CN100575937C - 导温系数测量方法 - Google Patents

导温系数测量方法 Download PDF

Info

Publication number
CN100575937C
CN100575937C CN200710072598A CN200710072598A CN100575937C CN 100575937 C CN100575937 C CN 100575937C CN 200710072598 A CN200710072598 A CN 200710072598A CN 200710072598 A CN200710072598 A CN 200710072598A CN 100575937 C CN100575937 C CN 100575937C
Authority
CN
China
Prior art keywords
signal
circuit
temperature
execution
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710072598A
Other languages
English (en)
Other versions
CN101126731A (zh
Inventor
戴景民
辛春锁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN200710072598A priority Critical patent/CN100575937C/zh
Publication of CN101126731A publication Critical patent/CN101126731A/zh
Application granted granted Critical
Publication of CN100575937C publication Critical patent/CN100575937C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

导温系数测量方法,涉及到激光脉冲法测量材料热物性参数的方法。它解决了现有激光脉冲法测量导温系数方法的复杂、操作难度大的问题。它采用差动放大电路对采集到的测温系统中光电探测器的信号和基准电压信号源输出的基准电压信号进行比较,比较结果由数据采集模块采集;测量方法为:在恒温状态下调整基准电压信号源输出电压使差动放大电路输出为参考电压V0,然后用激光源对被测试样打激光,数据采集模块开始连续采集差动放大电路输出的差动电压信号,直到采集到的差动电压信号恢复到参考电压V0,分析处理采集到的所有数据,获得需要的时间参数,最后计算获得导温系数。本发明的测量方法操作简便、易实现,可以应用到现有的光学测温系统中。

