WO2016059672A1 - X線薄膜検査装置 - Google Patents

X線薄膜検査装置 Download PDF

Info

Publication number
WO2016059672A1
WO2016059672A1 PCT/JP2014/077335 JP2014077335W WO2016059672A1 WO 2016059672 A1 WO2016059672 A1 WO 2016059672A1 JP 2014077335 W JP2014077335 W JP 2014077335W WO 2016059672 A1 WO2016059672 A1 WO 2016059672A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
thin film
rays
reflected
inspection apparatus
Prior art date
Application number
PCT/JP2014/077335
Other languages
English (en)
French (fr)
Inventor
尾形 潔
正 吉原
隆男 杵渕
志朗 梅垣
繁松 淺野
克隆 洞田
吉田宗生
本野 寛
秀明 ▲高▼橋
明房 樋口
表 和彦
伊藤 義泰
直樹 河原
中野 朝雄
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to PCT/JP2014/077335 priority Critical patent/WO2016059672A1/ja
Priority to US15/518,892 priority patent/US10473598B2/en
Priority to JP2016553774A priority patent/JP6351740B2/ja
Priority to KR1020177012985A priority patent/KR102144281B1/ko
Priority to TW104120714A priority patent/TWI630384B/zh
Publication of WO2016059672A1 publication Critical patent/WO2016059672A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2204Specimen supports therefor; Sample conveying means therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/315Accessories, mechanical or electrical features monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/61Specific applications or type of materials thin films, coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer

Definitions

  • the present invention relates to an X-ray thin film inspection apparatus suitable for a technical field for manufacturing an element having a multilayer film structure in which a large number of thin films are laminated on a substrate, such as a semiconductor manufacturing field.
  • An element having a multilayer structure in which a large number of thin films are stacked on a substrate such as a semiconductor changes in characteristics depending on the state of the thin film to be formed, such as film thickness, density, and crystallinity.
  • these elements have been miniaturized and integrated, and the tendency has become remarkable.
  • a thin film inspection apparatus capable of accurately measuring the state of the formed thin film is required.
  • Conventionally known as this type of inspection apparatus are a direct measurement using a cross-sectional transmission electron microscope (TEM), a film thickness inspection apparatus using optical interference or ellipsometry, a photoacoustic apparatus, and the like.
  • TEMs Cross-sectional transmission electron microscopes
  • a film thickness inspection apparatus using photo interference or ellipsometry and a photoacoustic apparatus are suitable for in-line, but the accuracy is insufficient for measuring a thin film of several nm.
  • disposable wafers for inspection are a significant cost burden. In particular, in recent years, the diameter of semiconductor wafers has been increasing, and the cost of a single blanket wafer has also increased.
  • the present applicant proposes an X-ray thin film inspection apparatus that can be incorporated into the manufacturing process of a film forming product, directly inspecting the product itself, and capable of inspecting even a thin film of several nanometers with sufficient accuracy without throwing away the wafer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-153767.
  • the present applicant has improved the previously proposed X-ray thin film inspection apparatus, and has completed the present invention.
  • the present invention comprises a sample stage on which the inspection object is arranged on the upper surface, Image observation means for observing the image of the inspection object arranged on the upper surface of the sample table; A positioning mechanism that is controlled based on the image observation result of the inspection object by the image observation means and moves the sample stage in two directions orthogonal to each other on the horizontal plane, in the height direction, and in the in-plane rotation direction; A goniometer comprising first and second swiveling members that respectively swivel along a virtual plane orthogonal to the upper surface of the sample stage; An X-ray irradiation unit mounted on the first swivel member; An X-ray detector mounted on the second swivel member; A fluorescent X-ray detector for detecting fluorescent X-rays generated from an inspection object by irradiation with X-rays; Is an X-ray thin film inspection apparatus.
  • the X-ray irradiation unit is An X-ray tube emitting X-rays; Consists of a confocal mirror that enters X-rays emitted from an X-ray tube, reflects a plurality of convergent X-rays monochromatic to a specific wavelength, and converges the plurality of convergent X-rays to a preset focal point An X-ray optical element, And a slit mechanism that allows an arbitrary number of convergent X-rays to pass through among the plurality of convergent X-rays reflected from the X-ray optical element.
  • the X-ray irradiation unit has a structure in which the X-ray optical element is rotated and adjusted around the central axis of a plurality of convergent X-rays reflected from the optical element.
  • the slit mechanism includes two shielding plates made of a material that shields X-rays, and is configured to allow an arbitrary number of convergent X-rays to pass through a gap formed between these shielding plates, and the gap can be arbitrarily widened. It is preferable to have a configuration with an adjustable function.
  • the X-ray optical element can be configured to reflect four X-ray converged X-rays at the four corners of the virtual quadrangle when viewed from the optical path direction of the X-ray reflected from the X-ray optical element. .
  • Such a bundle of four convergent X-rays has a high X-ray intensity and is suitable for fluorescent X-ray measurement.
  • the two convergent X-rays that have passed through the gap between the shielding plates have a virtual plane including the two convergent X-rays, It is preferable to adjust the positional relationship between the optical paths so that the X-rays are incident in parallel to the surface to be inspected when viewed from the optical path direction of the X-rays.
  • Such convergent X-rays have a small spread in the height direction and are suitable for X-ray reflectivity measurement.
  • the slit mechanism can be configured to allow only one convergent X-ray out of the four convergent X-rays reflected from the X-ray optical element to pass through the gap between the shielding plates.
  • Such convergent X-rays have a small spread in the height direction and width direction, and are suitable for X-ray reflectivity measurement using a fine pattern formed on a semiconductor wafer as an inspection target.
  • the X-ray irradiation unit An X-ray tube emitting X-rays; A double curved spectroscopic crystal plate made of a semiconductor single crystal plate having a reflective surface having a higher-order curved surface of a cubic surface or higher is fixed to a support block, and X-rays radiated from an X-ray tube are reflected on the reflecting surface. And an X-ray optical element that reflects convergent X-rays monochromatic to a specific wavelength. In such a configuration, it is preferable that the X-ray optical element bend in the length direction to set the X-ray capture angle and be also curved in the orthogonal width direction to set the X-ray capture angle. . Convergent X-rays emitted from the X-ray irradiation unit having such a configuration have high intensity and are suitable for fluorescent X-ray measurement.
  • the X-ray irradiation units having different structures described above can be mounted side by side in the turning direction on the first turning member of the goniometer.
  • a one-dimensional X-ray detector is mounted on the second swivel member, It can also be set as the structure which acquires the detection data of a X-ray by a TDI system, and implements a X-ray reflectivity measurement.
  • the entire range of X-rays reflected from the thin film sample to be inspected can be made incident on the one-dimensional X-ray detector without providing a light receiving slit.
  • the intensity of at least the reflected X-rays totally reflected from the thin film sample is attenuated by the X-ray absorbing member and incident on the one-dimensional X-ray detector.
  • a gap through which the incident X-ray incident on the thin film sample or the reflected X-ray from the thin film sample can pass is formed at a position opposite to the incident X-ray convergence position or reflected X-ray emission position on the surface of the thin film sample.
  • An X-ray shielding member may be disposed.
  • a scattering slit can be disposed in the optical path of the reflected X-ray reflected from the thin film sample with a gap through which the reflected X-ray can pass.
  • FIG. 7 is a longitudinal sectional view of the first embodiment according to the X-ray irradiation unit.
  • FIG. 8 is a cross-sectional view of the first embodiment according to the X-ray irradiation unit.
  • FIG. 9 is a diagram showing an X-ray reflection trajectory in the X-ray optical element.
  • FIG. 10A and FIG. 10B are views of the four convergent X-rays reflected from the X-ray optical element as seen from the optical path direction.
  • FIG. 11 is a schematic diagram showing four convergent X-ray trajectories irradiated from the X-ray irradiation unit onto the inspection surface of the semiconductor wafer and divergent X-ray trajectories reflected from the inspection surface and incident on the X-ray detector. It is.
  • FIG. 12 is a perspective view showing the appearance of the first embodiment according to the X-ray irradiation unit, as in FIG. 6.
  • 13A and 13B are views of two convergent X-rays that have passed through the gap between the shielding plates of the slit mechanism as seen from the optical path direction.
  • FIG. 12 is a perspective view showing the appearance of the first embodiment according to the X-ray irradiation unit, as in FIG. 6.
  • 13A and 13B are views of two convergent X-rays that have passed through the gap between the shielding plates of the slit mechanism as seen from the optical path direction.
  • FIG. 14 is a schematic diagram showing two convergent X-ray trajectories irradiated from the X-ray irradiation unit to the inspection surface of the semiconductor wafer and divergent X-ray trajectories reflected from the inspection surface and incident on the X-ray detector. It is.
  • FIG. 15 is a view of one convergent X-ray passing through the gap of the shield plate of the slit mechanism as viewed from the optical path direction.
  • FIG. 16 is a perspective view showing an appearance of the second embodiment according to the X-ray irradiation unit.
  • FIG. 17 is a longitudinal sectional view showing the configuration of the second embodiment according to the X-ray irradiation unit.
  • FIG. 1 is a perspective view showing the overall structure of an X-ray thin film inspection apparatus according to this embodiment
  • FIG. 2 is a front view of the apparatus.
  • the X-ray thin film inspection apparatus includes an optical microscope 70 (image observation means) including a sample stage 10, a positioning mechanism 20, a goniometer 30, an X-ray irradiation unit 40, an X-ray detector 50, a fluorescent X-ray detector 60, a CCD camera, and the like. It has.
  • the goniometer 30 includes first and second turning arms (turning members) 32 and 33 mounted on a goniometer body 31.
  • Each of the swivel arms 32 and 33 swivels around a virtual plane orthogonal to the upper surface of the sample stage around an axis ( ⁇ X axis, ⁇ D axis) perpendicular to the paper surface of FIG.
  • ⁇ X axis
  • ⁇ D axis
  • a plurality of (three in the figure) X-ray irradiation units 40 are mounted side by side in the turning direction on the first turning arm 32 that turns about the ⁇ X axis. Further, the second pivot arm 33 to pivot about the theta D shaft are mounted the X-ray detector 50. Note that the number of X-ray irradiation units 40 mounted on the first turning arm 32 can be arbitrarily set according to the application. For example, one, two, or four or more X-ray irradiation units 40 may be mounted on the first turning arm 32.
  • the X-ray irradiation unit 40 has a function of making X-rays generated from the X-ray tube monochromatic into X-rays having a specific wavelength and converging them in one place.
  • the position to be irradiated with X-rays from the X-ray irradiation unit 40 becomes the inspection position, and the measurement target part to be inspected arranged on the upper surface of the sample stage 10 is positioned to this inspection position by the positioning mechanism 20. Details of the X-ray irradiation unit 40 will be described later.
  • the X-ray detector 50 is used for X-ray reflectivity measurement (XRR) and X-ray diffraction measurement (XRD), and the fluorescent X-ray detector 60 is used for fluorescent X-ray measurement (XRF).
  • XRR X-ray reflectivity measurement
  • XRD X-ray diffraction measurement
  • XRF fluorescent X-ray measurement
  • the film thickness and density are derived by measuring the interference between the reflected X-rays on the film surface and the reflected X-rays at the interface between the film and the substrate. Accuracy is obtained.
  • the fluorescent X-ray measurement a relatively thick wiring film can be measured with high accuracy.
  • the X-ray thin film inspection apparatus of the present embodiment can perform X-ray diffraction measurement as necessary in addition to the X-ray reflectivity measurement and the fluorescent X-ray measurement.
  • the X-ray detector 50 for example, an avalanche photodiode (APD) having a wide dynamic range with respect to incident X-rays can be used.
  • a detector exchange mechanism is incorporated in the second swivel arm 33 and various X-ray detectors such as an APD, a one-dimensional X-ray detector, a two-dimensional detector, and a scintillation counter are mounted. It is also possible to adopt a configuration in which the line detector can be switched and used.
  • the fluorescent X-ray detector 60 is installed above the inspection position, and the optical microscope 70 is arranged at a position shifted from the inspection position by L P in the horizontal direction. Interference with the line detector 60 is avoided.
  • a measurement target part of an inspection target (for example, a semiconductor wafer) arranged on the sample stage 10 is arranged at a position below the optical microscope 70 by moving the sample stage 10 by the positioning mechanism 20. Then, by moving Lp from this position toward the inspection position in the horizontal direction, the measurement site of the inspection object (for example, a semiconductor wafer) is positioned at the inspection position.
  • X-ray thin film inspection apparatus According to the X-ray thin film inspection apparatus of the basic configuration described above, by mounting a plurality of (three in FIG. 1 and FIG. 2) X-ray irradiation units 40 side by side in the swivel direction on the first swivel arm 32, By simply turning the first turning arm 32, a plurality of X-ray irradiation units 40 can be selected, and the selected X-ray irradiation units 40 can be accurately positioned at an arbitrary angle with respect to the measurement position. .
  • an X-ray irradiation unit 40 that generates desired X-rays is selected, and X-rays are irradiated at a low angle of surface grazing on the semiconductor wafer to be measured.
  • the selected X-ray irradiation unit 40 may be arranged so as to do so. Further, when performing normal X-ray diffraction measurement, the position of the selected X-ray irradiation unit 40 is sequentially moved, and the incident angle of X-rays to the semiconductor wafer is changed as appropriate.
  • the angle scanning measurement in the X-ray reflectivity measurement can be performed.
  • the X-ray irradiation unit 40 that generates X-rays having a wavelength suitable for the fluorescent X-ray measurement is selected according to the inspection object (for example, a semiconductor wafer), and the first turning arm 32 is turned. It arrange
  • the fluorescent X-ray detector 60 it is possible to place the fluorescent X-ray detector 60 at a position closer to the surface of the inspection object than when the X-ray fluorescence detector 60 is lowered and other elements are measured. Thereby, the X-ray path (X-ray incident space) between the measurement surface to be inspected and the fluorescent X-ray detector 60 can be made into a minute space, and the fluorescent X-rays generated from the measurement surface to be inspected can be made. The fluorescent X-ray detector 60 can be captured before much is absorbed by air.
  • FIG. 3 is a block diagram showing a control system of the X-ray thin film inspection apparatus according to this embodiment.
  • the XG controller 101 executes the supply of the high-voltage power supply 47 to the X-ray tube 42 incorporated in the X-ray irradiation unit 40 and the opening / closing operation of the shutter 45.
  • the image captured by the optical microscope 70 is recognized by the image recognition circuit 102. Note that the focus position of the optical microscope 70 is adjusted by the focus controller 103.
  • the positioning controller 104 drives and controls the positioning mechanism 20 based on image information captured by the optical microscope and recognized by the image recognition circuit 102.
  • the goniometer 30 is driven and controlled by the goniometer controller 106.
  • FIG. 4 is a control flowchart for executing an X-ray thin film inspection on a semiconductor wafer as an inspection target.
  • the measurement site of the semiconductor wafer is positioned at the inspection position (step S1). This positioning is performed with drive control of the positioning mechanism 20. That is, the optical microscope 70 captures the semiconductor wafer on the sample stage 10, and the positioning controller 104 drives and controls the positioning mechanism 20 based on the image information recognized by the image recognition circuit 102.
  • the positioning mechanism 20 moves in the two horizontal directions (XY direction) and the height direction (Z direction), and places the measured portion of the semiconductor wafer at the inspection position.
  • a minute pattern such as a specific part of the IC chip is stored in the image recognition circuit 102
  • the inspection target region of the semiconductor wafer to be inspected at the time of inspection is observed with the optical microscope 70, and the observation image is stored in advance.
  • the image recognition circuit 102 determines that the pattern is a minute pattern that is a measurement target part by comparing and matching the minute patterns. Based on the determination result, the positioning mechanism 20 positions the minute pattern, which is the part to be measured, at the position to be measured.
  • step S2 the tilt correction is performed by turning the first and second turning arms 32 and 33 of the goniometer 30 while the semiconductor wafer is fixed. If the incident angle of the X-rays irradiated from the X-ray irradiation unit 40 to the semiconductor wafer is ⁇ , the X-rays are reflected at an angle ⁇ from the surface of the semiconductor wafer. The reflected X-ray is detected by the X-ray detector 50. Thereby, the X-ray irradiation unit 40 and the X-ray detector 50 are arranged at the same angular position with respect to the surface of the semiconductor wafer, and each angle control can be executed with this point as the origin.
  • the X-ray reflectance measurement (XRR), fluorescent X-ray measurement (XRF), or X-ray diffraction measurement (XRD) is performed.
  • a line inspection is executed (step S3), the central processing unit analyzes the inspection data (step S4), and outputs an analysis result (step S5).
  • the above steps are executed for all of the measurement sites set on the semiconductor wafer (step S6), and are completed after the inspection of all the measurement sites is completed.
  • the above-described semiconductor wafer tilt correction (step S2) may be omitted.
  • the semiconductor wafer tilt correction (step S2) is usually omitted.
  • the X-ray irradiation unit 40 has an appearance as shown in FIG. 6, and as shown in FIGS. 7 and 8, an X-ray tube 42 and an X-ray tube 42, which are X-ray sources, are provided in a tube shield (unit main body) 41.
  • a module configuration incorporating the linear optical element 43 a small and light weight is realized.
  • the tube shield 41 is made of a metal material that shields X-rays, and is divided into a first tube 41 a containing the X-ray tube 42 and a second tube 41 b containing the X-ray optical element 43.
  • the tubes 41a and 41b are connected and integrated by fastening means such as bolts.
  • an X-ray passage for guiding X-rays radiated from the X-ray tube 42 to the X-ray exit 41c is formed in the tube shield 41, and this X-ray passage is formed in the first tube 41a.
  • a shutter 45 that opens and closes the line passage is provided. The shutter 45 is configured to open and close by rotation and to pass or shield X-rays emitted from the X-ray tube 42.
  • the X-ray tube 42 for example, a micro-focus X-ray tube having an electron beam focus size on the target of about ⁇ 30 ⁇ m and an output of about 30 W can be used.
  • the target material can be selected as necessary, such as copper (Cu) or molybdenum (Mo).
  • iron (Fe), cobalt (Co), tungsten (W), chromium (Cr), silver (Ag), gold (Au), and the like are used.
  • a plurality of X-ray irradiation units 40 each including an X-ray tube 42 of a different target material can be mounted on the first turning arm 32.
  • the confocal mirror As the X-ray optical element 43, a confocal mirror that converges X-rays generated from the X-ray tube 42 at a predetermined position is used. As shown in FIG. 8, the confocal mirror is composed of four multilayer mirrors 43a, 43b, 43c, and 43d. Each of the multilayer film mirrors 43a, 43b, 43c, and 43d is formed of a multilayer film having an elliptical arc surface, and each of the adjacent multilayer film mirrors 43a and 43b and 43c and 43d has an edge of an X-ray reflecting surface. It arrange
  • the X-ray optical element 43 composed of this confocal mirror can converge the X-rays generated by the X-ray tube 42 to a very small focal point and make the X-rays monochromatic.
  • X-rays can be monochromatic when the X-ray tube 42 is a Cu target and Cu ⁇ when the X-ray tube 42 is a Mo target.
  • FIG. 9 is a diagram showing an X-ray reflection trajectory in an X-ray optical element (confocal mirror).
  • the X-ray incident on the X-ray optical element 43 is reflected between two adjacent multilayer mirrors 43a and 43b among the four multilayer mirrors, and is emitted as a monochromatic convergent X-ray. . That is, the X-ray reflected first by the first multilayer mirror 43a is further reflected by the second multilayer mirror 43b to be emitted as a convergent X-ray having a rectangular cross section as shown in FIG. 10A.
  • the X-ray reflected first by the second multilayer mirror 43b is further reflected by the first multilayer mirror 43a to be output as a convergent X-ray having a rectangular cross section as shown in FIG. 10A. Is done.
  • X-rays are reflected between the other two adjacent multilayer mirrors 43c and 43d, and are emitted as convergent X-rays having a rectangular cross section as shown in FIG. 10A. Is done.
  • the X-ray optical element 43 emits four convergent X-rays Xa, Xb, Xc, and Xd, each having four rectangular shapes, at the four corners of the virtual rectangle as shown in FIG. 10A.
  • the convergent X-rays Xa, Xb, Xc, and Xd are cross-sections taken along the cutting plane A at an intermediate position that is reflected by the X-ray optical element 43 and reaches the convergence position b as shown in FIG.
  • the shape is shown, and at the convergence position b, these convergent X-rays Xa, Xb, Xc, and Xd overlap one another. Therefore, if the four convergent X-rays Xa, Xb, Xc, and Xd overlap one another at the convergence position b, an X-ray intensity four times that of the one convergent X-ray can be obtained.
  • an X-ray intensity twice that of the convergent X-ray can be obtained.
  • the convergence position b of the convergent X-rays Xa, Xb, Xc, and Xd shown in FIG. 9 is adjusted to the measurement position of the semiconductor wafer, and the arbitrary measurement site in the semiconductor wafer is provided with the positioning mechanism 20 described above at the convergence position b. Is positioned.
  • the measurement position is set on the ⁇ axis of the goniometer 30.
  • the focal size (length) of the electron beam in the X-ray tube 42 is F1
  • the distance from the focal point fa of the X-ray tube 42 to the reflection center position of the X-ray optical element 43 is L1
  • the focal size (length) F2 of the convergent X-ray is expressed by the following equation.
  • F2 F1 (L2 / L1) Therefore, in order to reduce the focal size F2 of the convergent X-ray, it is preferable to make the distance L1 from the focal point fa of the X-ray tube 42 to the reflection center position of the X-ray optical element 43 as long as possible. Note that the method of shortening the distance L2 from the reflection center position of the X-ray optical element 43 to the convergence position fb of the convergent X-ray is difficult due to restrictions such as interference with the semiconductor wafer.
  • the second tube 41b of the X-ray optical element 43 is configured so as to be rotatable and adjustable with respect to the first tube 41a.
  • the second tube 41b is fixed in a state where the second tube 41b is rotated by 45 degrees, and is incorporated therein.
  • the circumferential positions of the multilayer mirrors 43a, 43b, 43c, 43d of the X-ray optical element 43 can be rotated 45 degrees.
  • the trajectories of convergent X-rays Xa, Xb, Xc, and Xd reflected from the X-ray optical element 43 are changed.
  • 10A to 10B can be changed.
  • the X-ray reflectivity measurement is particularly accurate. The measurement result cannot be obtained.
  • the fluorescent X-ray measurement since the fluorescent X-ray Xf emitted from the semiconductor wafer is captured by the fluorescent X-ray detector 60, the spread of the reflected X-rays Xra, Xrb, Xrc, and Xrd increases the measurement accuracy. No effect.
  • the four convergent X-rays Xa, Xb, Xc, and Xd as shown in FIGS. 10A and 10B are used, and the X-ray intensity is four times that of the one convergent X-ray.
  • a statistical error among measurement errors in X-ray measurement is represented by ⁇ N (N is an X-ray intensity), and a statistical error rate is ⁇ (N / N).
  • the X-ray irradiation unit 40 includes a movable slit mechanism for blocking a part of the emitted X-rays in front of the X-ray emission port 41 c of the tube shield 41. 46 is provided.
  • this slit mechanism two shielding plates 46a and 46b arranged vertically are incorporated so as to be slidable in the orthogonal width direction (Y direction) and height direction (Z direction), respectively, and a drive motor (not shown) The position of these shielding plates 46a and 46b can be changed with the driving force from Each of the shielding plates 46a and 46b is made of a material that shields X-rays.
  • all four convergent X-rays Xa, Xb, Xc, and Xd can be emitted from the X-ray emission port 41c by moving the shielding plates 46a and 46b to the retracted positions shown in FIG. it can.
  • the shielding plates 46a and 46b are moved and arranged at a position to shield a part of the emitted X-rays as shown in FIG.
