WO2018012102A1 - 送信装置、伝送システム、およびロボット - Google Patents

送信装置、伝送システム、およびロボット Download PDF

Info

Publication number
WO2018012102A1
WO2018012102A1 PCT/JP2017/018325 JP2017018325W WO2018012102A1 WO 2018012102 A1 WO2018012102 A1 WO 2018012102A1 JP 2017018325 W JP2017018325 W JP 2017018325W WO 2018012102 A1 WO2018012102 A1 WO 2018012102A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
robot
signal
analog
transmission
Prior art date
Application number
PCT/JP2017/018325
Other languages
English (en)
French (fr)
Inventor
大雅 増田
直樹 小峰
裕一 安田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112017003484.1T priority Critical patent/DE112017003484T5/de
Priority to JP2018527413A priority patent/JPWO2018012102A1/ja
Priority to US16/307,295 priority patent/US10666282B2/en
Publication of WO2018012102A1 publication Critical patent/WO2018012102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/20Increasing resolution using an n bit system to obtain n + m bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M9/00Parallel/series conversion or vice versa

Definitions

  • This disclosure relates to a transmission device, a transmission system, and a robot.
  • the transmission apparatus related to transmission using the serial bus performs data transmission by performing analog-digital conversion on the analog signal.
  • a receiving apparatus related to transmission using a serial bus performs digital-analog conversion on received data.
  • analog-to-digital conversion is performed in the transmission device, and digital-to-analog conversion is performed in the reception device. If it is done, the following problems may arise. ⁇ Large delay time in data transmission (for example, delay due to time required for analog-to-digital conversion and delay due to time required to complete transfer of all bits) ⁇ The circuit scale increases because a control circuit for switching the bus is required.
  • This disclosure proposes a new and improved transmission device, transmission system, and robot capable of transmitting data based on a signal acquired from a sensor.
  • a transmission device that serializes and transmits a change amount data based on a signal acquired from a sensor by one-way communication.
  • a transmission device that serializes and transmits data of a change amount based on a signal acquired from a sensor by one-way communication, and receives data transmitted by the one-way communication and deserializes the data.
  • a transmission system is provided.
  • one end is connected to the main body, the other end is movable, and a sensor is provided on the other end side.
  • the robot arm is provided on the other end side of the robot arm and obtained from the sensor.
  • a robot comprising: a transmission device that serializes and transmits change amount data based on a signal to be transmitted by one-way communication; and a reception device that receives and deserializes data transmitted by the one-way communication Is done.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the transmission device 10 when data based on a signal acquired from a sensor is transmitted via a serial bus.
  • FIG. 1 shows signals acquired from a sensor that outputs a sensing result as an analog signal, such as a microphone or an acceleration sensor, and an incremental encoder (an example of a sensor that outputs a sensing result as a digital signal) via a serial bus.
  • An example of the configuration of the transmitting apparatus 10 for transmitting is shown.
  • the digital signal acquired from the incremental encoder is referred to as an “encoder signal” for convenience (the same applies to other drawings).
  • the transmission device 10 and each sensor such as an incremental encoder are connected by a signal line, for example, and acquire a signal output from each sensor via the signal line.
  • the transmission apparatus 10 may acquire the signal which each sensor outputs by performing radio
  • the transmission device 10 includes, for example, an analog-digital conversion circuit 12, an encoder position acquisition circuit 14, a bus control circuit 16, and a serial bus control circuit 18.
  • the analog-digital conversion circuit 12 converts a signal acquired from a sensor that outputs an analog signal into a digital signal. Examples of the analog-digital conversion circuit 12 include a successive approximation type analog-digital conversion circuit.
  • the encoder position acquisition circuit 14 specifies a position detected by the incremental encoder based on a plurality of encoder signals acquired from the incremental encoder, and obtains position information (data) indicating the position. That is, the encoder position acquisition circuit 14 converts the encoder signal acquired from the incremental encoder into position information.
  • the bus control circuit 16 is a control circuit for switching the bus.
  • the bus control circuit 16 switches the bus based on a timing signal transmitted from the serial bus control circuit 18.
  • the serial bus control circuit 18 is a control circuit that controls communication via the serial bus.
  • the transmission device 10 transmits data based on a signal acquired from a sensor via a serial bus, for example, with the configuration shown in FIG.
  • a receiving device (not shown) that receives data transmitted from the transmitting device 10 via the serial bus via the serial bus is a serial bus control having the same function as the transmitting device 10 shown in FIG. A circuit and a bus control circuit.
  • the receiving device (not shown) may further include a digital-analog conversion circuit that performs digital-analog conversion on received data. Examples of the digital-analog conversion circuit include a pulse width modulation type digital-analog conversion circuit.