Description

导温系数测量方法
技术领域
导温系数测量方法,涉及到一种激光脉冲法测量材料热物性参数的方法,具体涉及到测量材料导温系数的方法。
背景技术
物体的热物理性质包括输运性质和热力学性质两类,前者指与能量和动量传递过程有关的导温系数、导热系数和热辐射性能(发射率、吸收率、反射率)等;后者指与热现象中物态转变和能量转换规律相关的比热、热膨胀系数等。热物性数据不但是衡量材料能否适应具体热工作过程的数据依据,而且是对特定热过程进行基础研究、分析计算和工程设计的关键参数,此外,它还是认识、了解和评价物质的最基本的物质性质之一。热物性数据的获得对于空间科学技术、能源科学技术、材料科学技术及计算机电子科学技术都具有重要的现实意义。
1961年,美国的Parker等人提出利用脉冲光源对处于恒温状态的薄圆片正面进行瞬间加热,并同时在试样背面对因此而带来的热能变化进行高速采集,最后再通过测得的数据和相应的数学模型计算出该种材料在当前温度下的导温系数、比热和导热系数的激光脉冲法。经过多年发展,这种具有测试材料种类广泛、测试温度范围宽广、测试速度快和测试功能强等诸多优点的激光脉冲技术已经日趋完善,并得到世界各国同行的普遍认可。早在1973年举行的第十三届国际导热系数学术会议上,就有人估计在欧美各国大约75%的导温系数数据是用该方法测定的。然而,由于种种原因我国在这方面的工作却远远落后于世界同行。迄今为止,除了几个针对低温、中高温范围而建立的激光脉冲发热物性测试系统外,就再也没有什么新的进展了,对试样温度信号和温升信号的测量方法也始终停留在以往那种用传感器分别对这两种信号进行测量的基础上,这样不但使测试装置的结构更复杂,而且还增加了设备的操作难度。
发明内容
为了解决现有的激光脉冲法测量导温系数的装置结构复杂、操作难度大的问题,本发明提供了一种导温系数测量方法。
本发明的导温系数测量方法采用的测量装置包括第一光电探测器、测量电路和数据采集模块,第一光电探测器的测量信号输出端与测量电路的信号输入端连接,所述测量电路的信号输出端与数据采集模块的信号输入端连接,所述测量电路由前置放大电路、差动放大电路、基准电压信号源组成,前置放大电路的信号输入端为所述测量电路的信号输入端,所述前置放大电路的信号输出端与差动放大电路的一个信号输入端连接,所述基准电压信号源的基准电压信号输出端和所述差动放大电路的另一个信号输入端连接,所述差动放大电路的信号输出端为所述测量电路的一个信号输出端。
本发明的导温系数测量方法为:
步骤四一:调整基准电压信号源的输出电压,使差动放大电路输出信号为参考电压V0,然后执行步骤四二;
步骤四二:用激光源对被测试样打激光,同时数据采集模块开始连续采集并记录差动放大电路输出的差动电压信号,直到采集到的差动电压信号恢复到激光打样之前的参考电压V0,然后执行步骤四三;
步骤四三:比较步骤四二获得的多个差动电压信号,查找最大的差动电压信号V1,并求得半压V0.5,所述半压V0.5=V0+(V1-V0)/2,然后根据数据采集模块的数据采集速度获得采集到半压V0.5的时间t0.5,然后执行步骤四四;
根据步骤四三获得的时间t0.5获得被测试样的导温系数的方法为:
设试样厚度为L的四周绝热的圆片,片内任意点x在开始时的温度分布为T(x,0),若试样正面在瞬间吸收一脉冲热量,则在任意时间t的温度分布T(x,t)的计算表达式为:
T ( x , t ) = 1 L ∫ 0 L T ( x , 0 ) dx + 2 L Σ n = 1 ∞ exp ( - n 2 · π 2 · α · t L 2 ) cos nπx L ∫ 0 L T ( x , 0 ) cos nπx L dx ,
式中T——过余温度,即试样温度对于环境温度的温升;
当试样均匀吸收激光脉冲的瞬时t0(t0→0),在试样内部距离正面(x=0)极小距离g内,任意点x的温度分布为:
Figure C20071007259800071
式中Q——被试样吸收的激光脉冲的辐照强度(卡/厘米2);
D——试样的密度(克/厘米3);
C——试样的比热(卡/克.度);
对温度分布T(x,t)的计算表达式进行处理,得到试样背面(x=L)的温度分布为:
T ( L , t ) = Q D · C · L [ 1 + 2 Σ n = 1 ∞ ( - 1 ) n · exp ( - n 2 · π 2 L 2 αt ) ] ,
经过推导得到导温系数的表达式为:
α=1.37L2/(π2t0.5)=0.138L2/t0.5
式中L——待测试样厚度;
进而得到导热系数λ的计算公式为:
λ=α·C·D,测试结束。
