WO2021229772A1 - 質量分析方法及び質量分析装置 - Google Patents

質量分析方法及び質量分析装置 Download PDF

Info

Publication number
WO2021229772A1
WO2021229772A1 PCT/JP2020/019350 JP2020019350W WO2021229772A1 WO 2021229772 A1 WO2021229772 A1 WO 2021229772A1 JP 2020019350 W JP2020019350 W JP 2020019350W WO 2021229772 A1 WO2021229772 A1 WO 2021229772A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sample stage
excitation beam
optical system
change
Prior art date
Application number
PCT/JP2020/019350
Other languages
English (en)
French (fr)
Inventor
郷志 笠松
建悟 竹下
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022522453A priority Critical patent/JP7371771B2/ja
Priority to US17/923,089 priority patent/US20230162959A1/en
Priority to PCT/JP2020/019350 priority patent/WO2021229772A1/ja
Priority to CN202080099675.XA priority patent/CN115427802A/zh
Publication of WO2021229772A1 publication Critical patent/WO2021229772A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • the present invention relates to a mass spectrometry method and a mass spectrometer.
  • An imaging mass spectrometer is used to measure the distribution of the target substance in a sample such as cells.
  • a sample such as cells.
  • a plurality of measurement points that are two-dimensionally distributed in the target region are set, and each measurement point is sequentially irradiated with laser light.
  • the substance existing at each measurement point is ionized and mass spectrometry is performed.
  • mass spectrum data can be obtained for each measurement point.
  • the distribution of the target substance in the target region on the sample surface can be known (for example, Patent Document 1).
  • the imaging mass spectrometer collects the light emitted from the laser light source with a condenser lens and irradiates the sample.
  • the sample stage on which the sample is placed can be moved in two directions (x-y direction) parallel to the sample mounting surface and one direction (z direction) perpendicular to it.
  • the positions of the condenser lens and the sample stage are adjusted before the start of the analysis, and the laser beam is focused on a predetermined position on the surface of the sample placed on the sample stage.
  • the sample is irradiated with laser beams of a plurality of different energies to perform mass spectrometry, and the energy of the laser beam in which the ion characteristic of the target substance is detected at the highest intensity is determined.
  • imaging mass spectrometry is performed at each measurement point using the laser beam of the energy.
  • the condenser lens, the sample stage, or the member (frame) holding them expands or contracts.
  • the frame or the like may expand or contract by about 10 ⁇ m with a temperature change of 1 ° C. depending on the material and size of the frame or the like.
  • the distance between the condenser lens and the sample stage changes, the focal position of the laser beam shifts (defocuses), and the irradiation diameter of the laser beam increases, resulting in spatial resolution of imaging mass analysis. Will get worse. Further, even if the laser beam having the optimum energy is irradiated, the energy density becomes low because the diameter of the laser beam is larger than that when the energy is determined, and the ionization efficiency becomes poor. Further, when the sample stage expands or contracts in the sample mounting surface, the irradiation position of the laser beam shifts in the irradiation surface.
  • the environmental temperature may have changed from the previous analysis, and the positions of the condensing optical system and sample stage may have changed from the previous analysis. Therefore, when performing precise analysis, the user needs to adjust the position of the condensing optical system and the sample stage before starting the analysis. Since it is unknown in which direction and how much the position of the condenser lens, sample stage, or frame has changed since the last analysis, the user can change the position of the condenser optical system and / or the sample stage. There is a problem that the work must be troublesome because the laser beam must be focused on the sample on the sample stage by moving it little by little in the direction and adjusting the positions of both by trial and error. Further, if the temperature control mechanism is attached to the imaging mass spectrometer, the labor of such work can be saved, but there is a problem that the device becomes expensive.
  • the problem to be solved by the present invention is to provide a technique for easily matching the focused position of the excitation beam with the position of the sample surface in a mass spectrometer at low cost.
  • the present invention which was made to solve the above problems, focuses the excitation beam by the excitation beam optical system, and makes the sample stage movable by the movement mechanism on the fixed table fixed to the excitation beam optical system. It is a mass spectrometry method to irradiate.
  • the excitation beam is focused at a predetermined position on the sample stage, and the positions of the excitation beam optical system and the sample stage at that time, and the position and temperature of the excitation beam optical system and the beam irradiation system including the sample stage are used as reference positions and temperatures.
  • the temperature-dependent information which is the information indicating the change in the position of the beam irradiation system with respect to the change in the temperature of the beam irradiation system, is acquired and recorded. Based on the difference between the temperature of the beam irradiation system and the reference temperature at the time of use, and the temperature-dependent information, the moving mechanism is used to correct the focused position of the excited beam.
  • the mass spectrometer according to the present invention which was made to solve the above problems, is With the sample stage, An excitation beam optical system that focuses the excitation beam and irradiates the sample stage.
  • a moving mechanism that moves the sample stage on a fixed table fixed to the excitation beam optical system,
  • a temperature measuring unit for measuring the temperature of the excitation beam optical system and the beam irradiation system including the sample stage, and a temperature measuring unit.
  • a storage unit in which temperature-dependent information, which is information indicating a change in the position of the beam irradiation system, is stored.
  • a position correction unit that corrects the focusing position of the excitation beam using the movement mechanism based on the difference between the temperature of the beam irradiation system measured by the temperature measurement unit and the reference temperature, and the temperature-dependent information. Be prepared.
  • the excitation beam before performing mass spectrometry, is focused at a predetermined position on the sample stage, and the position of the excitation beam optical system and the beam irradiation system including the sample stage, and the temperature of the beam irradiation system are used as reference positions. And record as the reference temperature. From this reference position, the positional relationship between the excitation beam optical system and the sample stage is determined so that the excitation beam is focused at a predetermined position on the sample stage.
  • temperature-dependent information which is information indicating a change in the position of the beam irradiation system with respect to a change in the temperature of the beam irradiation system, is acquired and recorded.
  • This temperature-dependent information may be a record of changes in the positions of the excitation beam optical system and the sample stage individually, or may be a record of changes in the relative positions of the excitation beam optical system and the sample stage. It may be recorded as a change in the focusing position of the excitation beam on the sample stage.
  • the focusing position of the excitation beam is corrected using the moving mechanism. For example, the position of the excitation beam optical system and / or the sample stage is adjusted so as to reproduce the positional relationship between the excitation beam optical system and the sample stage, which is determined by the reference position.
  • the excitation beam is focused at the operating temperature based on the position information of the beam irradiation system including the sample stage and the excitation beam optical system at the reference temperature, the temperature dependence information, and the difference between the reference temperature and the operating temperature. Since it is only necessary to determine the positions of the sample stage and the excitation beam optical system and move the sample stage and the excitation beam optical system to those positions pinpointly, the excitation beam can be easily sampled without trial and error as in the past. It can be focused on a sample placed on the stage. Further, since it is not necessary to provide the temperature control mechanism in the present invention, it can be carried out at low cost.
  • FIG. 3 is a block diagram of a main part of an imaging mass spectrometer, which is an embodiment of the mass spectrometer according to the present invention.
  • the figure which shows the schematic structure of the ion part of the imaging mass spectrometer of this Example.
  • the flowchart of the imaging mass spectrometry method which is an Example of the mass spectrometry method which concerns on this invention.
  • the imaging mass spectrometric method and the imaging mass spectrometric apparatus which are examples of the mass spectrometric method and the mass spectrometric apparatus according to the present invention, will be described below with reference to the drawings.
  • the imaging mass spectrometer 1 of this embodiment generates ions by a matrix-assisted laser desorption / ionization (MALDI) method for mass spectrometry, and is used for mass spectrometry of a sample placed on a sample stage. Ions are generated at each of the multiple measurement points on the surface for mass spectrometry.
  • MALDI matrix-assisted laser desorption / ionization
  • the imaging mass spectrometer 1 is roughly divided into an ionization unit 10, a mass spectrometer 20, and a control / processing unit 30.
  • FIG. 2 shows the schematic configuration of the ionization unit 10.
  • the ionization unit 10 includes a laser light source 11, a reflecting mirror 12, and a condenser lens 13.
  • the laser light source 11, the reflecting mirror 12, and the condenser lens 13 (hereinafter, these are also referred to as “excited beam optical systems”) are directly or indirectly fixed to the housing 19 via a holding member (frame). ..