  • the transmission device 10 and the reception device are connected via a serial bus between the serial bus control circuit provided in the transmission device 10 and the serial bus control circuit provided in the reception device (not shown).
  • a serial bus between the serial bus control circuit provided in the transmission device 10 and the serial bus control circuit provided in the reception device (not shown).
  • the transmission device 10 when an analog signal is included in a signal acquired from a sensor, the transmission device 10 performs analog-digital conversion on the analog signal to transmit data.
  • a receiving apparatus (not shown) related to transmission using a serial bus can include a digital-analog conversion circuit that performs digital-analog conversion on received data.
  • analog-digital conversion is performed in the transmission apparatus 10 and digital-analog conversion is performed in the reception apparatus (not shown)
  • the following problems may occur. ⁇ Large delay time in data transmission ⁇ Circuit scale increases because a control circuit to switch the bus is required
  • the transmission device 10 needs to include an encoder position acquisition circuit 14 that converts the encoder signal into position information. Further, in the transmission device 10, the delay time in data transmission increases by the resolution of the position information obtained by the encoder position acquisition circuit 14. For example, when the encoder position acquisition circuit 14 converts a 32-bit encoder signal into 64-bit position information, the delay time increases by 32 bits.
  • the transmission device uses the change amount data (hereinafter simply referred to as “change” based on the signal acquired from the sensor). May be indicated as “quantity data”) and serially transmitted.
  • the receiving device receives and deserializes data transmitted from the transmitting device according to the present embodiment by one-way communication.
  • one or two or more sensors are connected to the transmission apparatus according to the present embodiment by signal lines.
  • the transmitter which concerns on this embodiment acquires the signal which each one or two or more sensors output via the said signal line connected.
  • the transmission apparatus may acquire a signal output from each of the one or more sensors by performing wireless communication of an arbitrary communication method with each of the one or more sensors. Good.
  • a sensor that outputs a digital signal indicating a change amount (a digital signal indicating a sensing result) and a sensor that outputs an analog signal indicating the change amount (an analog signal indicating a sensing result). Or one or both of them.
  • a sensor that outputs a digital signal according to this embodiment and an example of a sensor that outputs an analog signal according to this embodiment will be described later.
  • the transmission device acquires signals output from a plurality of sensors, including both a sensor that outputs a digital signal and a sensor that outputs an analog signal.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of the transmission system 1000 according to the present embodiment.
  • the transmission system 1000 includes a transmission device 100 according to the present embodiment and a reception device 200 according to the present embodiment.
  • the transmitting device 100 and the receiving device 200 are connected by a signal line such as a LAN (Local Area Network) cable.
  • a signal line such as a LAN (Local Area Network) cable.
  • the amount of change data is transmitted from the transmission device 100 to the reception device 200 by an arbitrary wired communication method that allows one-way communication from the transmission device 100 to the reception device 200.
  • the transmission apparatus serializes change amount data and transmits it by one-way communication. Therefore, in the transmission system 1000, only one signal line may be used to connect the transmission device 100 and the reception device 200.
  • one signal line according to the present embodiment for example, one signal line or a pair of signal lines is physically mentioned.
  • the change amount data is transmitted as a differential signal.
  • the number of signal lines connecting the transmission device 100 and the reception device 200 can be two or more.
  • change amount data may be wirelessly transmitted from the transmission device 100 to the reception device 200 by any wireless communication method that allows one-way communication from the transmission device 100 to the reception device 200.
  • An example of wireless communication applied to transmission of change amount data in the transmission system 1000 is, for example, optical communication.
  • the transmission device 100 serializes the amount of change data based on the signal acquired from the sensor and transmits the data by one-way communication.
  • the transmission device 100 includes, for example, an analog-digital conversion circuit 102 and a serializer 104.
  • the transmission device 100 is driven by power supplied from an internal power supply (not shown) such as a battery or power supplied from an external power supply of the transmission device 100.
  • FIG. 2 shows an example in which a sensor that outputs one analog signal and one incremental encoder (an incremental encoder that outputs three encoder signals) are connected to the transmission device 100 by signal lines.
  • the signal acquired from the sensor by the transmission device 100 is not limited to the example shown in FIG.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration of the transmission device 100 according to the present embodiment.
  • FIG. 3 shows a plurality of sensors, microphones, and translational triaxial acceleration sensors corresponding to the motor 1, the motor 2, and the motor 3 as sensors according to the present embodiment.
  • FIG. 3 shows a limit sensor, an origin sensor, and an incremental encoder as a plurality of sensors corresponding to each motor.
  • the plurality of sensors corresponding to each motor is an example of a sensor that outputs a digital signal indicating the amount of change.