本发明的导温系数测量方法,采用差动放大的原理直接对试样的红外热辐射信号的变化进行提取,实现对试样导温系数的测量,本发明结构简单、操作简单,可以与现有的光学温度测量装置联合使用。
附图说明
图1是具体实施方式一或二所述的背温温声测量装置的结构示意图,图2是具体实施方式三所述的比色温度计的光学结构示意图,图3是具体实施方式三中使用的光电探测器S1337-BQ的光谱相应曲线,图4是本发明中的步骤四二、用激光源对被测试样打激光的时候,测量电路1输出的差动电压信号随时间的变化曲线图,图5是本发明的流程图。
具体实施方式
具体实施方式一:本实施方式的导温系数测量方法采用的测量装置由光电探测器20、测量电路1和数据采集模块2组成,光电探测器20的测量信号输出端与测量电路1的信号输入端连接,所述测量电路1的信号输出端与数据采集模块2的信号输入端连接,所述测量电路1由前置放大电路11、差动放大电路12、基准电压信号源13组成,前置放大电路11的信号输入端为所述测量电路1的信号输入端,所述前置放大电路11的信号输出端与差动放大电路12的一个信号输入端连接,所述基准电压信号源13的基准电压信号输出端和所述差动放大电路12的另一个信号输入端连接,所述差动放大电路12的信号输出端为所述测量电路1的信号输出端;
本实施方式的导温系数测量方法为:
步骤四一:调整基准电压信号源13的输出电压,使差动放大电路12输出信号为参考电压V0,然后执行步骤四二;
步骤四二:用激光源对被测试样打激光,同时数据采集模块2开始连续采集并记录差动放大电路12输出的差动电压信号,直到采集到的差动电压信号恢复到激光打样之前的参考电压V0,然后执行步骤四三;
步骤四三:比较步骤四二获得的多个差动电压信号,查找最大的差动电压信号V1,并求得半压V0.5,所述半压V0.5=V0+(V1-V0)/2,然后根据数据采集模块2的数据采集速度获得采集到半压V0.5的时间t0.5,然后执行步骤四四;
步骤四四:根据步骤四三获得的时间t0.5获得被测试样的导温系数,测试结束。
本实施方式中所述的数据采集模块2,能够将测量电路1输出的模拟信号转换成数字信号,然后进行计算处理。本实施方式中的数据采集模块2由模拟量数据采集卡和计算机系统组成,所述模拟量数据采集卡采集测量电路1输出的模拟信号并转换成数字信号,所述计算机系统对模拟量数据采集卡输出的数字信号进行分析处理。本实施方式中的数据采集卡选用美国IOtech公司生产的DaqBook200板卡。
本实施方式中的步骤四四中根据时间t0.5获得被测试样的导温系数的方法为:
设试样厚度为L的四周绝热的圆片,片内任意点x在开始时的温度分布为T(x,0),若试样正面在瞬间吸收一脉冲热量,则在任意时间t的温度分布T(x,t)的计算表达式为:
T ( x , t ) = 1 L ∫ 0 L T ( x , 0 ) dx + 2 L Σ n = 1 ∞ exp ( - n 2 · π 2 · α · t L 2 ) cos nπx L ∫ 0 L T ( x , 0 ) cos nπx L dx ,
式中T——过余温度,即试样温度相对于环境温度的温升,
当试样均匀吸收激光脉冲的瞬时t0(t0→0),在试样内部距离正面(x=0)极小距离g内,任意点x的温度分布为:
式中Q——被试样吸收的激光脉冲的辐照强度(卡/厘米2);
D——试样的密度(克/厘米3);
C——试样的比热(卡/克.度);
将任意点x的温度分布公式T(x,t0)代人任意时间t的温度分布公式T(x,t)并进行处理,得到试样背面(x=L)的温度分布为:
T ( L , t ) = Q D · C · L [ 1 + 2 Σ n = 1 ∞ ( - 1 ) n · exp ( - n 2 · π 2 L 2 αt ) ] ,
经过推导得到导温系数的表达式为:
α=1.37L2/(π2t0.5)=0.138L2/t0.5
式中L——待测试样厚度;
进而得到导热系数λ的计算公式为:
λ=α·C·D。
本实施方式中所述的极小距离g,是小于待测试样厚度L,趋近于零的数值。
本实施方式中对导温系数的测量方法,是在被测试样处于恒温的状态下进行的。
本实施方式的导温系数测量装置采用现有成熟的测量电路,通过简单的操作就能够测量到试样的导温系数。本实施方式的导温系数测量装置可以与现有的温度测量系统一起使用,达到同时测量温度、温升信号的目的。
具体实施方式二:本实施方式与具体实施方式一所述的导温系数测量装置的区别在于,它包括两个光电探测器20、两个测量电路1,并且每个测量电路1中还包括一级级联放大电路14和二级级联放大电路15,所述每个测量电路1中的一级级联放大电路14的信号输入端与前置放大电路11的信号输出端连接,所述一级级联放大电路14的信号输出端分别与二级级联放大电路15的信号输入端、数据采集模块2的信号输入端连接,所述二级级联放大电路15的信号输出端与数据采集模块2的信号输入端连接。