  • the housing 19 corresponds to a fixed base fixed to the excitation beam optical system in the present invention.
  • the stage moving mechanism 15 described later makes it possible to move the position of the sample stage 14 in three directions orthogonal to each other, thereby adjusting the relative positions of the condenser lens 13 and the sample stage 14.
  • Both the lens 13 and the sample stage 14 may be provided with a moving mechanism that allows each to be moved.
  • the moving mechanism of the condenser lens 13 for example, the same configuration as the stage moving mechanism 15 described later can be used.
  • the ionization unit 10 includes a sample stage 14, a stage moving mechanism 15, a microscope 16, and a temperature measuring unit 18.
  • An opening 17 is formed on one side surface of the housing 19.
  • the stage moving mechanism 15 is fixed to the housing 19. That is, the stage moving mechanism 15 corresponds to the moving mechanism on the fixed base (housing 19) in the present invention.
  • the temperature measuring unit 18 is arranged in a lower corner of the housing 19 in FIG. 2, the excitation beam optical system, the sample stage 14, and the stage moving mechanism 15 (hereinafter, these are also referred to as “beam irradiation system””.
  • the temperature of (called) may be arranged at an appropriate position where it can be measured. However, it is preferable to arrange the temperature measuring unit 18 at a position close to the beam irradiation system.
  • the sample stage 14 can be moved in three directions orthogonal to each other by the stage moving mechanism 15.
  • the stage moving mechanism 15 has a first linear guide 151 for moving the sample stage 14 in the vertical direction (x direction), and a first linear guide 151 for moving the sample stage 14 and the first linear guide 151 in the horizontal direction (y direction). It includes two linear guides 152, a third linear guide 153 for moving the sample stage 14, the first linear guide 151, and the second linear guide 152 in the horizontal direction (z direction), and a drive source for operating them. ..
  • This drive source includes, for example, a stepping motor.
  • the microscope 16 is provided in the housing 19 and is used for observing the sample placed on the sample stage 14.
  • the sample stage 14 is moved to the observation position (front of the microscope 16) by the stage moving mechanism 15, and the sample surface is observed by the microscope 16 to set the region of interest of the sample as the target region.
  • a plurality of measurement points are set in the target area.
  • the sample stage 14 When executing the imaging mass spectrometer, the sample stage 14 is moved so that the target area on the sample surface is located in front of the opening 17 formed on the side surface of the housing 19. Then, the light emitted from the laser light source 11 and reflected by the reflecting mirror 12 is condensed by the condenser lens 13 and irradiated to the measurement point in the target region on the sample surface. The ions generated from the sample by the irradiation of the laser beam are emitted from the opening 17 to the outside of the housing 19.
  • the ionization unit 10 is detachably attached to the mass spectrometry unit 20.
  • An opening 21 is formed on the side surface of the housing of the mass spectrometry unit 20 on the side to which the ionization unit 10 is attached at a position corresponding to the opening 17 of the ionization unit 10.
  • the mass spectrometric unit 20 mass spectrometrically analyzes the ions incident through the opening 21.
  • the mass spectrometer 20 includes an ion optical system such as an ion lens that focuses incident ions, and a mass separation unit such as a quadrupole mass filter that separates the ions focused by the ion optical system according to the mass-to-charge ratio. , And an ion detector that detects the ions separated by the mass separator is housed.
  • the control / processing unit 30 controls the operations of the ionization unit 10 and the mass spectrometry unit 20, and also performs processing such as creating imaging mass spectrometry data based on the output signal from the ion detector of the mass spectrometry unit 20. Is.
  • the control / processing unit 30 includes a measurement control unit 321 and a position correction unit 322 as functional blocks.
  • the substance of the control / processing unit 30 is a general computer, and the functions of the measurement control unit 321 and the position correction unit 322 are embodied by executing the pre-installed mass spectrometry software 32 on the processor.
  • control / processing unit 30 is connected to an input unit 40 for the user to perform an appropriate input operation and a display unit 50 for displaying various information.
  • the storage unit 31 stores information relating the reference temperature and the reference position, and temperature-dependent information. This information will be described later.
  • This embodiment is characterized by a process of correcting the focused position of the laser beam according to a change in the temperature (environmental temperature) of the beam irradiation system before performing the imaging mass spectrometry of the actual sample.
  • the flow of this process will be described with reference to the flowchart of FIG. In the following, it is assumed that the positions of the laser light source 11 and the reflecting mirror 12 of the excitation beam optical system do not change even if the environmental temperature changes.
  • the reference positions of the excitation beam optical system and the sample stage 14 are acquired and stored in advance. This may be done, for example, by the manufacturer at the time of shipment or by the user at the time of installation. Specifically, the acquisition of the reference position is performed so that the laser beam is focused on a predetermined position on the sample stage 14 (for example, the position of the measurement start point set for the sample placed on the sample stage 14). The positions of the optical lens 13 and the sample stage 14 are adjusted, and the positions of the condenser lens 13 and the sample stage 14 at that time are measured, respectively.
  • the positions of the condenser lens 13 and the sample stage 14 are appropriate locations according to the shape of the condenser lens 13 and the sample stage 14, such as the position of the center of gravity of the condenser lens 13 and the position of the corners of the sample stage 14.
  • the position of the sample stage 14 may be defined with reference to the position of the condenser lens 13 (in that case, the position of the condenser lens 13 is the origin).
  • the positions of the condenser lens 13 and the sample stage 14 measured in this way are stored in the storage unit 31 as reference positions (step 1).
  • the temperature at the time when these positions are measured by the temperature measuring unit 18 is measured, and the temperature is stored in the storage unit 31 as the reference temperature in association with the reference position (step 2). From this reference position, the positional relationship between the condenser lens 13 and the sample stage 14 is determined so that the laser beam is focused on a predetermined position on the sample stage 14.
  • the reference temperature is preferably set to the average temperature in the usage environment of the imaging mass spectrometer 1. Specifically, for example, the temperature may be in the range of 25 ° C to 30 ° C.
  • step 3 Information on the change in the position of the condenser lens 13 (direction and magnitude of the change) with respect to the change in temperature and information on the change in the position of the sample stage 14 (direction and magnitude of the change) with respect to the change in temperature are acquired.
  • the change in the position of the condenser lens 13 and the sample stage 14 can be theoretically calculated from, for example, the volume expansion / contraction rate of the condenser lens 13 and the sample stage 14 itself, and the material constituting the member holding them. ..
  • the positions of the condenser lens 13 and the sample stage 14 are measured at a plurality of temperatures, and the change in the position of the condenser lens 13 and the sample stage 14 with respect to the change in the environmental temperature is calculated as an approximate function (approximate straight line or approximate curve). May be good.
  • the member is expanded or contracted, such as one made of a material having a small volume expansion / contraction rate with respect to a temperature change or one having a small member itself.
  • Temperature-dependent information may be created except for those that can be regarded as not substantially changing the positions of the condenser lens 13 and the sample stage 14 even if they occur. That is, it is not always necessary to create temperature-dependent information for the condenser lens 13 or the sample stage 14 itself, or all the members that hold them.
  • the amount of change that changes the position of the condenser lens 13 and the sample stage 14 with respect to a temperature change (for example, a temperature change of 10 ° C.) assumed in the usage environment of the imaging mass analyzer 1 is determined by the excitation beam optical system.
  • a temperature change for example, a temperature change of 10 ° C.
  • Those having a diameter (for example, 5 ⁇ m) or less of the focused laser beam can be excluded by assuming that the positions of the condenser lens 13 and the sample stage 14 are not substantially changed.
  • Examples of such a member include a member (quartz glass or the like) made of a single crystal of silicon, which is a material having a small coefficient of thermal expansion, or a silicon compound.
  • the measurement control unit 321 measures the temperature of the beam irradiation system by the temperature measurement unit 18 (step 4).
  • this temperature is also referred to as "in-use temperature”.
  • the position correction unit 322 calculates the difference between the reference temperature stored in the storage unit 31 and the operating temperature (step 5). Further, the position correction unit 322 reads out the reference position information and the temperature-dependent information stored in the storage unit 31. Subsequently, based on the temperature-dependent information, the direction and magnitude of the change in the positions of the condenser lens 13 and the sample stage 14 caused by the above temperature difference are calculated (step 6).