  • the transmission device 100 acquires six digital signals from a plurality of sensors corresponding to the motor.
  • a total of 18 digital signals acquired from a plurality of sensors corresponding to the motor 1, the motor 2, and the motor 3 change based on the signals acquired from the sensors that output the digital signals. It corresponds to the quantity data.
  • the microphone shown in FIG. 3 and the translational triaxial acceleration sensor are examples of sensors that output an analog signal indicating the amount of change.
  • the transmission device 100 acquires four analog signals from a microphone and a translational triaxial acceleration sensor.
  • the signal acquired from the sensor by the transmission device 100 is not limited to the examples illustrated in FIGS.
  • the transmission device 100 can acquire signals output from various sensors such as an absolute encoder and a force sensor.
  • Analog-digital conversion circuit 102 converts a signal acquired from a sensor that outputs an analog signal into a digital signal.
  • the digital signal converted by the analog-digital conversion circuit 102 corresponds to change amount data based on a signal acquired from a sensor that outputs an analog signal.
  • Examples of the analog-digital conversion circuit 102 include a delta sigma type analog-digital converter 110.
  • the delta-sigma analog-to-digital converter 110 converts four analog signals acquired from the microphone and the translational triaxial acceleration sensor into four digital signals.
  • the analog-digital conversion circuit 102 is a delta-sigma type analog-digital converter 110
  • an analog signal acquired from the sensor is converted into a 1-bit digital signal. Therefore, when the analog-digital conversion circuit 102 is the delta-sigma type analog-digital converter 110, it is possible to transmit the change amount data based on the analog signal acquired from the sensor with low delay. Become.
  • the delta-sigma type analog-digital converter 110 can be realized with a smaller circuit than other types of analog-digital conversion circuits. Therefore, when the analog-digital conversion circuit 102 is a delta sigma type analog-digital converter 110, the analog-digital conversion circuit 102 can be reduced in size.
  • the analog-digital conversion circuit 102 is not limited to the delta sigma type analog-digital converter 110.
  • the analog-digital conversion circuit 102 may be any type of analog-digital conversion circuit such as a successive approximation type analog-digital conversion circuit.
  • the digital signal converted by the analog-digital conversion circuit 102 is transmitted to the serializer 104. Further, as will be described later, the serializer 104 serializes the amount of change data to be transmitted. That is, the change amount data serialized in the transmission apparatus 100 configured as shown in FIG. 3 includes data converted by the analog-digital conversion circuit 102.
  • Serializer 104 serializes change amount data and transmits the serialized data by one-way communication.
  • Examples of the serializer 104 include a circuit (or integrated circuit (IC)) having an arbitrary configuration that can serialize an input parallel signal and transmit a serial signal via a transmission path.
  • IC integrated circuit
  • 22 digital signals (18 digital signals obtained from a plurality of sensors corresponding to the motor 1, the motor 2, and the motor 3, and the delta sigma type analog-to-digital converter 110 are transmitted.
  • Four digital signals are input to the serializer 104.
  • the serializer 104 serializes the 22 input digital signals according to a predetermined clock such as 50 [MHz], and transmits the serialized signal by one-way communication.
  • the delay time between the transmission device 100 and the reception device 200 is 5 about 7 [ ⁇ S].
  • the serializer 104 can theoretically transmit signals up to the clock frequency. Needless to say, the predetermined clock in the serializer 104 is not limited to 50 [MHz].
  • the transmission device 100 has a configuration shown in FIGS. 2 and 3, for example.
  • the transmission apparatus 100 serializes the change amount data by the serializer 104 and transmits it by one-way communication.
  • the transmission device 100 has the following advantages (merits) compared to the transmission device 10 in the case where data based on a signal acquired from the sensor is transmitted using a serial bus. -Small delay time in data transmission-Even if the number of sensors increases, increase in delay time can be suppressed-No time synchronization processing is required between the transmitting device 100 and the receiving device 200-Packet communication is performed Therefore, there will be no delay due to processing related to packet communication, and there will be no increase in hardware and software costs related to packet communication. Even when an encoder is included, the transmission apparatus 100 does not need to include an encoder position acquisition circuit that converts an encoder signal into position information (in other words, the transmission apparatus 100 receives an encoder signal output from an incremental encoder). It can be configured to serialize as it is wear)
  • the transmission device according to the present embodiment when the transmission device according to the present embodiment does not acquire a signal output from a sensor that outputs an analog signal, the transmission device according to the present embodiment has a configuration that does not include the analog-digital conversion circuit 102. Is possible.
  • Receiving device 200 The receiving device 200 receives data transmitted by one-way communication and deserializes it.
  • the receiving apparatus 200 illustrated in FIG. 2 is a receiving apparatus corresponding to the transmitting apparatus 100 illustrated in FIG.