本实施方式与具体实施方式一所述的导温系数测量的方法的区别在于,在所述步骤四一之前增加了:
步骤三一:数据采集模块2同时采集两个测量电路1输出的前置放大信号、一级级联放大信号和二级级联放大信号,执行步骤三二;
步骤三二:分别判断步骤三一中获得的两个测量电路中的二级级联放大信号是否饱和,如果已饱和,执行步骤三三;如果没饱和,执行步骤五一;
步骤五一:所述二级级联放大信号为有效测量温度电压数据,然后执行步骤三五;
步骤三三:分别判断步骤三一中获得的两个测量电路中的一级级联放大信号是否饱和,如果已饱和,执行步骤三四;如果没饱和,执行步骤五二;
步骤五二:所述一级级联放大信号为有效测量温度电压数据,然后执行步骤三五;
步骤三四:所述前置放大信号为有效测量温度电压数据,然后执行步骤三五;
步骤三五:用获得的两个有效测量温度电压数据计算出各自通道的亮温温度值,然后再通过两个亮温温度值计算出被测试样的真实温度值,然后执行步骤三六;
步骤三六:当步骤三五中获得的真实温度值小于2300℃时,执行步骤三七;当步骤三五中获得的真实温度值大于2300℃时,执行步骤三八;
步骤三七:选择与波长较长的光电探测器连接的测量电路1测量温升信号;然后执行步骤四一;
步骤三八:选择与波长较短的光电探测器连接的测量电路1测量温升信号;然后执行步骤四一;
在本实施方式中的步骤三六还可以是:当步骤三五中获得的真实温度值小于2200℃时,执行步骤三七;当步骤三五中获得的真实温度值大于2200℃时,执行步骤三八。
步骤三二和步骤三三中所述的判断测量电路中的一级级联放大信号、二级级联放大信号是否饱和的方法,是判断一级级联放大信号或者二级级联放大信号的幅值是否等于或者接近一级级联放大电路14或者二级级联放大电路15的所能输出的最大电压值,如果判断结果为是,则认为对应的放大电路处于饱和状态;如果不是,则认为对应的放大电路没有处于饱和状态。
由于现有的光电探测器输出信号范围比较宽,所以本实施方式中采用两级放大电路对采集的信号进行逐级放大处理,在采集数据的时候选取放大效果比较好的信号进行分析处理。例如,当二级级联放大电路输出的二级级联放大信号处于所述二级级联放大电路的线性放大区之内的时候,则取二级级联放大信号为有效信号进行分析、计算;当所述二级级联放大信号接近或者等于所述二级级联放大电路所能输出的最大值的时候,则对前一级级联放大信号同样的判断,直到找到适合的信号作为有效的电压信号进行分析计算。
本实施方式采用不同工作原理电路对试样的红外热辐射信号进行同时提取,最终实现了对试样背面的温度和温升信号同时进行测量。本实施方式的导温系数测量方法,根据不同波长的红外辐射能在不同温度范围内的敏感程度不同的特点,根据测量的温度值,分别选取与不同波长光电探测器连接的测量电路1对温升信号进行测量,增加了温升信号的测量范围及测量灵敏度。
具体实施方式三:本实施方式采用具体实施方式二所述的导温系数测量方法及装置与现有的比色温度计组成背温温度及温差测量系统,所述比色温度计由主物镜L1、视场光阑FS、准直物镜L2、调整目镜L4、红外光学光纤E、色散棱镜P、暗箱物镜L3、反射镜M和两个光电探测器20组成。
主物镜L1、视场光阑FS与位于准直物镜L2上的孔径光栏构成导温系数测量系统的光学取样系统,所述主物镜L1可以平行移动,通过调整主物镜L1的位置调整焦距,使被测试样的成像调整到视场光阑FS的反射平面上。通过调整目镜L4的焦距来瞄准,通过目镜L4看到视场光阑FS的黑方块部分即为被测物D表面之被取样部分,如果视场光阑FS的口径很小,则可认为是被测物D表面的局部温度。
由准直物镜L2、色散棱镜P、暗箱物镜L3、反射镜M组成分光系统。来自于被测试样的红外辐射能量经光学取样系统聚焦到视场光栏FS后,L2将辐射能准直为平行束,经红外光学光纤E传输和色散棱镜P色散成不同波长具有不同角度的多路平行光光谱,再经暗箱物镜L3汇聚和反射镜M折射后被相应波长(0.656,0.9μm)的两个光电探测器20按波长次序接收,所述两个光电探测器20的信号输出端分别与测量装置中的两个测量电路1的前置放大电路11的信号输入端连接。
本实施方式的两个光电探测器20均选用日本HAMAMATSU株式会社的硅光电二极管S1337-BQ作为探测器,它的光谱响应曲线如图3所示。从图中可以看出,该探测器的响应曲线在工作波长范围0.19-1.1μm内有如下特点:光谱响应带宽、响应速度快、红外响应率高、线性度较好,此外该探测器还有如暗流小、像元之间影响小等优良性能,从而为设备的快速数据采集和高精度测量提供了前提保障。