  • the position correction unit 322 calculates the direction and magnitude of the change in the positions of the condenser lens 13 and the sample stage 14, the position of the sample stage 14 is corrected by the stage moving mechanism 15 so as to correct the direction and magnitude of the change. (Step 7). Specifically, the position of the sample stage 14 is changed so that the relative positional relationship between the condenser lens 13 and the sample stage 14 at the reference position is the same. As a result, the focused laser light is irradiated to a predetermined position of the sample placed on the sample stage 14. In this embodiment, the relative position between the condenser lens 13 and the sample stage 14 is corrected by adjusting the position of the sample stage 14, but the position of the condenser lens 13 may be adjusted. Alternatively, it may be configured to adjust the positions of both the condenser lens 13 and the sample stage 14.
  • the microscope 16 for observing the sample placed on the sample stage 14 and the excitation beam irradiation system for irradiating the sample with laser light are independent, and imaging mass spectrometry is performed.
  • the position of the sample stage 14 when observing the sample with the microscope 16 is different from the position of the sample stage 14 when observing the sample. That is, in such an ionization unit 10, it is not possible to adjust the focal position of the lens while observing the sample as in a general microscope. Therefore, in the conventional imaging mass spectrometer using such an ionization unit, the user moves the condenser lens and the sample stage little by little in various directions, adjusts the positions of both by trial and error, and samples the laser beam. It was necessary to focus the light on the sample on the stage, which was troublesome.
  • the reference position of the condenser lens 13 and the sample stage 14 at the reference temperature, the reference temperature information, and the temperature-dependent information are stored in the storage unit 31 in advance, and the reference temperature and the operating temperature are stored.
  • the condenser lens 13 and the sample stage 14 at which the laser beam is focused can be determined under the temperature conditions at the time of use, based on the difference between the above and the temperature-dependent information. Therefore, it is only necessary to move the condenser lens 13 and the sample stage 14 to the pinpoint position, and the laser beam can be easily focused on the sample placed on the sample stage 14. Moreover, since it is not necessary to provide a special temperature control mechanism, it can be carried out at low cost.
  • the measurement control unit 321 executes the imaging mass spectrometry of the target region set on the sample placed on the sample stage 14 (step 8).
  • the imaging mass spectrometry of the target region can be performed in the same manner as before.
  • the measurement control unit 321 uses the stage moving mechanism 15 to match the measurement start point of the plurality of measurement points set on the sample placed on the sample stage 14 with the focusing position of the laser beam. And perform mass analysis of the measurement start point. Subsequently, the sample stage 14 is moved by the stage moving mechanism 15 so that the measurement point adjacent to the measurement start point coincides with the focusing position of the laser beam, and mass spectrometry is performed.
  • This operation is performed for all of the plurality of measurement points to obtain mass spectrum data of each measurement point. Then, the intensity of the mass peak of the mass-to-charge ratio of the ion characteristic of the target substance is extracted from the mass spectrum data of each measurement point, and an image in which the intensity of the mass peak at each measurement point is mapped to the target region is created.
  • the above embodiment is an example and can be appropriately changed according to the gist of the present invention.
  • the above embodiment relates to imaging mass spectrometry in which mass spectrometry is performed at each of a plurality of measurement points distributed two-dimensionally, but the same configuration as described above is also used when mass spectrometry is performed on only one measurement point.
  • the relative position between the condenser lens 13 and the sample stage 14 can be corrected so that the laser beam is focused on a predetermined position on the sample stage 14. As a result, the position accuracy of the measurement point can be improved.
  • the substance on the sample surface is ionized by using the laser beam, but the same configuration as in the above embodiment can be used when using another type of excitation beam such as an electron beam.
  • One aspect is a mass spectrometric method in which an excitation beam is focused by an excitation beam optical system and irradiated to a sample stage that can be moved by a movement mechanism on a fixed table fixed to the excitation beam optical system.
  • the excitation beam is focused at a predetermined position on the sample stage, and the positions of the excitation beam optical system and the sample stage at that time, and the position and temperature of the excitation beam optical system and the beam irradiation system including the sample stage are used as reference positions and temperatures.
  • Record as a reference temperature The temperature-dependent information, which is the information indicating the change in the position of the beam irradiation system with respect to the change in the temperature of the beam irradiation system, is acquired and recorded. Based on the difference between the temperature of the beam irradiation system and the reference temperature at the time of use, and the temperature-dependent information, the moving mechanism is used to correct the focused position of the excited beam.
  • FIG. 2 Another aspect of the mass spectrometer is With the sample stage, An excitation beam optical system that focuses the excitation beam and irradiates the sample stage. A moving mechanism that moves the sample stage on a fixed table fixed to the excitation beam optical system, A temperature measuring unit for measuring the temperature of the excitation beam optical system and the beam irradiation system including the sample stage, and a temperature measuring unit. When the beam irradiation system is at a certain reference temperature, the temperature change between the reference position, which is the position of the beam irradiation system when the excitation beam is focused at a predetermined position on the sample stage, and the temperature of the beam irradiation system.
  • a storage unit in which temperature-dependent information, which is information indicating a change in the position of the beam irradiation system, is stored.
  • a position correction unit that corrects the focusing position of the excitation beam using the movement mechanism based on the difference between the temperature of the beam irradiation system measured by the temperature measurement unit and the reference temperature, and the temperature-dependent information. Be prepared.
  • temperature-dependent information which is information indicating a change in the position of the beam irradiation system with respect to a change in the temperature of the beam irradiation system.
  • This temperature-dependent information may be a record of changes in the positions of the excitation beam optical system and the sample stage individually, or may be a record of changes in the relative positions of the excitation beam optical system and the sample stage. It may be recorded as a change in the focusing position of the excitation beam on the sample stage.
  • the focusing position of the excitation beam is corrected using the moving mechanism. For example, the position of the excitation beam optical system and / or the sample stage is adjusted so as to reproduce the positional relationship between the excitation beam optical system and the sample stage, which is determined by the reference position.
  • the position information, the temperature-dependent information, and the reference temperature and the time of use of the beam irradiation system including the sample stage and the excitation beam optical system at the reference temperature are used. Because it is only necessary to determine the position of the sample stage and the excitation beam optical system at which the excitation beam is focused at the operating temperature based on the temperature difference, and to pinpoint the sample stage and the excitation beam optical system to that position.
  • the excitation beam can be easily focused on the sample placed on the sample stage without trial and error as in the conventional case. Further, since the mass spectrometric method according to the first item and the mass spectrometric device according to the second item do not need to be provided with a temperature control mechanism, they can be carried out at low cost.
  • the temperature-dependent information is information representing a change in the position of the excitation beam optical system and a change in the position of the sample stage with respect to a change in the temperature of the beam irradiation system.
  • the excitation beam optical system includes a laser light source that emits laser light and a condenser lens that collects the laser light emitted from the laser light source.
  • the laser light can be focused to a particularly small diameter, and the mass with high spatial resolution is achieved by using the laser light focused to a small diameter as in the mass spectrometer described in Section 4.
  • the mass spectrometer according to the second and third paragraphs can be preferably used.
  • the mass spectrometer according to the fourth item can be particularly preferably used in a mass spectrometer using a laser beam focused to a diameter of 5 ⁇ m or less, such as the mass spectrometer described in the fifth item.
  • the correction amount at the time of use can be reduced and the excitation beam can be focused at a predetermined position with high accuracy.
  • Imaging mass spectrometer 10 ... Ionization unit 11 ... Laser light source 12 ... Reflector 13 ... Condensing lens 14 ... Sample stage 15 ... Stage movement mechanism 151 ... 1st linear guide 152 ... 2nd linear guide 153 ... 3rd linear guide 16 ... Microscope 17 ... Opening 18 ... Temperature measurement unit 19 ... Housing 20 ... Mass spectrometry unit 21 ... Opening 30 ... Control / processing unit 31 ... Storage unit 32 ... Mass spectrometry software 321 ... Measurement control unit 322 ... Position correction unit 40 ... Input unit 50... Display unit

