WO2018012527A1 - X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法 - Google Patents

X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法 Download PDF

Info

Publication number
WO2018012527A1
WO2018012527A1 PCT/JP2017/025389 JP2017025389W WO2018012527A1 WO 2018012527 A1 WO2018012527 A1 WO 2018012527A1 JP 2017025389 W JP2017025389 W JP 2017025389W WO 2018012527 A1 WO2018012527 A1 WO 2018012527A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
sample
crystal
rays
thin film
Prior art date
Application number
PCT/JP2017/025389
Other languages
English (en)
French (fr)
Inventor
尾形 潔
表 和彦
正 吉原
伊藤 義泰
本野 寛
秀明 ▲高▼橋
隆男 杵渕
明房 樋口
志朗 梅垣
繁松 淺野
僚太郎 山口
克隆 洞田
亮 神戸
リーサイ ジャン
ボリス ヴァーマン
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to DE112017003580.5T priority Critical patent/DE112017003580T5/de
Priority to CN201780035084.4A priority patent/CN109313145A/zh
Priority to KR1020197002613A priority patent/KR102348995B1/ko
Priority to US16/205,801 priority patent/US10876978B2/en
Priority to JP2018527625A priority patent/JP6864888B2/ja
Publication of WO2018012527A1 publication Critical patent/WO2018012527A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20016Goniometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/61Specific applications or type of materials thin films, coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer

Definitions

  • the present invention relates to an X-ray inspection apparatus and method suitable for a technical field for manufacturing an element having a multilayer film structure in which a large number of thin films are laminated on a substrate, such as a semiconductor manufacturing field.
  • An element having a multilayer structure in which a large number of thin films are stacked on a substrate, such as a semiconductor, has characteristics that change depending on the state of the thin film to be formed, such as film thickness, density, and crystallinity.
  • these elements have been miniaturized and integrated, and the tendency has become remarkable. For this reason, a thin film inspection apparatus capable of accurately measuring the state of the formed thin film is required.
  • TEM cross-sectional transmission electron microscope
  • film thickness inspection apparatus using optical interference or ellipsometry a film thickness inspection apparatus using optical interference or ellipsometry
  • photoacoustic apparatus a direct measurement using a cross-sectional transmission electron microscope (TEM), a film thickness inspection apparatus using optical interference or ellipsometry, a photoacoustic apparatus, and the like.
  • Cross-sectional transmission electron microscopes (TEMs) cannot be inspected in real-time for a thin film to be inspected in an in-line manufacturing process, and products that have been extracted from the manufacturing line for inspection are actually discarded after inspection. there were.
  • a film thickness inspection apparatus using photo interference or ellipsometry and a photoacoustic apparatus are suitable for in-line, but the accuracy is insufficient for measuring a thin film of several nm.
  • the applicant of the present invention incorporated X-ray film products in the manufacturing process, directly inspecting the products themselves, and capable of inspecting a thin film of several nanometers with sufficient accuracy without throwing away the wafer.
  • a thin film inspection apparatus was previously proposed (see Patent Document 1).
  • a GeSi (silicon germanium) layer doped with Ge (germanium) is grown thinly on a Si (silicon) crystal, and further a Si crystal on top of it. It is the mainstream to use a material called strained silicon, in which the layer is provided to distort the Si crystal to improve electron mobility.
  • III-V group compound semiconductors such as GaAs (gallium arsenide) and II-IV group compounds such as GaN (gallium nitride) can control the band gap and have high electron mobility.
  • Semiconductors are being used. Therefore, it is desired to develop an X-ray inspection apparatus that can cope with the analysis of the film thickness and composition of the GeSi thin film and compound semiconductor thin film constituting the gate, and the analysis of the strain distributed in the GeSi thin film and compound semiconductor thin film. .
  • An X-ray inspection apparatus that can deal with these applications requires extremely high angular resolution capable of detecting intensity changes of diffracted X-rays in minute angular units. Therefore, the present applicant has improved the previously proposed X-ray thin film inspection apparatus, and has completed the invention of an X-ray inspection apparatus having an extremely high angular resolution.
  • a band-shaped area called a scribe line having a width of about 80 micrometers or less is arranged between chips, and after the device process is completed, it is finally separated by dicing and divided into individual chips.
  • Many inspection areas are arranged on the scribe line. Since it can be arranged only in a limited area on the scribe line, it becomes a very small area of about 50 micrometers square, and it is extremely important as a semiconductor inspection apparatus to enable X-ray inspection in this area.
  • an object of the present invention is to provide an X-ray inspection apparatus that has an extremely high angular resolution and can collect X-rays with high intensity in an extremely small area and perform measurement with high accuracy. Furthermore, an object of the present invention is to provide a novel X-ray thin film inspection method and a rocking curve measurement method using such an X-ray inspection apparatus.
  • the X-ray inspection apparatus of the present invention A sample stage on which a sample to be inspected is placed; Image observation means for observing an image of the sample placed on the sample stage; A positioning mechanism that is controlled based on the image observation result of the sample by the image observation means and moves the sample stage in two directions orthogonal to each other on the horizontal plane, in the height direction, and in the in-plane rotation direction; Including first and second pivoting members that pivot independently of each other along a virtual plane perpendicular to the surface of the sample around a rotation axis included in the same plane as the surface of the sample disposed on the sample stage Goniometer, An X-ray irradiation unit that is mounted on the first turning member and collects and radiates characteristic X-rays to an inspection position set in the same plane as the surface of the sample placed on the sample stage; An X-ray detector mounted on the second swivel member; It has.
  • the X-ray irradiation unit is An X-ray tube that generates X-rays; An X-ray optical element that makes X-rays radiated from the X-ray tube incident, extracts characteristic X-rays of a specific wavelength, and collects the extracted characteristic X-rays at a preset inspection position; Is included.
  • the X-ray optical element A first X-ray optical element that collects characteristic X-rays so as to reduce the height in a virtual vertical plane that is orthogonal to the surface of the sample and includes the optical axis, and orthogonal to the virtual vertical plane; And a second X-ray optical element that collects characteristic X-rays so that the width is reduced in a virtual plane including the optical axis.
  • the X-ray inspection apparatus of the present invention having such a configuration makes X-rays radiated from the X-ray tube incident on the first X-ray optical element and the second X-ray optical element, and the first X-ray optical element and Since the incident X-ray is monochromatized by the second X-ray optical element and condensed at the inspection position, characteristic X-rays with high intensity can be irradiated to the inspection position.
  • the first X-ray optical element can be made of a crystalline material having high crystallinity.
  • the second X-ray optical element can be composed of a multilayer mirror.
  • the first X-ray optical element is preferably made of a crystalline material having a unique rocking curve width of 0.06 ° or less.
  • a high angular resolution of 0.06 ° or less can be obtained in X-ray inspection. it can.
  • the height dimension of the characteristic X-ray can be set to 100 micrometers or less, preferably 50 micrometers or less at the inspection position.
  • the X-ray irradiation unit preferably includes a condensing angle control member that controls a condensing angle of characteristic X-rays in a virtual vertical plane that is orthogonal to the surface of the sample and includes the optical axis.
  • This condensing angle control member can be constituted by, for example, a slit member having a slit that transmits characteristic X-rays collected by the first X-ray optical element by an arbitrary width.
  • the X-ray irradiation unit has a configuration in which the constituent elements of the X-ray tube, the X-ray optical element, and the slit member are built in a unit body that can be mounted on the first turning member and turned. In this way, by installing the respective components together in the unit main body, the installation work on the first turning member is facilitated, and various X-ray inspection modes can be easily and flexibly handled.
  • the X-ray detector is preferably constituted by a one-dimensional X-ray detector or a two-dimensional X-ray detector.
  • the condensed X-ray with a small condensing angle obtained by the above-described X-ray optical element is irradiated to the sample while the condensing angle is limited to a small condensing angle by the condensing angle control member and reflected from the sample.
  • a rapid and highly accurate X-ray thin film inspection method is performed on a semiconductor wafer flowing through a semiconductor manufacturing line by detecting the detected X-ray with a one-dimensional X-ray detector or a two-dimensional X-ray detector. Is possible.
  • the X-ray thin film inspection method of the present invention includes: An X-ray thin film inspection method for inspecting a thin film formed on a surface of a semiconductor wafer, using a semiconductor wafer flowing through a semiconductor manufacturing line as a sample to be inspected and using the X-ray inspection apparatus having the above-described configuration, A unique point that can be recognized by the image observation means on the surface of the semiconductor wafer is set in advance, and the position information of the measurement site of the X-ray thin film inspection is set based on the unique point, and the following (a) to (c) Including a process.
  • a suitable X-ray inspection can be performed in-line on a semiconductor wafer flowing through a semiconductor manufacturing line using the above-described X-ray thin film inspection method.
  • the X-ray inspection apparatus of the present invention preferably further includes rocking curve measuring means for executing a rocking curve measuring method on a sample obtained by epitaxially growing a thin film crystal on a substrate crystal.
  • the rocking curve measuring means has a function of executing the following operations (i) to (iv) (steps 1 to 4).
  • a crystal lattice plane to be measured is selected for the sample (step 1).
  • an X-ray irradiation unit and an X-ray detector are arranged at an angular position with respect to the sample surface determined based on the Bragg angle of the substrate crystal in the sample (Step 2).
  • the reflection angle and intensity of the diffracted X-rays reflected from the sample are detected by an X-ray detector (step 3).
  • a rocking curve is obtained based on the reflection angle and intensity of diffracted X-rays detected by the X-ray detector, and data relating to the rocking curve is analyzed (step 4).
  • the rocking curve measuring means may be configured to have a function of executing the following operations (I) to (VI) (steps A to F).
  • (I) Two equivalent crystal lattice planes of asymmetric reflection are selected for the sample (step A).
  • step C While irradiating the sample surface with X-rays from the X-ray irradiation unit, the reflection angle and intensity of the diffracted X-rays reflected from the sample are detected by an X-ray detector (step C).
  • step D An X-ray irradiation unit and an X-ray detector are arranged at an angular position with respect to the sample surface determined based on the Bragg angle of the substrate crystal in the sample for the other selected crystal lattice plane (step D).
  • step E While irradiating the sample surface with X-rays from the X-ray irradiation unit, the reflection angle and intensity of the diffracted X-rays reflected from the sample are detected by an X-ray detector (step E).
  • step E While irradiating the sample surface with X-rays from the X-ray irradiation unit, the reflection angle and intensity of the diffracted X-rays reflected from the sample are detected by an X-ray detector (step E).
  • step E While irradiating the sample surface with X-rays from the X-ray irradiation unit, the reflection angle and intensity of the diffracted X-rays reflected from the sample are detected by an X-ray
  • the rocking curve measuring means has a function of performing the following operations (VI-I) to (VI-IV) (steps F-1 to F-4) in the operation (VI). It can also be.
  • VI-I The difference in angle between the diffraction peak of the sample on the substrate crystal and the two equivalent diffraction peaks of asymmetric reflection on the thin film crystal of the sample is obtained (step F-1).
  • VI-II The lattice constant of the thin film crystal of the sample is calculated from the angle difference between the diffraction peaks obtained by the above operation (VI-I) (Step F-2).
  • the X-ray irradiated from the X-ray irradiation unit to the sample surface is set to a condensing angle of 2 ° or more by the condensing angle control member, and the X-ray in the angle range of 2 ° or more is irradiated to the sample surface.
  • the X-ray detector is composed of a one-dimensional X-ray detector or a two-dimensional X-ray detector, and diffracted X-rays reflected from the sample are incident on the X-ray detector, It is preferable that the reflection angle and intensity be detected.
  • the X-ray irradiation unit may be configured to irradiate the sample surface with X-rays by swinging in an imaginary vertical plane orthogonal to the sample surface and including the optical axis.
  • the condensed X-rays emitted from the X-ray irradiation unit have a uniform intensity over the entire angle range, but in reality it is undeniable that the intensity is slightly non-uniform. Therefore, by swinging the X-ray irradiation unit, the X-ray intensity distribution with respect to the incident angle can be made uniform, and a highly accurate rocking curve measurement method can be realized.
  • the X-ray detector and the X-ray irradiation unit are scanned in conjunction with each other in a virtual vertical plane orthogonal to the surface of the sample and including the optical axis, and based on a scanning method in TDI (Time Delay Integration) mode, It can also be set as the structure which measures the diffraction X-ray reflected from a sample.
  • TDI Time Delay Integration
  • the intensity distribution with respect to the incident angle of the condensed X-ray emitted from the X-ray irradiation unit is large, or the substrate crystal Even if the peak angle of the diffracted X-ray from the diffracted X-ray and the peak angle of the diffracted X-ray from the thin film crystal are largely separated, the intensity of the X-ray irradiated to the sample is made uniform, and the rocking curve measurement is highly accurate A method can be realized.
  • FIG. 1 is a perspective view showing the overall structure of an X-ray inspection apparatus according to an embodiment of the present invention.
  • FIG. 2A is a front view showing the overall structure of the X-ray inspection apparatus according to the embodiment of the present invention.
  • FIG. 2B is a side view schematically showing a structural example to which a mechanism for swinging the sample stage about the ⁇ axis is added.
  • FIG. 3A is a front view schematically showing the configuration of the X-ray irradiation unit according to the embodiment of the present invention.
  • FIG. 3B is also a bottom view. It is a perspective view of the X-ray irradiation unit shown to FIG. 3A and FIG. 3B.
  • FIG. 1 is a perspective view showing the overall structure of an X-ray inspection apparatus according to an embodiment of the present invention.
  • FIG. 2A is a front view showing the overall structure of the X-ray inspection apparatus according to the embodiment of the present invention.
  • FIG. 2B is a side view
  • FIG. 5A is an enlarged front view showing a first X-ray optical element and a second X-ray optical element included in the X-ray irradiation unit shown in FIGS. 3A, 3B, and 4.
  • FIG. 5B is also a bottom view.
  • FIG. 6A is a front view schematically showing the X-ray trajectory irradiated from the X-ray irradiation unit to the inspection surface of the semiconductor wafer and the diffraction X-ray trajectory reflected from the inspection surface and incident on the X-ray detector. It is. 6B is an enlarged plan view showing the “inspection position f” portion of FIG. 6A.
  • FIG. 7 is a block diagram showing a control system of the X-ray inspection apparatus according to the embodiment of the present invention.
  • FIG. 8 is a control flowchart of the X-ray inspection apparatus according to the embodiment of the present invention.
  • FIG. 9A is a schematic diagram illustrating an outline of a conventional rocking curve measurement method
  • FIG. 9B is a diagram illustrating an example of a rocking curve.
  • 10A and 10B are schematic diagrams showing an outline of a rocking curve measuring method by rocking curve measuring means incorporated in the X-ray inspection apparatus according to the embodiment of the present invention.
  • FIG. 11 is a flowchart showing an implementation procedure of the rocking curve measuring method by the rocking curve measuring means.
  • FIG. 12 is a diagram showing a rocking curve of diffracted X-rays detected by an X-ray detector.
  • FIG. 13 is a diagram schematically showing a crystal lattice state when a GeSi thin film crystal is epitaxially grown on the surface of the Si substrate crystal.
  • FIG. 14A, FIG. 14B, and FIG. 14C are schematic diagrams showing a configuration for performing a rocking curve measurement method by swinging an X-ray irradiation unit.
  • FIG. 15A, FIG. 15B, and FIG. 15C are schematic diagrams showing a configuration for performing a rocking curve measurement method by scanning an X-ray irradiation unit and an X-ray detector, respectively.
  • FIG. 16 is a schematic diagram showing a scanning method of the X-ray detector in the TDI mode.
  • FIG. 17 is a schematic diagram showing an outline of a reciprocal lattice map measurement method by reciprocal lattice map measurement means incorporated in the X-ray inspection apparatus according to the embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an example of a reciprocal lattice map.
  • FIG. 19 is a diagram showing a coordinate conversion of the reciprocal lattice map of FIG.
  • FIG. 1 is a perspective view showing the entire structure of the X-ray inspection apparatus
  • FIG. 2A is a front view of the apparatus.
  • the X-ray inspection apparatus includes an optical microscope 60 including a sample stage 10, a positioning mechanism 20, a goniometer 30, an X-ray irradiation unit 40, an X-ray detector 50, a CCD camera, and the like.
  • a semiconductor wafer (sample) to be inspected is disposed on the upper surface of the sample stage 10 and is driven by the positioning mechanism 20.
  • the positioning mechanism 20 includes a horizontal movement mechanism that is movable in two perpendicular directions (X and Y directions) in a horizontal plane, a lifting mechanism that is movable in a vertical direction (Z direction) perpendicular to the horizontal plane, and an in-plane rotation mechanism.
  • the sample stage 10 is moved in the X, Y, and Z directions and rotated in-plane, so that an arbitrary measurement site in the semiconductor wafer disposed on the upper surface thereof is directed to the focused position of the irradiated X-rays in a predetermined direction. Has the function of positioning.
  • the goniometer 30 includes first and second turning arms (turning members) 32 and 33 mounted on a goniometer body 31.
  • Each of the swivel arms 32 and 33 swivels along a virtual plane orthogonal to the upper surface of the sample stage around the axes ( ⁇ S axis, ⁇ D axis) perpendicular to the paper surface of FIG. 2A.
  • the turning angle from the horizontal position of the first turning arm 32 is ⁇ S
  • the turning angle from the horizontal position of the second turning arm 33 is ⁇ D
  • the turning arms 32 and 33 are driven to turn.
  • the first pivot arm 32 to pivot about the theta S axis, X-rays irradiation unit 40 are mounted.
  • the second pivot arm 33 to pivot about the theta D shaft are mounted the X-ray detector 50.
  • the X-ray irradiation unit 40 has a function of condensing X-rays generated from the X-ray tube into characteristic X-rays having a specific wavelength and condensing them at one place.
  • the position to which characteristic X-rays from the X-ray irradiation unit 40 are irradiated becomes the inspection position, and the measurement site of the sample arranged on the upper surface of the sample stage 10 is positioned to this inspection position by the positioning mechanism 20.
  • the inspection position is set in the same plane as the surface of the sample placed on the sample stage 10.
  • the X-ray detector 50 is used for X-ray thin film inspection such as X-ray reflectance measurement (XRR), X-ray diffraction measurement (XRD), rocking curve measurement, and reciprocal lattice map measurement (RSM).
  • XRR X-ray reflectance measurement
  • XRD X-ray diffraction measurement
  • RSM reciprocal lattice map measurement
  • the film thickness and density are derived by measuring the interference between the reflected X-rays on the film surface and the reflected X-rays at the interface between the film and the substrate. Accuracy is obtained.
  • the X-ray detector 50 for example, an avalanche photodiode (APD) having a wide dynamic range with respect to incident X-rays can be used.
  • APD avalanche photodiode
  • X-ray reflectivity measurement, rocking curve measurement, reciprocal lattice map measurement, etc. in TDI (Time Delay Integration) mode or Still mode can also be implemented.
  • TDI mode and the still mode in the X-ray thin film inspection are described in Non-Patent Document 1 described above.
  • a detector exchange mechanism is incorporated in the second swivel arm 33, and various X-ray detectors such as an APD, a one-dimensional X-ray detector, a two-dimensional X-ray detector, and a scintillation counter are mounted on the detector, and the detector exchange mechanism Thus, the X-ray detector can be switched and used.
  • various X-ray detectors such as an APD, a one-dimensional X-ray detector, a two-dimensional X-ray detector, and a scintillation counter are mounted on the detector, and the detector exchange mechanism
  • the X-ray detector can be switched and used.
  • the optical microscope 60 is arranged at a position shifted in the horizontal direction from the inspection position to avoid interference with the X-ray irradiation unit 40 and the X-ray detector 50.
  • a measurement site of a sample (for example, a semiconductor wafer) arranged on the sample table 10 is arranged at a position below the optical microscope 60 by moving the sample table 10 by the positioning mechanism 20. Then, by moving in a horizontal direction from this position toward the inspection position, the measurement site of the sample (for example, a semiconductor wafer) is positioned at the inspection position.
  • the X-ray inspection apparatus may be configured to include a ⁇ axis swinging mechanism that swings the sample stage 10 about the ⁇ axis as schematically shown in FIG. 2B.
  • the ⁇ axis is an axis orthogonal to the ⁇ S axis and the ⁇ D axis on the surface of the sample S placed on the sample stage 10 (that is, an axis extending in the left-right direction in FIG. 2A).
  • the intersections of these ⁇ S axis, ⁇ D axis, and ⁇ axis are positioned.
  • the ⁇ axis swing mechanism is configured such that a swing base 12 is swingably incorporated with respect to the curved guide 11 and the swing base 12 swings along the curved guide 11 by a driving force from a drive motor (not shown). It has become.
  • the sample table 10 provided on the top of the rocking table 12 rocks integrally with the rocking table 12.
  • a thin film of AlGaN (aluminum gallium nitride) or AlInN (aluminum indium nitride) is symmetrical on the crystal lattice plane of (0 0 2), (1 0 1). It is possible to perform rocking curve measurement for reflection and reciprocal lattice map measurement for symmetrical reflection on the crystal lattice plane of (2 0 4). It is also possible to measure the variation in lattice orientation (twist distribution) in the in-plane direction of the sample. Furthermore, both in-plane diffraction measurement and out-of-plane diffraction measurement can be performed.
  • the X-ray irradiation unit 40 shown in FIGS. 3 to 6 includes an X-ray tube 41, a first X-ray optical element 42, a second X-ray optical element 43, and a condensing slit 44 (slit member). It is included as a component. Each of these components is built in a unit body (not shown). The unit body has a compact size and shape that can be mounted on the first swivel arm 32.
  • the condensing slit 44 is shown only in FIG. 6 and is omitted in FIGS. 3 and 4.
  • a micro-focus X-ray tube having an electron beam focus size on the target of about ⁇ 100 ⁇ m can be used.
  • target materials copper (Cu), molybdenum (Mo), iron (Fe), cobalt (Co), tungsten (W), chromium (Cr), silver (Ag), gold (Au), etc., as required You can choose.
  • copper (Cu) is used as a target material, only characteristic X-rays of Cu—K ⁇ 1 having high angular resolution can be extracted by first and second X-ray optical elements 42 and 43 described later. Therefore, by irradiating the specimen with the characteristic X-rays of Cu-K ⁇ 1, X-ray thin film inspection with good throughput can be realized.
  • the first and second X-ray optical elements 42 and 43 receive the X-ray a1 emitted from the X-ray tube 41, extract only the characteristic X-ray having a specific wavelength, and extract the extracted characteristic X-ray a2 as a sample. It has a function of collecting light on the surface of the sample placed on the table 10.
  • the first X-ray optical element 42 and the second X-ray optical element 43 are surfaces (hereinafter simply referred to as “surfaces”) on which X-rays enter and reflect characteristic X-rays. ) 42a and 43a are arranged orthogonal to each other. Then, as shown in FIG. 6B, the first X-ray optical element 42 and the second X-ray optical element 43 have a characteristic X-ray a2 having a specific wavelength square on the surface of the sample placed on the sample stage 10. Condensed to form a fine spot.
  • FIG. 6B is an enlarged plan view schematically showing the position where the characteristic X-ray a2 is collected on the surface of the sample (semiconductor wafer).
  • the first X-ray optical element 42 and the second X-ray optical element 43 are arranged by the side-by-side method in which one side is in contact with each other.
  • the present invention is not limited to this, and Kirkpatrick- They can also be arranged in a series system called Baez (KB).
  • the inspection position f is a position where the characteristic X-rays reflected and extracted by the first and second X-ray optical elements 42 and 43 on the surface of the sample placed on the sample stage 10 are collected.
  • the surfaces 42a and 43a of the X-ray optical elements 42 and 43 are formed to be concavely curved.