在北京航天工业总公司一零二所利用高精度黑体炉对本实施方式的背温温度及温差测量系统的测温范围及精度进行了现场标定和校验。标准温度计采用的是中国计量院研制的标准辐射温度计,测量温度范围是800~3000℃,测量精度是0.3%;黑体炉辐射源采用的是昆明特普瑞仪表有限公司研制的WJL-11型卧式黑体炉,该黑体炉的控温范围是800~3000℃,温度漂移小于工作温度的0.1%/5min。标定后,重新将黑体炉设置到不同温度点,利用标准温度计对我们设计的温度计进行检定,校验结果表明该系统在800~3000℃范围内的温度测量精度小于1%。
为了对这套系统的测量背面温升能力进行检验,从而对整套系统的导温系数测试精度进行标定,采用直径φ10mm的圆片状标准石墨试样(标准材料采用的是美国NIST研究级别的高温标准材料RM 8424,也称之为POCO GraphiteAXM 5Q1,在常温下它的电阻率为14.5μΩ·m,密度为1730kg/m3)进行加热,加热炉观察窗口距离试样的距离为200mm左右,将激光脉冲法背温测量系统定位在观察窗石英玻璃正面,通过光学瞄准装置,可以清晰的对焦在被测试样上。
将试样加热到不同温度同时进行测温及背温信号测量的重复性试验,测量得到的导温系数与标准材料在各温度下的导温系数值的数据表1,从表1中可以得到,由本实施方式的背温温度及温差测量系统测量的温升信号计算获得的导温系数与标准值的最大误差为4.34%。
表1
  被测试样表面温度(℃) 导温系数标准值(mm<sup>2</sup>/s)   由测量的温升信号获得的导温系数(mm<sup>2</sup>/s) 误差% 被测试样表面温度(℃) 导温系数标准值(mm<sup>2</sup>/s)   由测量的温升信号获得的导温系数(mm<sup>2</sup>/s) 误差%
  806   15.91   15.27   -4.02%   1555   10.62   10.38   -2.26%
  807   15.9   15.25   -4.09%   1637   10.31   10.45   1.36%
  805   15.92   15.31   -3.83%   1641   10.29   10.48   1.85%
  920   14.74   14.1   -4.34%   1783   9.85   9.97   1.22%
  937   14.58   14.27   -2.13%   1784   9.85   9.92   0.71%
  939   14.57   14.34   -1.58%   1909   9.5   9.57   0.74%
  940   14.56   14.29   -1.85%   1910   9.5   9.59   0.95%
  1018   13.88   13.37   -3.67%   2000   9.25   9.41   1.73%
  1066   13.5   13.48   -0.15%   2001   9.24   9.28   0.43%
  1068   13.48   13.27   -1.56%   2002   9.24   9.31   0.76%
  1074   13.43   13.22   -1.56%   2025   9.17   8.88   -3.16%
  1177   12.68   12.43   -1.97%   2033   9.15   8.9   -2.73%
  1187   12.61   12.49   -0.95%   2103   8.94   9.02   0.89%
  1263   12.11   12.48   3.06%   2105   8.94   8.96   0.22%
  2002   9.24   9.31   0.76%   2232   8.54   8.7   1.87%
  1263   12.11   12.52   3.39%   2233   8.54   8.66   1.41%
  1355   11.57   11.77   1.73%   2235   8.53   8.64   1.29%
  1357   11.56   11.83   2.34%   2327   8.28   8.47   2.29%
  1500   10.85   11.13   2.58%   2400   8.14   8.29   1.84%