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

励起ビームを励起ビーム光学系により集束し、前記励起ビーム光学系に対して固定された固定台上の移動機構により移動可能である試料ステージに照射する質量分析方法において、試料ステージの所定の位置に励起ビームを集束させ、その時の前記励起ビーム光学系及び前記試料ステージの位置、並びに該励起ビーム光学系及び該試料ステージを含むビーム照射系の位置及び温度を基準位置及び基準温度として記録し(ステップ1、2)、前記ビーム照射系の温度の変化に対する前記励起ビーム光学系及び前記試料ステージの位置の変化を表す情報である温度依存情報を取得して記録し(ステップ3)、使用時の前記ビーム照射系の温度と前記基準温度の差、及び、前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する(ステップ7)。

Description

質量分析方法及び質量分析装置
 本発明は、質量分析方法及び質量分析装置に関する。
 細胞等の試料における目的物質の分布を測定するために、イメージング質量分析装置が用いられている。イメージング質量分析装置では、試料表面の目的領域における目的物質の分布を測定するために、該目的領域内に二次元的に分布する複数の測定点を設定し、各測定点に順次レーザ光を照射して測定点毎に存在する物質をイオン化し、質量分析する。この質量分析により、測定点毎にマススペクトルデータが得られる。こうして得た各測定点のマススペクトルデータから、目的物質に特徴的なイオンの質量電荷比のマスピークの強度を抽出し、各測定点におけるマスピークの強度を目的領域にマッピングした画像を作成することにより、試料表面の目的領域における目的物質の分布を知ることができる(例えば特許文献1)。
 イメージング質量分析装置では、レーザ光源から発せられる光を集光レンズで集光して試料に照射する。試料を載置する試料ステージは、試料載置面に平行な二方向(x-y方向)とそれに垂直な一方向(z方向)に移動可能となっている。イメージング質量分析を実行する際には、分析開始前に集光レンズと試料ステージの位置を調整し、試料ステージに載置される試料の表面の所定の位置にレーザ光を集光させる。続いて、複数の異なるエネルギーのレーザ光を試料に照射して質量分析を行い、目的物質に特徴的なイオンが最も高強度で検出されるレーザ光のエネルギーを決定する。目的物質に最適なエネルギーを決定した後、該エネルギーのレーザ光を用いて各測定点でイメージング質量分析を行う。
特開2013-068565号公報
 近年、レーザ光を5μm程度の微小径に集光することが可能になっており、こうした微小径のレーザ光を用いることで非常に高い空間分解能でイメージング質量分析を行うことが可能になっている。一方、イメージング質量分析装置が置かれた場所の温度(環境温度)が変化すると、集光レンズや試料ステージ、あるいはこれらを保持する部材(フレーム)が膨張又は収縮する。通常のイメージング質量分析装置の場合、フレーム等は、その材質や大きさによって1℃の温度変化で10μm程度膨張又は収縮することがある。フレーム等が膨張又は収縮すると、集光レンズと試料ステージの間の距離が変化してレーザ光の焦点位置がずれ(デフォーカスし)、レーザ光の照射径が大きくなってイメージング質量分析の空間分解能が悪くなる。また、最適なエネルギーのレーザ光を照射しても、そのエネルギーを決定した時よりもレーザ光の径が大きいためにエネルギー密度が低くなり、イオン化効率が悪くなる。さらに、試料ステージがその試料載置面内で膨張又は収縮すると、レーザ光の照射位置が照射面内でずれる。
 前回の分析から間をおいてイメージング質量分析を行う場合、前回の分析時と環境温度が変わり集光光学系や試料ステージの位置が前回の分析時から変化している可能性がある。そのため、精密な分析を行う場合、使用者は分析開始前に集光光学系や試料ステージの位置を調整する必要がある。前回の分析時から集光レンズ、試料ステージ、あるいはフレームの位置がどの方向にどの程度変化しているかは不明であるため、使用者は、集光光学系及び/又は試料ステージの位置を様々な方向に少しずつ動かし、試行錯誤で両者の位置を調整してレーザ光を試料ステージ上の試料に集光させなければならず、作業に手間がかかるという問題があった。また、イメージング質量分析装置に温調機構を取り付ければ、こうした作業の手間を省くことができるが、装置が高額になってしまうという問題があった。
 ここでは試料表面に存在する物質をイオン化する励起ビームとしてレーザ光を使用する場合を例に説明したが、電子線等の他の種類の励起ビームを使用する場合にも上記同様の問題があった。
 本発明が解決しようとする課題は、質量分析装置において、低コストで簡便に励起ビームの集束位置と、試料表面の位置を一致させる技術を提供することである。
 上記課題を解決するために成された本発明は、励起ビームを励起ビーム光学系により集束し、前記励起ビーム光学系に対して固定された固定台上の移動機構により移動可能である試料ステージに照射する質量分析方法であって、
 試料ステージの所定の位置に励起ビームを集束させ、その時の前記励起ビーム光学系及び前記試料ステージの位置、並びに該励起ビーム光学系及び該試料ステージを含むビーム照射系の位置及び温度を基準位置及び基準温度として記録し、
 前記ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報を取得して記録し、
 使用時の前記ビーム照射系の温度と前記基準温度の差、及び前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する
 ものである。
 また、上記課題を解決するために成された本発明に係る質量分析装置は、
 試料ステージと、
 励起ビームを集束させて前記試料ステージに照射する励起ビーム光学系と、
 前記励起ビーム光学系に対して固定された固定台上で前記試料ステージを移動する移動機構と、
 前記励起ビーム光学系及び前記試料ステージを含むビーム照射系の温度を測定する温度測定部と、
 前記ビーム照射系がある基準温度にあるときに、前記試料ステージの所定の位置に前記励起ビームを集束させた時の前記ビーム照射系の位置である基準位置と、前記ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報が保存された記憶部と、
 前記温度測定部により測定された前記ビーム照射系の温度と前記基準温度の差、及び、前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する位置補正部と
 を備える。
 本発明では、質量分析を実行する前に、試料ステージの所定の位置に励起ビームを集束させて励起ビーム光学系及び試料ステージを含むビーム照射系の位置、並びに該ビーム照射系の温度を基準位置及び基準温度として記録しておく。この基準位置から、試料ステージ上の所定の位置に励起ビームが集束されるように、励起ビーム光学系と試料ステージの位置関係が決まる。また、ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報を取得して記録しておく。この温度依存情報は、励起ビーム光学系と試料ステージのそれぞれの位置の変化を個別に記録したもののほか、励起ビーム光学系と試料ステージの相対位置の変化を記録したものであってもよく、あるいは試料ステージ上の励起ビームの集束位置の変化として記録したものであってもよい。