  • the first X-ray optical element 42 has characteristic X-rays such that the height is reduced in a virtual vertical plane that is orthogonal to the surface of the sample placed on the sample stage 10 and includes the optical axis. a2 is condensed.
  • the light collecting direction in which the height is reduced is referred to as “vertical direction”.
  • the surface 42a of the first X-ray optical element 42 is disposed perpendicular to the virtual vertical plane in order to collect characteristic X-rays in the vertical direction.
  • the second X-ray optical element 43 condenses the characteristic X-ray a2 so that the width is reduced in a virtual plane orthogonal to the virtual vertical plane and including the optical axis.
  • the light collection direction in which the width is reduced is referred to as “lateral direction”.
  • the surface 43a of the second X-ray optical element 43 is disposed orthogonal to the virtual plane in order to collect characteristic X-rays in the lateral direction.
  • the first X-ray optical element 42 is made of a crystalline material having high crystallinity.
  • the first X-ray optical element 42 is made of a crystalline material having an extremely small rocking curve width (that is, an angular range in which a parallel beam can be reflected).
  • a crystal material having an extremely small rocking curve width a crystal material corresponding to a complete crystal with very few lattice defects and impurities is applicable.
  • the rocking curve width is made of a crystal material having a width of 0.06 ° or less.
  • a crystal material having a width of 0.06 ° or less By using the characteristic X-ray a2 extracted from such a crystal material, a high angular resolution of 0.06 ° or less can be obtained in the X-ray thin film measurement.
  • Ge (1 1 1) or Si (1 1 1) can be used as the crystal material.
  • Ge (1 1 1) is used, a rocking curve width of 0.06 ° or less is obtained.
  • Si (1 1 1) is used, a rocking curve width of 0.02 ° or less is obtained.
  • the first X-ray optical element 42 it is possible to control the light collection angle in the vertical direction so that the height dimension of the characteristic X-ray is 100 micrometers or less at the inspection position. Further, the first X-ray optical element 42 has a function of taking out only characteristic X-rays of a specific wavelength and making them monochromatic.
  • the second X-ray optical element 43 is composed of a multilayer mirror.
  • the second X-ray optical element 43 has a function of extracting only a characteristic X-ray having a specific wavelength and making it monochromatic.
  • the second X-ray optical element 43 is adjusted so as to extract characteristic X-rays having the same wavelength as the characteristic X-ray extracted by the first X-ray optical element 42.
  • the X-ray b1 emitted from the X-ray tube 41 and incident on the surface 43a of the second X-ray optical element 43 is monochromatic and reflected by the X-ray optical element 43. Then, the light advances in the lateral direction and then enters the surface 42 a of the first X-ray optical element 42. Then, the X-ray b2 incident on the surface 42a of the first X-ray optical element 42 is also monochromatic and reflected by the X-ray optical element 42 and proceeds to be condensed in the vertical direction, as shown in FIG. Irradiated to the inspection position f. *
  • the X-ray c1 emitted from the X-ray tube 41 and incident on the surface 42a of the first X-ray optical element 42 is monochromatic and reflected by the X-ray optical element 42 so as to be condensed in the vertical direction. Then, the light enters the surface 43 a of the second X-ray optical element 43. Then, the X-ray c2 incident on the surface 43a of the second X-ray optical element 43 proceeds so as to be condensed in the lateral direction, and is irradiated to the inspection position f shown in FIG.
  • the X-ray a1 emitted from the X-ray tube 41 is reflected once by the surface 42a of the first X-ray optical element 42 and the surface 43a of the second X-ray optical element 43, respectively.
  • the characteristic X-ray a2 having a specific wavelength is extracted, and the characteristic X-ray a2 is condensed at the inspection position f.
  • Patent Document 2 and Patent Document 3 described above disclose an X-ray beam adjustment system having a configuration in which a perfect crystal and a multilayer optical component are combined. However, these documents do not disclose a configuration optimized for an X-ray inspection apparatus using a semiconductor wafer as a sample to be inspected.
  • the condensing slit 44 is disposed so as to partially shield the characteristic X-ray a2 reflected by the first and second X-ray optical elements 42 and 43 from both sides in the vertical direction described above.
  • the condensing slit 44 has a function of limiting the condensing in the vertical direction of the condensed X-ray a ⁇ b> 2 reflected by the first and second X-ray optical elements 42 and 43.
  • the first X-ray optical element 42 is made of a crystal material having an extremely small rocking curve width, the X-ray thin film measurement can be performed by using the characteristic X-ray a2 extracted from the crystal material. Extremely high angular resolution can be obtained.
  • FIG. 7 is a block diagram showing a control system of the X-ray inspection apparatus.
  • the XG irradiation unit 40 is controlled by the XG controller 101.
  • the sample image captured by the optical microscope 60 is recognized by the image recognition circuit 102.
  • the optical microscope 60 and the image recognition circuit 102 constitute image observation means for observing an image of the sample placed on the sample stage 10. Note that the focus position of the optical microscope 60 is adjusted by the focus controller 103.
  • the positioning controller 104 drives and controls the positioning mechanism 20 based on the sample image recognized by the optical microscope 60 and recognized by the image recognition circuit 102.
  • the goniometer 30 is driven and controlled by the goniometer controller 106.
  • the components of the XG controller 101, the image recognition circuit 102, the focus controller 103, the positioning controller 104, and the gonio controller 106 operate based on setting information sent from the central processing unit (CPU) 100, respectively.
  • the setting information is stored in advance in the storage unit 110 as a recipe, and is read out by the central processing unit (CPU) 100 and output to the above-described components.
  • the X-ray detector 50 is controlled by the count control circuit 107.
  • the X-ray inspection apparatus also includes an operation unit 201 including a keyboard and a mouse for an operator to input various settings necessary for the operation of the apparatus.
  • the X-ray inspection apparatus includes a display unit 202 configured with a liquid crystal display or the like, and a communication unit 203 that executes data communication via a network.
  • FIG. 8 is a flowchart showing an execution procedure of the X-ray thin film inspection method for a semiconductor wafer as an inspection target.
  • Software for executing the X-ray thin film inspection is stored in the storage unit 110 in advance, and the central processing unit (CPU) 100 executes the following processing steps according to the software.
  • the measurement site of the semiconductor wafer is positioned at the inspection position (step S1).
  • unique points that can be specified by the image recognition circuit 102 based on image information from the optical microscope 60 are set in the storage unit 110 in advance as a recipe.
  • the position information of the part to be measured is preset in the storage unit 110 as a recipe.
  • a part that can be recognized by the image recognition circuit 102 without hesitation is set, such as a characteristic pattern shape formed on the surface of the semiconductor wafer.
  • the image recognition circuit 102 recognizes and identifies the unique point set on the surface of the semiconductor wafer placed on the sample stage 10 from the image information from the optical microscope 60 based on the image information from the optical microscope 60.
  • the positioning controller 104 drives and controls the positioning mechanism 20 based on the preset position information of the measurement site with the unique point recognized by the image recognition circuit 102 as a reference.
  • the positioning mechanism 20 moves the sample table 10 in two horizontal directions (XY direction) and in the height direction (Z direction), and places the measured portion of the semiconductor wafer at the inspection position.
  • step S2 After positioning the measurement site of the semiconductor wafer as described above, the X-ray reflectivity measurement (XRR), X-ray diffraction measurement (XRD), rocking curve measurement, or reciprocal lattice map measurement (RSM) is used.
  • XRR X-ray reflectivity measurement
  • XRD X-ray diffraction measurement
  • RSM reciprocal lattice map measurement
  • rocking curve measurement method Next, a rocking curve measurement method using the X-ray inspection apparatus having the above-described configuration will be described in detail.
  • the rocking curve measurement method is known as an analysis method for obtaining the lattice constant of a thin film crystal epitaxially grown on a substrate crystal, for example.
  • a conventionally known rocking curve measurement method is such that the sample S is scanned by a minute angle with respect to the incident X-ray (monochromatic parallel X-ray), whereby the incident angle of the X-ray with respect to the sample S is measured.
  • Change ⁇ is, for example, a semiconductor wafer obtained by epitaxially growing a thin film (crystal) Sa on a substrate crystal So.
  • the peak intensity Io of the diffracted X-ray reflected from the substrate crystal and the peak intensity Ip of the diffracted X-ray reflected from the thin film appear separately. If the X-ray incident angle (Bragg angle) at which the peak intensity Io of the diffracted X-ray from the substrate crystal appears is known, the known X-ray incident angle and the peak intensity Ip of the diffracted X-ray from the thin film are known. The relative lattice constant of the thin film can be obtained from the difference ⁇ with respect to the X-ray incident angle at which appears.
  • X-ray inspection apparatus since the monochromatic X-rays focused on the small area with high resolution by X-ray irradiation unit 40 can be irradiated to the sample S, without scanning the X-ray incident angle theta S, collecting The rocking curve measurement method can be carried out in a short time by irradiating the sample S with a bundle of X-rays in the light angle range all at once.
  • the incident angle ⁇ of the X-ray with respect to the sample surface is changed in a range of 2 ° or more. Accordingly, the X-rays irradiated from the X-ray irradiation unit 40 to the sample surface are set at a converging angle of 2 ° or more by the condensing slit 44, and X-rays in the angle range of 2 ° or more are irradiated to the sample surface. It is preferable.
  • the X-ray inspection apparatus incorporates a means for performing a rocking curve measurement method for two equivalent crystal lattice planes (that is, asymmetrical reflection crystal lattice planes) that are not parallel to the surface. Yes.
  • This rocking curve measuring means is stored in the storage unit 110 of FIG. 7 as software, and is executed by the central processing unit (CPU) 100.
  • the rocking curve measuring means incorporated in the X-ray inspection apparatus includes, for example, a semiconductor wafer in which a GeSi (silicon germanium) thin film Sa is epitaxially grown on the surface of a Si (silicon) substrate crystal So as a sample S, Si substrate crystal So and GeSi
  • the rocking curve measurement method is carried out for each of the crystal lattice planes of asymmetric reflection of (1 1 5) ( ⁇ 1-15).
  • the target crystal lattice plane of asymmetric reflection is not limited to (1 1 5) ( ⁇ 1-1 5).
  • the peak of the GeSi thin film Sa can be selected so that it is not too close to the peak of the Si substrate crystal So and ⁇ S , ⁇ D ⁇ 85 °.
  • the sample S is horizontally arranged and fixed on the upper surface of the sample stage 10, and X-rays are emitted from the X-ray irradiation unit 40 to the surface of the sample S at a predetermined incident angle ⁇ .
  • the X-ray detector 50 detects the diffracted X-rays emitted from the surface of the sample S in the direction of the angle ⁇ .
  • the incident angle ⁇ and the outgoing angle ⁇ with respect to the surface of the sample S are set to angles at which X-rays are Bragg-reflected on the crystal lattice plane (1 1 5) ( ⁇ 1 -1 5) of the asymmetric reflection in the Si substrate crystal So. To do.
  • the peak intensity of the diffracted X-ray reflected from 5) is detected.
  • the X-ray detector 50 includes diffraction X-rays reflected from the asymmetric reflection crystal lattice plane (1 1 5) ( ⁇ 1 -1 ⁇ 5) in the Si substrate crystal So and the asymmetric reflection crystal lattice plane in the GeSi thin film Sa.
  • a one-dimensional X-ray detector or a two-dimensional X-ray detector having a detectable region capable of collectively detecting diffracted X-rays reflected from ( ⁇ 1 -1 5) is used.
  • the one-dimensional X-ray detector or the two-dimensional X-ray detector a plurality of peak intensities of diffracted X-rays reflected from the sample can be detected while being fixed. Further, according to the one-dimensional X-ray detector or the two-dimensional X-ray detector, it is possible to measure the diffracted X-ray reflected from the sample by the scanning method using the TDI mode.
  • the X-ray irradiation unit 40 can irradiate the surface of the sample S with monochromatic X-rays focused on a small area with high resolution, the sample S is irradiated with a bundle of X-rays in the focusing angle range at once.
  • a rocking curve measurement method can be implemented. Therefore, it is not necessary to scan the X-ray incident angle ⁇ S , and each asymmetric reflection is performed by one X-ray irradiation with respect to each asymmetric reflection crystal lattice plane (1 1 5) ( ⁇ 1 -15).
  • the rocking curve for the crystal lattice plane (1 1 5) (-1-15) can be obtained.
  • FIG. 11 is a flowchart showing an implementation procedure of the rocking curve measuring method by the rocking curve measuring means.
  • the central processing unit 100 selects two asymmetric reflection crystal lattice planes in advance for the sample S placed on the sample stage 10 (step S10), and each of the asymmetric reflection crystal lattice planes of FIG. Implement the rocking curve measurement method according to the procedure.
  • the X-ray irradiation unit 40 and the X-rays are positioned at the angles ⁇ and ⁇ with respect to the surface of the sample S determined based on the Bragg angle of the Si substrate crystal So.
  • the detector 50 is arranged (step S11).
  • the surface of the sample S is irradiated with X-rays from the X-ray irradiation unit 40 for a certain period of time, and the reflection angle and intensity of the diffracted X-rays reflected from the sample S are detected by the X-ray detector 50 (step S12).
  • the diffraction X-rays reflected from the sample S include the diffraction X-rays reflected from the crystal lattice plane (1 1 5) of the Si substrate crystal So and the crystal lattice plane (1 ⁇ 1 5) of the GeSi thin film Sa. Reflected diffracted X-rays are included.
  • an X-ray irradiation unit is set at the positions of the angles ⁇ and ⁇ with respect to the surface of the sample S determined based on the Bragg angle of the Si substrate crystal So with respect to the other crystal lattice plane ( ⁇ 1--1 5) of asymmetric reflection. 40 and the X-ray detector 50 are arranged (step S13).
  • the surface of the sample S is irradiated with X-rays from the X-ray irradiation unit 40 for a certain period of time, and the reflection angle and intensity of the diffracted X-rays reflected from the sample S are detected by the X-ray detector 50 (step S14).
  • the diffraction X-ray reflected from the sample S includes the diffraction X-ray reflected from the crystal lattice plane ( ⁇ 1 -1 5) of the Si substrate crystal So and the crystal lattice plane ( ⁇ 1 ⁇ ) of the GeSi thin film Sa. Diffracted X-rays reflected from 1-5).
  • FIG. 12 is a diagram showing a rocking curve of diffracted X-rays detected by an X-ray detector.
  • the rocking curve shown in the figure shows the detection data of the diffracted X-rays by the X-ray detector 50 with the vertical axis set to the intensity of the diffracted X-ray and the horizontal axis set to the reflection angle of the diffracted X-ray.
  • the reflection angle (horizontal axis) of the diffracted X-ray is an angle at which the peak intensity Isi of the diffracted X-ray reflected from each of the crystal lattice planes (1 1 5) and (-1-15) of the Si substrate crystal So appears. Is set to zero. Since there is no distortion in the Si substrate crystal So, the peak intensity Isi of the diffracted X-ray reflected from each of the crystal lattice planes (1 1 5) and (-1-15) appears at the same angular position.
  • the central processing unit 100 analyzes the data obtained by the rocking curve measurement method, calculates the lattice constant (a, c) of the GeSi thin film Sa, and further calculates the lattice constant (a, c) as necessary.
  • the amount of strain and internal stress of the GeSi thin film Sa are obtained (step S15).
  • the lattice constant c can be calculated.
  • ⁇ (1 1 5) is the angle difference ⁇ between the diffraction peak from the crystal lattice plane (1 1 5) of the Si substrate crystal So and the diffraction peak from the crystal lattice plane (1 1 5) of the GeSi thin film Sa. It is.
  • ⁇ ( ⁇ 1 ⁇ 1 5) is the diffraction peak from the crystal lattice plane ( ⁇ 1-15 ) of the Si substrate crystal So and the diffraction from the crystal lattice plane ( ⁇ 1-15 of the GeSi thin film Sa).
  • Equation (5) can be derived from Bragg's law.
  • d is the lattice spacing with respect to the crystal lattice plane (1 15) of the GeSi thin film Sa
  • is the wavelength of the incident X-ray
  • the relationship between the lattice constant a in the plane of GeSi and the lattice constant c in the normal direction and the lattice spacing d is expressed by the following equation (6).
  • 1 / d ⁇ ⁇ (1 / a) 2 + (1 / a) 2 + (5 / c) 2 ⁇ (6)
  • the unknowns are lattice constants a and c.
  • ⁇ 0 is the tilt angle of the crystal lattice plane (1 1 5) when the GeSi thin film Sa is not distorted, and is equal to the tilt angle of the crystal lattice plane (1 1 5) of the Si substrate crystal So.
  • cos ⁇ 0 (0 0 1) (1 1 5) /
  • 5 / 3 ⁇ (3)
  • tan ( ⁇ 0 + ⁇ ) (c / 5) / ⁇ (2a) (8)
  • Non-Patent Documents 2 and 3 Is also disclosed.
  • the strain amount of the GeSi thin film Sa and the magnitude of the internal stress are further expressed by using the lattice constants a and c and a known elastic constant, and the stress tensor equation. It can be calculated from Furthermore, the concentration of Ge (germanium) in the GeSi thin film Sa, the composition of the GeSi thin film Sa, the lattice constant when the stress of the GeSi thin film Sa is released, and the like can be calculated.
  • the X-ray inspection apparatus uses the measurement data obtained by the rocking curve measurement method and the lattice constant a calculated by the central processing unit 100 according to the setting by the operator using the operation unit 201 shown in FIG. , C and the like are stored in the storage unit 110, displayed on the display unit 202, and transmitted from the communication unit 203 to the server or host computer via the network.
  • rocking curve measuring means In the above-described rocking curve measuring means, the X-ray irradiation unit 40 and the X-ray detector 50 are fixed and the rocking curve measuring method is carried out. As shown in FIGS.
  • the rocking curve measurement method may be implemented by swinging in a virtual vertical plane perpendicular to the surface of the sample S and including the optical axis.
  • the swing range of the X-ray irradiation unit 40 is such that one outer edge X OL1 on the high angle side of the condensed X-ray is diffracted by the Si substrate crystal So on the high angle side.
  • the swing angle (FIG. 14B) that substantially matches the Bragg angle ⁇ Si that satisfies the condition
  • the other outer edge X OL2 on the low angle side of the focused X-ray satisfies the diffraction condition of the GeSi thin film Sa on the low angle side.
  • the swing angle is approximately equal to the Bragg angle ⁇ GeSi (FIG. 14C).
  • the X-ray irradiation unit 40 and the X-ray detector 50 can be configured to scan in conjunction with each other.
  • the X-ray detector 50 measures the diffracted X-rays reflected from the sample by a scanning method using the TDI mode.
  • the scanning method in the TDI mode as shown in FIGS. 15A to 15C, it is possible to implement a rocking curve measuring method with high accuracy in a wide angle range. For example, from the angle (FIG. 15B) where one outer edge X OL1 on the high angle side of the condensed X-ray substantially matches the Bragg angle ⁇ GeSi satisfying the diffraction condition of the GeSi thin film Sa on the low angle side.
  • the other outer edge XOL2 on the lower angle side of the substrate can be scanned over a wide range up to an angle (FIG. 15C) that substantially matches the Bragg angle ⁇ Si satisfying the diffraction condition of the Si substrate crystal So on the lower angle side. .
  • the intensity distribution with respect to the incident angle of the condensed X-ray emitted from the X-ray irradiation unit 40 is large, or the substrate crystal Even if the peak angle of the diffracted X-ray from the diffracted X-ray and the peak angle of the diffracted X-ray from the thin film crystal are separated, the intensity of the X-ray irradiated to the sample S is made uniform and the rocking curve is measured with high accuracy. A method can be realized.
  • FIG. 16 shows a scanning method of the X-ray detector in the TDI mode.
  • TDI mode as shown in FIG. 16, a plurality of X-ray detectors a1, a2, a3, a4 arranged in parallel are scanned in the parallel direction (Q direction in the figure), and one X-ray detector is obtained.
  • Detection data is read from each of the X-ray detectors a1, a2, a3, and a4 at the movement timings t1, t2, t3, and t4.
  • the detection data of each of the X-ray detectors a1, a2, a3, and a4 are added for each of the scanning angles 2 ⁇ 1 , 2 ⁇ 2 , 2 ⁇ 3 , 2 ⁇ 4 , and each scanning angle 2 ⁇ 1 , 2 ⁇ 2 , 2 ⁇ 3 , 2 ⁇ X-ray intensity at 4 is obtained.
  • the measurement in the TDI mode has an advantage that a large detection intensity can be obtained at each scanning angle as well as speeding up the measurement.
  • the reciprocal lattice map measurement is a method of measuring the intensity distribution in the reciprocal lattice space of the diffracted X-rays reflected from the crystal lattice plane of asymmetric reflection in the crystal sample. Also by this reciprocal lattice map measurement, for example, the lattice constant of a thin film crystal epitaxially grown on a substrate crystal can be obtained.
  • This reciprocal lattice map measuring means is stored in the storage unit 110 of FIG. 7 as software and executed by the central processing unit (CPU) 100, like the rocking curve measuring means described above.
  • the crystal lattice plane of asymmetric reflection in the Si substrate crystal So and the GeSi thin film Sa is targeted.
  • the intensity and reflection angle of diffracted X-rays reflected from the crystal lattice plane are detected by an X-ray detector.
  • Such X-ray irradiation and diffraction X-ray detection are performed so that the X-ray incident angle ⁇ and the diffraction X-ray detection angle ⁇ with respect to the surface of the sample S satisfy the Bragg condition on the target crystal lattice plane. It is changed and executed every minute angle.
  • the X-ray irradiation unit 40 is moved in the angle direction of ⁇ S and the X-ray detector 50 is also moved in the angle direction of ⁇ D to be reflected from the target crystal lattice plane.
  • the diffracted X-rays thus detected are detected at every minute angle.
  • the X-ray irradiation unit 40 can produce monochromatic parallel X-rays by greatly reducing the X-rays by the condensing slit 44.
  • X-rays close to monochromatic parallel X-rays can be obtained by narrowing the X-ray cross-sectional area to be reduced to about 1/100.
  • the X-ray detector 50 is preferably a high-speed two-dimensional X-ray detector that can observe a wide range of two-dimensional X-ray diffraction images. By using such a high-speed two-dimensional X-ray detector, the measurement time can be greatly shortened.
  • FIG. 18 shows an example of a reciprocal lattice map.
  • the X-ray detector 50 has the horizontal axis as the incident angle ⁇ of X-rays with respect to the target crystal lattice plane and the vertical axis as the reflection angle ⁇ of diffraction X-rays from the target crystal lattice plane.
  • the intensity distribution in the reciprocal lattice space of the detected diffraction X-ray is displayed.
  • Isi is the peak intensity position of the diffracted X-ray reflected from the crystal lattice plane of the Si substrate crystal So
  • Ige is the peak intensity position of the diffracted X-ray reflected from the crystal lattice plane of the GeSi thin film Sa. .
  • FIG. 19 is a coordinate transformation of the reciprocal lattice map of FIG. 18.
  • the position of the peak intensity Isi of the diffracted X-ray from the Si substrate crystal So and the position of the peak intensity position Ige of the diffracted X-ray from the GeSi thin film Sa are shown in FIG. Are arranged at the same angular position of the horizontal axis Qx.
  • the lattice constant (a, c) of the GeSi thin film Sa can be calculated from the angular positions Qxge, Qzge of the peak intensity Ige of the diffracted X-ray from the GeSi thin film Sa in this figure. Furthermore, the strain amount and internal stress of the GeSi thin film Sa can be obtained from the calculated lattice constants (a, c) as necessary. Since the calculation formula for obtaining the lattice constant (a, c) of the GeSi thin film Sa from Qx and Qz is already known, detailed description is omitted.
  • the X-ray inspection apparatus is directed to inspecting a semiconductor wafer flowing through a semiconductor production line.
  • the present invention is not limited to this. It is also possible to apply to the X-ray inspection.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明のX線検査装置は、X線照射ユニット40が、特性X線を縦方向に集光する第1のX線光学素子42と、特性X線を横方向に集光する第2のX線光学素子43とを含む。第1のX線光学素子42は、高い結晶性を有する結晶材料で構成してある。また、第2のX線光学素子43は、多層膜ミラーで構成してある。