Claims (3)

1、导温系数测量方法,它所采用的测量装置包括第一光电探测器(20-1)测量电路(1)和数据采集模块(2),第一光电探测器(20-1)的测量信号输出端与测量电路(1)的信号输入端连接,所述测量电路(1)的信号输出端与数据采集模块(2)的信号输入端连接,所述测量电路(1)由前置放大电路(11)、差动放大电路(12)、基准电压信号源(13)组成,前置放大电路(11)的信号输入端为所述测量电路(1)的信号输入端,所述前置放大电路(11)的信号输出端与差动放大电路(12)的一个信号输入端连接,所述基准电压信号源(13)的基准电压信号输出端和所述差动放大电路(12)的另一个信号输入端连接,所述差动放大电路(12)的信号输出端为所述测量电路(1)的一个信号输出端;
其特征在于导温系数的测量方法为:
步骤四一:调整基准电压信号源(13)的输出电压,使差动放大电路(12)输出信号为参考电压V0,然后执行步骤四二;
步骤四二:用激光源对被测试样打激光,同时数据采集模块(2)开始连续采集并记录差动放大电路(12)输出的差动电压信号,直到采集到的差动电压信号恢复到激光打样之前的参考电压V0,然后执行步骤四三;
步骤四三:比较步骤四二获得的多个差动电压信号,查找最大的差动电压信号V1,并求得半压V0.5,所述半压V0.5=V0+(V1-V0)/2,然后根据数据采集模块(2)的数据采集速度获得采集到半压V0.5的时间t0.5,然后执行步骤四四;
步骤四四:根据步骤四三获得的时间t0.5获得被测试样的导温系数的方法为:
设试样厚度为L的四周绝热的圆片,片内任意点x在开始时的温度分布为T(x,0),若试样正面在瞬间吸收一脉冲热量,则在任意时间t的温度分布T(x,t)的计算表达式为:
T ( x , t ) = 1 L &Integral; 0 L T ( x , 0 ) dx + 2 L &Sigma; n = 1 &infin; exp ( - n 2 &CenterDot; &pi; 2 &CenterDot; &alpha; &CenterDot; t L 2 ) cos n&pi;x L &Integral; 0 L T ( x , 0 ) cos n&pi;x L dx ,
式中T——过余温度,即试样温度对于环境温度的温升;
当试样均匀吸收激光脉冲的瞬时t0(t0→0),在试样内部距离正面(x=0)极小距离g内,任意点x的温度分布为:
式中Q——被试样吸收的激光脉冲的辐照强度(卡/厘米2);
D——试样的密度(克/厘米3);
C——试样的比热(卡/克.度);
对温度分布T(x,t)的计算表达式进行处理,得到试样背面(x=L)的温度分布为:
T ( L , t ) = Q D &CenterDot; C &CenterDot; L [ 1 + 2 &Sigma; n = 1 &infin; ( - 1 ) n &CenterDot; exp ( - n 2 &CenterDot; &pi; 2 L 2 &alpha;t ) ] ,
经过推导得到导温系数的表达式为:
α=1.37L2/(π2t0.5)=0.138L2/t0.5
式中L——待测试样厚度;
进而得到导热系数λ的计算公式为:
λ=α·C·D,测试结束。
2、根据权利要求1所述的导温系数测量方法,它所采用测量装置是在权利要求1所述测量装置上增加了一个第二光电探测器(20-2)和一个测量电路(1),并且每个测量电路(1)中增加了一级级联放大电路(14)和二级级联放大电路(15),第二光电探测器(20-2)的测量信号输出端与测量电路(1)的信号输入端连接,前置放大电路(11)的信号输入端为所述测量电路(1)的一个信号输入端,每个测量电路(1)中的一级级联放大电路(14)的信号输入端与前置放大电路(11)的信号输出端连接,所述一级级联放大电路(14)的信号输出端分别与二级级联放大电路(15)的信号输入端、数据采集模块(2)的信号输入端连接,所述二级级联放大电路(15)的信号输出端与数据采集模块(2)的信号输入端连接;
其特征在于,在步骤四一之前还包括:
步骤三一:数据采集模块(2)同时采集两个测量电路(1)输出的前置放大信号、一级级联放大信号和二级级联放大信号,执行步骤三二;
步骤三二:分别判断步骤三一中获得的两个测量电路中的二级级联放大信号是否饱和,如果已饱和,执行步骤三三;如果没饱和,执行步骤五一;
步骤五一:所述二级级联放大信号为有效测量温度电压数据,然后执行步骤三五;
步骤三三:分别判断步骤三一中获得的两个测量电路中的一级级联放大信号是否饱和,如果已饱和,执行步骤三四;如果没饱和,执行步骤五二;
步骤五二:所述一级级联放大信号为有效测量温度电压数据,然后执行步骤三五;
步骤三四:所述前置放大信号为有效测量温度电压数据,然后执行步骤三五;
步骤三五:用获得的两个有效测量温度电压数据计算出各自通道的亮温温度值,然后再通过两个亮温温度值计算出被测试样的真实温度值,然后执行步骤三六;
步骤三六:当步骤三五中获得的真实温度值小于2300℃时,执行步骤三七;当步骤三五中获得的真实温度值大于2300℃时,执行步骤三八;
步骤三七:选择与波长较长的光电探测器连接的测量电路(1)测量温升信号;然后执行步骤四一;
步骤三八:选择与波长较短的光电探测器连接的测量电路(1)测量温升信号;然后执行步骤四一;
3、根据权利要求2所述的导温系数测量方法,其特征在于所述步骤三二和步骤三三中所述的判断测量电路中的一级级联放大信号、二级级联放大信号是否饱和的方法,是判断一级级联放大信号或者二级级联放大信号的幅值是否等于或者接近一级级联放大电路(14)或者二级级联放大电路(15)的所能输出的最大电压值,如果判断结果为是,则表示对应的放大电路处于饱和状态;如果不是,则表示对应的放大电路没有处于饱和状态。
CN200710072598A 2007-08-02 2007-08-02 导温系数测量方法 Expired - Fee Related CN100575937C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710072598A CN100575937C (zh) 2007-08-02 2007-08-02 导温系数测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710072598A CN100575937C (zh) 2007-08-02 2007-08-02 导温系数测量方法