  • two convergent X-rays Xc and Xd or Xb and Xd can be emitted from the X-ray exit 41c.
  • the shielding plates 46a and 46b described above have a function of a diverging slit (DS: Divergence Slit).
  • the two convergent X-rays Xd and Xc (or Xb and Xd) that have passed through the gaps between the shielding plates 46a and 46b are the two convergent X-rays Xd and Xc.
  • the positional relationship between the optical paths is adjusted so that the virtual plane including (or Xb, Xd) is incident in parallel to the surface to be inspected of the semiconductor wafer as viewed from the optical path direction of the X-ray.
  • This positional relationship can be adjusted by adjusting the rotation of the second tube 41b in which the multilayer mirrors 43a, 43b, 43c, and 43d are incorporated.
  • the two convergent X-rays Xc and Xd or Xb and Xd emitted in this way are suitable for X-ray reflectivity measurement. That is, as shown in FIG. 14, when the surface to be inspected of the semiconductor wafer is irradiated with two convergent X-rays Xc and Xd (or Xb and Xd), the reflection X reflected from the surface to be inspected of the semiconductor wafer is reflected.
  • the lines Xrc, Xrd (or Xrb, Xrd) extend only in the width direction (Y direction) and do not expand in the height direction (Z direction). Therefore, it is suitable for X-ray reflectivity measurement.
  • the shielding plates 46a and 46b can be moved and arranged so that only one convergent X-ray Xc is emitted from the X-ray emission port 41c.
  • the X-ray intensity is halved compared to the case of using two convergent X-rays, it does not spread in either the width direction (Y direction) or the height direction (Z direction).
  • X-ray spread angle varies depending on the design. As an example, a single X-ray beam has a spread angle of 0.5 degrees and a spread angle of 4 degrees between the top and bottom.
  • XRF X-ray fluorescence measurement
  • XRR X-ray reflectivity measurement
  • XRR X-ray reflectivity measurement
  • a part of the X-ray beam to be used is shielded by the shielding plates 46a and 46b, and the beam width is limited to, for example, 0.2 degrees to 0.1 degrees. You can also.
  • a receiving slit (RS) can be provided to limit the angle, and the resolution can be changed according to the inspection object.
  • all four convergent X-rays are used as an X-ray source for fluorescent X-ray measurement, or two or one convergent X-ray is used. It can be used as an X-ray source for reflectance measurement.
  • X-ray intensity becomes small compared with the case where four convergent X-rays are utilized, it is also possible to perform fluorescent X-ray measurement using two or one convergent X-ray.
  • the X-ray irradiation unit 40 of the present embodiment is configured to be able to irradiate X-rays with a large intensity suitable for fluorescent X-ray measurement.
  • the X-ray irradiation unit 40 has an appearance as shown in FIG. 16, and as shown in FIG. 17, an X-ray tube 42 and an X-ray optical element as an X-ray source are provided in a tube shield (unit main body) 41. 43 has a built-in module configuration.
  • the tube shield 41 is made of a metal material that shields X-rays, and is divided into a first tube 41 a containing the X-ray tube 42 and a second tube 41 b containing the X-ray optical element 43. Each tube 41a, 41b is connected via a connecting member 41d.
  • an X-ray passage for guiding X-rays radiated from the X-ray tube 42 to the X-ray exit 41c is formed, and the first tube 41a is formed in the tube shield 41.
  • the shutter 45 is configured to open and close by rotation and to pass or shield X-rays emitted from the X-ray tube 42.
  • the target material of the X-ray tube 42 can be selected as necessary, such as gold (Au) or molybdenum (Mo).
  • gold Au
  • Mo molybdenum
  • copper Cu
  • iron Fe
  • cobalt Co
  • tungsten W
  • chromium Cr
  • silver Ag
  • the X-ray optical element 43 is a semiconductor single crystal plate made of germanium (Ge), silicon (Si), gallium arsenide (GaAs) or the like having a reflective surface having a higher-order curved surface of a cubic surface or higher.
  • the double curved spectral crystal plate (DCC) 43A made of is fixed to the support block 43B.
  • the X-ray optical element 43 is not only curved in the length direction to set the X-ray capture angle, but also curved in the width direction perpendicular to the length direction to set the X-ray capture angle.
  • the X-ray from the X-ray tube 42 is reflected with a large area and a large angle of incidence so that a high-intensity X-ray can be emitted.
  • the X-ray optical element 43 also has a function of making incident X-rays monochromatic.
  • the X-ray tube 42 is a Mo target
  • X-rays can be monochromated to Mo- ⁇
  • Au-L ⁇ can be monochromatic.
  • the double-curved spectral crystal plate 43A having a reflective surface having a higher-order curved surface than the above-described cubic curved surface can be manufactured by, for example, a high-temperature embossing method disclosed in International Publication WO2007 / 072906. it can.
  • a double-curved spectral crystal having a higher-order curved surface than a cubic curved surface having a large area and a large take-in angle by sandwiching a flat semiconductor single crystal plate between the embossing members and pressurizing it at a high temperature to cause plastic deformation.
  • the plate 43A can be manufactured.
  • the crystal lattice plane of the double curved spectral crystal plate 43A is adjusted to satisfy the X-ray diffraction conditions of, for example, an asymmetric Johann type or a Logarithmic spiral type.
  • the X-ray irradiation unit 40 is provided with an entrance side aperture 47a and an exit side aperture 47b in the tube shield 41.
  • the incident side aperture 47a is a transmission window member for narrowing down the X-rays radiated from the X-ray tube 42 and efficiently irradiating the reflecting surface of the double curved spectral crystal plate 43A.
  • the exit side aperture 47b is a transmission window member for narrowing down the X-rays reflected by the double curved spectral crystal plate 43A to efficiently converge the X-rays and lead them to the focal point.
  • the connecting member 41d of the tube shield 41 has a structure that can be moved and adjusted in the optical path direction of the X-ray emitted from the second tube 41b with respect to the first tube 41a.
  • the position of the reflection surface of the X-ray optical element 43 can be finely adjusted with respect to the X-ray optical path emitted from the X-ray.
  • the first tube 41a is configured to swing in the direction of the arrow ⁇ in FIG. 17 with respect to the connecting member 41d, and the swing angle ⁇ can be finely adjusted by operating the micrometer 48. Thereby, the incident angle ⁇ to the reflection surface of the X-ray optical element 43 can be finely adjusted with respect to the X-rays emitted from the X-ray tube 42.
  • the temperature correction system of the X-ray thin film inspection apparatus corrects the position variation based on the temperature change based on the following principle. If the factors (position variation factors) that fluctuate the inspection position (X-ray irradiation position) accompanying the temperature change are roughly classified, the movement of the X-ray beam, the movement of the inspection object, and the movement of the optical microscope 70 can be considered. For example, the X-ray beam moves due to expansion / contraction of the goniometer 30, the inspection object moves due to expansion / contraction of the sample stage 10, and the optical microscope 70 uses the expansion / contraction of the support frame that supports the optical microscope 70. The observation position moves.
  • the temperature constant Cn corresponds to the position change amount when the effective temperature changes by 1 ° C. Then, the position fluctuation ⁇ Z [i] in the height direction (Z direction) at the i-th measurement time point (measurement time t [i]) from the start of measurement is the effective temperature T En [i] and temperature of each position fluctuation factor. Using the constant Cn, it can be estimated as the following equation (3).
  • the inspection position Z [i] in the height direction at the i-th measurement time point (measurement time t [i]) from the start of measurement is set to Z [0] as a reference position in a state in which there is no position variation accompanying temperature change
  • the position variation ⁇ Z [i] accompanying the temperature change it can be estimated as the following equation (4).
  • the reference position Z [0] corresponds to the inspection position at the start of temperature measurement.
  • ⁇ Tn 0 and sufficient time is required as compared with the time constant of each position variation factor. It is preferable to use temperature measurement data after the passage. This is the same when obtaining position variations in the width direction (X direction) and the optical path direction (Y direction), which will be described later.
  • the time constant ⁇ n and temperature constant Cn of each position variation factor are obtained by actually measuring the inspection position in the height direction (Z direction) at the measurement time (measurement time t [i]) from the start of measurement to the i-th measurement. Is inserted into Z [i] in the above equation (4), and can be obtained by the least square method.
  • the position fluctuation ⁇ X [i] in the length direction (X direction) on the horizontal plane at the i-th measurement time point (measurement time t [i]) from the start of measurement is the effective temperature T E n [ Using i] and the temperature constant Cn, the following equation (5) can be used for estimation.
  • the inspection position X [i] in the length direction (X direction) on the horizontal plane at the i-th measurement time point (measurement time t [i]) from the start of measurement is the reference position in a state where there is no position variation due to temperature change.
  • the time constant ⁇ n and temperature constant Cn of each position variation factor are obtained by actually measuring the inspection position in the width direction (Y direction) on the horizontal plane at the i-th measurement time point (measurement time t [i]) from the start of measurement.
  • the actual inspection position can be inserted into Y [i] in the above equation (8) and obtained by the least square method.
  • the temperature correction system is configured to execute a temperature correction method described later based on temperature correction software stored in the central processing unit 100 shown in FIG.
  • the X-ray thin film inspection apparatus includes a temperature measurement unit 110 that is a component of the temperature correction system (see FIG. 3).
  • Various known temperature sensors and thermocouples can be used for the temperature measurement unit 110.
  • a temperature measurement unit should be used to measure the internal temperatures of various device components that are the cause of position fluctuations accompanying temperature changes, but it is difficult to measure the internal temperatures of many components one by one. It is not realistic. Therefore, in the present embodiment, the time constant ⁇ n and the temperature constant Cn are obtained so that the internal temperatures of the various apparatus constituent members need not be measured one by one. Therefore, the temperature may be measured at a point representing the external temperature of all the members constituting the apparatus.
  • the temperature measurement unit 110 measures the temperature of the air in the inspection room where the X-ray thin film inspection apparatus is installed and the temperature of the air discharged from the exhaust port of the inspection room. ) Was measured temperature T M [i].
  • the central processing unit 100 executes the following temperature correction method based on the stored temperature correction software.
  • the temperature correction method includes a preparation step for obtaining the time constant ⁇ n and the temperature constant Cn of the position variation factor in the above-described principle, and the above formula (1) (3) in which the obtained time constant ⁇ n and the temperature constant Cn of the position variation factor are inserted. ) (5) Based on (7), the temperature measurement and the position correction can be repeated.
  • Step S1 and S2 a position variation factor accompanying temperature change is set and measurement is started (steps S1 and S2), and temperature measurement and actual measurement of the inspection position are performed at regular measurement intervals. (Steps S3 and S4). These temperature measurement and actual measurement of the inspection position are repeatedly executed for a preset time (step S5). If the position variation is in the height direction (Z direction), the obtained measurement data is inserted into Z [i] in the above equation (4), and the time constant ⁇ n of the position variation factor and the temperature are calculated by the least square method. A constant Cn is obtained (step S6).
  • step S6 If the position variation is in the length direction (X direction) on the horizontal plane, the obtained measurement data is inserted into X [i] of the above equation (6), and the position variation factor is calculated by the least square method. A time constant ⁇ n and a temperature constant Cn are obtained (step S6). If the position variation is in the width direction (Y direction) on the horizontal plane, the obtained measurement data is inserted into Y [i] of the above equation (8), and the time constant of the position variation factor is obtained by the least square method. ⁇ n and temperature constant Cn are obtained (step S6).
  • the central axis of the X-rays emitted from the X-ray irradiation unit 40 is horizontal, and is incident on the center of the detection surface of the X-ray detector 50 arranged oppositely.
  • the sample stage 10 at the intermediate position is moved in the height direction (Z direction), and the X-ray intensity detected by the X-ray detector 50 is 1 / X of the X-ray intensity emitted from the X-ray tube 42. Adjust to 2 Thereby, 1 ⁇ 2 of the X-rays radiated from the X-ray tube 42 is blocked by the side surface of the sample stage 10 and the sample S, and the remaining 1 ⁇ 2 passes above the sample S to the X-ray detector 50.
  • the sample S is disposed at the incident position.
  • the upper surface of the sample S coincides with the central axis of the X-ray emitted from the X-ray tube 42.
  • This height position becomes the inspection position in the height direction, and X-ray thin film inspection is irradiated with X-rays from the X-ray irradiation unit 40 at this height position.
  • a series of these operations is generally referred to as “half split”.
  • this distance h is the measured position in the height direction (Z direction) with respect to the inspection position.
  • the inspection position (X-ray irradiation position by the X-ray irradiation unit 40) Px and the observation position Pc by the optical microscope 70 are on a horizontal plane. It is set at a position separated by a distance Lp. This is because, as shown in FIG. 22B, since the fluorescent X-ray detector 60 is installed above the inspection position, the optical microscope 70 cannot be installed at the same position. Therefore, first, as shown in FIG.
  • the sample stage 10 is moved horizontally, and the measurement point SA of the sample S arranged on the upper surface of the sample stage 10 is arranged at the center of the observation position Pc by the optical microscope 70.
  • This can be executed by recognizing an image captured by the optical microscope 70 by the image recognition circuit 102 and controlling the positioning mechanism 20 by the central processing unit 100 based on the image.
  • the measurement point SA of the sample S arranged at the inspection position is moved to the inspection position Px.
  • the sample stage 10 is horizontally moved while irradiating the X-ray from the X-ray irradiation unit 40 toward the inspection position Px, and emitted from the sample S by the fluorescent X-ray detector 60.
  • This can be performed by detecting fluorescent X-rays. That is, when the measurement point SA of the sample S is arranged at the inspection position Px (that is, the X-ray irradiation position by the X-ray irradiation unit 40), the fluorescent X-ray detected by the fluorescent X-ray detector 60 has the peak intensity.
  • the temperature correction sample S is made of a material that excites fluorescent X-rays by X-ray irradiation.
  • the movement amount in the length direction (X direction) when the measurement point SA of the sample S arranged on the sample stage 10 in this way is moved from the observation position by the optical microscope 70 to the inspection position Px.
  • x is an actually measured position in the length direction (X direction) on the horizontal plane with respect to the inspection position of the sample stage 10.
  • the movement amount y of the width (Y direction) when the measurement point SA of the sample S arranged at the inspection position of the sample stage 10 is moved from the observation position by the optical microscope 70 to the inspection position Px is expressed by the sample stage.
  • the time constant ⁇ n and temperature constant Cn of the position variation factor obtained by the above-described procedure are set as parameters of the above-described equations (1), (3), (5), and (7), and the central processing unit is set. 100 performs temperature correction based on these equations.
  • the execution stage of the temperature correction is performed in parallel with the execution of the X-ray thin film inspection. That is, during the execution of the X-ray thin film inspection, the central processing unit 100 inputs temperature measurement data sent from the temperature measurement unit 110, and based on the temperature measurement data, the equations (1) and (3) (5) The position fluctuation accompanying the temperature change at the inspection position is calculated from (7), and the position of the sample stage is finely adjusted by the fluctuation amount. Thereby, it is possible to always perform the X-ray thin film inspection with high accuracy by making the inspection position of the sample table 10 coincide with the X-ray irradiation point.
  • the present inventors pay attention to the difference in the time constant of each member constituting the X-ray thin film inspection apparatus as a factor of the position variation accompanying the temperature change, and a member having a large time constant ⁇ and a member having a small time constant ⁇ .
  • the position fluctuation accompanying the temperature change could be corrected with extremely high accuracy.
  • the time constant is determined by the specific heat and thermal expansion coefficient of the member and the heat conduction distance. For example, a thin pipe member has a small time constant, and a large size member has a large time constant.
  • FIG. 23 is a graph showing experimental results by the present inventors.
  • the internal temperature of the apparatus was measured, and the position fluctuation accompanying the temperature change of the apparatus was corrected.
  • position variation factor n1 there are two position variation factors associated with temperature changes: a time constant as small as 266.2 seconds (position variation factor n1) and a time constant as large as 10272.5 seconds (position variation factor n2).
  • position variation factor n2 the position variation factor associated with temperature changes.
  • the temperature constant of the position variation factor n1 is -12.98 ⁇ m / ° C.
  • the temperature constant of the position variation factor n2 is 13.20 ⁇ m / ° C.
  • the fluctuation amount is an extremely small value as shown by DATA4 in FIG.
  • This critical angle varies depending on the electron density of the material. As the incident angle of X-rays becomes larger than this critical angle, the X-rays gradually enter deeper into the material.
  • the critical angle is an angle greater than ⁇ c and the X-ray reflectivity is proportional to ⁇ -4 ( ⁇ is the X-ray incident angle). Decrease rapidly. Furthermore, when the surface of the substance is rough, the degree of reduction becomes even greater as shown by the broken line B.
  • I 0 is the incident X-ray intensity
  • I is the reflected X-ray intensity.
  • the thickness of the thin film 202 can be determined from the period of the vibration pattern C, and information on the surface and interface can be obtained from the angular dependence of the amplitude of the vibration pattern C. Furthermore, the density of the thin film 202 is obtained by considering both the period and amplitude of the vibration pattern.
  • X-ray reflectivity measurement XRR
  • a one-dimensional X-ray detector is used as the X-ray detector 50 in place of the avalanche photodiode (APD) already described, and TDI is used.
  • X-ray detection data can also be acquired by a scanning method called (Time Delay Integration).
  • TDI system As shown in FIG. 26, a plurality of detectors a1, a2, a3, and a4 arranged in parallel are scanned in the parallel direction (Q direction in the figure), and the timing t1 when one detector moves. , T2, t3, t4,..., TL, the detection data is read from each detector a1, a2, a3, a4,. Then, the detection data of the detectors a1, a2, a3, a4,..., AM are added together for each scanning angle 2 ⁇ 1 , 2 ⁇ 2 , 2 ⁇ 3 , 2 ⁇ 4 ,. 2 ⁇ 1 , 2 ⁇ 2 , 2 ⁇ 3 , 2 ⁇ 4 ,... X-ray intensity at 2 ⁇ N is obtained.
  • a control signal is output from the goniometer controller 106 for each unit angle ⁇ , and the swivel arms 32 and 33 of the goniometer 30 are swung.
  • the detection signal from the one-dimensional X-ray detector is read by using a control signal output from the gonio controller 106 for each unit angle ⁇ as a trigger.
  • the turning angle ⁇ of each of the turning arms 32 and 33 of the goniometer 30 is shifted at regular time intervals, and the detection signal from the one-dimensional X-ray detector is integrated.
  • the acquisition of X-ray detection data by the TDI method can be configured to be executed by software for the TDI method stored in the central processing unit 100.
  • the acquisition of X-ray detection data by the TDI method can also be executed by hardware or a signal control circuit (firmware) inside the one-dimensional X-ray detector.
  • the divergence width of the X-rays reflected from the inspection object is 2 ⁇
  • the pixel width xM of the one-dimensional X-ray detector is the detection range.
  • FIG. 27 shows an outline of an X-ray reflectivity measurement system employing these configurations.
  • incident X-rays (convergent X-rays) X 0 are irradiated from the X-ray irradiation unit 40 to the surface of a thin film sample W (for example, a semiconductor wafer) and reflected from the thin film sample W.
  • X 1 is detected by a one-dimensional X-ray detector 51.
  • the X-ray irradiation unit 40 for example, an X-ray optical element 43 having a configuration using a confocal mirror is used (see FIGS. 6 to 15). In this case, FIGS.
  • the TDI X-ray reflectivity measurement is performed using the entire range of the divergent X-ray without using the light receiving slit, the measurement speed is remarkably improved.
  • the film sample W one-dimensional X attenuates the intensity of the reflected X-ray X 1 coming reflected by the X-ray absorbing member 52 from A configuration for irradiating the line detector 51 is adopted.
  • the X-ray absorbing member 52 are arranged so as to be incident from the film sample to at least total internal reflection to come reflected X-ray X 1 in intensity is attenuated one-dimensional X-ray detector 51.
  • the X-ray absorbing member 52 includes the total reflection region Z shown in FIG.
  • the intensity of X-rays incident on the one-dimensional X-ray detector 51 becomes small as shown in FIG. 28A.
  • the X-ray detection data in this range is corrected by software and raised by an intensity corresponding to the amount of X-ray attenuation by the X-ray absorbing member 52 as shown in FIG. 28B, and the X-ray absorbing member 52 is interposed. The continuity with the X-ray detection data in the scanning angle range that is not present is ensured.
  • an X-ray shielding member 53 may be disposed at a position facing the convergence position of the incident X-ray X 0 (or the emission position of the reflected X-ray X 1 ) on the surface of the thin film sample W.
  • the X-ray shielding member 53 is formed in a wedge shape or a plate shape with a material that does not transmit X-rays, and is disposed so as to be orthogonal to the surface of the thin film sample W.
  • a gap between the surface of the thin film sample W and the X-ray shielding member 53 is a marginal gap through which incident X-rays X 0 incident on the thin film sample W (or reflected X-rays X 1 from the thin film sample W) can pass. It is open.
  • the X-ray shielding member 53 By arranging the X-ray shielding member 53 in this way, scattered X-rays from the air, ghosts from the reflection mirror, and the like are shielded by the X-ray shielding member 53, and one-dimensional X-rays of X-rays other than the reflected X-rays. Incident to the detector 51 can be suppressed and the background (BG) component can be reduced. As a result, the SN ratio can be improved in a relatively high angle region where the intensity of the reflected X-ray incident on the one-dimensional X-ray detector 51 is weak, and the dynamic range of the X-ray reflectivity measurement can be improved.
  • the optical path of the reflected X-ray X 1 A scattering slit 54 (SS: Scattering Slit) may be disposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明のX線薄膜検査装置は、第1の旋回アーム32に搭載されたX線照射ユニット40と、第2の旋回アーム33に搭載されたX線検出器50と、X線の照射により検査対象から発生する蛍光X線を検出する蛍光X線検出器60と、を備えている。そして、X線照射ユニット40は、X線管42から放射されたX線を入射し、特定波長に単色化した複数本の収束X線を反射し、これら複数本の収束X線をあらかじめ設定した焦点に収束させる、コンフォーカルミラーで構成されたX線光学素子43と、このX線光学素子43から反射してきた複数本の収束X線のうち、任意本数の収束X線を通過させるスリット機構46とを含んでいる。