Description

X線検査装置、X線薄膜検査方法およびロッキングカーブ測定方法
 この発明は、半導体製造分野等、基板上に多数の薄膜を積層した多層膜構造の素子を製造する技術分野に好適なX線検査装置とその方法に関する。
 半導体等、基板上に多数の薄膜を積層した多層膜構造の素子は、成膜する薄膜の膜厚、密度、結晶性などの状態によって特性が変化する。近年、これらの素子の微細化・集積化が進み、その傾向は顕著になってきている。このため、成膜した薄膜の状態を、正確に測定できる薄膜検査装置が求められている。
 この種の検査装置として、従来より断面透過電子顕微鏡(TEM)による直接計測や、光干渉やエリプソメトリを利用した膜厚検査装置や、光音響式装置などが知られている。断面透過電子顕微鏡(TEM)では、インライン製造工程に組み込みリアルタイムに検査対象の薄膜を検査することができず、しかも検査用に製造ラインから抜き取った製品は、検査後に廃棄されているのが実情であった。また、光干渉やエリプソメトリを利用した膜厚検査装置や、光音響式装置はインラインには適するが、数nmの薄い膜の測定には精度が不足している。
 半導体デバイスメーカーにとっては、使い捨てにされる検査用ウエーハ(ブランケットウエーハ)が、コスト面で大きな負担となっている。特に、近年では半導体ウエーハの大口径化が進展しており、一枚のブランケットウエーハにかかるコストも高価格化してきている。
 本出願人は、このような事情に鑑み、成膜製品の製造工程に組み込み、製品そのものを直接検査し、ウエーハを使い捨てることなく数nmの薄い膜でも充分な精度で検査可能とするX線薄膜検査装置を、先に提案した(特許文献1を参照)。
特開2006-153767号公報 特開2013-210377号公報 国際公開WO2004/114325号
X-ray thin-film measurement techniques, VIII. Detectors and series summary/ page8, The Rigaku Journal, 28(1), 2012 X線回折同時測定装置によるコンビナトリアルエピタキシャル薄膜のハイスループット分析/ Journal of the Vacuum Society of Japan Vol. 54(2011) No. 11 A Convergent Beam, Parallel Detection X-ray Diffraction System for Characterizing Combinatorial Epitaxial Thin Films/ Proc. SPIE 3941, Combinatorial and Composition Spread Techniques in Materials and Device Development, 84 (May 17, 2000); doi:10.1117/12.385416
 さらに、今日の先端LSI(Large-Scale Integration)の技術分野では、Si(シリコン)結晶の上に、Ge(ゲルマニウム)を添加したGeSi(シリコンゲルマニウム)層を薄く成長させ、さらにその上にSi結晶層を設けることにより、Siの結晶を歪ませて電子の移動度を向上した歪みシリコンと呼ばれる材料が使われることが主流となっている。
 また、光デバイスや高速デバイス等の技術分野では、バンドギャップを制御でき、電子移動度が大きいGaAs(ガリウム砒素)等のIII-V族化合物半導体やGaN(窒化ガリウム)等のII-IV族化合物半導体が使用されるようになっている。
 そのため、ゲートを構成するGeSi薄膜や化合物半導体薄膜の膜厚や組成の分析、さらにはGeSi薄膜や化合物半導体薄膜に分布する歪の解析などにも対応できるX線検査装置の開発が望まれている。
 これらの用途に対応できるX線検査装置は、微小な角度単位での回折X線の強度変化を検出できる極めて高い角度分解能が必要となる。
 そこで、本出願人は、先に提案したX線薄膜検査装置の改良を重ね、極めて高い角度分解能をも備えたX線検査装置の発明を完成させるに至った。
 また、昨今は、半導体ウエーハの表面における極めて微小な検査領域に大きな強度のX線を照射して薄膜測定を実施することが要請されている。半導体製造工程においては、多数のチップが1枚のウエーハ上に並べて配置され、リソグラフィ技術により同時に加工・製作される。
 ここで、チップとチップの間にはスクライブラインと呼ばれる巾約80マイクロメータ以下の帯状の領域が配置され、デバイス工程が完了後、最後にダイシングによって切り離され、個々のチップに分割される。このスクライブライン上には、検査用の領域が多数配置される。スクライブライン上の限られた面積にしか配置できないため、約50マイクロメータ平方程度の微小な領域となり、この領域でX線検査をできるようにすることが、半導体検査装置として極めて重要である。
 そこで、本発明は、極めて高い角度分解能をも備えるとともに、極めて小さな領域に大きな強度のX線を集光させ、高精度で測定できるX線検査装置の提供を目的とする。
 さらに、本発明は、かかるX線検査装置を用いた新規のX線薄膜検査方法とロッキングカーブ測定方法の提供を目的とする。
 すなわち、本発明のX線検査装置は、
 検査対象の試料を配置する試料台と、
 試料台に配置された試料の画像を観察する画像観察手段と、
 画像観察手段による試料の画像観察結果に基づき制御され、試料台を水平面上で直交する2方向、高さ方向、および面内回転方向に移動させる位置決め機構と、
 試料台に配置された試料の表面と同一平面内に含まれる回転軸を中心に、当該試料の表面と垂直な仮想平面に沿ってそれぞれ独立して旋回する第1,第2の旋回部材を含むゴニオメータと、
 第1の旋回部材に搭載され、試料台に配置された試料の表面と同一平面内に設定した検査位置へ特性X線を集光して照射するX線照射ユニットと、
 第2の旋回部材に搭載されたX線検出器と、
を備えている。
 ここで、X線照射ユニットは、
 X線を発生するX線管と、
 X線管から放射されたX線を入射し、特定波長の特性X線のみを取り出すとともに、当該取り出した特性X線をあらかじめ設定した検査位置へ集光させるX線光学素子と、
を含んでいる。
 さらに、X線光学素子は、
 試料の表面と直交しかつ光軸を含む仮想の垂直面内で高さが縮小していくように特性X線を集光する第1のX線光学素子と、仮想の垂直面と直交しかつ光軸を含む仮想の平面内で幅が縮小していくように特性X線を集光する第2のX線光学素子と、を含んでいる。
 かかる構成の本発明のX線検査装置は、X線管から放射されたX線を第1のX線光学素子および第2のX線光学素子に入射させ、これら第1のX線光学素子および第2のX線光学素子により入射X線を単色化して検査位置へ集光させるので、大きな強度の特性X線を検査位置へ照射することができる。
 ここで、第1のX線光学素子は、高い結晶性を有する結晶材料で構成することができる。また、第2のX線光学素子は、多層膜ミラーで構成することができる。
 第1のX線光学素子を、高い結晶性を有する結晶材料で構成することにより、その結晶材料から反射してくる特性X線の発散角度が小さく、よってX線検査において高い角度分解能を得ることができる。
 上述した本発明のX線検査装置において、
 第1のX線光学素子は、固有のロッキングカーブ幅が0.06゜以下の結晶材料によって構成することが好ましい。このように高い結晶性を有する結晶材料で構成した第1のX線光学素子から取り出された特性X線を使用することで、X線検査において0.06゜以下の高い角度分解能を得ることができる。しかも、かかる構成の第1のX線光学素子によれば、例えば、特性X線の高さ寸法を検査位置で100マイクロメータ以下、望ましくは50マイクロメータ以下とすることも可能となる。
 また、X線照射ユニットは、試料の表面と直交しかつ光軸を含む仮想の垂直面内での特性X線の集光角度を制御する集光角度制御部材を含むことが好ましい。この集光角度制御部材は、例えば、第1のX線光学素子で集光されてきた特性X線を任意の幅だけ透過させるスリットを有するスリット部材により構成することができる。
 集光角度制御部材により特性X線の集光角度を小さくすることで、X線照射ユニットを構成する光学系の球面収差を低減でき、これによりX線の集光面積を小さくすることができる。
 X線照射ユニットは、X線管、X線光学素子、およびスリット部材の各構成要素を、第1の旋回部材に搭載して旋回できるユニット本体に内蔵した構成とすることが好ましい。このようにユニット本体に各構成要素をまとめて内蔵することで、第1の旋回部材への据付け作業が容易となり、種々のX線検査の態様に容易かつ柔軟に対応することが可能となる。
 また、X線検出器は、1次元X線検出器又は2次元X線検出器で構成することが好ましい。
 上述したX線光学素子により得られた小さな集光角度で高い分解能の集光X線を、さらに集光角度制御部材によってその集光角度を小さく制限して試料に照射するとともに、試料から反射してきたX線を1次元X線検出器や2次元X線検出器で検出する構成とすることで、半導体製造ラインを流れる半導体ウエーハに対して迅速かつ高精度なX線薄膜検査方法を実行することが可能となる。
 次に、本発明のX線薄膜検査方法は、
 半導体製造ラインを流れる半導体ウエーハを検査対象の試料とし、上述した構成のX線検査装置を用いて、半導体ウエーハの表面に成膜された薄膜を検査するためのX線薄膜検査方法であって、
 半導体ウエーハの表面において画像観察手段により認識できるユニークポイントをあらかじめ設定するとともに、当該ユニークポイントを基準としてX線薄膜検査の被測定部位の位置情報を設定し、次の(a)~(c)の工程を含むことを特徴とする。
(a) 試料台に配置された半導体ウエーハに対し、その表面に設定されたユニークポイントを画像観察手段により認識する工程。
(b) 画像観察手段により認識されたユニークポイントを基準として、被測定部位の位置情報に基づき、位置決め機構を制御して試料台を移動させ、被測定部位を検査位置に位置決めする工程
(c) X線照射ユニットから検査位置に特性X線を集光してX線検査を実行する工程
 このように本発明のX線薄膜検査方法よれば、上述したX線薄膜検査方法を用いて、半導体製造ラインを流れる半導体ウエーハに対しインラインで好適なX線検査を実行することが可能となる。
 次に、本発明のX線検査装置は、上述した構成に加え、さらに基板結晶に薄膜結晶をエピタキシャル成長させた試料に対してロッキングカーブ測定方法を実行するロッキングカーブ測定手段を備えることが好ましい。
 ここで、ロッキングカーブ測定手段は、次の(i)~(iv)の操作(工程1~4)を実行する機能を有している。
(i) 試料に対して、測定対象となる結晶格子面を選定する(工程1)。
(ii) 選定した結晶格子面を対象として、試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、X線照射ユニットとX線検出器とを配置する(工程2)。
(iii) X線照射ユニットからのX線を試料表面に照射するとともに、試料から反射してくる回折X線の反射角度と強度を、X線検出器によって検出する(工程3)。
(iv) X線検出器が検出した回折X線の反射角度と強度に基づきロッキングカーブを求め、当該ロッキングカーブに関するデータを解析する(工程4)。
 また、ロッキングカーブ測定手段は、次の(I)~(VI)の操作(工程A~F)を実行する機能を有した構成とすることもできる。
(I) 試料に対して、2つの等価な非対称反射の結晶格子面を選定する(工程A)。
(II) 選定した一方の結晶格子面を対象として、試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、X線照射ユニットとX線検出器とを配置する(工程B)。
(III) X線照射ユニットからのX線を試料表面に照射するとともに、試料から反射してくる回折X線の反射角度と強度を、X線検出器によって検出する(工程C)。
(IV) 選定した他方の結晶格子面を対象として、試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、X線照射ユニットとX線検出器とを配置する(工程D)。
(V) X線照射ユニットからのX線を試料表面に照射するとともに、試料から反射してくる回折X線の反射角度と強度を、X線検出器によって検出する(工程E)。
(VI) X線検出器が検出した回折X線の反射角度と強度に基づきロッキングカーブを求め、当該ロッキングカーブに関するデータを解析する(工程F)。
 さらに、ロッキングカーブ測定手段は、上記(VI)の操作において、さらに次の(VI-I)~(VI-IV)の操作(工程F-1~F-4)を実行する機能を有した構成とすることもできる。
(VI-I) 試料の基板結晶での回折ピークと、当該試料の薄膜結晶での2つの等価な非対称反射の回折ピークとの角度差を求める(工程F-1)。
(VI-II) 上記(VI-I)の操作で求めた回折ピークの角度差から、試料の薄膜結晶についての格子定数を算出する(工程F-2)。
(VI-III) 試料の薄膜結晶についての既知の弾性定数と算出した格子定数から、薄膜結晶の歪み、薄膜結晶の応力が開放された状態での格子定数、薄膜結晶の組成及び薄膜結晶の応力の少なくとも一つを算出する(工程F-3)。
(VI-IV) 上記(VI-III)の操作で得られた算出結果を出力する(工程F-4)。
 ここで、上記操作(iii)や操作(V)においては、
 X線照射ユニットから試料表面に照射するX線を、集光角度制御部材により2゜以上の集光角度に設定し、当該2゜以上の角度範囲のX線を試料の表面に照射し、
 且つ、X線検出器は、1次元X線検出器又は2次元X線検出器で構成し、試料から反射してくる回折X線を当該X線検出器に入射させて、当該回折X線の反射角度と強度を検出する構成とすることが好ましい。
 また、X線照射ユニットを、試料の表面と直交しかつ光軸を含む仮想の垂直面内で揺動させて、試料表面にX線を照射する構成とすることもできる。
 X線照射ユニットから出射した集光X線が、すべての角度範囲で均一な強度であれば問題ないが、実際には僅かながらも強度が不均一となることは否めない。そこで、X線照射ユニットを揺動させることで、入射角度に対するX線強度分布を均一化させ、高精度なロッキングカーブ測定方法を実現することができる。
 さらに、X線検出器と、X線照射ユニットを、試料の表面と直交しかつ光軸を含む仮想の垂直面内で連動して走査させ、TDI(Time Delay Integration)モードによる走査方式に基づき、試料から反射してくる回折X線を測定する構成とすることもできる。
このように大きな角度範囲でX線照射ユニットとX線検出器とを連動して走査させることで、X線照射ユニットから出射した集光X線の入射角度に対する強度分布が大きい場合や、基板結晶からの回折X線のピーク角度と、薄膜結晶からの回折X線のピーク角度が大きく離れている場合であっても、試料へ照射するX線の強度を均一化させ、高精度なロッキングカーブ測定方法を実現することができる。
図1は、本発明の実施形態に係るX線検査装置の全体構造を示す斜視図である。 図2Aは、本発明の実施形態に係るX線検査装置の全体構造を示す正面図である。図2Bは試料台をχ軸中心に揺動させる機構を付加した構造例を模式的に示す側面図である。 図3Aは、本発明の実施形態に係るX線照射ユニットの構成を模式的に示す正面図である。図3Bは、同じく底面図である。 図3Aおよび図3Bに示したX線照射ユニットの斜視図である。 図5Aは、図3A,図3Bおよび図4に示したX線照射ユニットに含まれる第1のX線光学素子と第2のX線光学素子を拡大して示す正面図である。図5Bは、同じく底面図である。 図6Aは、X線照射ユニットから半導体ウエーハの検査面に照射したX線の軌道と、当該検査面から反射してX線検出器に入射する回折X線の軌道とを模式的に示す正面図である。図6Bは、図6Aの「検査位置f」部分を拡大して示す平面図である。 図7は、本発明の実施形態に係るX線検査装置の制御系を示すブロック図である。 図8は、本発明の実施形態に係るX線検査装置の制御フローチャートである。 図9Aは、従来のロッキングカーブ測定方法の概要を示す模式図、図9Bは、ロッキングカーブの一例を示す図である。 図10Aおよび図10Bは、本発明の実施形態に係るX線検査装置に組み込まれたロッキングカーブ測定手段によるロッキングカーブ測定方法の概要を示す模式図である。 図11は、ロッキングカーブ測定手段によるロッキングカーブ測定方法の実施手順を示すフローチャートである。 図12は、X線検出器によって検出した回折X線のロッキングカーブを示す図である。 図13は、Si基板結晶の表面にGeSi薄膜結晶をエピタキシャル成長させたときの結晶格子の状態を模式的に示す図である。 図14A,図14B,図14Cは、X線照射ユニットを揺動してロッキングカーブ測定方法を実施する構成を示す模式図である。 図15A,図15B,図15Cは、X線照射ユニットとX線検出器をそれぞれ走査してロッキングカーブ測定方法を実施する構成を示す模式図である。 図16は、TDIモードによるX線検出器の走査方式を示す模式図である。 図17は、本発明の実施形態に係るX線検査装置に組み込まれた逆格子マップ測定手段による逆格子マップ測定方法の概要を示す模式図である。 図18は、逆格子マップの一例を示す図である。 図19は、図18の逆格子マップを座標変換して示す図である。
10:試料台、20:位置決め機構、30:ゴニオメータ、31:ゴニオメータ本体、32:第1の旋回アーム、33:第2の旋回アーム、40:X線照射ユニット、41:X線管、42:第1のX線光学素子、43:第2のX線光学素子、44:集光スリット、50:X線検出器、60:光学顕微鏡、100:中央処理装置、101:XGコントローラ、102:画像認識回路、103:フォーカスコントローラ、104:位置決めコントローラ、106:ゴニオコントローラ、107:計数制御回路、110:記憶部、201:操作部、202:表示部、203:通信部
 以下、この発明の実施の形態について図面を参照して詳細に説明する。
〔X線検査装置の基本構成〕
 図1はX線検査装置の全体構造を示す斜視図、図2Aは同装置の正面図である。
 X線検査装置は、試料台10、位置決め機構20、ゴニオメータ30、X線照射ユニット40、X線検出器50、CCDカメラ等からなる光学顕微鏡60を備えている。