  • the receiving apparatus 200 includes, for example, a deserializer 202, a digital-analog conversion circuit 204, and an encoder position acquisition circuit 206.
  • Deserializer 202 receives data transmitted by the one-way communication from the serializer 104 of the transmission device 100 and deserializes it.
  • Examples of the deserializer 202 include a circuit (or IC) having an arbitrary configuration that can deserialize an input serial signal and convert it into a parallel signal.
  • Digital-analog conversion circuit 204 converts the digital signal transmitted from the deserializer 202 into an analog signal.
  • Examples of the digital-analog conversion circuit include an arbitrary type of digital-analog conversion circuit such as a pulse width modulation type digital-analog conversion circuit.
  • the encoder position acquisition circuit 206 specifies the position detected by the incremental encoder based on the plurality of encoder signals transmitted from the deserializer 202, and obtains position information indicating the position.
  • the plurality of encoder signals transmitted from the deserializer 202 are signals acquired from the incremental encoder by the transmission device 100 illustrated in FIG. 2. That is, the encoder position acquisition circuit 206 converts the encoder signal acquired from the incremental encoder via the transmission device 100 into position information.
  • the receiving apparatus 200 has a configuration shown in FIG.
  • the receiving device can take a configuration corresponding to a sensor from which the transmitting device according to the present embodiment acquires a signal (in other words, a configuration corresponding to the transmitting device according to the present embodiment). is there.
  • the receiver according to the present embodiment does not include the digital-analog converter circuit 204. Also good.
  • the transmission device 100 is configured not to receive a signal from the incremental encoder, the reception device according to the present embodiment may not include the encoder position acquisition circuit 206.
  • a transmission system 1000 according to this embodiment includes a transmission device 100 according to this embodiment and a reception device according to this embodiment, for example, as shown in FIG. 200.
  • the transmission device 100 by having the transmission device 100, the amount of change data based on the signal acquired from the sensor is serialized and transmitted from the transmission device 100 to the reception device 200 by one-way communication.
  • the transmission system 1000 it is possible to transmit data based on the signal acquired from the sensor.
  • the following effects are produced, for example. Needless to say, the effects achieved in the transmission system 1000 are not limited to the examples shown below.
  • -Reduced wiring is realized when the transmission device 100 and the reception device 200 communicate with each other by wire.
  • the transmission device 100 and the reception device 200 are connected by a single signal line. Therefore, it becomes easier to detect the disconnection of the signal line.
  • the processing related to the detection of the disconnection may be performed by the receiving device 200 or may be performed by a processing device (for example, a processor or a signal processing module described later) that processes data received by the receiving device 200.
  • Good ⁇ Low delay in the transmission of change amount data from the transmission device 100 to the reception device 200 is realized.
  • FIG. 4 is an explanatory diagram showing an application example of the transmission system 1000 according to the present embodiment, and shows an example in which the transmission system 1000 is applied to a robot 300 including a robot arm. ing.
  • the robot 300 includes, for example, a base 302, a main body 304, a robot arm 306, one or more sensors 308, a storage member 310, a transmission device 100, and a reception device 200.
  • the robot 300 is driven by electric power supplied from an internal power supply (not shown) such as a battery or electric power supplied from an external power supply of the robot 300.
  • the transmission device 100 and the reception device 200 are connected by a signal line 322 by wire.
  • the signal line 322 may be stored inside the housing of the robot arm and connected to the receiving device 200 by wire.
  • the signal line 322 is stored inside the robot arm casing, so that the signal line 322 itself can be sterilized easily.
  • the transmission device 100 and the reception device 200 may be configured to perform wireless communication.
  • the robot 300 may include, for example, a motor (or an actuator; the same shall apply hereinafter) for moving the robot 300.
  • a motor or an actuator; the same shall apply hereinafter
  • Examples of the motor included in the robot 300 include a motor for rotating a robot arm 306 described later.
  • a robot corresponding to a slave device in the bilateral system can be cited.
  • the robot 300 moves based on the movement of a robot (not shown) corresponding to a master device in the bilateral system.
  • a signal hereinafter referred to as “sensor signal” indicating a detection result of the sensor 308 provided at the tip portion (A shown in FIG. 4) of the robot arm 306. May be transmitted from the robot 300 to a robot (not shown) corresponding to a device on the master side.
  • the robot (not shown) corresponding to the device on the master side, for example, performs various controls based on the received sensor signal and the operation of the robot (not shown). Feedback based on the received sensor signal to the person or the like can be performed.
  • the robot to which the transmission system according to the present embodiment is applied is not limited to the robot corresponding to the slave device in the bilateral system.
