CN (1) CN109415517B (ja)
TW (1) TW201823322A (ja)
WO (1) WO2018012567A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590354A (en) * 2019-11-26 2021-06-30 Prodrive Composites Ltd Recyclable carbon-fibre-reinforced composites and processes for forming recyclable carbon-fibre-reinforced composites

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157121A (ja) * 1983-02-25 1984-09-06 Kanebo Ltd 強化ポリアミドシ−トの製造法
JPS6382731A (ja) 1986-09-17 1988-04-13 エルフ アトケム ソシエテ アノニム 長い繊維で強化したポリアミドを主成分とする複合材料の製造方法
JPH05178985A (ja) * 1991-03-18 1993-07-20 Teijin Ltd 繊維強化複合材料およびその製造法
JPH05271403A (ja) * 1992-03-26 1993-10-19 Asahi Chem Ind Co Ltd 芳香族ポリエーテルケトン類の高分子量化法
JP2011516654A (ja) 2008-03-30 2011-05-26 アイキュー テック スウィツァランド ゲーエムベーハー 反応性ポリマープリプレグを作成するための装置及び方法
JP2013173872A (ja) * 2012-02-27 2013-09-05 Toray Ind Inc ポリアミド樹脂組成物の製造方法
JP2015501360A (ja) 2011-10-25 2015-01-15 アルケマ フランス 合成繊維で補強された熱可塑性複合材料および製造方法
JP2015017184A (ja) * 2013-07-11 2015-01-29 王子ホールディングス株式会社 微細繊維含有複合シート及びその製造方法
JP2015522682A (ja) * 2012-07-05 2015-08-06 ジョージア テック リサーチ コーポレイション 単一ナイロン6複合材料の加工方法
WO2015159015A1 (fr) * 2014-04-15 2015-10-22 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication
JP2016139900A (ja) 2015-01-27 2016-08-04 日本電気株式会社 無線通信システム、制御装置、基地局、制御方法、プログラム
JP2017093103A (ja) 2015-11-09 2017-05-25 株式会社デンソー モータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271403A (en) * 1975-12-09 1977-06-14 Chiyoda Chem Eng & Constr Co Ltd Removal of meals in hydrocarbons
EP0340818A1 (en) * 1988-04-05 1989-11-08 Dsm N.V. Polyamide moulded article and a process for the production thereof
US5223335A (en) 1991-03-18 1993-06-29 Teijin Limited Fiber-reinforced composite material and process for the production thereof
JP2002057459A (ja) * 2000-08-09 2002-02-22 Mitsubishi Gas Chem Co Inc 複合セラミックスプリント配線板の製造法
WO2003014198A1 (de) * 2001-08-06 2003-02-20 Ems Chemie Ag Verfahren zur herstellung von composite-teilen
FR2997089B1 (fr) * 2012-10-23 2015-11-13 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication
FR3029450B1 (fr) * 2014-12-03 2017-11-03 Pole De Plasturgie De Lest Dispositif de moulage pour la fabrication de pieces en materiau composite a partir de resine polymere liquide par injection haute pression.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157121A (ja) * 1983-02-25 1984-09-06 Kanebo Ltd 強化ポリアミドシ−トの製造法
JPS6382731A (ja) 1986-09-17 1988-04-13 エルフ アトケム ソシエテ アノニム 長い繊維で強化したポリアミドを主成分とする複合材料の製造方法
JPH05178985A (ja) * 1991-03-18 1993-07-20 Teijin Ltd 繊維強化複合材料およびその製造法
JPH05271403A (ja) * 1992-03-26 1993-10-19 Asahi Chem Ind Co Ltd 芳香族ポリエーテルケトン類の高分子量化法
JP2011516654A (ja) 2008-03-30 2011-05-26 アイキュー テック スウィツァランド ゲーエムベーハー 反応性ポリマープリプレグを作成するための装置及び方法
JP2015501360A (ja) 2011-10-25 2015-01-15 アルケマ フランス 合成繊維で補強された熱可塑性複合材料および製造方法
JP2013173872A (ja) * 2012-02-27 2013-09-05 Toray Ind Inc ポリアミド樹脂組成物の製造方法
JP2015522682A (ja) * 2012-07-05 2015-08-06 ジョージア テック リサーチ コーポレイション 単一ナイロン6複合材料の加工方法
JP2015017184A (ja) * 2013-07-11 2015-01-29 王子ホールディングス株式会社 微細繊維含有複合シート及びその製造方法
WO2015159015A1 (fr) * 2014-04-15 2015-10-22 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication
JP2016139900A (ja) 2015-01-27 2016-08-04 日本電気株式会社 無線通信システム、制御装置、基地局、制御方法、プログラム
JP2017093103A (ja) 2015-11-09 2017-05-25 株式会社デンソー モータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486274A4 *
VAN RIJSWIJK ET AL.: "Textile fiber-reinforced anionic polyamide-6 composites. Part I: The vacuum infusion process", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, vol. 40, 2009, pages 1 - 10, XP025805246, ISSN: 1359-835X, DOI: 10.1016/j.compositesa.2008.03.018 *

Also Published As

Publication number Publication date
CN109415517B (zh) 2020-03-03
EP3486274A4 (en) 2020-05-27
CN109415517A (zh) 2019-03-01
KR102086309B1 (ko) 2020-03-06
JPWO2018012567A1 (ja) 2018-11-22
US20190248967A1 (en) 2019-08-15
KR20190030692A (ko) 2019-03-22
TW201823322A (zh) 2018-07-01
EP3486274A1 (en) 2019-05-22
US10597500B2 (en) 2020-03-24
JP6536749B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
EP3284570B1 (en) Manufacturing method for molded body
JP4894982B1 (ja) ポリアミド樹脂系複合材およびその製造方法
JP6376122B2 (ja) 複合繊維、織物、編み物および複合材料
EP3059340B1 (en) Commingled yarn, method for producing same, and textile
TWI582143B (zh) A fabric and a shaped product obtained by molding the fabric
JP2014173196A (ja) 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
KR102433126B1 (ko) 폴리아미드 수지 조성물, 성형품 및 폴리아미드 수지 펠릿의 제조방법
KR20180044896A (ko) 장섬유강화 복합재료 및 성형품
TW201512303A (zh) 聚醯胺樹脂之製造方法
WO2018012567A1 (ja) 複合材料の製造方法及び複合材料
JPWO2018101145A1 (ja) チョップドストランドマット及びそれを用いた樹脂繊維複合材料
KR102192621B1 (ko) 자일릴렌디아민 조성물 및 폴리아미드 수지의 제조방법
CN115135475A (zh) 非反应性热塑性聚合物和反应性热塑性聚合物的混合物以及其用于制备复合材料的用途
JP2015117316A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527651

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001517

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827690

Country of ref document: EP

Effective date: 20190215