Description

X線薄膜検査装置
 この発明は、半導体製造分野等、基板上に多数の薄膜を積層した多層膜構造の素子を製造する技術分野に好適なX線薄膜検査装置に関する。
 半導体等、基板上に多数の薄膜を積層した多層膜構造の素子は、成膜する薄膜の膜厚、密度、結晶性などの状態によって特性が変化する。近年、これらの素子の微細化・集積化が進み、その傾向は顕著になってきている。このため、成膜した薄膜の状態を、正確に測定できる薄膜検査装置が求められている。
 この種の検査装置として、従来より断面透過電子顕微鏡(TEM)による直接計測や、光干渉やエリプソメトリを利用した膜厚検査装置や、光音響式装置などが知られている。断面透過電子顕微鏡(TEM)では、インライン製造工程に組み込みリアルタイムに検査対象の薄膜を検査することができず、しかも検査用に製造ラインから抜き取った製品は、検査後に廃棄されているのが実情であった。また、光干渉やエリプソメトリを利用した膜厚検査装置や、光音響式装置はインラインには適するが、数nmの薄い膜の測定には精度が不足している。
 半導体デバイスメーカーにとっては、使い捨てにされる検査用ウエーハ(ブランケットウエーハ)が、コスト面で大きな負担となっている。特に、近年では半導体ウエーハの大口径化が進展しており、一枚のブランケットウエーハにかかるコストも高価格化してきている。
 そこで、本出願人は、成膜製品の製造工程に組み込み、製品そのものを直接検査し、ウエーハを使い捨てることなく数nmの薄い膜でも充分な精度で検査可能とするX線薄膜検査装置を提案している(特許文献1:特開2006-153767号公報参照)。
 さらに、本出願人は、先に提案したX線薄膜検査装置の改良を重ね、本発明を完成させるに至った。
 すなわち、本発明は、検査対象を上面に配置する試料台と、
 試料台の上面に配置された検査対象の画像を観察する画像観察手段と、
 画像観察手段による検査対象の画像観察結果に基づき制御され、試料台を水平面上で直交する2方向、高さ方向、および面内回転方向に移動させる位置決め機構と、
 試料台の上面と直交する仮想平面に沿ってそれぞれ旋回する第1,第2の旋回部材を備えたゴニオメータと、
 第1の旋回部材に搭載されたX線照射ユニットと、
 第2の旋回部材に搭載されたX線検出器と、
 X線の照射により検査対象から発生する蛍光X線を検出する蛍光X線検出器と、
 を備えたX線薄膜検査装置である。
 ここで、X線照射ユニットは、
 X線を放射するX線管と、
 X線管から放射されたX線を入射し、特定波長に単色化した複数本の収束X線を反射し、これら複数本の収束X線をあらかじめ設定した焦点に収束させる、コンフォーカルミラーで構成されたX線光学素子と、
 X線光学素子から反射してきた複数本の収束X線のうち、任意本数の収束X線を通過させるスリット機構とを含んでいる。
 また、X線照射ユニットは、X線光学素子を、同光学素子から反射してきた複数本の収束X線の中心軸周りに回転調整する構造を備えた構成とすることが好ましい。
 スリット機構は、X線を遮蔽する材料で形成した2枚の遮蔽板を備え、これら遮蔽板の間に形成した隙間に任意本数の収束X線を通過させる構成であり、且つ隙間の広さを任意に調整できる機能を備えた構成とすることが好ましい。
 X線光学素子は、当該X線光学素子から反射してきたX線の光路方向から見て、仮想四角形の4隅にそれぞれ4本の矩形状をした収束X線を反射させる構成とすることができる。
 このような4本の収束X線の束は、X線強度が大きく、蛍光X線測定に好適である。
 かかる構成において、X線光学素子から反射してきた4本の収束X線のうち、遮蔽板の隙間を通過してきた2本の収束X線は、それら2本の収束X線を含む仮想平面が、同X線の光路方向から見て、検査対象の被検査面に対して平行に入射するように、互いの光路の位置関係を調整することが好ましい。
 このような収束X線は、高さ方向の広がりが小さく、X線反射率測定に好適である。
 また、スリット機構は、X線光学素子から反射してきた4本の収束X線のうち1本の収束X線のみを遮蔽板の隙間から通過させる構成とすることができる。
 このような収束X線は、高さ方向及び幅方向の広がりが小さく、半導体ウエーハ上に形成された微細なパターンを検査対象とするX線反射率測定に好適である。
 一方、X線照射ユニットは、
 X線を放射するX線管と、
 3次曲面以上の高次曲面をした反射面を有する半導体単結晶板からなる2重湾曲分光結晶板を、支持ブロックに固定した構成であって、X線管から放射されたX線を反射面に入射し、特定波長に単色化した収束X線を反射するX線光学素子とを含む構成としてもよい。
 かかる構成において、X線光学素子は、長さ方向に湾曲してX線の取込み角を設定するとともに、直交する幅方向にも湾曲させてX線の取込み角を設定した構成とすることが好ましい。
 このような構成のX線照射ユニットから出射される収束X線は、強度が大きく、蛍光X線測定に好適である。
 なお、上述した構造の異なる各X線照射ユニットは、ゴニオメータにおける第1の旋回部材に、旋回方向へ並べて搭載することができる。
 また、X線光学素子から反射してきた4本の収束X線のうち、遮蔽板の隙間を通過してきた1本の収束X線を利用して、
 第2の旋回部材に一次元X線検出器を搭載し、
 TDI方式によりX線の検出データを取得してX線反射率測定を実施する構成とすることもできる。
 さらに、受光スリットを設けないで検査対象となる薄膜試料から反射してくるX線の全範囲を一次元X線検出器に入射させるように構成することもできる。
 ここで、薄膜試料から少なくとも全反射してくる反射X線の強度を、X線吸収部材により減衰させて一次元X線検出器に入射させるようにすることが好ましい。
 さらに、薄膜試料の表面における入射X線の収束位置又は反射X線の出射位置と対向する位置に、前記薄膜試料に入射する入射X線又は当該薄膜試料からの反射X線が通過できる隙間を開けて、X線遮蔽部材を配置してもよい。また、薄膜試料から反射してくる反射X線の光路に対して、当該反射X線が通過できる隙間を開けて、散乱スリットを配置することもできる。
 これにより、空気からの散乱X線や反射ミラーからのゴースト等をX線遮蔽部材や散乱スリットによって遮蔽し、それら反射X線以外のX線の一次元X線検出器への入射を抑制し、バックグラウンド(BG)成分を低減させることが可能となる。
図1は本発明の実施形態に係るX線薄膜検査装置の全体構造を示す斜視図である。 図2は本発明の実施形態に係るX線薄膜検査装置の全体構造を示す正面図である。 図3は本発明の実施形態に係るX線薄膜検査装置の制御系を示すブロック図である。 図4は本発明の実施形態に係るX線薄膜検査装置の制御フローチャートである。 図5は半導体ウエーハの傾き補正を説明するための模式図である。 図6はX線照射ユニットに係る第1の実施形態の外観を示す斜視図である。 図7はX線照射ユニットに係る第1の実施形態の縦断面図である。 図8はX線照射ユニットに係る第1の実施形態の横断面図である。 図9はX線光学素子におけるX線の反射軌道を示す図である。 図10A、図10BはそれぞれX線光学素子から反射してきた4本の収束X線を光路方向から見た図である。 図11はX線照射ユニットから半導体ウエーハの検査面に照射した4本の収束X線の軌道と、当該検査面から反射してX線検出器に入射する発散X線の軌道とを示す模式図である。 図12は、図6と同じく、X線照射ユニットに係る第1の実施形態の外観を示す斜視図である。 図13A、図13Bはスリット機構の遮蔽板の間隙を通過した2本の収束X線を光路方向から見た図である。 図14はX線照射ユニットから半導体ウエーハの検査面に照射した2本の収束X線の軌道と、当該検査面から反射してX線検出器に入射する発散X線の軌道とを示す模式図である。 図15はスリット機構の遮蔽板の間隙を通過した1本の収束X線を光路方向から見た図である。 図16はX線照射ユニットに係る第2の実施形態の外観を示す斜視図である。 図17はX線照射ユニットに係る第2の実施形態の構成を示す縦断面図である。 図18は図17に示したX線照射ユニットにおけるX線光学素子の外観を示す斜視図である。 図19は図17に示したX線照射ユニットを用いた蛍光X線測定を説明するための模式図である。 図20は温度補正システムに係る実施形態における準備段階のステップを説明するためのフローチャートである。 図21は温度補正システムに係る実施形態におけるZ方向の検査位置の実測手順を説明するための模式図である。 図22は温度補正システムに係る実施形態におけるX方向及びY方向の検査位置の実測手順を説明するための模式図である。 図23は本発明者らによる温度補正に関する実験結果を示すグラフである。 図24A、図24BはX線反射率測定の原理を説明するための図である。 図25A、図25BはX線反射率測定の原理を説明するための図である。 図26はTDI方式を説明するための図である。 図27はX線反射率測定システムの改良に関する実施形態を説明するための模式図である。 図28A、図28BはX線反射率測定システムの改良に関する実施形態を説明するための図である。 図29は図27に示したX線反射率測定システムをさらに改良した実施形態を示す模式図である。
10:試料台、20:位置決め機構、30:ゴニオメータ、31:ゴニオメータ本体、32:第1の旋回アーム、33:第2の旋回アーム、40:X線照射ユニット、41:チューブシールド、41a:第1チューブ、41b:第2チューブ、42:X線管、43:X線光学素子、46:スリット機構、46a:遮蔽板、46b:遮蔽板、50:X線検出器、51:一次元X線検出器、52:X線吸収部材、53X線遮蔽部材、54:散乱スリット、60:蛍光X線検出器、70:光学顕微鏡、100:中央処理装置、110:温度測定ユニット
 以下、この発明の実施の形態について図面を参照して詳細に説明する。
〔X線薄膜検査装置の基本構成〕
 図1は本実施形態に係るX線薄膜検査装置の全体構造を示す斜視図、図2は同装置の正面図である。
 X線薄膜検査装置は、試料台10、位置決め機構20、ゴニオメータ30、X線照射ユニット40、X線検出器50、蛍光X線検出器60、CCDカメラ等からなる光学顕微鏡70(画像観察手段)を備えている。
 試料台10の上面には、検査対象となる半導体ウエーハが配置され、位置決め機構20によって駆動される。位置決め機構20は、水平面内の直角2方向(X,Y方向)へ移動自在な水平移動機構と、水平面と直交する上下方向(Z方向)へ移動自在な昇降機構と、面内回転機構とを含み、試料台10をX,Y,Z方向に移動させるとともに面内回転させて、その上面に配置された半導体ウエーハにおける任意の被測定部位を、照射X線の収束位置へ所定の向きに位置決めする機能を有している。
 ゴニオメータ30は、ゴニオメータ本体31に、第1,第2の旋回アーム(旋回部材)32,33を搭載している。各旋回アーム32,33は、図2の紙面に垂直な軸(θ軸、θ軸)を中心に、試料台の上面と直交する仮想平面に沿ってそれぞれ旋回する。ここで、第1の旋回アーム32の水平位置からの旋回角度をθ、第2の旋回アーム33の水平位置からの旋回角度をθとして、ゴニオメータはθ=θの関係を保持して、各旋回アーム32,33を旋回駆動させる。
 θ軸を中心に旋回する第1の旋回アーム32には、複数台(図では3台)のX線照射ユニット40が旋回方向に並べて搭載してある。また、θ軸を中心に旋回する第2の旋回アーム33にはX線検出器50が搭載してある。
 なお、第1の旋回アーム32に搭載するX線照射ユニット40の台数は、用途に応じて任意に設定することができる。例えば、第1の旋回アーム32に1台、2台、または4台以上のX線照射ユニット40を搭載した構成としてもよい。
 X線照射ユニット40は、X線管から発生したX線を、特定の波長のX線に単色化するとともに、一箇所に収束させる機能を有している。
X線照射ユニット40からのX線が照射される位置が検査位置となり、試料台10の上面に配置された検査対象の被測定部位は、位置決め機構20によってこの検査位置へ位置決めされる。
なお、X線照射ユニット40の詳細については後述する。
 X線検出器50は、X線反射率測定(XRR)やX線回折測定(XRD)に用い、蛍光X線検出器60は、蛍光X線測定(XRF)に用いる。X線反射率測定によれば、膜表面での反射X線と、膜と基板との界面での反射X線の干渉を測定して膜厚や密度を導くため、膜厚でオングストロームオーダーの測定精度が得られる。また、蛍光X線測定によれば、比較的厚い配線膜の測定を高精度に行うことができる。本実施形態のX線薄膜検査装置は、これらX線反射率測定と蛍光X線測定に加え、必要に応じてX線回折測定も実施できるようになっている。
 X線検出器50としては、例えば、入射X線に対するダイナミックレンジの広いアバランシェフォトダイオード(APD)を用いることができる。
 なお、第2の旋回アーム33に検出器交換機構を組み込むとともに、APD、一次元X線検出器、二次元検出器、シンチレーションカウンタなど各種のX線検出器を搭載し、検出器交換機構によりX線検出器を切り替えて利用できる構成とすることも可能である。
 また、上述した検査位置の上方位置には、蛍光X線検出器60が設置してあり、また、光学顕微鏡70は、検査位置からLだけ水平方向にずらした位置に配置して、蛍光X線検出器60との干渉を回避してある。
 試料台10に配置した検査対象(例えば、半導体ウエーハ)の被測定部位は、位置決め機構20により試料台10を移動させることで、光学顕微鏡70の下方位置に配置される。そして、この位置から検査位置に向かって水平方向へLpだけ移動させることで、検査対象(例えば、半導体ウエーハ)の被測定部位が検査位置に位置決めされる。
 なお、試料台10の上方に機器交換機構を設け、この機器交換機構により蛍光X線検出器60と光学顕微鏡70のいずれか一方を選択して、検査位置の上方位置へ配置する構成としてもよい。
 上述した基本構成のX線薄膜検査装置によれば、第1の旋回アーム32に、複数台(図1,図2では3台)のX線照射ユニット40を旋回方向へ並べて搭載することで、第1の旋回アーム32を旋回させるだけで、複数台のX線照射ユニット40を選択するとともに、選択したX線照射ユニット40を測定位置に対して任意の角度で高精度に位置決めすることができる。
 例えば、本装置によりX線反射率測定を実施する場合は、所望のX線を発生するX線照射ユニット40を選択し、測定対象である半導体ウエーハに対し表面すれすれの低角度でX線を照射するように、選択したX線照射ユニット40を配置すればよい。また、通常のX線回折測定を実施する場合は、選択したX線照射ユニット40の位置を逐次移動させて、半導体ウエーハに対するX線の入射角度を適宜変更していく。さらに、蛍光X線測定を実施する場合は、測定対象に対して低角度でX線を照射するように、選択したX線照射ユニット40を配置すればよい。
 本実施形態のX線薄膜査装置によれば、これらX線照射ユニット40の選択と位置決めが、第1の旋回アーム32を旋回移動させるだけで高精度に行うことができる。
 さらに、第1の旋回アーム32にX線照射ユニット40を搭載する構成によれば、第1の旋回アーム32を旋回させるとともに、θ=θの関係を保持して第2の旋回アーム33を旋回させることで、X線反射率測定における角度走査測定を行うことが可能となる。
 X線反射率測定では、単層膜だけでなく、表面から数層の各々の層の膜厚、密度、ラフネスを同時に導出することが可能である。しかも、複数台のX線照射ユニット40を第1の旋回アーム32に搭載できるようになっているので、複数の異なる波長のX線ビームを利用したより精度の高い多層膜解析が実現可能となる。