  • the base 302 plays a role of supporting the main body 304 and functions as a base in the robot 300.
  • One end of a robot arm 306 is connected to the main body 304.
  • the robot arm 306 has one end connected to the main body 304 and the other end movable.
  • the robot arm 306 corresponds to an operating unit in the robot 300.
  • the other end of the robot arm 306 is moved when a portion where the robot arm 306 is connected to the main body 304 performs a rotation operation or the like.
  • one or more sensors 308 are provided at the tip end portion (A shown in FIG. 4) of the other end side of the robot arm 306.
  • the sensor 308 include various sensors such as various sensors illustrated with reference to FIG. 3, an absolute encoder, and a force sensor.
  • the transmission device 100 is provided on the other end side of the robot arm 306.
  • FIG. 4 shows an example in which a substrate on which an IC that functions as the transmission device 100 is mounted is provided at the distal end portion (A shown in FIG. 4) on the other end side of the robot arm 306.
  • the transmission device 100 serializes and transmits the change amount data based on the signals acquired from each of the one or more sensors 308 by one-way communication.
  • the storage member 310 is connected to the main body 304.
  • drivers 320A, 320B, and 320C that drive the robot 300 are stored.
  • Examples of the drivers 320A, 320B, and 320C include servo drivers.
  • the drivers 320A, 320B, and 320C drive the robot 300 by driving a motor (not shown) included in the robot 300.
  • the storage member 310 may be provided with a signal processing module that processes a signal based on data received by the receiving device 200 (a signal corresponding to a signal acquired from a sensor).
  • the receiving device 200 receives and deserializes data transmitted from the transmitting device 100 by one-way communication.
  • FIG. 4 shows an example in which a substrate on which an IC functioning as the receiving device 200 is mounted is provided in the storage member 310.
  • the position where the receiving device 200 is provided is not limited to the storage member 310.
  • the receiving device 200 is provided on the base 302 by placing a substrate on which an IC functioning as the receiving device 200 is mounted on the base 302. Also good.
  • the receiving device 200 can be provided at an arbitrary position that is not provided in the robot arm 306, for example. As described above, the receiving device 200 is not provided on the robot arm 306, thereby reducing the weight of the robot arm 306 (more specifically, reducing the weight of the tip portion (A shown in FIG. 4) on the other end side of the robot arm 306). ).
  • the transmission system 1000 is applied to a robot 300 as shown in FIG. 4, for example.
  • a robot 300 illustrated in FIG. 4 includes a transmission device 100 and a reception device 200. Therefore, the robot 300 shown in FIG. 4 has the following effects. ⁇ Reduced wiring in the robot 300 is realized. ⁇ Detection of disconnection of a signal line in the robot 300 becomes easy. ⁇ Low delay in transmission of change amount data in the robot 300 is realized. ⁇ Low delay is realized. Thus, for example, the influence on the controllability of the robot 300 due to the phase delay of the detection value of the sensor (the value indicated by the change amount data) can be reduced.
  • the transmitting device 100 is provided at the tip end portion (A shown in FIG. 4) on the other end side of the robot arm 306, and the receiving device 200 is provided on the robot arm 306. Absent. Therefore, in the robot 300, it is realized that the drivers 320 ⁇ / b> A, 320 ⁇ / b> B, and 320 ⁇ / b> C and the signal processing module are provided outside the robot operation unit such as the storage member 310.
  • the robot shown in FIG. 4 is configured by “a configuration in which the transmitting device 100 is provided at the distal end portion (A shown in FIG. 4) of the robot arm 306 and the receiving device 200 is not provided in the robot arm 306”.
  • the following effects are further exhibited.
  • ⁇ Improvement of controllability due to moment reduction and drive mechanism by reducing force required for driving ⁇ Compact and light weight of the mechanical structure can be realized ⁇
  • Robot arm 306 tip structure of the robot 300 (the other end of the robot arm 306) The weight of the tip of the side)
  • the transmitting device 100 is provided at the distal end portion (A shown in FIG. 4) on the other end side of the robot arm 306 and the receiving device 200 is not provided on the robot arm 306”.
  • the following disadvantages may occur due to an increase in the number of wirings. It is done. -As the number of wires increases, the movement of the tip structure is restricted and tension load (disturbance element) is applied.-As the number of wires increases, the wiring becomes difficult.-As the number of wires increases, the wires break. Is more likely to
  • the transmission system according to the present embodiment to a robot, it is possible to realize both the weight reduction of the tip of the operating part of the robot and the reduction of wiring.
  • the robot development can be facilitated by realizing both the weight reduction of the tip of the operating part of the robot and the wiring saving.
  • the robot to which the transmission system according to the present embodiment is applied is not limited to the example shown in FIG.