 質量分析を実行する際には、ビーム照射系の温度を測定する。そして、測定した温度(使用時温度)と基準温度の差、及び温度依存情報に基づき、移動機構を用いて励起ビームの集束位置を補正する。例えば、上記基準位置により決まる、励起ビーム光学系と試料ステージの位置関係を再現するように励起ビーム光学系及び/又は試料ステージの位置を調整する。
 本発明では、基準温度における試料ステージ及び励起ビーム光学系を含むビーム照射系の位置情報、温度依存情報、及び基準温度と使用時温度の差に基づいて、使用時温度において励起ビームが集光する試料ステージ及び励起ビーム光学系の位置を決定し、試料ステージ及び励起ビーム光学系をピンポイントでその位置に移動するのみでよいため、従来のように試行錯誤することなく、簡便に励起ビームを試料ステージ上に載置される試料に集束させることができる。また、本発明では温調機構を設ける必要がないため、低コストで実施することができる。
本発明に係る質量分析装置の一実施例である、イメージング質量分析装置の要部構成図。 本実施例のイメージング質量分析装置のイオン部の概略構成を示す図。 本発明に係る質量分析方法の一実施例である、イメージング質量分析方法のフローチャート。
 本発明に係る質量分析方法及び質量分析装置の一実施例である、イメージング質量分析方法及びイメージング質量分析装置について、以下、図面を参照して説明する。
 本実施例のイメージング質量分析装置1は、マトリックス支援レーザ脱離イオン化(MALDI: Matrix Assisted Laser Desorption/Ionization)法によりイオンを生成して質量分析するものであり、試料ステージ上に載置した試料の表面の複数の測定点のそれぞれにおいてイオンを生成して質量分析する。
 イメージング質量分析装置1は、図1にブロック図で示すように、大別してイオン化部10、質量分析部20、及び制御・処理部30から構成される。
 図2にイオン化部10の概略構成を示す。イオン化部10は、レーザ光源11、反射鏡12、及び集光レンズ13を備えている。レーザ光源11、反射鏡12、及び集光レンズ13(以下、これらを「励起ビーム光学系」とも呼ぶ。)は直接または保持部材(フレーム)を介して間接的に筐体19に固定されている。筐体19は、本発明における、励起ビーム光学系に対して固定された固定台に相当する。本実施例では後記のステージ移動機構15により試料ステージ14の位置を互いに直交する三方向に移動可能とし、それによって集光レンズ13と試料ステージ14の相対位置を調整する構成としているが、集光レンズ13と試料ステージ14の両方に、それぞれを移動可能とする移動機構を設けてもよい。集光レンズ13の移動機構として、例えば後記のステージ移動機構15と同様の構成を用いることができる。
 また、イオン化部10は、試料ステージ14、ステージ移動機構15、顕微鏡16、及び温度計測部18を備えている。筐体19の一側面には開口17が形成されている。ステージ移動機構15は筐体19に対して固定されている。即ち、ステージ移動機構15は、本発明における固定台(筐体19)上の移動機構に相当する。なお、図2では、温度計測部18を筐体19の下部の一角に配置しているが、励起ビーム光学系、試料ステージ14、及びステージ移動機構15(以下、これらを「ビーム照射系」とも呼ぶ。)の温度を測定可能な適宜の位置に配置すればよい。ただし、ビーム照射系に近接した位置に温度計測部18を配置することが好ましい。
 試料ステージ14は、ステージ移動機構15によって互いに直交する三方向に移動可能になっている。ステージ移動機構15は、鉛直方向(x方向)に試料ステージ14を移動させるための第1リニアガイド151と、試料ステージ14及び第1リニアガイド151を水平方向(y方向)に移動させるための第2リニアガイド152と、試料ステージ14及び第1リニアガイド151並びに第2リニアガイド152を水平方向(z方向)に移動させるための第3リニアガイド153と、それらを動作させる駆動源を備えている。この駆動源は、例えばステッピングモータを含む。
 顕微鏡16は、筐体19内に設けられており、試料ステージ14上に載置された試料を観察するために用いられる。ステージ移動機構15によって試料ステージ14を観察位置(顕微鏡16の正面)に移動させ、顕微鏡16によって試料表面を観察することにより、試料の関心領域を目的領域として設定する。また、該目的領域内に複数の測定点を設定する。
 イメージング質量分析装置を実行する際には、試料表面の目的領域が筐体19の側面に形成された開口17の正面に位置するように試料ステージ14を移動させる。そして、レーザ光源11から発せられ反射鏡12で反射された光を集光レンズ13により集光し、試料表面の目的領域内の測定点に照射する。レーザ光の照射によって試料から生成されたイオンは、開口17から筐体19の外部に出射する。
 イオン化部10は、質量分析部20に着脱可能に取り付けられる。質量分析部20の筐体の、イオン化部10が取り付けられる側の側面には、イオン化部10の開口17に対応する位置に開口21が形成されている。質量分析部20は、該開口21を通じて入射するイオンを質量分析する。質量分析部20には、入射したイオンを集束させるイオンレンズ等のイオン光学系、該イオン光学系で集束されたイオンを質量電荷比に応じて分離する、四重極マスフィルタ等の質量分離部、及び該質量分離部で分離されたイオンを検出するイオン検出器が収容されている。
 制御・処理部30は、イオン化部10及び質量分析部20の動作を制御するとともに、質量分析部20のイオン検出器からの出力信号に基づいてイメージング質量分析データを作成する等の処理を行うものである。制御・処理部30には、記憶部31のほか、機能ブロックとして、測定制御部321及び位置補正部322を備えている。制御・処理部30の実体は一般的なコンピュータであり、予めインストールされた質量分析用ソフトウェア32をプロセッサで実行することにより、測定制御部321及び位置補正部322の機能が具現化される。また、制御・処理部30には、使用者が適宜の入力操作を行うための入力部40及び各種の情報を表示するための表示部50が接続されている。記憶部31には、基準温度と基準位置を対応付けた情報、及び温度依存情報が保存されている。これらの情報については後述する。
 本実施例は、実試料のイメージング質量分析を実行する前に、ビーム照射系の温度(環境温度)の変化に応じてレーザ光の集光位置を補正する処理に特徴を有する。図3のフローチャートを参照し、この処理の流れを説明する。以下では、励起ビーム光学系のうち、レーザ光源11と反射鏡12については環境温度が変化しても位置の変化が生じないものとする。