Publications (2)

Publication Number Publication Date
CN101126731A CN101126731A (zh) 2008-02-20
CN100575937C true CN100575937C (zh) 2009-12-30

Family

ID=39094808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710072598A Expired - Fee Related CN100575937C (zh) 2007-08-02 2007-08-02 导温系数测量方法

Country Status (1)

Country Link
CN (1) CN100575937C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135511B (zh) * 2010-12-29 2013-08-28 浙江银轮机械股份有限公司 一种板翅式换热器翅片表面传热性能的测试方法及装置
CN103175783B (zh) * 2011-12-21 2015-05-20 中国航空工业集团公司沈阳发动机设计研究所 一种表面发射率测试仪
CN108562612B (zh) * 2018-06-13 2024-01-19 中国科学院理化技术研究所 用于低温辐射性能测试的样品杆装置及测试设备
US20230162959A1 (en) * 2020-05-14 2023-05-25 Shimadzu Corporation Mass spectrometry method and mass spectrometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
电流脉冲加热瞬态热物性测量技术. 戴景民等.中国计量学院学报,第15卷第4期. 2004
电流脉冲加热瞬态热物性测量技术. 戴景民等.中国计量学院学报,第15卷第4期. 2004 *

Also Published As

Publication number Publication date
CN101126731A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
CN101566501B (zh) 一种光纤光谱协同放电电流测量等离子体电子密度的方法
CN102175427B (zh) 一种深紫外光学元件稳定性的综合测试方法
CN106979832B (zh) 一种光纤分光测温系统及其测温方法
CN100575937C (zh) 导温系数测量方法
CN101000264B (zh) 采用维恩位移定律进行光谱测温的方法
CN102749141A (zh) 一种测量目标真实温度的辐射测温方法和仪器
CN106950183A (zh) 一种基于光谱技术的便携式土壤养分检测装置
CN101261224B (zh) 基于4f相位相干成像系统测量材料的光学非线性的方法
CN106500844A (zh) 一种六通道分振幅高速斯托克斯偏振仪及其参数测量方法
CN109580033A (zh) 一种混凝土坝分布式光纤测温数据误差补偿方法
CN103983365A (zh) 多测头瞬态辐射热流计及热辐射热流密度的测定方法
CN102080990B (zh) 一种四波段高温测量装置及方法
CN103528991A (zh) 土壤有机质含量的测量系统及测量方法
CN203132961U (zh) 基于Virtex-5系列FPGA的纳米粒度测量系统
CN103411923A (zh) 一种采用双路可调谐激光吸收光谱技术的归一化降噪方法
Ballestrín et al. Heat flux and temperature measurement technologies for concentrating solar power (CSP)
Alessi et al. Soil‐water determination using fiber optics
CN201892573U (zh) 一种近红外辐射温度计
CN107505063B (zh) 一种基于高频正弦校准光的激光光线偏折校正装置及方法
CN206670829U (zh) 一种光纤分光测温系统
CN109932063A (zh) 一种铝合金热成形过程中温度的测量装置及方法
CN113063819A (zh) 一种发动机环境热阻涂层辐射特性研究系统及方法
Ottaviani et al. Light reflection from water waves: Suitable setup for a polarimetric investigation under controlled laboratory conditions
CN207832350U (zh) 温度传感器高速动态特性校准装置
CN205679318U (zh) 基于光电二极管的瞬态光学高温计

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20120802