  • the transmission system includes, for example, one or more sensors such as “a moving body such as an automobile including one or more sensors” and “a television receiver including one or more sensors”. And can be applied to any device in which data based on a signal output from the sensor is used.
  • the transmission system includes, for example, “a controller provided with one or more sensors and a game machine main body”, “a fixed point sensor provided with one or more sensors, and a computer such as a server”.
  • the present invention can be applied to any system having a device including one or more sensors such as a processing device that processes data based on a signal output from the sensor.
  • a transmission device that serializes and transmits one-way communication of change amount data based on a signal acquired from a sensor.
  • the transmission apparatus according to (1) further including a serializer that serializes the change amount data and transmits the serialized data by the one-way communication.
  • An analog-digital conversion circuit that converts a signal acquired from the sensor that outputs an analog signal into a digital signal;
  • the transmission apparatus according to (1) or (2), wherein the change amount data to be serialized is data converted by the analog-digital conversion circuit.
  • the analog-digital conversion circuit is a delta-sigma type analog-digital converter.
  • the transmission apparatus according to any one of (1) to (4), wherein the change amount data to be serialized is a signal acquired from the sensor that outputs a digital signal.
  • the transmission device according to any one of (1) to (5), wherein the sensor includes an incremental encoder.
  • the transmission device according to any one of (1) to (6), wherein the one-way communication is wired communication.
  • a transmission device that serializes and transmits the change amount data based on the signal acquired from the sensor by one-way communication; A receiving device for receiving and deserializing data transmitted by the one-way communication; Having a transmission system.
  • the sensor and the transmission device are provided on the other end side of the robot arm in a robot having a robot arm having one end connected to the main body and the other end movable.
  • a robot arm having one end connected to the main body and the other end movable, and a sensor provided on the other end;
  • a transmission device that is provided on the other end side of the robot arm and that serializes the amount of change data based on a signal acquired from the sensor and transmits the data by one-way communication;
  • a receiving device for receiving and deserializing data transmitted by the one-way communication;
  • a robot comprising: (11) The robot according to (10), wherein the receiving device is provided in a storage member that is connected to the main body and stores a driver that drives the robot. (12)