 蛍光X線測定では、検査対象(例えば、半導体ウエーハ)に応じて蛍光X線測定に適した波長のX線を発生するX線照射ユニット40が選択され、第1の旋回アーム32が旋回して選択されたX線照射ユニットから検査対象に対して低角度の入射角度位置に配置する。
 このように入射角度を低角度に設定することで、検査対象への入射X線が蛍光X線検出器60に遮られない余裕空間ができ、機器交換機構80に内蔵されている上下移動機構により蛍光X線検出器60を下降させ、他の元素を測定するときに比べ蛍光X線検出器60を検査対象の表面に近接する位置に配置することが可能となる。
 これにより、検査対象の測定面と蛍光X線検出器60との間のX線通路(X線の入射空間)を微小空間とすることができ、検査対象の測定面から発生する蛍光X線の多くを空気に吸収される前に蛍光X線検出器60が捕捉可能となる。
 図3は本実施形態に係るX線薄膜検査装置の制御系を示すブロック図である。
 X線照射ユニット40に組み込まれたX線管42への高圧電源47の供給、およびシャッター45の開閉操作は、XGコントローラ101が実行する。また、光学顕微鏡70が捉えた画像は、画像認識回路102で画像認識される。なお、光学顕微鏡70の焦点位置はフォーカスコントローラ103によって調整される。位置決めコントローラ104は、光学顕微鏡で捉えられ、画像認識回路102により認識された画像情報に基づいて位置決め機構20を駆動制御する。ゴニオメータ30は、ゴニオコントローラ106によって駆動制御される。
 XGコントローラ101、画像認識回路102、フォーカスコントローラ103、位置決めコントローラ104、ゴニオコントローラ106は、中央処理装置(CPU)100からの設定情報に基づいてそれぞれ作動する。また、X線検出器50と蛍光X線検出器60は、それぞれ計数制御回路107,108によって制御される。これら各コントローラ、CPU、計数制御回路が、X線薄膜検査装置の制御手段を構成している。
 図4は半導体ウエーハを検査対象としたX線薄膜検査を実行する際の制御フローチャートである。
 試料台10上に検査対象となる半導体ウエーハを配置した後、まず半導体ウエーハの被測定部位を検査位置へ位置決めする(ステップS1)。この位置決めは、位置決め機構20の駆動制御をもって実行される。すなわち、光学顕微鏡70が試料台10上の半導体ウエーハを捉え、画像認識回路102で認識した画像情報に基づいて位置決めコントローラ104が位置決め機構20を駆動制御する。位置決め機構20は、水平2方向(X-Y方向)および高さ方向(Z方向)に移動して、半導体ウエーハの被測定部位を検査位置へ配置する。
 半導体ウエーハに形成される半導体素子内の微小な薄膜パターンを被測定部位とする場合は、あらかじめ検査対象である半導体ウエーハに形成された位置決め用パターン、半導体素子のスクライブ・ライン、メモリー部、ダミーパターンやICチップの特定部位など微小なパターンを画像認識回路102に記憶させておき、検査に際して検査対象である半導体ウエーハの検査対象領域を光学顕微鏡70で観察し、その観察画像とあらかじめ記憶してある上記微小パターンを対比して合わせることにより、被測定部位である微小パターンであることを画像認識回路102が判別する。その判別結果に基づいて位置決め機構20が被測定部位である微小パターンを被測定位置へ位置決めする。
 また、上述したように半導体ウエーハに形成される半導体素子内の微小な薄膜パターンを被測定部位とする場合、その長手方向をX線の入射方向に合わせて配置することが好ましい。この方向合わせは、位置決め機構20による水平2方向(X-Y方向)の移動と面内回転によって、短い移動距離で実現できる。
 次に、半導体ウエーハの傾き補正を行う(ステップS2)。この傾き補正は、図5に示すように、半導体ウエーハを固定したまま、ゴニオメータ30の第1,第2の旋回アーム32,33を旋回させて行われる。X線照射ユニット40から半導体ウエーハへ照射されるX線の入射角度がθであれば、半導体ウエーハの表面からはθの角度にX線が反射していく。この反射X線をX線検出器50で検出する。これにより、半導体ウエーハの表面に対してX線照射ユニット40とX線検出器50とが同じ角度位置に配置され、ここを原点としてそれぞれの角度制御を実行することが可能となる。
 上述したように半導体ウエーハの被測定部を位置決めするとともに傾き補正を実行した後、X線反射率測定(XRR)、蛍光X線測定(XRF)、X線回折測定(XRD)のいずれかをもってX線検査を実行し(ステップS3)、中央処理装置が検査データを解析して(ステップS4)、解析結果を出力する(ステップS5)。
 以上の各ステップは半導体ウエーハに設定した被測定部位のすべてについて実行され(ステップS6)、すべての被測定部位の検査が終了した後に終了する。
 なお、低角での蛍光X線測定(XRF)やX線反射率測定(XRR)において、スループットを優先する場合には、上述した半導体ウエーハの傾き補正(ステップS2)は省略することもある。また、低角以外での蛍光X線測定(XRF)においては、通常、半導体ウエーハの傾き補正(ステップS2)は省略される。
〔X線照射ユニット(その1)〕
 次に、X線照射ユニット40に係る第1の実施形態について、図6~図15を参照して詳細に説明する。
 X線照射ユニット40は、図6に示すような外観をしており、図7及び図8に示すように、チューブシールド(ユニット本体)41内に、X線源であるX線管42とX線光学素子43とを内蔵したモジュール構成として小形軽量化を実現している。チューブシールド41は、X線を遮蔽する金属材料で構成してあり、X線管42を内蔵する第1チューブ41aと、X線光学素子43を内蔵する第2チューブ41bとに分割されている。各チューブ41a,41bは、ボルト等の締結手段によって連結され一体化する。
 チューブシールド41内には、図7に示すように、X線管42から放射されたX線をX線出射口41cへ導くX線通路が形成してあり、第1チューブ41a内にはこのX線通路を開閉するシャッター45が設けてある。シャッター45は回転により開閉して、X線管42から放射されたX線を通過又は遮蔽する構成となっている。
 X線管42には、例えば、ターゲット上での電子線焦点サイズがφ30μm程度で、出力が30W程度の微小焦点X線管球を用いることができる。ターゲット材料は、銅(Cu)、モリブデン(Mo)など、必要に応じて選択することができる。他にも、鉄(Fe)、コバルト(Co)、タングステン(W)、クロム(Cr)、銀(Ag)、金(Au)等が使用される。例えば、第1の旋回アーム32に、それぞれターゲット材料の異なるX線管42を内蔵した複数のX線照射ユニット40を搭載することもできる。
 X線光学素子43としては、X線管42から発生したX線を所定位置に収束させるコンフォーカルミラーを用いている。コンフォーカルミラーは、図8に示すように、4枚の多層膜ミラー43a,43b,43c,43dによって構成される。各多層膜ミラー43a,43b,43c,43dは、それぞれ楕円弧面の多層膜で形成されており、隣接する多層膜ミラー43aと43b、及び43cと43dは、それぞれX線の反射面の端縁が約90度の角度をもって交わるように配置されている。このコンフォーカルミラーで構成されたX線光学素子43は、X線管42で発生したX線を微小な焦点に収束できるとともに、X線を単色化する。例えば、X線管42がCuターゲットのときにはCuΚα、MoターゲットのときにはMoΚαにX線を単色化することができる。なお、単色化するX線の波長に応じて、多層膜ミラーを適宜選択して用いることが好ましい。
 図9はX線光学素子(コンフォーカルミラー)におけるX線の反射軌道を示す図である。
 X線光学素子43に入射したX線は、4枚の多層膜ミラーのうち隣接する2枚の多層膜ミラー43aと43bの間で反射し、単色化された収束X線となって出射される。すなわち、最初に第1の多層膜ミラー43aで反射したX線は、さらに第2の多層膜ミラー43bで反射することで、図10Aに示すような断面矩形状の収束X線となって出射される。一方、最初に第2の多層膜ミラー43bで反射したX線は、さらに第1の多層膜ミラー43aで反射することで、同じく図10Aに示すような断面矩形状の収束X線となって出射される。同様に、図には示されないが、隣接する他の2枚の多層膜ミラー43cと43dの間でもX線が反射して、図10Aに示すような断面矩形状の収束X線となって出射される。
 したがって、X線光学素子43からは、図10Aに示すように仮想四角形の4隅に、それぞれ4本の矩形状をした収束X線Xa,Xb,Xc,Xdが出射される。
 なお、図10Aに示す収束X線Xa,Xb,Xc,Xdは、図9に示すようにX線光学素子43で反射して収束位置bに至る中間位置の切断面Aで切断した際の断面形状を示しており、収束位置bではこれら各収束X線Xa,Xb,Xc,Xdが一つに重なり合う。
 したがって、収束位置bで4本の収束X線Xa,Xb,Xc,Xdが一つに重なり合えば、1本の収束X線の4倍のX線強度を得ることができる。また、後述するように、収束位置bで2本の収束X線Xb,Xdが一つに重なり合えば、1本の収束X線の2倍のX線強度を得ることができる。
 図9に示す収束X線Xa,Xb,Xc,Xdの収束位置bは半導体ウエーハの測定位置に合わせてあり、この収束位置bに既述した位置決め機構20をもって半導体ウエーハ内の任意の被測定部位が位置決めされる。なお、測定位置はゴニオメータ30のθ軸上に設定してある。
 ここで、図9に示すように、X線管42における電子線の焦点サイズ(長さ)をF1、X線管42の焦点faからX線光学素子43の反射中心位置までの距離をL1、X線光学素子43の反射中心位置から収束X線の収束位置fbまでの距離をL2としたとき、収束X線の焦点サイズ(長さ)F2は、次式で現される。
   F2=F1(L2/L1)
 したがって、収束X線の焦点サイズF2を小さくするためには、X線管42の焦点faからX線光学素子43の反射中心位置までの距離L1をできるだけ長くすることが好ましい。なお、X線光学素子43の反射中心位置から収束X線の収束位置fbまでの距離L2を短くする方法は、半導体ウエーハに干渉してしまう等の制約があって困難である。
 X線光学素子43の第2チューブ41bは、第1チューブ41aに対して回転調整自在に構成されており、例えば、第2チューブ41bを45度回転させた状態で固定することで、内部に組み込まれたX線光学素子43の各多層膜ミラー43a,43b,43c,43dの周方向位置を45度回転移動させることができる。このように各多層膜ミラー43a,43b,43c,43dの周方向位置を45度回転移動させることで、X線光学素子43から反射してくる収束X線Xa,Xb,Xc,Xdの軌道を、図10Aから図10Bの位置に変更することができる。
 さて、既述したように、収束位置bで4本の収束X線Xa,Xb,Xc,Xdが一つに重なり合えば、1本の収束X線の4倍のX線強度を得ることができる。しかしながら、図10Aに示すような4本の収束X線Xa,Xb,Xc,Xdを半導体ウエーハの被検査面に照射した場合、半導体ウエーハの被検査面から反射してくる反射X線Xra,Xrb,Xrc,Xrdは、図11に示すように広がってX線検出器50に入射する。このように、X線検出器50に入射する反射X線Xra,XrbとXrd,Xrcとの間に高さ方向(Z方向)の広がりがあると、特にX線反射率測定では、高精度な測定結果を得ることができない。
 一方、蛍光X線測定においては、半導体ウエーハから励起して出てくる蛍光X線Xfを蛍光X線検出器60で捕捉するため、反射X線Xra,Xrb,Xrc,Xrdの広がりは測定精度に何ら影響しない。
 そこで、蛍光X線測定においては、図10Aや図10Bに示すような4本の収束X線Xa,Xb,Xc,Xdを利用して、1本の収束X線の4倍のX線強度をもって測定を実施することで、高精度な測定結果を得ることが可能となる。一般的に、X線計測における計測誤差のうち統計誤差は√Nであらわされ(NはX線強度)、統計誤差率は√(N/N)となる。X線強度が4倍になると、統計誤差率は√(4N/4N)=1/2となる。すなわち、4倍のX線強度を有する上記構成とすることで、統計誤差率を1/2に低減することができる。
 図6及び図12に示すように、X線照射ユニット40には、チューブシールド41のX線出射口41cの前方に、出射してくるX線の一部を遮蔽するための可動式のスリット機構46が設けられている。このスリット機構は、上下に配置された2枚の遮蔽板46a、46bが、それぞれ直交する幅方向(Y方向)及び高さ方向(Z方向)にスライド自在に組み込まれており、図示しない駆動モータからの駆動力をもってこれら遮蔽板46a、46bの位置を変更できる構成となっている。各遮蔽板46a,46bは、X線を遮蔽する材料で形成されている。
 そして、図6に示す退避位置に遮蔽板46a、46bを移動させることで、X線出射口41cから4本すべての収束X線Xa,Xb,Xc,Xd(図10参照)を出射させることができる。
 一方、図12に示すように出射してくるX線の一部を遮蔽する位置に一定の隙間を空けて遮蔽板46a、46bを移動配置することで、例えば、図13A又は図13Bに示すように、X線出射口41cから2本の収束X線Xc,Xd又はXb,Xdを出射させることができる。
 上述した遮蔽板46a、46bは、発散スリット(DS:Divergence Slit)の機能を有している。
 ここで、図13A又は図13Bに示すように遮蔽板46a,46bの隙間を通過してきた2本の収束X線Xd,Xc(又はXb,Xd)は、これら2本の収束X線Xd,Xc(又はXb,Xd)を含む仮想平面が、同X線の光路方向から見て、半導体ウエーハの被検査面に対して平行に入射するように、互いの光路の位置関係が調整されている。この位置関係の調整は、各多層膜ミラー43a,43b,43c,43dが組み込まれた第2チューブ41bの回転調整により行うことができる。
 このように出射された2本の収束X線Xc,Xd又はXb,Xdは、X線反射率測定に適している。すなわち、図14に示すように、2本の収束X線Xc,Xd(又はXb,Xd)を、半導体ウエーハの被検査面に照射した場合、半導体ウエーハの被検査面から反射してくる反射X線Xrc,Xrd(又はXrb,Xrd)は、幅方向(Y方向)だけに広がり、高さ方向(Z方向)への広がりはない。したがって、X線反射率測定に適している。
 また、図15に示すように、X線出射口41cから1本だけの収束X線Xcを出射させるように遮蔽板46a、46bを移動配置することもできる。2本の収束X線を利用する場合に比べてX線強度が1/2になるものの、幅方向(Y方向)及び高さ方向(Z方向)のいずれにも広がることがないため、この場合もX線反射率測定に利用することができる。
 なお、具体的な反射X線の広がり角度は設計によって異なってくるが、一例として1本のX線ビームでも0.5度の広がり角、上下2本間で4度の広がり角がある。蛍光X線測定(XRF)では4本のX線ビームを使用することが好ましい。一方、X線反射率測定(XRR)では1本又は2本のX線ビームを使用することが好ましい。さらに、X線反射率測定(XRR)では、使用するX線ビームの一部を遮蔽板46a,46bで遮蔽して、ビーム幅を例えば0.2度~0.1度に制限して使用することもできる。X線検出器の前には、受光スリット(RS:Receiving Slit)を設けて角度を制限し、検査対象に応じて分解能を変えることもできる。