 試料台10の上面には、検査対象となる半導体ウエーハ(試料)が配置され、位置決め機構20によって駆動される。位置決め機構20は、水平面内の直角2方向(X,Y方向)へ移動自在な水平移動機構と、水平面と直交する上下方向(Z方向)へ移動自在な昇降機構と、面内回転機構とを含み、試料台10をX,Y,Z方向に移動させるとともに面内回転させて、その上面に配置された半導体ウエーハにおける任意の被測定部位を、照射X線の集光位置へ所定の向きに位置決めする機能を有している。
 ゴニオメータ30は、ゴニオメータ本体31に、第1,第2の旋回アーム(旋回部材)32,33を搭載している。各旋回アーム32,33は、図2Aの紙面に垂直な軸(θ軸、θ軸)を中心に、試料台の上面と直交する仮想平面に沿ってそれぞれ旋回する。ここで、第1の旋回アーム32の水平位置からの旋回角度をθ、第2の旋回アーム33の水平位置からの旋回角度をθとして、各旋回アーム32,33を旋回駆動させる。
 θ軸を中心に旋回する第1の旋回アーム32には、X線照射ユニット40が搭載してある。また、θ軸を中心に旋回する第2の旋回アーム33にはX線検出器50が搭載してある。
 X線照射ユニット40は、X線管から発生したX線を、特定の波長の特性X線に単色化するとともに、一箇所に集光させる機能を有している。
 X線照射ユニット40からの特性X線が照射される位置が検査位置となり、試料台10の上面に配置された試料の被測定部位は、位置決め機構20によってこの検査位置へ位置決めされる。なお、検査位置は、試料台10に配置された試料の表面と同一平面内に設定される。
 X線検出器50は、X線反射率測定(XRR)、X線回折測定(XRD)、ロッキングカーブ測定、逆格子マップ測定(RSM)などのX線薄膜検査に用いられる。X線反射率測定によれば、膜表面での反射X線と、膜と基板との界面での反射X線の干渉を測定して膜厚や密度を導くため、膜厚でオングストロームオーダーの測定精度が得られる。
 X線検出器50としては、例えば、入射X線に対するダイナミックレンジの広いアバランシェフォトダイオード(APD)を用いることができる。また、1次元X線検出器や2次元X線検出器を用いて、TDI(Time Delay Integration)モードや、スティル(Still)モードによるX線反射率測定、ロッキングカーブ測定、逆格子マップ測定などを実施することもできる。なお、X線薄膜検査におけるTDIモードとスティルモードについては、上述した非特許文献1に説明が掲載されている。
 なお、第2の旋回アーム33に検出器交換機構を組み込むとともに、APD、1次元X線検出器、2次元X線検出器、シンチレーションカウンタなど各種のX線検出器を搭載し、検出器交換機構によりX線検出器を切り替えて利用できる構成とすることも可能である。
 光学顕微鏡60は、検査位置から水平方向にずらした位置に配置して、X線照射ユニット40およびX線検出器50との干渉を回避してある。
 試料台10に配置した試料(例えば、半導体ウエーハ)の被測定部位は、位置決め機構20により試料台10を移動させることで、光学顕微鏡60の下方位置に配置される。そして、この位置から検査位置に向かって水平方向へ移動させることで、試料(例えば、半導体ウエーハ)の被測定部位が検査位置に位置決めされる。
 また、X線検査装置には、図2Bに模式的に示すように、試料台10をχ軸を中心に揺動させるχ軸揺動機構を付加した構成とすることもできる。ここで、χ軸は、試料台10に載置した試料Sの表面上で、θ軸、θ軸と直交する軸(すなわち、図2Aの左右方向に延びる軸)である。後述する検査位置f上に、これらθ軸、θ軸、χ軸の交点が位置決めされている。
 χ軸揺動機構は、湾曲ガイド11に対して揺動台12が揺動自在に組み込まれ、図示しない駆動モータからの駆動力をもって、揺動台12が湾曲ガイド11に沿って揺動する構成となっている。揺動台12の上部に設けた試料台10は、揺動台12と一体に揺動する。
 χ軸揺動機構を付加することで、例えば、AlGaN(窒化アルミニウムガリウム)やAlInN(窒化アルミニウムインジウム)の薄膜に対して、(0 0 2),(1 0 1)の結晶格子面での対称反射を対象とするロッキングカーブ測定や、(2 0 4)の結晶格子面での対称反射を対象とする逆格子マップ測定を実行することが可能となる。また、試料の面内方向の格子方位のばらつき(ツイスト分布)を測定することも可能となる。さらに、インプレーン回折測定とアウトオブプレーン回折測定の双方を実施することが可能となる。
〔X線照射ユニットの構成例〕
 次に、X線照射ユニットについて、図3~図6を参照して詳細に説明する。
 図3~図6に示すX線照射ユニット40は、X線管41と、第1のX線光学素子42と、第2のX線光学素子43と、集光スリット44(スリット部材)とを構成要素として含んでいる。これらの各構成要素は、図示しないユニット本体に内蔵されている。ユニット本体は、第1の旋回アーム32に搭載することができるコンパクトな寸法形状としてある。
 なお、集光スリット44は、図6にのみ表示してあり、図3及び図4では省略してある。
 X線管41には、例えば、ターゲット上での電子線焦点サイズがφ100μm程度の微小焦点X線管球を用いることができる。ターゲット材料としては、銅(Cu)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、タングステン(W)、クロム(Cr)、銀(Ag)、金(Au)などを必要に応じて選択することができる。
 特に、ターゲット材料として銅(Cu)を用いれば、後述する第1,第2のX線光学素子42,43により、高い角度分解能を有するCu-Kα1の特性X線のみを取り出すことができる。したがって、このCu-Kα1の特性X線を試料に照射することで、良好なスループットでのX線薄膜検査が実現可能となる。
 第1,第2のX線光学素子42,43は、X線管41から放射されたX線a1を入射し、特定波長の特性X線のみを取り出すとともに、当該取り出した特性X線a2を試料台10に配置された試料の表面上に集光させる機能を有している。
 図3~図5に示すように、第1のX線光学素子42と第2のX線光学素子43は、X線が入射し且つ特性X線を反射させる表面(以下、単に「表面」という)42a,43aを互いに直交して配置してある。そして、図6Bに示すように、これら第1のX線光学素子42と第2のX線光学素子43は、特定波長の特性X線a2を試料台10に配置された試料の表面上で四角形状の微小スポットとなるように集光する。なお、図6Bは、試料(半導体ウエーハ)の表面における特性X線a2が集光する位置を模式的に示した拡大平面図である。
 なお、本実施例では、第1のX線光学素子42と第2のX線光学素子43を、互いに1辺が接するSide-by-side方式で配置したが、これに限定されず、Kirkpatrick-Baez(KB)と呼ばれる直列方式で配置することもできる。
 試料台10に配置された試料の表面において、第1,第2のX線光学素子42,43で反射して取り出された特性X線が集光する位置が検査位置fとなる。このように検査位置fへ特性X線を集光させるために、各X線光学素子42,43の表面42a,43aは、凹面状に湾曲して形成してある。
 ここで、第1のX線光学素子42は、試料台10に配置された試料の表面と直交しかつ光軸を含む仮想の垂直面内で高さが縮小していくように、特性X線a2を集光する。以下、高さが縮小していく集光方向を「縦方向」とする。第1のX線光学素子42の表面42aは、かかる縦方向に特性X線を集光するために、上記仮想の垂直面と直交して配置してある。
 一方、第2のX線光学素子43は、仮想の垂直面と直交しかつ光軸を含む仮想の平面内で幅が縮小していくように特性X線a2を集光する。以下、幅が縮小していく集光方向を「横方向」とする。第2のX線光学素子43の表面43aは、かかる横方向に特性X線を集光するために、上記仮想の平面と直交して配置してある。
 さらに、第1のX線光学素子42は、高い結晶性を有する結晶材料で構成してある。換言すると、第1のX線光学素子42は、固有のロッキングカーブ幅(すなわち、平行ビームを反射することができる角度範囲)が極めて小さい結晶材料によって構成してある。このように固有のロッキングカーブ幅が極めて小さい結晶材料としては、格子欠陥や不純物の極めて少ない完全結晶に相当する結晶材料が該当する。
 本実施形態では、固有のロッキングカーブ幅が0.06゜以下の結晶材料によって構成してある。かかる結晶材料から取り出された特性X線a2を使用することで、X線薄膜測定において0.06゜以下の高い角度分解能を得ることができる。
 結晶材料としては、例えば、Ge(1 1 1)やSi(1 1 1)を使用することができる。Ge(1 1 1)を用いた場合は、0.06°以下のロッキングカーブ幅が得られる。また、Si(1 1 1)を用いた場合は、0.02°以下のロッキングカーブ幅が得られる。
 さらに、第1のX線光学素子42によれば、特性X線の高さ寸法が検査位置で100マイクロメータ以下となるように、縦方方向の集光角度を制御することが可能となる。
 また、第1のX線光学素子42は、特定波長の特性X線のみを取り出して単色化する機能を有している。
 一方、第2のX線光学素子43は、多層膜ミラーによって構成してある。この第2のX線光学素子43は、特定波長の特性X線のみを取り出して単色化する機能を有している。ここで、第2のX線光学素子43からは、第1のX線光学素子42で取り出される特性X線と同じ波長の特性X線が取り出されるように調整されている。
 図5に拡大して示すように、X線管41から出射して第2のX線光学素子43の表面43aに入射したX線b1は、このX線光学素子43で単色化されて反射し、横方向に集光するように進んで、次に第1のX線光学素子42の表面42aへ入射する。そして、第1のX線光学素子42の表面42aに入射したX線b2は、このX線光学素子42でも単色化されて反射し、縦方向に集光するように進んで、図3に示す検査位置fへ照射される。   
 一方、X線管41から出射して第1のX線光学素子42の表面42aに入射したX線c1は、このX線光学素子42で単色化されて反射し、縦方向に集光するように進んで、次に第2のX線光学素子43の表面43aへ入射する。そして、第2のX線光学素子43の表面43aに入射したX線c2は、横方向に集光するように進み、図3に示す検査位置fへ照射される。
 このように、X線管41から出射してきたX線a1は、第1のX線光学素子42の表面42aと第2のX線光学素子43の表面43aとでそれぞれ1回ずつ反射し、その過程で特定波長の特性X線a2のみが取り出され、当該特性X線a2が検査位置fへ集光する。
 なお、上述した特許文献2および特許文献3には、完全結晶とマルチレイヤ光学部品を組み合わせた構成のX線ビーム調整システムが開示されている。しかし、これらの文献には、半導体ウエーハを検査対象の試料とするX線検査装置に最適化された構成は開示されていない。
 集光スリット44は、第1,第2のX線光学素子42,43で反射してきた特性X線a2を、上述した縦方向の両側から一部遮蔽するように配置してある。この集光スリット44は、第1,第2のX線光学素子42,43で反射してきた集光X線a2の縦方向の集光を制限する機能を有している。
 上述した構成のX線照射ユニット40を第1の旋回アーム32に搭載したX線検査装置によれば、第1のX線光学素子42、第2のX線光学素子43および集光スリット44によってX線を微小領域へ集光させることができる。したがって、半導体ウエーハの表面における極めて微小な検査領域にX線を照射して薄膜測定を実施することが可能となる。しかも、第1のX線光学素子42は、固有のロッキングカーブ幅が極めて小さい結晶材料によって構成してあるので、かかる結晶材料で取り出された特性X線a2を使用することで、X線薄膜測定において極めて高い角度分解能を得ることができる。
〔X線検査装置の制御〕
 図7はX線検査装置の制御系を示すブロック図である。
 X線照射ユニット40の制御は、XGコントローラ101が実行する。
 また、光学顕微鏡60が捉えた試料の画像は、画像認識回路102で画像認識される。これら光学顕微鏡60と画像認識回路102は、試料台10に配置された試料の画像を観察する画像観察手段を構成している。なお、光学顕微鏡60の焦点位置はフォーカスコントローラ103によって調整される。
 位置決めコントローラ104は、光学顕微鏡60で捉えられ、画像認識回路102により認識された試料の画像に基づいて位置決め機構20を駆動制御する。
 ゴニオメータ30は、ゴニオコントローラ106によって駆動制御される。
 XGコントローラ101、画像認識回路102、フォーカスコントローラ103、位置決めコントローラ104、ゴニオコントローラ106の各構成部は、中央処理装置(CPU)100から送られてくる設定情報に基づいてそれぞれ作動する。ここで、設定情報は、レシピとして、あらかじめ記憶部110に記憶されており、中央処理装置(CPU)100が読み出して上記各構成部に出力する。
 X線検出器50は、計数制御回路107によって制御される。
 また、X線検査装置は、装置の動作に必要な各種設定をオペレータが入力するためのキーボードやマウス等からなる操作部201を備えている。さらに、X線検査装置は、液晶ディスプレイ等で構成された表示部202と、ネットワーク経由してのデータ通信を実行する通信部203とを備えている。
〔X線薄膜検査方法の実行手順〕
 図8は半導体ウエーハを検査対象としたX線薄膜検査方法の実行手順を示すフローチャートである。
 記憶部110には、X線薄膜検査を実行するためのソフトウエアがあらかじめ記憶されており、中央処理装置(CPU)100はそのソフトウエアに従い、以下のような処理ステップを実行していく。
 試料台10上に検査対象となる試料である半導体ウエーハを配置した後、まず半導体ウエーハの被測定部位を検査位置へ位置決めする(ステップS1)。
 ここで、半導体ウエーハの表面には、光学顕微鏡60からの画像情報により画像認識回路102が特定することができるユニークポイントが、レシピとしてあらかじめ記憶部110に設定してある。そして、そのユニークポイントを基準として、被測定部位の位置情報がレシピとしてあらかじめ記憶部110に設定してある。ユニークポイントとしては、例えば、半導体ウエーハの表面に形成される特徴的なパターン形状など、画像認識回路102が判断に迷うことなく認識できる部位を設定する。
 画像認識回路102は、光学顕微鏡60からの画像情報により、試料台10に配置された半導体ウエーハの表面に設定されたユニークポイントを、光学顕微鏡60からの画像情報により認識して特定する。
 次いで、画像認識回路102により認識されたユニークポイントを基準として、あらかじめ設定してある被測定部位の位置情報に基づき、位置決めコントローラ104が位置決め機構20を駆動制御する。位置決め機構20は、水平2方向(X-Y方向)および高さ方向(Z方向)に試料台10を移動して、半導体ウエーハの被測定部位を検査位置へ配置する。
 上述したように半導体ウエーハの被測定部位を位置決めを実行した後、X線反射率測定(XRR)、X線回折測定(XRD)、ロッキングカーブ測定、逆格子マップ測定(RSM)のいずれかをもってX線検査を実行し(ステップS2)、中央処理装置100が検査データを解析して(ステップS3)、解析結果を出力する(ステップS4)。
 以上の各ステップは半導体ウエーハに設定した被測定部位のすべてについて実行され(ステップS5)、すべての被測定部位の検査が終了した後に終了する。
〔ロッキングカーブ測定方法〕
 次に、上述した構成のX線検査装置を用いたロッキングカーブ測定の方法について詳細に説明する。
 ロッキングカーブ測定方法は、例えば、基板結晶にエピタキシャル成長させた薄膜結晶の格子定数を求める分析手法として知られている。
 従来から知られているロッキングカーブ測定方法は、図9Aに示すように、試料Sを入射X線(単色平行X線)に対して微小角度だけ走査させることで、試料Sに対するX線の入射角度ωを変化させる。なお、測定対象となる試料Sは、例えば、基板結晶Soに薄膜(結晶)Saをエピタキシャル成長させた半導体ウエーハである。
 このように試料Sに対するX線の入射角度ωを変化させると、入射角度が基板結晶Soのブラッグ角と一致したときにその基板結晶SoでX線が反射(回折)し、一方、入射角度が薄膜(結晶)Saのブラッグ角と一致したときにその薄膜SaでX線が反射(回折)する。これら基板結晶Soおよび薄膜Saから反射してきたX線をX線検出器50で検出し、X線の入射角対強度のプロファイルを求めることにより、図9Bに示したようなロッキングカーブが得られる。
 ロッキングカーブには、基板結晶から反射してきた回折X線のピーク強度Ioと薄膜から反射してきた回折X線のピーク強度Ipとがそれぞれ分離して現れる。このうち、基板結晶からの回折X線のピーク強度Ioが現れるX線入射角度(ブラッグ角)が既知であるとすると、その既知のX線入射角度と、薄膜からの回折X線のピーク強度Ipが現れるX線入射角度との差Δβにより、相対的に薄膜の格子定数を求めることができる。
 本実施形態に係るX線検査装置は、X線照射ユニット40により高い分解能で微小面積に集光する単色X線を試料Sへ照射できるので、X線入射角度θを走査することなく、集光角度範囲のX線の束を一括して試料Sに照射して、短時間でロッキングカーブ測定方法を実施することができる。
 一般に、基板結晶に薄膜結晶をエピタキシャル成長させた試料Sを対象としてのロッキングカーブ測定方法では、試料表面に対するX線の入射角度ωを2゜以上の範囲で変化させている。したがって、X線照射ユニット40から試料表面に照射するX線は、集光スリット44により2゜以上の集光角度に設定し、当該2゜以上の角度範囲のX線を試料の表面に照射することが好ましい。
〔2つの等価な非対称反射の結晶格子面を対象としたロッキングカーブ測定方法〕
 さらに、本実施形態に係るX線検査装置には、表面と平行でない2つの等価な結晶格子面(すなわち、非対称反射の結晶格子面)を対象としてロッキングカーブ測定方法を実施する手段が組み込まれている。このロッキングカーブ測定手段は、ソフトウエアとして図7の記憶部110に記憶されており、中央処理装置(CPU)100によって実行される。