  • the said receiving apparatus is provided in the base which supports the said main body, The robot as described in (10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Manipulator (AREA)

Abstract

センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する、送信装置が提供される。

Description

送信装置、伝送システム、およびロボット
 本開示は、送信装置、伝送システム、およびロボットに関する。
 例えばロボットなどに利用されている、パラレルリンク機構を備えたパラレルリンクステージにおいて、省配線化を図る技術が開発されている。シリアル通信を利用することにより上記省配線化を図る技術としては、例えば下記の特許文献1に記載の技術が挙げられる。
特開2010-82784号公報
 例えば特許文献1に記載の技術では、EtherCAT(登録商標)のようなシリアルバスが用いられる。しかしながら、センサから取得される信号に基づくデータを、上記のようなシリアルバスを用いて伝送する場合には、下記のような課題が生じうる。
  ・データの伝送における遅延時間が大きい
  ・センサ数が増える程、遅延時間が増大する
  ・シリアルバスを用いた伝送に係る送信装置と受信装置との間で、時間の同期処理が必要となる
  ・パケット通信が行われるので、パケット通信に係る処理による遅延が生じ、かつ、ハードウェアコストおよびソフトウェアコストが増加する
 また、センサから取得される信号がアナログ信号である場合、シリアルバスを用いた伝送に係る送信装置では、当該アナログ信号をアナログ-デジタル変換してデータの伝送が行われる。また、シリアルバスを用いた伝送に係る受信装置では、受信されたデータをデジタル-アナログ変換することが想定される。しかしながら、上記のように“センサから取得される信号に基づくデータを上記のようなシリアルバスを用いて伝送するときに、送信装置においてアナログ-デジタル変換が行われ、受信装置においてデジタル-アナログ変換が行われる場合”には、さらに下記のような課題が生じうる。
  ・データの伝送における遅延時間が大きい(例えば、アナログ-デジタル変換に要する時間による遅延と、全ビットの転送が完了するまでに要する時間による遅延が発生するため)
  ・バスを切り替える制御回路が必要になるため回路規模が大きくなる
 本開示では、センサから取得される信号に基づくデータを伝送することが可能な、新規かつ改良された送信装置、伝送システム、およびロボットを提案する。
 本開示によれば、センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する、送信装置が、提供される。
 また、本開示によれば、センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する送信装置と、上記片方向通信により送信されたデータを受信し、デシリアライズする受信装置と、を有する、伝送システムが、提供される。
 また、本開示によれば、一端が本体に接続され他端が可動し、上記他端側にセンサが設けられるロボットアームと、上記ロボットアームの上記他端側に設けられ、上記センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する送信装置と、上記片方向通信により送信されたデータを受信し、デシリアライズする受信装置と、を備える、ロボットが、提供される。
 本開示によれば、センサから取得される信号に基づくデータを伝送することが、できる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握されうる他の効果が奏されてもよい。
センサから取得される信号に基づくデータがシリアルバスを介して伝送される場合における送信装置の構成の一例を示す説明図である。 本実施形態に係る伝送システムの構成の一例を示す説明図である。 本実施形態に係る送信装置の構成の一例を示す説明図である。 本実施形態に係る伝送システムの適用例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下では、下記に示す順序で説明を行う。
  1.本実施形態に係る伝送システム
  2.本実施形態に係る伝送システムの適用例
(本実施形態に係る伝送システム)
[1]センサから取得される信号に基づくデータがシリアルバスを介して伝送される場合について
 本実施形態に係る伝送システムの構成を説明する前に、センサから取得される信号に基づくデータがシリアルバスを介して伝送される場合について説明する。
 図1は、センサから取得される信号に基づくデータがシリアルバスを介して伝送される場合における送信装置10の構成の一例を示す説明図である。
 図1は、マイクロホンや加速度センサなどのセンシング結果をアナログ信号で出力するセンサと、インクリメンタルエンコーダ(センシング結果をデジタル信号で出力するセンサの一例)とからそれぞれ取得される信号を、シリアルバスを介して送信する送信装置10の構成の一例を、示している。図1では、インクリメンタルエンコーダから取得されるデジタル信号を、便宜上「エンコーダ信号」と示している(他の図でも同様とする。)。
 送信装置10と、インクリメンタルエンコーダなどの各センサとは、例えば、信号線により有線で接続され、当該信号線を介して各センサが出力する信号を取得する。なお、送信装置10は、各センサとの間で任意の通信方式の無線通信を行うことにより、各センサが出力する信号を取得してもよい。
 送信装置10は、例えば、アナログ-デジタル変換回路12と、エンコーダ位置取得回路14と、バス制御回路16と、シリアルバス制御回路18とを備える。
 アナログ-デジタル変換回路12は、アナログ信号を出力するセンサから取得される信号を、デジタル信号に変換する。アナログ-デジタル変換回路12としては、例えば、逐次比較型のアナログ-デジタル変換回路などが挙げられる。
 エンコーダ位置取得回路14は、インクリメンタルエンコーダから取得される複数のエンコーダ信号に基づいて、インクリメンタルエンコーダにおいて検出された位置を特定し、位置を示す位置情報(データ)を得る。つまり、エンコーダ位置取得回路14は、インクリメンタルエンコーダから取得されるエンコーダ信号を、位置情報に変換する。
 バス制御回路16は、バスを切り替える制御回路である。バス制御回路16は、シリアルバス制御回路18から伝達されるタイミング信号などに基づいて、バスを切り替える。