 このように、X線照射ユニット40の第1の構成によれば、4本の収束X線をすべて利用して蛍光X線測定のX線源としたり、2本又は1本の収束X線を利用して反射率測定のX線源とすることが可能となる。なお、4本の収束X線を利用する場合に比べてX線強度は小さくなるものの、2本又は1本の収束X線を利用して蛍光X線測定を実施することも可能である。
〔X線照射ユニット(その2)〕
 次に、X線照射ユニット40に係る第2の実施形態について、図16~図19を参照して詳細に説明する。
 本実施形態のX線照射ユニット40は、蛍光X線測定に適した大きな強度のX線を照射することができるように構成されている。
 X線照射ユニット40は、図16に示すような外観をしており、図17に示すように、チューブシールド(ユニット本体)41内に、X線源であるX線管42とX線光学素子43とを内蔵したモジュール構成としてある。チューブシールド41は、X線を遮蔽する金属材料で構成してあり、X線管42を内蔵する第1チューブ41aと、X線光学素子43を内蔵する第2チューブ41bとに分割されている。各チューブ41a,41bは、連結部材41dを介して連結されている。
 チューブシールド41内には、図16B及び図17に示すように、X線管42から放射されたX線をX線出射口41cへ導くX線通路が形成してあり、第1チューブ41a内にはこのX線通路を開閉するシャッター45が設けてある。シャッター45は回転により開閉して、X線管42から放射されたX線を通過又は遮蔽する構成となっている。
 X線管42のターゲット材料は、金(Au)、モリブデン(Mo)など、必要に応じて選択することができる。他にも、銅(Cu)、鉄(Fe)、コバルト(Co)、タングステン(W)、クロム(Cr)、銀(Ag)等が使用される。
 X線光学素子43は、図18に示すように、3次曲面以上の高次曲面をした反射面を有するゲルマニウム(Ge)、シリコン(Si)、ヒ化ガリウム(GaAs)等の半導体単結晶板からなる2重湾曲分光結晶板(DCC)43Aを、支持ブロック43Bに固定した構成となっている。このX線光学素子43は、長さ方向に湾曲してX線の取込み角を設定するだけでなく、長さ方向と直交する幅方向にも湾曲させてX線の取込み角を設定した構成となっており、広い面積で且つ大きな取込み角をもってX線管42からのX線を反射させることで、大きな強度のX線を照射できるようにしてある。このX線光学素子43も入射したX線を単色化する機能を有していることは勿論である。例えば、X線管42がMoターゲットのときにはMo-Κα、AuターゲットのときにはAu-LβにX線を単色化することができる。
 さて、上述した3次曲面以上の高次曲面をした反射面を有する2重湾曲分光結晶板43Aは、例えば、国際公開WO2007/072906号公報に開示された高温型押しの製法をもって製作することができる。例えば、平板状の半導体単結晶板を型押し部材に挟み込んで高温加圧して塑性変形させることで、広い面積で且つ大きな取込み角を有する3次曲面以上の高次曲面をした2重湾曲分光結晶板43Aを製作することができる。ここで、2重湾曲分光結晶板43Aの結晶格子面は、例えば、非対称Johann型又はLogarithmic spiral型のX線回折条件を満たすように調整してある。
 図16及び図17に戻り、X線照射ユニット40は、チューブシールド41内に入射側アパーチャ47aと出射側アパーチャ47bが設けてある。入射側アパーチャ47aは、X線管42から放射されたX線を絞り込んで2重湾曲分光結晶板43Aの反射面に効率的に照射させるための透過窓部材である。また出射側アパーチャ47bは、2重湾曲分光結晶板43Aで反射してきたX線を絞り込んで効率的にX線を収束させて焦点に導くための透過窓部材である。
 入射側アパーチャ47aは、X線を遮蔽できる金属材料で形成された遮蔽部材の中央部にX線を透過する開口部を設けた構成となっている。また、出射側アパーチャ47bは、X線を遮蔽できる金属材料で形成された遮蔽部材の中央部にX線を透過する開口部を設けるとともに、この遮蔽部材を直交する高さ方向(Z方向)と幅方向(Y方向)に移動できる構成としてある。そして、第2チューブ41bに設けた高さ調整ねじ47cをもってX線を透過させる開口部の高さ位置を微調整できる構成となっている。さらに、第2チューブ41bに設けた横位置調整ねじ47dをもってX線を透過させる開口部の幅方向位置を微調整できる構成となっている。
 また、図17に示すように、チューブシールド41の連結部材41dは、第1チューブ41aに対し第2チューブ41bを出射するX線の光路方向に移動調整できる構造としてあり、これによりX線管42から出射されたX線の光路に対し、X線光学素子43の反射面の位置を微調整できるようになっている。さらに、第1チューブ41aは連結部材41dに対して図17の矢印θ方向に首振りできるように構成してあり、マイクロメータ48の操作によりその首振り角θを微調整することができる。これによりX線管42から出射されたX線に対し、X線光学素子43の反射面への入射角θを微調整できるようになっている。
 上述した構成のX線照射ユニット40は、図19に示すように蛍光X線測定に好適な光学系を形成することができる。すなわち、X線管42から放射されたX線を、X線光学素子43で単色化するとともに反射収束して、半導体ウエーハの被検査面に照射する。そして、半導体ウエーハから現れた蛍光X線を蛍光X線検出器60で捕捉して分析する。
 図6~図15に示した第1の実施形態のX線照射ユニット40と、図16~図19に示した第2の実施形態のX線照射ユニット40は、図1に示したX線薄膜検査装置における第1の旋回アーム32にそれぞれ搭載することができる。例えば、図1に3台搭載したX線照射ユニット40のうち、中央のX線照射ユニット40を、図6~図15に示した第1の実施形態のX線照射ユニット40とし、また上部のX線照射ユニット40を、Au-LβのX線を照射する図16~図19に示した第2の実施形態のX線照射ユニット40とし、さらに下部のX線照射ユニット40を、Mo-ΚαのX線を照射する図16~図19に示した第2の実施形態のX線照射ユニット40とする。
 このように各種のX線照射ユニット40を第1の旋回アーム32に搭載しておけば、X線照射ユニット40を旋回移動させるだけで、X線反射率測定や蛍光X線測定に適したX線照射ユニット40を短時間で効率的にセッティングすることができる。
〔温度補正システム〕
 次に、X線薄膜検査装置の温度補正システムについて詳細に説明する。
 X線薄膜検査装置の内部温度が変化すると、同装置を構成する各部材が僅かながらではあるが膨張又は収縮し、X線の照射点である同装置の検査位置が3次元的に変動する。検査位置には、例えば、半導体ウエーハの微小パターン(被測定部位)が配置され、ここにX線が照射される。しかしながら、温度変化に伴い検査位置に変動が生じた場合、被測定部位である半導体ウエーハの微小パターンにX線を適正に照射できず、X線による測定精度の低下をまねくおそれがある。
 半導体製造ラインが設置されたクリーンルーム内は、高精度に温度管理がなされており、例えば、温度変化は1℃以内に保たれている。しかし、被測定部位である半導体ウエーハの微小パターンは数十μmの微小面積であり、この微小面積に収束されたX線を照射してX線検査が行われる過程においては、ミクロン単位での位置変動も測定結果に大きく影響を及ぼす。
 そこで、本実施形態に係るX線薄膜検査装置には、温度変化に伴う検査位置(X線の照射位置)の変動を補正して、X線の照射点に検査位置を合わせるための温度補正システムが組み込んである。
<温度補正の原理>
 本実施形態に係るX線薄膜検査装置の温度補正システムは、次の原理に基づいて温度変化に基づく位置変動を補正している。
温度変化に伴う検査位置(X線照射位置)を変動させる要因(位置変動要因)を大きく分類すると、X線ビームの移動、検査対象の移動、光学顕微鏡70の移動が考えられる。例えば、ゴニオメータ30の膨張・収縮などからX線ビームが移動し、試料台10の膨張・収縮などから検査対象が移動し、光学顕微鏡70を支持する支持枠の膨張・収縮などから光学顕微鏡70による観察位置が移動する。
 そこで、温度変化に伴う位置変動の要因をN個に特定し、各位置変動要因の時間経過に関する係数(時定数τ)と温度変化に関する係数(温度定数C)とを考慮して、温度変化に伴う位置変動を推定する。
 具体的には、n番目の位置変動要因の時定数をτn、温度定数をCnとし、t秒間隔で温度を測定していき、測定開始からi回目の測定(測定時刻t[i])における測定温度がT[i]であったとする。このときの実効温度Tn[i]は、漸化式(1)で算出することができる。
Figure JPOXMLDOC01-appb-M000001
 なお、温度測定開始時の測定温度T[0]と、実効温度Tn[0]との差を、ΔTnとすると、これらの間には次式(2)の関係が成立する。
Figure JPOXMLDOC01-appb-M000002
 温度定数Cnは、実効温度が1℃変化したときの位置変化量に対応する。そして、測定開始からi回目の測定時点(測定時刻t[i])における高さ方向(Z方向)の位置変動ΔZ[i]は、各位置変動要因の実効温度Tn[i]と温度定数Cnを用いて、次式(3)のように推定することができる。
Figure JPOXMLDOC01-appb-M000003
 したがって、測定開始からi回目の測定時点(測定時刻t[i])における高さ方向の検査位置Z[i]は、温度変化に伴う位置変動がない状態の基準位置をZ[0]として、これに上記温度変化に伴う位置変動ΔZ[i]を加えて、次式(4)のように推定することができる。
Figure JPOXMLDOC01-appb-M000004
 なお、基準位置Z[0]は、温度測定開始時の検査位置に対応する。しかし、温度測定開始時の各位置変動要因に関する測定温度と実効温度の差ΔTnを推定することは現実的に難しいため、ΔTn=0として、各位置変動要因の時定数に比べて十分な時間が経過してからの温度測定データを用いることが好ましい。これは、後述する幅方向(X方向)及び光路方向(Y方向)の位置変動を求めるときも同様である。
 各位置変動要因の時定数τnと温度定数Cnは、測定開始からi回目までの測定時点(測定時刻t[i])における高さ方向(Z方向)の検査位置を実測し、その実測検査位置を上記式(4)のZ[i]に挿入して、最小二乗法により求めることができる。
 このようにして、各位置変動要因の変数(時定数τnと温度定数Cn)を決定すれば、これらの変数を上記の式(1)及び式(3)に挿入し、これら各式に基づいて測定温度T[i]のデータから、測定時刻t[i]における検査位置の高さ方向の位置変動ΔZ[i]を算出することができる。
 次に、測定開始からi回目の測定時点(測定時刻t[i])における水平面上の長さ方向(X方向)の位置変動ΔX[i]は、各位置変動要因の実効温度Tn[i]と温度定数Cnを用いて、次式(5)のように推定することができる。
Figure JPOXMLDOC01-appb-M000005
 したがって、測定開始からi回目の測定時点(測定時刻t[i])における水平面上の長さ方向(X方向)の検査位置X[i]は、温度変化に伴う位置変動がない状態の基準位置をX[0]として、これに上記温度変化に伴う位置変動ΔX[i]を加えて、次式(6)のように推定することができる。
Figure JPOXMLDOC01-appb-M000006
 そして、各位置変動要因の時定数τnと温度定数Cnは、測定開始からi回目の測定時点(測定時刻t[i])における水平面上の長さ方向(X方向)の検査位置を実測し、その実測検査位置を上記式(6)のX[i]に挿入して、最小二乗法により求めることができる。
 このようにして、各位置変動要因の変数(時定数τnと温度定数Cn)を決定すれば、これらの変数を上記の式(1)及び式(5)に挿入し、これら各式に基づいて測定温度T[i]のデータから、測定時刻t[i]における検査位置の水平面上での長さ方向(X方向)の位置変動ΔX[i]を算出することができる。
 また、測定開始からi回目の測定時点(測定時刻t[i])における水平面上での幅方向(Y方向)の位置変動ΔY[i]は、各位置変動要因の実効温度Tn[i]と温度定数Cnを用いて、次式(7)のように推定することができる。
Figure JPOXMLDOC01-appb-M000007
 したがって、測定開始からi回目の測定時点(測定時刻t[i])における水平面上での幅方向(Y方向)の検査位置Y[i]は、温度変化に伴う位置変動がない状態の基準位置をY[0]として、これに上記温度変化に伴う位置変動ΔY[i]を加えて、次式(8)のように推定することができる。
Figure JPOXMLDOC01-appb-M000008
 そして、各位置変動要因の時定数τnと温度定数Cnは、測定開始からi回目の測定時点(測定時刻t[i])における水平面上での幅方向(Y方向)の検査位置を実測し、その実測検査位置を上記式(8)のY[i]に挿入して、最小二乗法により求めることができる。
 このようにして、各位置変動要因の変数(時定数τnと温度定数Cn)を決定すれば、これらの変数を上記の式(1)及び式(7)に挿入し、これら各式に基づいて測定温度T[i]のデータから、測定時刻t[i]における検査位置の水平面上での幅方向(Y方向)の位置変動ΔY[i]を算出することができる。
<温度補正システムの概要>
 本実施形態に係る温度補正システムは、図3に示した中央処理装置100に格納された温度補正ソフトウエアに基づき、後述する温度補正方法を実行する構成となっている。
 また、X線薄膜検査装置は、温度補正システムの構成要素である温度測定ユニット110を備えている(図3参照)。温度測定ユニット110には、公知の各種温度センサや熱電対を用いることができる。本来は、温度測定ユニットにより、温度変化に伴う位置変動要因である各種装置構成部材の内部温度を測定すべきところであるが、多数の構成部材の内部温度を一つ一つ測定するのは困難であり現実的でない。そこで、本実施形態では、各種装置構成部材の内部温度をいちいち測らなくてもよいように、時定数τnと温度定数Cnを求めた。よって、温度は、装置を構成するすべて部材の外部温度を代表する地点で測定すればよい。具体的には、温度測定ユニット110により、X線薄膜検査装置が設置された検査室内の空気温度や、検査室の排気口から排出されてくる空気温度を測定し、これを上述した式(1)における測定温度T[i]とした。
<温度補正方法>
 中央処理装置100は、格納された温度補正ソフトウエアに基づき、次の温度補正方法を実行する。温度補正方法は、上述した原理における位置変動要因の時定数τnと温度定数Cnを求める準備段階と、求めた位置変動要因の時定数τnと温度定数Cnを挿入した上記の式(1)(3)(5)(7)に基づき、温度測定と位置補正を繰り返す実行段階とに分けられる。
 まず、位置変動要因の時定数τnと温度定数Cnを求める準備段階について説明する。
 図20のフローチャートに示すように、準備段階では、まず温度変化に伴う位置変動要因を設定して測定を開始し(ステップS1、S2)、一定の測定間隔毎に温度測定と検査位置の実測を行う(ステップS3,S4)。これら温度測定と検査位置の実測をあらかじめ設定した時間だけ繰り返し実行する(ステップS5)。
 そして、高さ方向(Z方向)の位置変動であれば、得られた測定データを上記式(4)のZ[i]に挿入して、最小二乗法により位置変動要因の時定数τnと温度定数Cnを求める(ステップS6)。同様に、水平面上での長さ方向(X方向)の位置変動であれば、得られた測定データを上記式(6)のX[i]に挿入して、最小二乗法により位置変動要因の時定数τnと温度定数Cnを求める(ステップS6)。また、水平面上での幅方向(Y方向)の位置変動であれば、得られた測定データを上記式(8)のY[i]に挿入して、最小二乗法により位置変動要因の時定数τnと温度定数Cnを求める(ステップS6)。