 X線検査装置に組み込まれたロッキングカーブ測定手段は、例えば、Si(シリコン)基板結晶Soの表面にGeSi(シリコンゲルマニウム)薄膜Saをエピタキシャル成長させた半導体ウエーハを試料Sとして、Si基板結晶SoおよびGeSi薄膜Saについて、例えば、(1 1 5)(-1 -1 5)の非対称反射の結晶格子面を対象としてそれぞれロッキングカーブ測定方法を実施する。なお、対象とする非対称反射の結晶格子面は、(1 1 5)(-1 -1 5)に限定されないことは勿論である。GeSi薄膜SaのピークがSi基板結晶Soのピークに近すぎず、θ、θ<85°となるように選定することができる。
 図10Aおよび図10Bに示すように、試料Sは試料台10の上面に水平に配置して固定し、その試料Sの表面に対してX線照射ユニット40から所定の入射角度αでX線を照射するとともに、試料Sの表面から角度βの方向に出射してきた回折X線をX線検出器50により検出する。このとき、試料Sの表面に対する入射角度αおよび出射角度βは、Si基板結晶Soにおける非対称反射の結晶格子面(1 1 5)(-1 -1 5)においてX線がブラッグ反射する角度に設定する。
 このように設定することで、Si基板結晶Soのピーク強度が検出される角度βに対して角度Δβだけずれた方向に、GeSi薄膜Saにおける非対称反射の結晶格子面(1 1 5)(-1 -1 5)から反射してきた回折X線のピーク強度が検出される。X線検出器50は、Si基板結晶Soにおける非対称反射の結晶格子面(1 1 5)(-1 -1 5)から反射してくる回折X線と、GeSi薄膜Saにおける非対称反射の結晶格子面(1 1 5)(-1 -1 5)から反射してくる回折X線とを一括して検出できる検出可能領域を有した1次元X線検出器又は2次元X線検出器を用いる。
 1次元X線検出器又は2次元X線検出器によれば、試料から反射してくる回折X線の複数のピーク強度を固定したまま検出することができる。また、1次元X線検出器又は2次元X線検出器によれば、TDIモードによる走査方式をもって、試料から反射してくる回折X線を測定することも可能となる。
 X線照射ユニット40は、高い分解能で微小面積に集光する単色X線を試料Sの表面に照射できるので、当該集光角度範囲のX線の束を一括して試料Sに照射して、ロッキングカーブ測定方法を実施することができる。このため、X線入射角度θを走査する必要がなく、各非対称反射の結晶格子面(1 1 5)(-1 -1 5)に対してそれぞれ1回のX線照射で、各非対称反射の結晶格子面(1 1 5)(-1 -1 5)を対象としたロッキングカーブを得ることができる。
 図11はロッキングカーブ測定手段によるロッキングカーブ測定方法の実施手順を示すフローチャートである。
 中央処理装置100は、試料台10に配置された試料Sに対して、2つの非対称反射の結晶格子面をあらかじめ選定し(ステップS10)、各非対称反射の結晶格子面に対して、同図の手順に従ってロッキングカーブ測定方法を実施する。
 以下、(1 1 5)(-1 -1 5)の結晶格子面を選定したものとして具体的な実施手順を説明する。
 まず一方の非対称反射の結晶格子面(1 1 5)を対象として、Si基板結晶Soのブラッグ角に基づき決定した試料Sの表面に対する角度α,βの位置に、X線照射ユニット40とX線検出器50を配置する(ステップS11)。
 そして、X線照射ユニット40からX線を試料Sの表面に一定時間照射するとともに、試料Sから反射してくる回折X線の反射角度と強度を、X線検出器50によって検出する(ステップS12)。ここで、試料Sから反射してきた回折X線には、Si基板結晶Soの結晶格子面(1 1 5)から反射してきた回折X線と、GeSi薄膜Saの結晶格子面(1 1 5)から反射してきた回折X線とが含まれている。
 次に、他方の非対称反射の結晶格子面(-1 -1 5)を対象として、Si基板結晶Soのブラッグ角に基づき決定した試料Sの表面に対する角度α,βの位置に、X線照射ユニット40とX線検出器50を配置する(ステップS13)。
 そして、X線照射ユニット40からX線を試料Sの表面に一定時間照射するとともに、試料Sから反射してくる回折X線の反射角度と強度を、X線検出器50によって検出する(ステップS14)。ここで、試料Sから反射してきた回折X線には、Si基板結晶Soの結晶格子面(-1 -1 5)から反射してきた回折X線と、GeSi薄膜Saの結晶格子面(-1 -1 5)から反射してきた回折X線とが含まれている。
 図12はX線検出器によって検出した回折X線のロッキングカーブを示す図である。
 同図に示すロッキングカーブは、縦軸を回折X線の強度、横軸を回折X線の反射角度に設定して、X線検出器50による回折X線の検出データを表示したものである。なお、回折X線の反射角度(横軸)は、Si基板結晶Soの結晶格子面(1 1 5)(-1 -1 5)のそれぞれから反射してきた回折X線のピーク強度Isiが現れる角度を原点0に設定してある。Si基板結晶Soにはひずみが無いので、同じ角度位置に結晶格子面(1 1 5)(-1 -1 5)のそれぞれから反射してきた回折X線のピーク強度Isiが現れる。
 中央処理装置100は、ロッキングカーブ測定方法により得られたデータを解析して、GeSi薄膜Saの格子定数(a、c)を算出し、さらに算出した格子定数(a、c)から必要に応じてGeSi薄膜Saのひずみ量や内部応力等を求める(ステップS15)。
 すなわち、結晶格子面(1 1 5)から反射してきた回折X線を観察すると、Si基板結晶Soから反射してきた回折X線のピーク強度IsiからΔβ(1 1 5)だけずれた角度に、GeSi薄膜Saから反射してきた回折X線のピーク強度Igeが現れていることがわかる。
 同様に、結晶格子面(-1 -1 5)から反射してきた回折X線を観察すると、Si基板結晶Soから反射してきた回折X線のピーク強度IsiからΔβ(-1 -1 5)だけずれた角度に、GeSi薄膜Saから反射してきた回折X線のピーク強度Igeが現れていることがわかる。
 なお、Δβ(1 1 5)とΔβ(-1 -1 5)との間にずれ角度が生じるのは、GeSi薄膜Saに歪みが生じていることを示している。
 これらGeSi薄膜Saから反射してきた回折X線のピーク強度Igeが現れる角度のずれΔβ(1 1 5)、Δβ(-1 -1 5)からGeSi薄膜Saの面内の格子定数a及び法線方向の格子定数cを算出することができる。
〔ロッキングカーブ測定方法で得られたデータの解析〕
 本来、SiとGeSiは同じ立方晶系であるので、それぞれの結晶格子面(1 1 5)や(-1 -1 5)は平行のはずである。しかし、図13に示すように、GeSi薄膜Saの面内方向における結晶格子が、Si基板結晶Soに拘束されてない状態(R-Sa)に対して、Si基板結晶Soに拘束され結晶格子が縮んだ状態(S-Sa)となると、その影響で法線方向に結晶格子が伸び、両者の結晶格子面(1 1 5)や(-1 -1 5)の間に偏差角Δχが生じる。
 また、SiとGeSiそれぞれの格子面間隔の違いによるブラッグ角の差をΔθとすると、ロッキングカーブ測定方法により求められたSi基板結晶Soからの回折ピークと、GeSi薄膜Saからの回折ピークとの角度差Δβは、それぞれ次式(1)(2)の関係を有する。なお、Δβ(1 1 5)は、Si基板結晶Soの結晶格子面(1 1 5)からの回折ピークと、GeSi薄膜Saの結晶格子面(1 1 5)からの回折ピークとの角度差Δβである。また、Δβ(-1 -1 5)は、Si基板結晶Soの結晶格子面(-1 -1 5)からの回折ピークと、GeSi薄膜Saの結晶格子面(-1 -1 5)からの回折ピークとの角度差Δβである。
   Δβ(1 1 5)=Δθ-Δχ                  (1)
   Δβ(-1 -1 5)=Δθ+Δχ                  (2)
 そして、上式(1)(2)から、次式(3)(4)を得ることができる。
   Δθ=(Δβ(1 1 5)+Δβ(-1 -1 5))/2            (3)
   Δχ=-(Δβ(1 1 5)-Δβ(-1 -1 5))/2           (4)
 また、ブラッグの法則から次式(5)を導くことができる。なお、dはGeSi薄膜Saの結晶格子面(1 1 5)に関する格子面間隔、λは入射X線の波長、θはSi基板結晶Soからの回折ピークが現れるブラッグ角である。
   2d×sin(θ+Δθ)=λ               (5)
 ここで、θとλは既知の値であるから、上式(5)のΔθに式(3)を代入すると、dを求めることができる。
 また、GeSiの面内の格子定数a及び法線方向の格子定数cと、格子面間隔dとの間には、次式(6)の関係がある。
   1/d=√{(1/a)+(1/a)+(5/c)}       (6)
 上式(6)において、未知数は格子定数aとcである。
 一方、格子面の傾きの式は次式(7)(8)であらわされる。なお、χは、GeSi薄膜Saに歪みがない状態での結晶格子面(1 1 5)の傾き角度であり、Si基板結晶Soの結晶格子面(1 1 5)の傾き角度に等しい。
   cosχ=(0 0 1)(1 1 5)/|(0 0 1)||(1 1 5)|
        =5/3√(3)                 (7)
   tan(χ+Δχ)=(c/5)/√(2a)          (8)
 上式(8)に、(7)式で得られたχと、(4)式で得られたΔχを代入すれば、未知数は格子定数a、cの2つとなる。
 したがって、上式(6)と(8)の連立方程式を解くことで、GeSiの面内の格子定数a及び法線方向の格子定数cを算出することができる。
 なお、ロッキングカーブ測定方法で求めた上記Δβ(1 1 5)、Δβ(-1 -1 5)からGeSi薄膜Saの格子定数を求める算出式はすでに公知であり、例えば、非特許文献2及び3にも開示されている。
 また、GeSi薄膜Saの格子定数a、cがわかれば、さらにGeSi薄膜Saのひずみ量や内部応力の大きさを、当該格子定数a、cと既知の弾性定数を使って、応力のテンソルの式から算出することができる。さらに、GeSi薄膜Saの中のGe(ゲルマニウム)の濃度やGeSi薄膜Saの組成、GeSi薄膜Saの応力が開放された状態での格子定数などを算出することができる。
 本実施形態に係るX線検査装置は、図7に示す操作部201を使用してのオペレータによる設定に従い、ロッキングカーブ測定方法により得られた測定データや、中央処理装置100により算出した格子定数a、c等の解析データを、記憶部110に保存するとともに、表示部202に表示したり、通信部203からネットワークを経由してサーバやホストコンピュータへ送信する機能を備えている。
〔対称反射の1つの結晶格子面を対称としたロッキングカーブ測定方法〕
 図13に示すように、GeSi薄膜Saの面内方向における結晶格子がSi基板結晶Soに拘束され結晶格子が縮んだ状態(S-Sa)となっているか、あるいはGeSi薄膜Saの面内方向における結晶格子がSi基板結晶Soに拘束されることなく結晶格子が開放された状態(R-Sa)となっているかを判別するには、GeSiの面内の格子定数a及び法線方向の格子定数cを未知数として、これを解析する必要がある。そのために、上述したロッキングカーブ測定手段では、2つの等価な非対称反射の結晶格子面を対象として測定を実施した。
 一方、GeSi薄膜Saの厚さが薄く、その面内方向における結晶格子がSi基板結晶Soに拘束され結晶格子が縮んだ状態(S-Sa)となっていることが明らかな場合は、GeSiの面内の格子定数aは、Si基板結晶Soの面内の格子定数と等しいため、これを算出する必要がなくなる。すなわち、GeSiの法線方向の格子定数cだけが未知数となる。
 このような場合は、上述したように2つの等価な非対称反射の結晶格子面を対象としてロッキングカーブ測定方法を実施する必要がなく、1つの対称反射の結晶格子面を対象としたロッキングカーブ測定方法を実施するだけで、GeSiの法線方向の格子定数cを算出することができる。
〔ロッキングカーブ測定方法の応用〕
 上述したロッキングカーブ測定手段では、X線照射ユニット40と、X線検出器50とを固定してロッキングカーブ測定方法を実施したが、図14A~図14Cに示すように、X線照射ユニット40は、試料Sの表面と直交しかつ光軸を含む仮想の垂直面内で揺動させて、ロッキングカーブ測定方法を実施する構成とすることもできる。
 この場合、X線照射ユニット40の揺動範囲は、図14A~図14Cに示すように、集光X線の高角側にある一方の外縁XOL1が、高角側にあるSi基板結晶Soの回折条件を満たすブラッグ角αSiとほぼ一致する揺動角度(図14B)から、集光X線の低角側にある他方の外縁XOL2が、低角側にあるGeSi薄膜Saの回折条件を満たすブラッグ角αGeSiとほぼ一致する揺動角度(図14C)までとすることが好ましい。
 X線照射ユニット40を揺動させることで、入射角度に対するX線強度分布を均一化させ、高精度なロッキングカーブ測定方法を実現することができる。
 さらに、X線照射ユニット40とX線検出器50を連動して走査させる構成とすることもできる。
 この場合は、X線検出器50は、TDIモードによる走査方式をもって、試料から反射してくる回折X線を測定する。TDIモードによる走査方式を採用することで、図15A~図15Cに示すように、広い角度範囲で高精度なロッキングカーブ測定方法を実施することが可能となる。例えば、集光X線の高角側にある一方の外縁XOL1が、低角側にあるGeSi薄膜Saの回折条件を満たすブラッグ角αGeSiとほぼ一致する角度(図15B)から、集光X線の低角側にある他方の外縁XOL2が、低角側にあるSi基板結晶Soの回折条件を満たすブラッグ角αSiとほぼ一致する角度(図15C)までの広い範囲で走査させることができる。
 このように大きな角度範囲でX線照射ユニット40とX線検出器50とを走査させることで、X線照射ユニット40から出射した集光X線の入射角度に対する強度分布が大きい場合や、基板結晶からの回折X線のピーク角度と、薄膜結晶からの回折X線のピーク角度が離れている場合であっても、試料Sへ照射するX線の強度を均一化させ、高精度なロッキングカーブ測定方法を実現することができる。
 図16は、TDIモードによるX線検出器の走査方式を示している。
 TDIモードでは、図16に示すように、複数の並列配置されたX線検出器a1、a2、a3、a4を並列方向(図のQ方向)に走査して、X線検出器1個分が移動するタイミングt1、t2、t3、t4で各X線検出器a1、a2、a3、a4から検出データを読み出す。そして、各X線検出器a1、a2、a3、a4の検出データを走査角度2θ、2θ、2θ、2θ毎に足し合わせて、各走査角度2θ、2θ、2θ、2θにおけるX線強度を求める。
 一般に、TDIモードによる測定は、測定の迅速化とともに各走査角度において大きな検出強度が得られる利点を有している。
〔逆格子マップ測定〕
 次に、上述した構成のX線検査装置を用いた逆格子マップ測定について詳細に説明する。
 逆格子マップ測定は、結晶試料における非対称反射の結晶格子面から反射してきた回折X線の、逆格子空間での強度分布を測定する手法である。この逆格子マップ測定によっても、例えば、基板結晶にエピタキシャル成長させた薄膜結晶の格子定数を求めることができる。
 本実施形態に係るX線検査装置には、逆格子マップ測定を実施する手段が組み込まれている。この逆格子マップ測定手段は、既述したロッキングカーブ測定手段と同様に、ソフトウエアとして図7の記憶部110に記憶されており、中央処理装置(CPU)100によって実行される。
 例えば、Si基板結晶Soの表面にGeSi薄膜Saをエピタキシャル成長させた半導体ウエーハを試料Sとして逆格子マップ測定を実行する場合は、Si基板結晶SoおよびGeSi薄膜Saにおける非対称反射の結晶格子面を対象として、単色の平行X線を照射するとともに、当該結晶格子面から反射してくる回折X線の強度と反射角度をX線検出器で検出する。かかるX線の照射と回折X線の検出を、試料Sの表面に対するX線の入射角度αと回折X線の検出角度βとを、対象とする結晶格子面においてブラッグ条件を満たすような関係をもって変化させ、微小角度毎に実行していく。
 具体的には、図17に示すように、X線照射ユニット40をθの角度方向に移動させながら、X線検出器50もθの角度方向に移動させて対象の結晶格子面から反射してきた回折X線を、微小角度毎に検出していく。
 X線照射ユニット40は、X線を集光スリット44によって大きく絞ることで、単色の平行X線を作り出すことができる。例えば、X線の断面積が1/100程度まで縮小されるように絞ることで、単色の平行X線に近いX線を得ることができる。
 X線検出器50は、広範囲の二次元X線回折イメージを観測することができる高速2次元X線検出器を用いることが好ましい。かかる高速2次元X線検出器を用いることで、測定時間を大幅に短縮することができる。
 このようにして、あらかじめ設定した範囲の入射角度αと回折X線の反射角度βに関して測定が終了した後、得られた回折X線の検出データから、逆格子マップを作成する。
 図18は逆格子マップの一例を示している。同図の逆格子マップは、横軸を対象の結晶格子面に対するX線の入射角度αとし、縦軸を対象の結晶格子面からの回折X線の反射角度βとして、X線検出器50が検出した回折X線の逆格子空間での強度分布を表示している。
 同図において、IsiがSi基板結晶Soの結晶格子面から反射してきた回折X線のピーク強度位置であり、IgeがGeSi薄膜Saの結晶格子面から反射してきた回折X線のピーク強度位置である。
 図19は図18の逆格子マップを座標変換したもので、Si基板結晶Soからの回折X線のピーク強度Isiの位置と、GeSi薄膜Saからの回折X線のピーク強度位置Igeの位置とが、同じ横軸Qxの角度位置に配置されている。
 そして、この図のGeSi薄膜Saからの回折X線のピーク強度Igeの角度位置Qxge、Qzgeから、GeSi薄膜Saの格子定数(a、c)を算出することができる。さらに、算出した格子定数(a、c)から必要に応じてGeSi薄膜Saのひずみ量や内部応力等を求めることもできる。
 Qx、QzからGeSi薄膜Saの格子定数(a、c)を求める算出式はすでに公知であるので、詳細な説明は省略する。
 なお、本発明は上述した実施形態に限定されるものではなく、要旨を逸脱しない範囲で、種々の変形実施や応用実施が可能であることは勿論である。
 例えば、上述した実施形態のX線検査装置は、半導体製造ラインを流れる半導体ウエーハを検査対象としていたが、これに限らず、例えば、半導体製造ラインの後工程において半導体素子の微小部位を被測定部位としたX線検査にも適用することが可能である。