 本実施例のイメージング質量分析装置1では、予め励起ビーム光学系と試料ステージ14の基準位置を取得し保存しておく。これは、例えば製造元が出荷時に行ったり、あるいは使用者が据付時に行ったりする。基準位置の取得は、具体的には、試料ステージ14上の所定の位置(例えば試料ステージ14に載置される試料に設定される測定開始点の位置)にレーザ光が集光するように集光レンズ13及び試料ステージ14の位置を調整し、その時の集光レンズ13と試料ステージ14の位置をそれぞれ計測する。集光レンズ13と試料ステージ14の位置は、例えば、集光レンズ13の重心の位置や、試料ステージ14の角部の位置など、集光レンズ13や試料ステージ14の形状に応じた適宜の箇所を基準として、筐体19の所定の位置(例えば試料ステージ14及び集光レンズ13に最も近い角)に対する相対位置として規定することができる。あるいは、集光レンズ13の位置を基準として試料ステージ14の位置を規定してもよい(その場合、集光レンズ13の位置は原点となる)。こうして計測した集光レンズ13と試料ステージ14の位置は、基準位置として記憶部31に保存する(ステップ1)。また、温度計測部18によりこれらの位置を計測した時の温度を測定し、基準位置と対応付けて基準温度として記憶部31に保存する(ステップ2)。この基準位置から、試料ステージ14上の所定の位置にレーザ光が集光されるように、集光レンズ13と試料ステージ14の位置関係が決まる。
 基準温度は、イメージング質量分析装置1の使用環境における平均的な温度としておくことが好ましい。具体的には、例えば25℃~30℃の範囲内の温度にするとよい。これにより、集光レンズ13や試料ステージ14の位置を補正する際に、以下に説明する温度依存情報の誤差等により生じるレーザ光の集光位置のずれを小さく抑えることができる。
 また、温度の変化に対する集光レンズ13の位置の変化(変化の方向及び大きさ)の情報と、温度の変化に対する試料ステージ14の位置の変化(変化の方向及び大きさ)の情報を取得し、温度依存情報として記憶部31に保存する(ステップ3)。集光レンズ13や試料ステージ14の位置の変化は、例えば集光レンズ13や試料ステージ14自体、及びこれらを保持する部材を構成する材料の体積膨張・収縮率から理論的に算出することができる。あるいは複数の温度で集光レンズ13や試料ステージ14の位置を計測し、環境温度の変化に対する集光レンズ13や試料ステージ14の位置の変化を近似関数(近似直線や近似曲線)として算出してもよい。
 集光レンズ13、試料ステージ14、及びステージ移動機構15のうち、温度の変化に対する体積膨張・収縮率が小さい材料で構成されたものや、部材そのものが小さいものなど、当該部材に膨張や収縮が生じても集光レンズ13や試料ステージ14の位置を実質的に変化させないと見做せるものを除いて温度依存情報を作成してもよい。つまり、必ずしも、集光レンズ13又は試料ステージ14自体、又はそれらを保持する部材の全てについて温度依存情報を作成する必要はない。例えば、イメージング質量分析装置1の使用環境において想定される温度変化(例えば10℃の温度変化)に対して、集光レンズ13や試料ステージ14の位置を変化させる変化量が、励起ビーム光学系により集光されるレーザ光の径(例えば5μm)以下であるものを、集光レンズ13や試料ステージ14の位置を実質的に変化させないと見做して除外することができる。そのような部材としては、例えば、熱膨張率が小さい材料であるシリコンの単結晶あるいはシリコン化合物等で構成された部材(石英ガラス等)が挙げられる。
 使用者がイメージング質量分析装置1を用いた測定の開始を指示すると、測定制御部321は、温度計測部18によってビーム照射系の温度を測定する(ステップ4)。以下、この温度を「使用時温度」とも呼ぶ。
 ビーム照射系の温度が測定されると、位置補正部322は、記憶部31に保存されている基準温度と使用時温度の差を算出する(ステップ5)。また、位置補正部322は、記憶部31に保存された基準位置情報と温度依存情報を読み出す。続いて、温度依存情報に基づき、上記の温度差によって生じた集光レンズ13及び試料ステージ14の位置の変化の方向と大きさを算出する(ステップ6)。
 位置補正部322は、集光レンズ13及び試料ステージ14の位置の変化の方向と大きさを算出すると、その変化の方向及び大きさを補正するように、ステージ移動機構15によって試料ステージ14の位置を調整する(ステップ7)。具体的には、基準位置における集光レンズ13と試料ステージ14の相対的な位置関係と同一になるように、試料ステージ14の位置を変更する。これにより、試料ステージ14に載置される試料の所定の位置に集束したレーザ光が照射される。本実施例では試料ステージ14の位置を調整することにより集光レンズ13と試料ステージ14の相対位置を補正する構成としたが、集光レンズ13の位置を調整するように構成してもよく、あるいは集光レンズ13と試料ステージ14の両方の位置を調整するように構成してもよい。
 近年では、レーザ光を5μm程度の微小径に集光することが可能になっており、こうした微小径のレーザ光を用いることで非常に高い空間分解能でイメージング質量分析を行うことが可能になっている。しかし、イメージング質量分析装置1が配置される場所の温度(環境温度)の変化によって集光レンズ13や試料ステージ14の位置が大きく(例えば5μmよりも大きく)変化するとレーザ光がデフォーカスして試料ステージ14上の試料に集光されず、微小径に集光したレーザ光を用いてもその微小径に見合う分解能が得られなくなる。そのため、従来、前回の分析から間をおいて、高分解能でイメージングイメージング質量分析を行う場合に、使用者は分析開始前に集光レンズ13や試料ステージ14の位置を調整していた。
 しかし、従来のイメージング質量分析装置では、前回の分析時から集光レンズ13、試料ステージ14、及びステージ移動機構15がどのように膨張あるいは収縮し、集光レンズ13や試料ステージ14がどの方向にどの程度変化しているかが不明であった。
 イメージング質量分析装置用のイオン化部10では、試料ステージ14上に載置された試料を観察する顕微鏡16と、試料にレーザ光を照射する励起ビーム照射系が独立しており、イメージング質量分析を実行する際の試料ステージ14の位置と、顕微鏡16により試料を観察する際の試料ステージ14の位置が異なる。つまり、このようなイオン化部10では一般的な顕微鏡のように試料を観察しながらレンズの焦点位置を合わせることはできない。そのため、このようなイオン化部を用いた従来のイメージング質量分析装置では、使用者が集光レンズや試料ステージを様々な方向に少しずつ動かし、試行錯誤で両者の位置を調整してレーザ光を試料ステージ上の試料に集光させる必要があり、作業に手間がかかっていた。
 これに対し、本実施例では、基準温度における集光レンズ13及び試料ステージ14の基準位置と基準温度の情報と温度依存情報が記憶部31に事前に保存されており、基準温度と使用時温度の差及び温度依存情報に基づいて、使用時の温度条件でレーザ光が集光する集光レンズ13及び試料ステージ14を決定することができる。そのため、集光レンズ13及び試料ステージ14をピンポイントでその位置に移動するのみでよく、簡便にレーザ光を試料ステージ14上に載置された試料に集光させることができる。また、特別な温調機構を設ける必要がないため、低コストで実施することができる。
 集光レンズ13及び試料ステージ14の位置の補正を完了すると、測定制御部321は、試料ステージ14上に載置された試料に設定された目的領域のイメージング質量分析を実行する(ステップ8)。目的領域のイメージング質量分析については従来同様に行うことができる。測定制御部321は、試料ステージ14上に載置された試料に設定された複数の測定点のうちの測定開始点をレーザ光の集光位置に一致させるようにステージ移動機構15によって試料ステージ14を移動し、該測定開始点の質量分析を行う。続いて、測定開始点に隣接する測定点をレーザ光の集光位置に一致させるようにステージ移動機構15によって試料ステージ14を移動して質量分析を行う。この動作を複数の測定点の全てについて実行して各測定点のマススペクトルデータを得る。そして、各測定点のマススペクトルデータから、目的物質に特徴的なイオンの質量電荷比のマスピークの強度を抽出し、各測定点におけるマスピークの強度を目的領域にマッピングした画像を作成する。