 ここで、高さ方向(Z方向)の検査位置の実測は、次の手順で行うことができる。
 まず、図21に示すように、試料台10の上面に温度補正用の試料Sを配置し、この試料Sの被測定部SAを、光学顕微鏡70の下方位置へ移動させる。続いて、ゴニオメータ30の各旋回アーム32,33を回転駆動して、所定のX線照射ユニット40とX線検出器50とが試料台10を挟んで水平対向位置に配置されるように設定する。このような配置関係では、X線照射ユニット40から照射されたX線の中心軸は水平となり、対向配置したX線検出器50における検出面の中心へ入射する。
次いで、中間位置にある試料台10を高さ方向(Z方向)に移動し、X線検出器50で検出されるX線の強度が、X線管42から放射されるX線強度の1/2となるように調整する。これにより、X線管42から放射されたX線の1/2が試料台10及び試料Sの側面に遮られ、残りの1/2が試料Sの上方を通過してX線検出器50に入射する位置に試料Sが配置される。この配置において、試料Sの上面はX線管42から放射されるX線の中心軸と一致する。この高さ位置が高さ方向の検査位置となり、X線薄膜検査に際しては、この高さ位置にX線照射ユニット40からX線が照射される。これら一連の操作を、一般に「半割り」と称している。
 次に、光学顕微鏡70のオートフォーカス機構を用いて、図21に示すように、光学顕微鏡70の焦点を試料Sの被測定部位SAに合わせて、光学顕微鏡70から当該試料Sの上面までの距離hを測定する。本実施形態では、この距離hを検査位置に関する高さ方向(Z方向)の実測位置としている。
 次に、水平面上で直交する長さ方向(X方向)及び幅方向(Y方向)の検査位置の実測手順について説明する。
 図1に示したX線薄膜検査装置では、図22Aに示すように、検査位置(X線照射ユニット40によるX線の照射位置)Pxと、光学顕微鏡70による観察位置Pcとが、水平面上で距離Lpだけ離間した位置に設定されている。これは、図22Bに示すように、検査位置の上方には蛍光X線検出器60が設置されるため、光学顕微鏡70を同じ位置に設置できないからである。
 そこで、まず図22Aに示すように、試料台10を水平移動して、試料台10の上面に配置した試料Sの測定点SAを、光学顕微鏡70による観察位置Pcの中心に配置する。これは光学顕微鏡70が捉えた映像を、画像認識回路102で画像認識して、当該画像に基づき中央処理装置100が位置決め機構20を制御することで実行することができる。
 次いで、検査位置に配置した試料Sの測定点SAを、検査位置Pxに移動配置する。これは、図22Bに示すように、検査位置Pxに向けてX線照射ユニット40からX線を照射しながら、試料台10を水平移動させ、蛍光X線検出器60で試料Sから出射される蛍光X線を検出することで実行することができる。すなわち、試料Sの測定点SAが検査位置Px、(すなわち、X線照射ユニット40によるX線の照射位置)に配置されたとき、蛍光X線検出器60で検出される蛍光X線がピーク強度に到達する。なお、温度補正用の試料Sは、X線照射により蛍光X線を励起する材料で構成する。
 本実施形態では、このようにして試料台10に配置した試料Sの測定点SAを、光学顕微鏡70による観察位置から検査位置Pxへと移動したときの、長さ方向(X方向)の移動量xを、試料台10の検査位置に関する水平面上での長さ方向(X方向)の実測位置としている。
 同様に、試料台10の検査位置に配置した試料Sの測定点SAを、光学顕微鏡70による観察位置から検査位置Pxへと移動したときの、幅(Y方向)の移動量yを、試料台10の検査位置に関する水平面上での幅方向(Y方向)の実測位置としている。
 温度補正の実行段階では、上述した手順で求めた位置変動要因の時定数τnと温度定数Cnを、上述した式(1)(3)(5)(7)のパラメータとして設定し、中央処理装置100がこれらの式に基づいて温度補正を実行する。この温度補正の実行段階は、X線の薄膜検査の実行と並行して行われる。すなわち、X線の薄膜検査の実行している間、中央処理装置100は、温度測定ユニット110から送られてくる温度測定データを入力し、この温度測定データに基づき、式(1)(3)(5)(7)から検査位置の温度変化に伴う位置変動を算出し、その変動量だけ試料台の位置を微調整する。
 これにより、常にX線の照射点に試料台10の検査位置を合致させて、高精度なX線の薄膜検査を行うことが可能となる。
 さて、本発明者らは、温度変化に伴う位置変動の要因として、X線薄膜検査装置を構成する各部材の時定数の違いに着目し、時定数τが大きい部材と時定数τが小さい部材の2つに分け(すなわち、N=2)、これら2つの位置変動要因を設定して、上述した温度補正を実行したとき、温度変化に伴う位置変動を極めて高精度に補正することができた。なお、時定数は、部材の比熱及び熱膨張率と熱伝導距離により決まる。例えば、薄いパイプ部材では時定数が小さく、サイズが大きい部材では時定数が大きくなる。
 図23は本発明者らによる実験結果を示すグラフである。
 半導体製造ラインが設置されたクリーンルーム内に設置してあるX線薄膜検査装置を対象として、同装置の内部温度を測定し、同装置の温度変化に伴う位置変動を補正した。
 本実験では、温度変化に伴う位置変動要因として、時定数が266.2秒と小さいもの(位置変動要因n1)と、時定数が10272.5秒と大きいもの(位置変動要因n2)の2つを設定し、上述した式(4)に基づいて、光学顕微鏡70から試料台10の上面までの距離hの計算値を算出した(図23のDATA3参照)。なお、位置変動要因n1の温度定数は-12.98μm/℃、位置変動要因n2の温度定数は13.20μm/℃である。
 そして、光学顕微鏡70から試料台10の上面までの距離hの計算値と実測値との差分(すなわち、変動量)を求めた結果、図23のDATA4に示すように変動量は極めて小さな値を示しており、この結果、本発明の温度補正システムにより、温度変化に伴う位置変動を高精度に補正することができることが明らかになった。
〔X線反射率測定システムの改良〕
 次に、X線薄膜検査装置のX線反射率測定に関するシステムの改良について説明する。
 周知のとおり、X線反射率測定は、特に薄膜の厚さや、薄膜表面の粗さ、薄膜と基材との間の界面の粗さ、薄膜の密度等を測定するのに適している。このX線反射率測定の原理は、以下のとおりである(図24、図25参照)。
 図24Aにおいて、表面が平坦な物質201の表面すれすれにX線を入射、すなわち低角度θからX線を入射すると、臨界角度以下では全反射を生じる。この臨界角度は非常に小さく、例えばCuKαのX線に対し、Siやガラス板では0.22°、Niでは0.42°、そしてAuでは0.57°である。
 この臨界角度は、物質の電子密度に依存して変化する。X線の入射角度がこの臨界角度よりも大きくなるにしたがって、X線は次第に物質中へ深く入り込んでいく。そして、理想的な平面をもった物質では、図24Bに曲線Aで示すように、臨界角度をθc以上の角度で、X線反射率がθ-4(θはX線入射角)に比例して急激に減少する。さらに、物質の表面が粗れていると、減少の程度は破線Bで示すように一層大きくなる。図の縦軸において、Iは入射X線強度であり、Iは反射X線強度である。
 図25Aに示すように、このような物質を基板201として、その基板201上に電子密度の異なる別の物質を均一に積層して薄膜202を形成する。そして、X線を低角度で入射すると、基板201と薄膜202との間の界面、および薄膜202の表面で反射したX線が、互いに強めあったり弱めあったりする。その結果、図25Bに示すように、反射率曲線にX線の干渉による振動パターンCが現れる。
 この振動パターンCの周期から、薄膜202の厚さを決定でき、また振動パターンCの振幅の角度依存性から、表面および界面の情報が得られる。さらに、振動パターンの周期と振幅の両方を併せて検討することにより、薄膜202の密度が求められる。
 本発明のX線薄膜検査装置によりX線反射率測定(XRR)を実施する場合、X線検出器50として、既出したアバランシェフォトダイオード(APD)に代えて一次元X線検出器を用い、TDI(Time Delay Integration)と称する走査方式をもってX線の検出データを取得することもできる。
 TDI方式では、図26に示すように、複数の並列配置された検出器a1、a2、a3、a4を並列方向(図のQ方向)に走査して、検出器1個分が移動するタイミングt1、t2、t3、t4、・・・、tLで各検出器a1、a2、a3、a4、・・・、aMから検出データを読み出す。そして、各検出器a1、a2、a3、a4、・・・、aMの検出データを走査角度2θ、2θ、2θ、2θ、・・・、2θN毎に足し合わせて、各走査角度2θ、2θ、2θ、2θ、・・・、2θNにおけるX線強度を求める。
 具体的には、ゴニオコントローラ106から単位角度Δθ毎に制御信号を出力して、ゴニオメータ30の各旋回アーム32,33を旋回させる。この際、ゴニオコントローラ106から単位角度Δθ毎に出力される制御信号をトリガーとして、一次元X線検出器からの検出信号を読み出す。そして、一定時間毎にゴニオメータ30の各旋回アーム32,33の旋回角度θをシフトして、一次元X線検出器からの検出信号を積分していく。
 本実施形態のTDI方式では、各旋回アーム32,33の旋回角θ=θの関係を保持して、各旋回アーム32,33を旋回駆動させる。これにより、検査対象へのX線の入射角θ(=θ)を変化させながら、且つ一次元X線検出器も検出角度位置を変化させて、反射X線を検出している。
 なお、TDI方式によるX線検出データの取得は、中央処理装置100に格納されたTDI方式用のソフトウエアで実行する構成とすることができる。また、TDI方式によるX線検出データの取得は、一次元X線検出器内部のハードウエアや信号制御回路(ファームウエア)によって実行することも可能である。
 さて、検査対象から反射してくるX線の発散幅を2δとしたとき、TDIによる走査範囲を、角度発散幅2δ相当に制限すると効率的である。なお、一次元X線検出器のピクセル幅xMが検出範囲となる。このとき、X線反射率測定を実施範囲を0~θmaxとすると、ゴニオメータの走査範囲θは、θ-δ~θmax+δとなる。TDIによる走査範囲が2δより大きい場合は、ゴニオメータの走査範囲が増加して、スループットが低下する。
 このTDI方式を採用することにより、測定の迅速化とともに各走査角度において大きな検出強度を得ることが可能となる。
 これらの構成を採用したX線反射率測定システムの概要を図27に示す。
 図27に示すように、X線照射ユニット40から入射X線(収束X線)Xを薄膜試料W(例えば、半導体ウエーハ)の表面すれすれに照射し、薄膜試料Wから反射してきた反射X線Xを一次元X線検出器51で検出する。X線照射ユニット40としては、例えば、既述したようなX線光学素子43にコンフォーカルミラーを用いた構成のものを採用する(図6~図15参照)。この場合、図13や図15に示したように反射X線Xの走査方向への発散を抑えて利用する必要が無く、逆に広い発散角の入射X線Xに対する反射X線を同時に計測ことにより計測時間を短縮することができる。そして、TDI方式をもって一次元X線検出器51を走査し、X線の検出データを取得する。
 上述したように、TDIの走査範囲を反射X線の角度発散幅δに絞った場合には、薄膜試料Wから反射してきた反射X線Xに対して、散乱X線を遮蔽するための受光スリット(RS:Receiving Slit)は設ける必要はない。
 このように受光スリットを使用せず発散X線の全範囲を利用してTDI方式のX線反射率測定を実施するために、測定速度が格段に向上する。
 一方、受光スリットを設けない場合、空気や検査対象表面からの散乱X線、検査対象から発生した蛍光X線等が一次元X線検出器に入射し、測定対象となる反射X線以外のバックグラウンド(BG)が増加し、一次元X線検出器51のダイナミックレンジが減少する。
 そこで、本実施形態では、図27に示すようにX線吸収部材52を設置し、薄膜試料Wから反射してくる反射X線Xの強度をX線吸収部材52により減衰させて一次元X線検出器51へ照射する構成を採用している。このX線吸収部材52は、薄膜試料から少なくとも全反射してくる反射X線Xの強度を減衰させて一次元X線検出器51に入射させるように配置してある。好ましくは、X線吸収部材52は、図25Bに示した全反射領域Zを含むが、測定データとして重要な振動パターンCが現れる走査角度には至らない任意の走査角度θdまでの範囲をカバーするように配置する。すなわち、走査角度θdよりも小さい走査角度範囲においては、薄膜試料Wから大きな強度のX線Xが反射してくる。このような大きな強度の反射X線Xの光路上にX線吸収部材52を介在させ、同部材でその反射X線Xの一部を吸収する。
 X線吸収部材52を介在させた走査角度範囲では、図28Aに示すように一次元X線検出器51へ入射するX線の強度が小さくなる。この範囲のX線検出データは、ソフトウエアにより補正して、図28Bに示すようにX線吸収部材52によるX線の減衰量に対応する強度だけ嵩上げして、X線吸収部材52を介在させていない走査角度範囲のX線検出データとの連続性を確保する。
 以上の構成により、一次元X線検出器51を用いたTDI方式によるX線反射率測定の迅速化を実現することができる。
 さらに、図29に示すように、薄膜試料Wの表面における入射X線Xの収束位置(又は反射X線Xの出射位置)と対向する位置にX線遮蔽部材53を配置してもよい。X線遮蔽部材53は、X線を透過させない材料でくさび状又は板状に形成してあり、薄膜試料Wの表面と直交するように配置してある。また、薄膜試料Wの表面とX線遮蔽部材53との間には、薄膜試料Wに入射する入射X線X(又は薄膜試料Wからの反射X線X)が通過できるぎりぎりの隙間が開けてある。
 このようにX線遮蔽部材53を配置することで、空気からの散乱X線や反射ミラーからのゴースト等をX線遮蔽部材53によって遮蔽し、それら反射X線以外のX線の一次元X線検出器51への入射を抑制し、バックグラウンド(BG)成分を低減させることが可能となる。これにより、主として一次元X線検出器51に入射する反射X線強度が弱くなる比較的高角の領域においてSN比を向上し、X線反射率測定のダイナミックレンジを向上することができる。
 空気や薄膜試料Wの表面からの散乱X線や、薄膜試料Wから発生した蛍光X線等の一次元X線検出器51への入射を抑制するには、反射X線Xの光路に対して散乱スリット54(SS:Scattering Slit)を配置してもよい。この場合、散乱スリット54のみを反射X線Xが通過できるぎりぎりの隙間が開けて配置することもできるが、上述したX線遮蔽部材53と併せて二重に散乱X線や蛍光X線を遮蔽する構成とすれば、いっそう効果的にそれら反射X線以外のX線の一次元X線検出器51への入射を抑制し、バックグラウンド(BG)成分を低減させることが可能となる。
 なお、上述した実施形態では、一次元X線検出器を用いてTDI方式によるX線反射率測定を実施したが、二次元X線検出器を用いてTDI方式によるX線反射率測定を実施することもできる。この構成は、図16及び図17に示したように幅方向に拡がった2本のX線ビームを用いた場合や、X線散漫散乱を測定する場合に適している。
 また、X線吸収部材52を一次元X線検出器又は二次元検出器の受光面に取り付けることもできる。この場合は、得られたX線検出データをソフトウエアにより補正して、角度ごとに積分していく。