Claims (18)

  1.  検査対象の試料を配置する試料台と、
     前記試料台に配置された試料の画像を観察する画像観察手段と、
     前記画像観察手段による前記試料の画像観察結果に基づき制御され、前記試料台を水平面上で直交する2方向、高さ方向、および面内回転方向に移動させる位置決め機構と、
     前記試料台に配置された試料の表面と同一平面内に含まれる回転軸を中心に、当該試料の表面と垂直な仮想平面に沿ってそれぞれ独立して旋回する第1,第2の旋回部材を含むゴニオメータと、
     前記第1の旋回部材に搭載され、前記試料台に配置された試料の表面と同一平面内に設定した検査位置へ特性X線を集光して照射するX線照射ユニットと、
     前記第2の旋回部材に搭載されたX線検出器と、
    を備え、
     前記X線照射ユニットは、
     X線を発生するX線管と、
     前記X線管から放射されたX線を入射し、特定波長の特性X線のみを取り出すとともに、当該取り出した特性X線を前記検査位置へ集光させるX線光学素子と、を含み、
     さらに前記X線光学素子は、
     前記試料の表面と直交しかつ光軸を含む仮想の垂直面内で高さが縮小していくように前記特性X線を集光する第1のX線光学素子と、前記仮想の垂直面と直交しかつ光軸を含む仮想の平面内で幅が縮小していくように前記特性X線を集光する第2のX線光学素子と、を含むことを特徴とするX線検査装置。
  2.  前記第1のX線光学素子は、高い結晶性を有する結晶材料で構成したことを特徴とする請求項1のX線検査装置。
  3.  前記第1のX線光学素子は、固有のロッキングカーブ幅が0.06゜以下の結晶材料によって構成したことを特徴とする請求項2のX線検査装置。
  4.  前記第2のX線光学素子は、多層膜ミラーで構成したことを特徴とする請求項1乃至3のいずれか一項に記載のX線検査装置。
  5.  前記X線照射ユニットは、前記試料の表面と直交しかつ光軸を含む仮想の垂直面内での前記特性X線の集光角度を制御する集光角度制御部材を含むことを特徴とした請求項1乃至4のいずれか一項に記載のX線検査装置。
  6.  前記集光角度制御部材は、前記第1のX線光学素子で集光されてきた特性X線を任意の幅だけ透過させるスリットを有するスリット部材により構成したことを特徴とする請求項5のX線検査装置。
  7.  前記X線照射ユニットは、前記X線管、前記X線光学素子、および前記スリット部材の各構成要素を、前記第1の旋回部材に搭載して旋回できるユニット本体に内蔵したことを特徴とする請求項6のX線検査装置。
  8.  前記X線検出器は、1次元X線検出器又は2次元X線検出器で構成することを特徴とする請求項1乃至7のいずれか一項に記載のX線検査装置
  9.  基板結晶に薄膜結晶をエピタキシャル成長させた試料に対してロッキングカーブ測定方法を実行するロッキングカーブ測定手段を備えた請求項1乃至8のいずれか一項に記載のX線検査装置であって、
     前記ロッキングカーブ測定手段は、次の(i)~(iv)の操作を実行する機能を有していることを特徴とするX線検査装置。
    (i) 前記試料に対して、測定対象となる結晶格子面を選定する。
    (ii) 選定した結晶格子面を対象として、前記試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、前記X線照射ユニットと前記X線検出器とを配置する。
    (iii) 前記X線照射ユニットからのX線を前記試料表面に照射するとともに、前記試料から反射してくる回折X線の反射角度と強度を、前記X線検出器によって検出する。
    (iv) 前記X線検出器が検出した回折X線の反射角度と強度に基づきロッキングカーブを求め、当該ロッキングカーブに関するデータを解析する。
  10.  基板結晶に薄膜結晶をエピタキシャル成長させた試料に対してロッキングカーブ測定方法を実行するロッキングカーブ測定手段を備えた請求項1乃至8に記載のX線検査装置であって、
     前記ロッキングカーブ測定手段は、次の(I)~(VI)の操作を実行する機能を有していることを特徴とするX線検査装置。
    (I) 前記試料に対して、2つの等価な非対称反射の結晶格子面を選定する。
    (II) 選定した一方の結晶格子面を対象として、前記試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、前記X線照射ユニットと前記X線検出器とを配置する。
    (III) 前記X線照射ユニットからのX線を前記試料表面に照射するとともに、前記試料から反射してくる回折X線の反射角度と強度を、前記X線検出器によって検出する。
    (IV) 選定した他方の結晶格子面を対象として、前記試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、前記X線照射ユニットと前記X線検出器とを配置する。
    (V) 前記X線照射ユニットからのX線を前記試料表面に照射するとともに、前記試料から反射してくる回折X線の反射角度と強度を、前記X線検出器によって検出する。
    (VI) 前記X線検出器が検出した回折X線の反射角度と強度に基づきロッキングカーブを求め、当該ロッキングカーブに関するデータを解析する。
  11.  前記ロッキングカーブ測定手段は、前記(VI)の操作において、さらに次の(VI-I)~(VI-IV)の操作を実行する機能を有していることを特徴とする請求項10のX線検査装置。
    (VI-I) 前記試料の基板結晶での回折ピークと、当該試料の薄膜結晶での2つの等価な非対称反射の回折ピークとの角度差を求める。
    (VI-II) 前記(VI-I)の操作で求めた回折ピークの角度差から、前記試料の薄膜結晶についての格子定数を算出する。
    (VI-III) 前記試料の薄膜結晶についての既知の弾性定数と前記算出した格子定数から、薄膜結晶の歪み、薄膜結晶の応力が開放された状態での格子定数、薄膜結晶の組成及び薄膜結晶の応力の少なくとも一つを算出する。
    (VI-IV) 前記(VI-III)の操作で得られた算出結果を出力する。
  12.  前記請求項9又は10のX線検査装置において、
     前記X線照射ユニットは、前記試料の表面と直交しかつ光軸を含む仮想の垂直面内での前記特性X線の集光角度を制御する集光角度制御部材を含み、前記X線照射ユニットから前記試料表面に照射するX線を、前記集光角度制御部材により2゜以上の集光角度に設定し、当該2゜以上の角度範囲のX線を前記試料の表面に照射し、
     且つ、前記X線検出器は、1次元X線検出器又は2次元X線検出器で構成し、前記試料から反射してくる回折X線を当該X線検出器に入射させて、当該回折X線の反射角度と強度を検出する構成としたことを特徴とするX線検査装置。
  13.  請求項12のX線検査装置において、
     前記X線照射ユニットを、前記試料の表面と直交しかつ光軸を含む仮想の垂直面内で揺動させて、前記試料表面にX線を照射する構成としたことを特徴とするX線検査装置。
  14.  請求項12のX線検査装置において、
     前記X線検出器と、前記X線照射ユニットを、前記試料の表面と直交しかつ光軸を含む仮想の垂直面内で連動して走査させ、TDIモードによる走査方式をもって、前記試料か
    ら反射してくる回折X線を測定する構成としたことを特徴とするX線検査装置。
  15.  半導体製造ラインを流れる半導体ウエーハを検査対象の試料とし、請求項1乃至14のいずれか一項に記載のX線検査装置を用いて、前記半導体ウエーハの表面に成膜された薄膜を検査するためのX線薄膜検査方法であって、
     半導体ウエーハの表面において前記画像観察手段により認識できるユニークポイントをあらかじめ設定するとともに、当該ユニークポイントを基準としてX線薄膜検査の被測定部位の位置情報を設定し、
     次の(a)~(c)の工程を含むことを特徴とするX線薄膜検査方法。
    (a) 前記試料台に配置された半導体ウエーハに対し、その表面に設定された前記ユニークポイントを前記画像観察手段により認識する工程
    (b) 前記画像観察手段により認識されたユニークポイントを基準として、前記被測定部位の位置情報に基づき、前記位置決め機構を制御して前記試料台を移動させ、前記被測定部位を前記検査位置に位置決めする工程
    (c) 前記X線照射ユニットから前記検査位置に特性X線を集光してX線検査を実行する工程
  16.  請求項1乃至8のいずれか一項に記載のX線検査装置を用いて、基板結晶に薄膜結晶をエピタキシャル成長させた試料に対してロッキングカーブを測定する方法であって、次の工程1~工程4を含むことを特徴とするロッキングカーブ測定方法。
    工程1 前記試料に対して、測定対象となる結晶格子面を選定する。
    工程2 選定した結晶格子面を対象として、前記試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、前記X線照射ユニットと前記X線検出器とを配置する。
    工程3 前記X線照射ユニットからのX線を前記試料表面に照射するとともに、前記試料から反射してくる回折X線の反射角度と強度を、前記X線検出器によって検出する。
    工程4 前記X線検出器が検出した回折X線の反射角度と強度に基づきロッキングカーブを求め、当該ロッキングカーブに関するデータを解析する。
  17.  請求項1乃至8のいずれか一項に記載のX線検査装置を用いて、基板結晶に薄膜結晶をエピタキシャル成長させた試料に対してロッキングカーブを測定する方法であって、次の工程A~工程Dの工程を含むことを特徴とするロッキングカーブ測定方法。
    工程A 前記試料に対して、2つの等価な非対称反射の結晶格子面を選定する。
    工程B 選定した一方の結晶格子面を対象として、前記試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、前記X線照射ユニットと前記X線検出器とを配置する。
    工程C 前記X線照射ユニットからのX線を前記試料表面に照射するとともに、前記試料から反射してくる回折X線の反射角度と強度を、前記X線検出器によって検出する。
    工程D 選定した他方の結晶格子面を対象として、前記試料における基板結晶のブラッグ角に基づき決定した試料表面に対する角度位置に、前記X線照射ユニットと前記X線検出器とを配置する。
    工程E 前記X線照射ユニットからのX線を前記試料表面に照射するとともに、前記試料から反射してくる回折X線の反射角度と強度を、前記X線検出器によって検出する。
    工程F 前記X線検出器が検出した回折X線の反射角度と強度に基づきロッキングカーブを求め、当該ロッキングカーブに関するデータを解析する。
  18.  請求項17のロッキングカーブ測定方法において、前記工程Fは、さらに次の工程F-1~工程F-4を含むことを特徴とするロッキングカーブ測定方法。
    工程F-1 前記試料の基板結晶での回折ピークと、当該試料の薄膜結晶での2つの等価な非対称反射の回折ピークとの角度差を求める。
    工程F-2 前記工程F-1の操作で求めた回折ピークの角度差から、前記試料の薄膜結晶についての格子定数を算出する。
    工程F-3 前記試料の薄膜結晶についての既知の弾性定数と前記算出した格子定数から、薄膜結晶の歪み、薄膜結晶の応力が開放された状態での格子定数、薄膜結晶の組成及び薄膜結晶の応力の少なくとも一つを算出する。
    工程F-4 前記工程F-3で得られた算出結果を出力する。
PCT/JP2017/025389 2016-07-15 2017-07-12 X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法 WO2018012527A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017003580.5T DE112017003580T5 (de) 2016-07-15 2017-07-12 Röntgeninspektionsvorrichtung, Röntgendünnfilminspektionsverfahren und Verfahren zum Messen einer Rocking-Kurve
CN201780035084.4A CN109313145A (zh) 2016-07-15 2017-07-12 X射线检测设备、x射线薄膜检测方法和测量摇摆曲线的方法
KR1020197002613A KR102348995B1 (ko) 2016-07-15 2017-07-12 X선 검사 장치, x선 박막 검사 방법 및 로킹 커브 측정 방법
US16/205,801 US10876978B2 (en) 2016-07-15 2017-07-12 X-ray inspecting device, X-ray thin film inspecting method, and method for measuring rocking curve
JP2018527625A JP6864888B2 (ja) 2016-07-15 2017-07-12 X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140892 2016-07-15
JP2016-140892 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012527A1 true WO2018012527A1 (ja) 2018-01-18