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。上記実施例は、二次元的に分布する複数の測定点のそれぞれにおいて質量分析を行うイメージング質量分析に関するものであるが、1つの測定点についてのみ質量分析を行う場合にも上記同様の構成を用い、試料ステージ14上の所定の位置にレーザ光を集光させるように、集光レンズ13と試料ステージ14の相対位置を補正することができる。これにより、測定点の位置精度を高くすることができる。また、上記実施例ではレーザ光を用いて試料表面の物質をイオン化したが、電子線等の他の種類の励起ビームを使用する場合にも上記実施例と同様の構成を用いることができる。
[態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)
 一態様は、励起ビームを励起ビーム光学系により集束し、前記励起ビーム光学系に対して固定された固定台上の移動機構により移動可能である試料ステージに照射する質量分析方法であって、
 試料ステージの所定の位置に励起ビームを集束させ、その時の前記励起ビーム光学系及び前記試料ステージの位置、並びに該励起ビーム光学系及び該試料ステージを含むビーム照射系の位置及び温度を基準位置及び基準温度として記録し、
 前記ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報を取得して記録し、
 使用時の前記ビーム照射系の温度と前記基準温度の差、及び前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する
 ものである。
(第2項)
 別の一態様である質量分析装置は、
 試料ステージと、
 励起ビームを集束させて前記試料ステージに照射する励起ビーム光学系と、
 前記励起ビーム光学系に対して固定された固定台上で前記試料ステージを移動する移動機構と、
 前記励起ビーム光学系及び前記試料ステージを含むビーム照射系の温度を測定する温度測定部と、
 前記ビーム照射系がある基準温度にあるときに、前記試料ステージの所定の位置に前記励起ビームを集束させた時の前記ビーム照射系の位置である基準位置と、前記ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報が保存された記憶部と、
 前記温度測定部により測定された前記ビーム照射系の温度と前記基準温度の差、及び、前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する位置補正部と
 を備える。
 第1項に記載の質量分析方法及び第2項に記載の質量分析装置では、試料ステージの所定の位置に励起ビームを集束させて励起ビーム光学系及び試料ステージを含むビーム照射系の位置、並びに該ビーム照射系の温度を基準位置及び基準温度として記録しておく。この基準位置から、試料ステージ上の所定の位置に励起ビームが集束されるように、励起ビーム光学系と試料ステージの位置関係が決まる。また、ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報を取得して記録しておく。この温度依存情報は、励起ビーム光学系と試料ステージのそれぞれの位置の変化を個別に記録したもののほか、励起ビーム光学系と試料ステージの相対位置の変化を記録したものであってもよく、あるいは試料ステージ上の励起ビームの集束位置の変化として記録したものであってもよい。
 質量分析を実行する際には、ビーム照射系の温度を測定する。そして、測定した温度(使用時温度)と基準温度の差、及び温度依存情報に基づき、移動機構を用いて励起ビームの集束位置を補正する。例えば、上記基準位置により決まる、励起ビーム光学系と試料ステージの位置関係を再現するように励起ビーム光学系及び/又は試料ステージの位置を調整する。
 第1項に記載の質量分析方法及び第2項に記載の質量分析装置では、基準温度における試料ステージ及び励起ビーム光学系を含むビーム照射系の位置情報、温度依存情報、及び基準温度と使用時温度の差に基づいて、使用時温度において励起ビームが集光する試料ステージ及び励起ビーム光学系の位置を決定し、試料ステージ及び励起ビーム光学系をピンポイントでその位置に移動するのみでよいため、従来のように試行錯誤することなく、簡便に励起ビームを試料ステージ上に載置される試料に集束させることができる。また、第1項に記載の質量分析方法及び第2項に記載の質量分析装置では温調機構を設ける必要がないため、低コストで実施することができる。
(第3項)
 第2項に記載の質量分析装置において、
 前記温度依存情報が、前記ビーム照射系の温度の変化に対する前記励起ビーム光学系の位置の変化と前記試料ステージの位置の変化を表す情報である。
 同型の質量分析装置であっても、試料ステージや励起ビームの位置の変化の方向や程度が異なる。また、励起ビーム光学系の位置と試料ステージの位置の変化が、励起ビームの集束位置に最も大きな影響を及ぼす。第3項に記載の質量分析装置では、温度依存情報として、ビーム照射系の温度の変化に対する励起ビーム光学系の位置の変化と試料ステージの位置の変化の情報を用いる。これらの情報は質量分析装置について実測により個別に取得することができる。こうした位置情報を用いることにより、高精度で励起ビームの集束位置を補正することができる。
(第4項)
 第2項又は第3項に記載の質量分析装置において、
 前記励起ビーム光学系が、レーザ光を発するレーザ光源と、該レーザ光源から発せられるレーザ光を集光する集光レンズを含む。
 励起ビームの中でもレーザ光は特に微小径に集光することが可能であり、第4項に記載の質量分析装置のように、微小径に集光されたレーザ光を用いて高空間分解能の質量分析を行う場合に、第2項及び第3項に記載の質量分析装置を好適に用いることができる。
(第5項)
 第4項に記載の質量分析装置において、
 前記集光レンズによるレーザ光の集光径が5μm以下である。
 第4項に記載の質量分析装置は、第5項に記載の質量分析装置のように、5μm以下の径に集光したレーザ光を用いた質量分析装置において特に好適に用いることができる。
(第6項)
 第2項から第5項のいずれかに記載の質量分析装置において、
 前記基準温度が25℃以上30℃以下である。
 第6項の質量分析装置のように、基準温度を室温付近の温度とすることにより、使用時の補正量を小さくして高精度に励起ビームを所定の位置に集束させることができる。
1…イメージング質量分析装置
10…イオン化部
 11…レーザ光源
 12…反射鏡
 13…集光レンズ
 14…試料ステージ
 15…ステージ移動機構
  151…第1リニアガイド
  152…第2リニアガイド
  153…第3リニアガイド
 16…顕微鏡
 17…開口
 18…温度計測部
 19…筐体
20…質量分析部
 21…開口
30…制御・処理部
 31…記憶部
 32…質量分析用ソフトウェア
  321…測定制御部
  322…位置補正部
40…入力部
50…表示部