Claims (20)

  1. 検査対象を上面に配置する試料台と、
     前記試料台の上面に配置された前記検査対象の画像を観察する画像観察手段と、
     前記画像観察手段による前記検査対象の画像観察結果に基づき制御され、前記試料台を水平面上で直交する2方向、高さ方向、および面内回転方向に移動させる位置決め機構と、
     前記試料台の上面と直交する仮想平面に沿ってそれぞれ旋回する第1,第2の旋回部材を備えたゴニオメータと、
     前記第1の旋回部材に搭載されたX線照射ユニットと、
     前記第2の旋回部材に搭載されたX線検出器と、
     X線の照射により前記検査対象から発生する蛍光X線を検出する蛍光X線検出器と、
     を備えたことを特徴とするX線薄膜検査装置。
  2.  前記X線照射ユニットは、
     X線を放射するX線管と、
     前記X線管から放射されたX線を入射し、特定波長に単色化した複数本の収束X線を反射し、これら複数本の収束X線をあらかじめ設定した焦点に収束させる、コンフォーカルミラーで構成されたX線光学素子と、
     前記X線光学素子から反射してきた複数本の収束X線のうち、任意本数の収束X線を通過させるスリット機構とを含む、請求項1のX線薄膜検査装置。
  3.  前記X線照射ユニットは、前記X線光学素子を、同光学素子から反射してきた複数本の収束X線の中心軸周りに回転調整する構造を備える、請求項2のX線薄膜検査装置。
  4.  前記スリット機構は、X線を遮蔽する材料で形成した2枚の遮蔽板を備え、これら遮蔽板の間に形成した隙間に前記任意本数の収束X線を通過させる構成であり、且つ前記隙間の広さを任意に調整できる機能を備えている、請求項3のX線薄膜検査装置。
  5.  前記X線光学素子は、当該X線光学素子から反射してきたX線の光路方向から見て、仮想四角形の4隅にそれぞれ4本の矩形状をした収束X線を反射させる構成である、請求項4のX線薄膜検査装置。
  6.  前記X線光学素子から反射してきた前記4本の収束X線のうち、前記遮蔽板の隙間を通過してきた2本の収束X線は、それら2本の収束X線を含む仮想平面が、同X線の光路方向から見て、前記検査対象の被検査面に対して平行に入射するように、互いの光路の位置関係が調整されている、請求項5のX線薄膜検査装置。
  7.  前記スリット機構は、前記X線光学素子から反射してきた前記4本の収束X線のうち1本の収束X線のみを前記遮蔽板の隙間から通過させる、請求項5のX線薄膜検査装置。
  8.  前記X線照射ユニットは、
     X線を放射するX線管と、
     3次曲面以上の高次曲面をした反射面を有する半導体単結晶板からなる2重湾曲分光結晶板を、支持ブロックに固定した構成であって、前記X線管から放射されたX線を前記反射面に入射し、特定波長に単色化した収束X線を反射するX線光学素子とを含む、請求項1のX線薄膜検査装置。
  9.  前記X線光学素子は、長さ方向に湾曲してX線の取込み角を設定するとともに、直交する幅方向にも湾曲させてX線の取込み角を設定した構成である請求項8のX線薄膜検査装置。
  10.  請求項2及び請求項8に記載したX線照射ユニットを、前記第1の旋回部材に旋回方向へ並べて搭載したことを特徴とする請求項1のX線薄膜検査装置。
  11.  請求項7のX線薄膜検査装置において、
     前記第2の旋回部材に一次元X線検出器を搭載し、
     TDI方式によりX線の検出データを取得してX線反射率測定を実施する構成としたX線薄膜検査装置。
  12.  受光スリットを設けないで前記検査対象となる薄膜試料から反射してくるX線の全範囲を前記一次元X線検出器に入射させるようにした請求項11のX線薄膜検査装置。
  13.  前記薄膜試料から少なくとも全反射してくる反射X線の強度を、X線吸収部材により減衰させて前記一次元X線検出器に入射させるようにした請求項12のX線薄膜検査装置。
  14.  前記薄膜試料の表面における入射X線の収束位置又は反射X線の出射位置と対向する位置に、前記薄膜試料に入射する入射X線又は当該薄膜試料からの反射X線が通過できる隙間を開けて、X線遮蔽部材を配置した請求項13のX線薄膜検査装置。
  15.  前記薄膜試料から反射してくる反射X線の光路に対して、当該反射X線が通過できる隙間を開けて、散乱スリットを配置した請求項13のX線薄膜検査装置。
  16.  請求項6のX線薄膜検査装置において
     前記第2の旋回部材に二次元X線検出器を搭載し、
     TDI方式によりX線の検出データを取得してX線反射率測定を実施する構成としたX線薄膜検査装置。
  17.  受光スリットを設けないで前記検査対象となる薄膜試料から反射してくるX線の全範囲を前記二次元X線検出器に入射させるようにした請求項16のX線薄膜検査装置。
  18.  前記薄膜試料から少なくとも全反射してくる反射X線の強度を、X線吸収部材により減衰させて前記二次元X線検出器に入射させるようにした請求項17のX線薄膜検査装置。
  19.  前記薄膜試料の表面における入射X線の収束位置又は反射X線の出射位置と対向する位置に、前記薄膜試料に入射する入射X線又は当該薄膜試料からの反射X線が通過できる隙間を開けて、X線遮蔽部材を配置した請求項18のX線薄膜検査装置。
  20.  前記薄膜試料から反射してくる反射X線の光路に対して、当該反射X線が通過できる隙間を開けて、散乱スリットを配置した請求項18のX線薄膜検査装置。
PCT/JP2014/077335 2014-10-14 2014-10-14 X線薄膜検査装置 WO2016059672A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/077335 WO2016059672A1 (ja) 2014-10-14 2014-10-14 X線薄膜検査装置
US15/518,892 US10473598B2 (en) 2014-10-14 2014-10-14 X-ray thin film inspection device
JP2016553774A JP6351740B2 (ja) 2014-10-14 2014-10-14 X線薄膜検査装置
KR1020177012985A KR102144281B1 (ko) 2014-10-14 2014-10-14 X선 박막 검사 장치
TW104120714A TWI630384B (zh) 2014-10-14 2015-06-26 X射線薄膜檢查裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077335 WO2016059672A1 (ja) 2014-10-14 2014-10-14 X線薄膜検査装置

Publications (1)

Publication Number Publication Date
WO2016059672A1 true WO2016059672A1 (ja) 2016-04-21

Family

ID=55746243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077335 WO2016059672A1 (ja) 2014-10-14 2014-10-14 X線薄膜検査装置

Country Status (5)

Country Link
US (1) US10473598B2 (ja)
JP (1) JP6351740B2 (ja)
KR (1) KR102144281B1 (ja)
TW (1) TWI630384B (ja)
WO (1) WO2016059672A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012527A1 (ja) * 2016-07-15 2018-01-18 株式会社リガク X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法
JPWO2018016430A1 (ja) * 2016-07-16 2019-04-25 株式会社リガク 複合検査システム
CN112268914A (zh) * 2020-12-07 2021-01-26 西安稀有金属材料研究院有限公司 一种全尺寸核燃料包壳管元件耐事故涂层的无损检测方法
WO2021229772A1 (ja) * 2020-05-14 2021-11-18 株式会社島津製作所 質量分析方法及び質量分析装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10481111B2 (en) * 2016-10-21 2019-11-19 Kla-Tencor Corporation Calibration of a small angle X-ray scatterometry based metrology system
EP3701288B1 (en) 2017-10-26 2023-05-10 Shenzhen Xpectvision Technology Co., Ltd. Detector for x-ray fluorescence
KR20190071111A (ko) * 2017-12-14 2019-06-24 삼성전자주식회사 엑스선 검사 장비 및 이를 이용하는 반도체 장치 제조 방법
WO2019130663A1 (ja) * 2017-12-28 2019-07-04 株式会社リガク X線検査装置
BR112020023596A2 (pt) * 2018-05-18 2021-04-20 Enersoft Inc. sistemas, dispositivos e métodos para análise de amostras geológicas
JP7394464B2 (ja) * 2018-07-04 2023-12-08 株式会社リガク 蛍光x線分析装置
CN112823280A (zh) 2018-09-07 2021-05-18 斯格瑞公司 用于深度可选x射线分析的系统和方法
CN109839396B (zh) * 2019-01-23 2021-03-19 中国科学院上海应用物理研究所 一种基于kb镜聚焦的同步辐射共聚焦荧光实验方法
KR102650008B1 (ko) * 2019-03-28 2024-03-22 가부시키가이샤 리가쿠 투과형 소각 산란 장치
WO2020260336A1 (de) * 2019-06-24 2020-12-30 Sms Group Gmbh Regelung der prozessparameter mittels röntgenografischer online-bestimmung von werkstoffeigenschaften bei der erzeugung metallischer bänder und bleche
US11143605B2 (en) * 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
EP4030164A4 (en) * 2019-09-09 2023-01-25 Universidad De La Frontera INTEGRATED SYSTEM OF ORTHOVOLTAGE SOURCES THAT INDUCE IONIZING RADIATION
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
JP7395775B2 (ja) 2020-05-18 2023-12-11 シグレイ、インコーポレイテッド 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法
CN114166874A (zh) * 2020-09-11 2022-03-11 同方威视技术股份有限公司 背散射检查系统和方法
JP2023542674A (ja) 2020-09-17 2023-10-11 シグレイ、インコーポレイテッド X線を用いた深さ分解計測および分析のためのシステムおよび方法
JP2024501623A (ja) 2020-12-07 2024-01-15 シグレイ、インコーポレイテッド 透過x線源を用いた高スループット3d x線撮像システム
EP4019951A1 (en) 2020-12-24 2022-06-29 Inel S.A.S Apparatuses and methods for combined simultaneous analyses of materials
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
WO2023215204A1 (en) 2022-05-02 2023-11-09 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915392A (ja) * 1995-06-28 1997-01-17 Hitachi Ltd X線解析装置
JPH102998A (ja) * 1996-06-18 1998-01-06 Rigaku Corp X線回折装置のスリット装置
JP2006153767A (ja) * 2004-10-26 2006-06-15 Rigaku Corp X線薄膜検査装置と、プロダクトウエーハの薄膜検査装置およびその方法
WO2007072906A1 (ja) * 2005-12-21 2007-06-28 Kyoto University 曲率分布結晶レンズの製造方法、偏光制御装置、x線反射率測定装置およびx線反射率測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218170A (ja) * 1996-02-14 1997-08-19 Rigaku Corp X線回折測定方法
JP5695589B2 (ja) * 2012-03-02 2015-04-08 株式会社リガク X線強度補正方法およびx線回折装置
JP6026936B2 (ja) * 2013-03-28 2016-11-16 株式会社日立ハイテクサイエンス 異物検出装置
WO2016059673A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915392A (ja) * 1995-06-28 1997-01-17 Hitachi Ltd X線解析装置
JPH102998A (ja) * 1996-06-18 1998-01-06 Rigaku Corp X線回折装置のスリット装置
JP2006153767A (ja) * 2004-10-26 2006-06-15 Rigaku Corp X線薄膜検査装置と、プロダクトウエーハの薄膜検査装置およびその方法
WO2007072906A1 (ja) * 2005-12-21 2007-06-28 Kyoto University 曲率分布結晶レンズの製造方法、偏光制御装置、x線反射率測定装置およびx線反射率測定方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012527A1 (ja) * 2016-07-15 2018-01-18 株式会社リガク X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法
KR20190026789A (ko) * 2016-07-15 2019-03-13 가부시키가이샤 리가쿠 X선 검사 장치, x선 박막 검사 방법 및 로킹 커브 측정 방법
JPWO2018012527A1 (ja) * 2016-07-15 2019-05-09 株式会社リガク X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法
US10876978B2 (en) 2016-07-15 2020-12-29 Rigaku Corporation X-ray inspecting device, X-ray thin film inspecting method, and method for measuring rocking curve
KR102348995B1 (ko) * 2016-07-15 2022-01-10 가부시키가이샤 리가쿠 X선 검사 장치, x선 박막 검사 방법 및 로킹 커브 측정 방법
JPWO2018016430A1 (ja) * 2016-07-16 2019-04-25 株式会社リガク 複合検査システム
US10983073B2 (en) 2016-07-16 2021-04-20 Rigaku Corporation Hybrid inspection system
TWI749029B (zh) * 2016-07-16 2021-12-11 日商理學股份有限公司 複合檢查系統
WO2021229772A1 (ja) * 2020-05-14 2021-11-18 株式会社島津製作所 質量分析方法及び質量分析装置
CN115427802A (zh) * 2020-05-14 2022-12-02 株式会社岛津制作所 质量分析方法及质量分析装置
JP7371771B2 (ja) 2020-05-14 2023-10-31 株式会社島津製作所 質量分析方法及び質量分析装置
CN112268914A (zh) * 2020-12-07 2021-01-26 西安稀有金属材料研究院有限公司 一种全尺寸核燃料包壳管元件耐事故涂层的无损检测方法

Also Published As

Publication number Publication date
KR20170070163A (ko) 2017-06-21
TWI630384B (zh) 2018-07-21
US10473598B2 (en) 2019-11-12
US20170234814A1 (en) 2017-08-17
KR102144281B1 (ko) 2020-08-13
TW201614226A (en) 2016-04-16
JP6351740B2 (ja) 2018-07-04
JPWO2016059672A1 (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6351740B2 (ja) X線薄膜検査装置
JP6351741B2 (ja) X線薄膜検査装置
JP3912606B2 (ja) X線薄膜検査装置と、プロダクトウエーハの薄膜検査装置およびその方法
JP6864888B2 (ja) X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法
JP5009563B2 (ja) 試料の検査方法および装置
JP7308233B2 (ja) 小角x線散乱計測計
US10684238B2 (en) Method and apparatus for X-ray scatterometry
TW201100789A (en) X-ray scattering measurement device and X-ray scattering measurement method
US11733185B2 (en) Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror
JP5031215B2 (ja) 多機能x線分析システム
US20180088062A1 (en) Closed-loop control of X-ray knife edge
JP2004184314A (ja) 蛍光x線分析装置
JPWO2018016430A1 (ja) 複合検査システム
TWI739034B (zh) X射線檢查裝置
WO2023203856A1 (ja) 半導体検査装置、半導体検査システムおよび半導体検査方法
KR20150106317A (ko) 위치 확인수단을 구비하는 엑스선 검사장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177012985

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14904155

Country of ref document: EP

Kind code of ref document: A1