Family

ID=60952090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025389 WO2018012527A1 (ja) 2016-07-15 2017-07-12 X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法

Country Status (7)

Country Link
US (1) US10876978B2 (ja)
JP (1) JP6864888B2 (ja)
KR (1) KR102348995B1 (ja)
CN (1) CN109313145A (ja)
DE (1) DE112017003580T5 (ja)
TW (1) TWI755409B (ja)
WO (1) WO2018012527A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118585A1 (ja) * 2020-12-01 2022-06-09 株式会社リガク 全反射蛍光x線分析装置
JP7476039B2 (ja) 2020-09-02 2024-04-30 キオクシア株式会社 半導体装置の検査装置、及び、半導体装置の検査方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130663A1 (ja) * 2017-12-28 2019-07-04 株式会社リガク X線検査装置
EP3603516A1 (de) * 2018-08-02 2020-02-05 Siemens Healthcare GmbH Röntgenvorrichtung und verfahren zum betrieb der röntgenvorrichtung
KR102650008B1 (ko) * 2019-03-28 2024-03-22 가부시키가이샤 리가쿠 투과형 소각 산란 장치
EP3987279B1 (de) * 2019-06-24 2023-11-08 SMS Group GmbH Vorrichtung und verfahren zum bestimmen der werkstoffeigenschaften eines polykristallinen produkts
CN110793855B (zh) * 2019-11-13 2021-03-02 北京理工大学 一种立方结构多晶合金晶间应力的评估方法
CN113030139B (zh) * 2021-05-31 2021-08-13 中国工程物理研究院激光聚变研究中心 一种新型晶体及紧凑型成像装置
CN113945591B (zh) * 2021-09-14 2023-10-24 中国电子科技集团公司第十一研究所 一种半峰宽自动化测试工装
KR102594237B1 (ko) * 2021-12-17 2023-10-30 주식회사 넥스트론 Xrd를 이용한 마이크로 프로브 시스템
CN114778577A (zh) * 2022-06-23 2022-07-22 浙江大学杭州国际科创中心 一种x射线衍射仪检测碳化硅缺陷的方法
WO2024167032A1 (ko) * 2023-02-07 2024-08-15 주식회사 넥스트론 Xrd를 이용한 마이크로 프로브 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292379A (ja) * 1999-04-12 2000-10-20 Rigaku Corp X線回折装置及びx線ロッキングカーブの測定方法
JP2002286660A (ja) * 2001-03-27 2002-10-03 Japan Science & Technology Corp X線回折を用いた結晶の観察方法及びその観察装置
JP2005249787A (ja) * 2004-03-01 2005-09-15 Panalytical Bv 回折計
JP2006153767A (ja) * 2004-10-26 2006-06-15 Rigaku Corp X線薄膜検査装置と、プロダクトウエーハの薄膜検査装置およびその方法
JP2010261737A (ja) * 2009-04-30 2010-11-18 Rigaku Corp X線散乱測定装置およびx線散乱測定方法
JP2013137298A (ja) * 2011-11-29 2013-07-11 Rigaku Corp X線分析装置
WO2016059672A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155102A (ja) 1998-11-19 2000-06-06 Rigaku Corp X線測定装置およびその方法
US6970532B2 (en) * 2000-05-10 2005-11-29 Rigaku Corporation Method and apparatus for measuring thin film, and thin film deposition system
US6891627B1 (en) * 2000-09-20 2005-05-10 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
JP3697246B2 (ja) * 2003-03-26 2005-09-21 株式会社リガク X線回折装置
US7280634B2 (en) * 2003-06-13 2007-10-09 Osmic, Inc. Beam conditioning system with sequential optic
JP5392982B2 (ja) 2003-06-13 2014-01-22 オスミック、インコーポレイテッド ビーム調整システム
WO2007040000A1 (ja) * 2005-09-05 2007-04-12 Rigaku Corporation 単結晶試料の極性判定方法及び装置
JP4262734B2 (ja) * 2005-09-14 2009-05-13 株式会社リガク 蛍光x線分析装置および方法
JP4685877B2 (ja) * 2005-11-02 2011-05-18 株式会社リガク 微結晶粒の方位分布測定方法及びその装置
WO2009126868A1 (en) * 2008-04-11 2009-10-15 Rigaku Innovative Technologies, Inc. X-ray generator with polycapillary optic
JP5307503B2 (ja) * 2008-07-01 2013-10-02 株式会社日立ハイテクサイエンス X線分析装置及びx線分析方法
GB2481950B (en) * 2009-04-14 2017-08-23 Rigaku Denki Co Ltd Surface microstructure measurement method, surface microstructure measurement data analysis method and surface microstructure measurement system.
JP5367549B2 (ja) * 2009-12-07 2013-12-11 株式会社東芝 基板計測方法
US8243878B2 (en) * 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
JP5813923B2 (ja) * 2010-03-15 2015-11-17 株式会社日立ハイテクサイエンス X線透過検査装置及びx線透過検査方法
US8903044B2 (en) * 2011-01-31 2014-12-02 Rigaku Corporation X-ray diffraction apparatus
JP2012237566A (ja) * 2011-05-10 2012-12-06 Hitachi High-Technologies Corp 欠陥観察方法及びその装置
JP5511020B2 (ja) * 2011-11-24 2014-06-04 株式会社リガク X線分析装置
CN103975233B (zh) * 2012-02-06 2017-01-04 株式会社日立高新技术 X射线检查装置、检查方法以及x射线检测器
US10801975B2 (en) * 2012-05-08 2020-10-13 Kla-Tencor Corporation Metrology tool with combined X-ray and optical scatterometers
US20140067316A1 (en) * 2012-08-30 2014-03-06 Kabushiki Kaisha Toshiba Measuring apparatus, detector deviation monitoring method and measuring method
CN102879411B (zh) * 2012-09-29 2014-08-06 国电科技环保集团股份有限公司 利用x射线衍射对晶体进行测试的方法
JP6218403B2 (ja) * 2013-03-15 2017-10-25 株式会社マーストーケンソリューション 電界放射型電子銃を備えたx線管及びそれを用いたx線検査装置
WO2015004662A1 (en) * 2013-07-08 2015-01-15 Nova Measuring Instruments Ltd. Method and system for determining strain distribution in a sample
US9719947B2 (en) * 2013-10-31 2017-08-01 Sigray, Inc. X-ray interferometric imaging system
GB201402318D0 (en) * 2014-02-11 2014-03-26 Oxford Instr Nanotechnology Tools Ltd Method for materials analysis
JP6294130B2 (ja) * 2014-04-04 2018-03-14 株式会社荏原製作所 検査装置
US9640449B2 (en) * 2014-04-21 2017-05-02 Kla-Tencor Corporation Automated inline inspection of wafer edge strain profiles using rapid photoreflectance spectroscopy
US9606073B2 (en) * 2014-06-22 2017-03-28 Bruker Jv Israel Ltd. X-ray scatterometry apparatus
WO2016059673A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置
CN104345071B (zh) * 2014-11-03 2015-10-28 广东电网有限责任公司电力科学研究院 一种表征镍基高温合金中γ/γ′相晶格错配度的方法
US9632066B2 (en) 2015-04-09 2017-04-25 Ut-Battelle, Llc Open port sampling interface
US9916965B2 (en) * 2015-12-31 2018-03-13 Kla-Tencor Corp. Hybrid inspectors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292379A (ja) * 1999-04-12 2000-10-20 Rigaku Corp X線回折装置及びx線ロッキングカーブの測定方法
JP2002286660A (ja) * 2001-03-27 2002-10-03 Japan Science & Technology Corp X線回折を用いた結晶の観察方法及びその観察装置
JP2005249787A (ja) * 2004-03-01 2005-09-15 Panalytical Bv 回折計
JP2006153767A (ja) * 2004-10-26 2006-06-15 Rigaku Corp X線薄膜検査装置と、プロダクトウエーハの薄膜検査装置およびその方法
JP2010261737A (ja) * 2009-04-30 2010-11-18 Rigaku Corp X線散乱測定装置およびx線散乱測定方法
JP2013137298A (ja) * 2011-11-29 2013-07-11 Rigaku Corp X線分析装置
WO2016059672A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIKO OMOTE: "High-throughput Analysis for Combinatorial Epitaxial Thin Films by Concurrent X-Ray Diffraction", JOURNAL OF THE VACCUM SOCIETY OF JAPAN, vol. 54, no. 11, 2011, pages 571 - 576, XP055457367 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476039B2 (ja) 2020-09-02 2024-04-30 キオクシア株式会社 半導体装置の検査装置、及び、半導体装置の検査方法
WO2022118585A1 (ja) * 2020-12-01 2022-06-09 株式会社リガク 全反射蛍光x線分析装置
JP2022087438A (ja) * 2020-12-01 2022-06-13 株式会社リガク 全反射蛍光x線分析装置
JP7100910B2 (ja) 2020-12-01 2022-07-14 株式会社リガク 全反射蛍光x線分析装置
US11867646B2 (en) 2020-12-01 2024-01-09 Rigaku Corporation Total reflection x-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JPWO2018012527A1 (ja) 2019-05-09
US20190227005A1 (en) 2019-07-25
JP6864888B2 (ja) 2021-04-28
DE112017003580T5 (de) 2019-05-09
KR20190026789A (ko) 2019-03-13
KR102348995B1 (ko) 2022-01-10
CN109313145A (zh) 2019-02-05
TW201807407A (zh) 2018-03-01
TWI755409B (zh) 2022-02-21
US10876978B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2018012527A1 (ja) X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法
JP6351740B2 (ja) X線薄膜検査装置
TWI803621B (zh) X射線設備及用於樣本對準之方法
JP6815401B2 (ja) 高アスペクト比構造向けx線スキャタロメトリ計量
KR102235580B1 (ko) 반도체 웨이퍼 검사를 위한 결함 마킹
JP6351741B2 (ja) X線薄膜検査装置
JP6938054B2 (ja) X線検査装置
JP7308233B2 (ja) 小角x線散乱計測計
US20120281814A1 (en) High-Resolution X-Ray Diffraction Measurement with Enhanced Sensitivity
JPWO2018016430A1 (ja) 複合検査システム
US20220042933A1 (en) Small-Angle X-Ray Scatterometry
JP4895932B2 (ja) ウェハの表面検査方法及びウェハ表面検査装置
JP5608632B2 (ja) 基板の粗さを得る方法、及び基板の粗さを得るための装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527625

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002613

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17827654

Country of ref document: EP

Kind code of ref document: A1