Claims (6)

  1.  励起ビームを励起ビーム光学系により集束し、前記励起ビーム光学系に対して固定された固定台上の移動機構により移動可能である試料ステージに照射する質量分析方法であって、
     試料ステージの所定の位置に励起ビームを集束させ、その時の前記励起ビーム光学系及び前記試料ステージの位置、並びに該励起ビーム光学系及び該試料ステージを含むビーム照射系の位置及び温度を基準位置及び基準温度として記録し、
     前記ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報を取得して記録し、
     使用時の前記ビーム照射系の温度と前記基準温度の差、及び前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する、質量分析方法。
  2.  試料ステージと、
     励起ビームを集束させて前記試料ステージに照射する励起ビーム光学系と、
     前記励起ビーム光学系に対して固定された固定台上で前記試料ステージを移動する移動機構と、
     前記励起ビーム光学系及び前記試料ステージを含むビーム照射系の温度を測定する温度測定部と、
     前記ビーム照射系がある基準温度にあるときに、前記試料ステージの所定の位置に前記励起ビームを集束させた時の前記ビーム照射系の位置である基準位置と、前記ビーム照射系の温度の変化に対する該ビーム照射系の位置の変化を表す情報である温度依存情報が保存された記憶部と、
     前記温度測定部により測定された前記ビーム照射系の温度と前記基準温度の差、及び、前記温度依存情報に基づいて、前記移動機構を用いて励起ビームの集束位置を補正する位置補正部と
     を備える質量分析装置。
  3.  前記温度依存情報が、前記ビーム照射系の温度の変化に対する前記励起ビーム光学系の位置の変化と前記試料ステージの位置の変化を表す情報である、請求項2に記載の質量分析装置。
  4.  前記励起ビーム光学系が、レーザ光を発するレーザ光源と、該レーザ光源から発せられるレーザ光を集光する集光レンズを含む、請求項2に記載の質量分析装置。
  5.  前記集光レンズによるレーザ光の集光径が5μm以下である、請求項4に記載の質量分析装置。
  6.  前記基準温度が25℃以上30℃以下である、請求項2に記載の質量分析装置。
PCT/JP2020/019350 2020-05-14 2020-05-14 質量分析方法及び質量分析装置 WO2021229772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022522453A JP7371771B2 (ja) 2020-05-14 2020-05-14 質量分析方法及び質量分析装置
US17/923,089 US20230162959A1 (en) 2020-05-14 2020-05-14 Mass spectrometry method and mass spectrometer
PCT/JP2020/019350 WO2021229772A1 (ja) 2020-05-14 2020-05-14 質量分析方法及び質量分析装置
CN202080099675.XA CN115427802A (zh) 2020-05-14 2020-05-14 质量分析方法及质量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019350 WO2021229772A1 (ja) 2020-05-14 2020-05-14 質量分析方法及び質量分析装置

Publications (1)

Publication Number Publication Date
WO2021229772A1 true WO2021229772A1 (ja) 2021-11-18

Family

ID=78525550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019350 WO2021229772A1 (ja) 2020-05-14 2020-05-14 質量分析方法及び質量分析装置

Country Status (4)

Country Link
US (1) US20230162959A1 (ja)
JP (1) JP7371771B2 (ja)
CN (1) CN115427802A (ja)
WO (1) WO2021229772A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068565A (ja) * 2011-09-26 2013-04-18 Shimadzu Corp イメージング質量分析装置及び質量分析データ処理方法
JP2014194521A (ja) * 2013-02-28 2014-10-09 Nuflare Technology Inc 試料支持装置
WO2016059673A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置
WO2016059672A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205655A (ja) * 1998-01-12 1999-07-30 Star Micronics Co Ltd プリセットカメラ
JP3372916B2 (ja) 1999-11-18 2003-02-04 山口日本電気株式会社 縮小投影露光装置
ATE368849T1 (de) * 2002-10-25 2007-08-15 Ct De Rech Public Gabriel Lipp VERFAHREN UND VORRICHTUNG ZUR ßIN-SITU- DEPONIERUNGß VON NEUTRALEM CS UNTER ULTRAHOCHVAKUUM ZU ANALYTISCHEN ZWECKEN.
EP1735812A4 (en) 2004-03-24 2010-06-02 Imago Scient Instr Corp LASER ATOM PROBE
CN100575937C (zh) * 2007-08-02 2009-12-30 哈尔滨工业大学 导温系数测量方法
JP2012003898A (ja) * 2010-06-15 2012-01-05 Kawasaki Heavy Ind Ltd 二次元イメージング装置および方法
JP6180974B2 (ja) * 2014-03-18 2017-08-16 株式会社東芝 スパッタ中性粒子質量分析装置
EP3388826A1 (en) * 2015-10-16 2018-10-17 Shimadzu Corporation Method for correcting measurement error resulting from measurement device temperature displacement and mass spectrometer using said method
JP6983520B2 (ja) * 2017-03-08 2021-12-17 浜松ホトニクス株式会社 質量分析装置及び質量分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068565A (ja) * 2011-09-26 2013-04-18 Shimadzu Corp イメージング質量分析装置及び質量分析データ処理方法
JP2014194521A (ja) * 2013-02-28 2014-10-09 Nuflare Technology Inc 試料支持装置
WO2016059673A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置
WO2016059672A1 (ja) * 2014-10-14 2016-04-21 株式会社リガク X線薄膜検査装置

Also Published As

Publication number Publication date
CN115427802A (zh) 2022-12-02
JPWO2021229772A1 (ja) 2021-11-18
US20230162959A1 (en) 2023-05-25
JP7371771B2 (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
JP3221797B2 (ja) 試料作成方法及びその装置
JP6275412B2 (ja) レーザ・ビームと荷電粒子ビームの一致位置合せ方法
JP6642702B2 (ja) 質量分析装置
US7939800B2 (en) Arrangement and method for compensating emitter tip vibrations
JP3231516B2 (ja) 電子線マイクロアナライザ
JP2002033068A (ja) 荷電粒子ビーム欠陥検査装置及び方法
WO2021229772A1 (ja) 質量分析方法及び質量分析装置
JP7021612B2 (ja) 質量分析装置及び質量分析方法
CN116092912A (zh) 对样品载体上的分析物材料进行解吸扫描的装置
JP4710710B2 (ja) 飛行時間型質量分析装置
WO2021075254A1 (ja) イメージング質量分析装置
JP7279859B2 (ja) 質量分析方法及び質量分析装置
US20210272829A1 (en) Substrate positioning device with remote temperature sensor
JP2002245960A (ja) 荷電粒子ビーム装置及びそのような装置を用いたデバイス製造方法
US11605533B2 (en) Methods for aligning a light source of an instrument, and related instruments
JPS62133339A (ja) ルミネツセンス測定装置
JP5561968B2 (ja) 荷電粒子ビーム描画装置、荷電粒子ビーム描画方法および振動成分抽出方法
KR101824587B1 (ko) 멀티 전자 칼럼과 시료표면의 수직정렬 감지장치
WO2024024194A1 (ja) 質量分析装置用サンプルプレートホルダ
JPH0945276A (ja) 質量分析計
JP6815961B2 (ja) 質量分析装置および質量分析方法
JPWO2021229772A5 (ja)
Kremers et al. A versatile emittance meter and profile monitor
JPS63102152A (ja) レ−ザ・マイクロプロ−ブ分析装置
CN113237905A (zh) 电镜系统泵浦光束的稳定装置及方法、电镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935621

Country of ref document: EP

Kind code of ref document: A1