 シリアルバス制御回路18は、シリアルバスを介した通信を制御する制御回路である。
 送信装置10は、例えば図1に示す構成によって、センサから取得される信号に基づくデータを、シリアルバスを介して送信する。
 また、送信装置10からシリアルバスを介して送信されたデータを、当該シリアルバスを介して受信する受信装置(図示せず)は、図1に示す送信装置10と同様の機能を有するシリアルバス制御回路とバス制御回路とを備える。また、受信装置(図示せず)は、受信されたデータをデジタル-アナログ変換するデジタル-アナログ変換回路を、さらに備えていてもよい。デジタル-アナログ変換回路としては、例えば、パルス幅変調型のデジタル-アナログ変換回路などが挙げられる。
 そして、送信装置10と受信装置(図示せず)とでは、送信装置10が備えるシリアルバス制御回路と、受信装置(図示せず)が備えるシリアルバス制御回路との間で、シリアルバスを介した双方向通信が行われることによって、センサから取得される信号に基づくデータがシリアルバスを介して伝送される。
 しかしながら、上述したように、センサから取得される信号に基づくデータを、シリアルバスを用いて伝送する場合には、下記のような課題が生じうる。
  ・データの伝送における遅延時間が大きい
  ・センサ数が増える程、遅延時間が増大する
  ・送信装置10と受信装置(図示せず)との間で、時間の同期処理が必要となる
  ・パケット通信が行われるので、パケット通信に係る処理による遅延が生じ、かつ、ハードウェアコストおよびソフトウェアコストが増加する
 また、図1に示すように、センサから取得される信号にアナログ信号が含まれる場合には、送信装置10では、当該アナログ信号をアナログ-デジタル変換してデータの伝送が行われる。また、上述したように、シリアルバスを用いた伝送に係る受信装置(図示せず)は、受信されたデータをデジタル-アナログ変換するデジタル-アナログ変換回路を備えうる。しかしながら、上述したように、送信装置10においてアナログ-デジタル変換が行われ、受信装置(図示せず)においてデジタル-アナログ変換が行われる場合には、さらに下記のような課題が生じうる。
  ・データの伝送における遅延時間が大きい
  ・バスを切り替える制御回路が必要になるため回路規模が大きくなる
 さらに、図1に示すようにセンサにインクリメンタルエンコーダが含まれる場合、送信装置10は、エンコーダ信号を位置情報に変換するエンコーダ位置取得回路14を備える必要がある。また、送信装置10では、エンコーダ位置取得回路14により得られる位置情報の分解能分だけ、データの伝送における遅延時間が増大する。一例を挙げると、エンコーダ位置取得回路14が、32bitのエンコーダ信号を64bitの位置情報に変換した場合には、32bit分遅延時間が増大する。
[2]本実施形態に係る伝送システムの構成
 そこで、本実施形態に係る伝送システムでは、本実施形態に係る送信装置が、センサから取得される信号に基づく変化量のデータ(以下、単に「変化量のデータ」と示す場合がある。)を、シリアライズして片方向通信により送信する。また、本実施形態に係る伝送システムでは、本実施形態に係る受信装置が、片方向通信により本実施形態に係る送信装置から送信されたデータを受信し、デシリアライズする。
 本実施形態に係る送信装置には、例えば、1または2以上のセンサが信号線により有線で接続される。そして、本実施形態に係る送信装置は、接続されている上記信号線を介して、1または2以上のセンサそれぞれが出力する信号を取得する。
 また、本実施形態に係る送信装置は、1または2以上のセンサそれぞれとの間で任意の通信方式の無線通信を行うことにより、1または2以上のセンサそれぞれが出力する信号を取得してもよい。
 以下では、本実施形態に係る送信装置が、信号線を介してセンサが出力する信号を取得する場合を例に挙げる。
 ここで、本実施形態に係るセンサとしては、変化量を示すデジタル信号(センシング結果を示すデジタル信号)を出力するセンサと、変化量を示すアナログ信号(センシング結果を示すアナログ信号)を出力するセンサとの一方または双方が挙げられる。本実施形態に係るデジタル信号を出力するセンサの一例、および本実施形態に係るアナログ信号を出力するセンサの一例については、後述する。
 以下では、本実施形態に係る送信装置が、デジタル信号を出力するセンサと、アナログ信号を出力するセンサとの双方を含む、複数のセンサがそれぞれ出力する信号を取得する場合を例に挙げる。
 図2は、本実施形態に係る伝送システム1000の構成の一例を示す説明図である。
 伝送システム1000は、本実施形態に係る送信装置100と、本実施形態に係る受信装置200とを有する。
 送信装置100と受信装置200とは、例えば、LAN(Local Area Network)ケーブルなどの信号線により有線で接続される。そして、伝送システム1000では、送信装置100から受信装置200への片方向通信が可能な任意の有線通信方式により、送信装置100から受信装置200へと変化量のデータが伝送される。
 上述したように、本実施形態に係る送信装置は、変化量のデータをシリアライズして片方向通信により送信する。よって、伝送システム1000では、送信装置100と受信装置200とを接続する信号線は1本でよい。ここで、本実施形態に係る1本の信号線としては、例えば、物理的に1本の信号線、または、1対の信号線が、挙げられる。本実施形態に係る1本の信号線が1対の信号線である場合、変化量のデータは、差動信号として送信される。なお、伝送システム1000において、送信装置100と受信装置200とを接続する信号線の数を2本以上とすることが可能であることは、言うまでもない。
 また、伝送システム1000では、送信装置100から受信装置200への片方向通信が可能な任意の無線通信方式により、送信装置100から受信装置200へと変化量のデータが無線で伝送されてもよい。伝送システム1000における変化量のデータの伝送に適用される無線通信の一例としては、例えば、光通信が挙げられる。
[2-1]送信装置100
 送信装置100は、センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する。
 送信装置100は、例えば、アナログ-デジタル変換回路102と、シリアライザ104とを備える。送信装置100は、バッテリなどの内部電源(図示せず)から供給される電力、または、送信装置100の外部電源から供給される電力によって、駆動する。
 図2では、1つのアナログ信号を出力するセンサと、1つのインクリメンタルエンコーダ(3つのエンコーダ信号を出力するインクリメンタルエンコーダ)とが、送信装置100に信号線により接続されている例を示している。
 なお、送信装置100がセンサから取得される信号は、図2に示す例に限られない。
 図3は、本実施形態に係る送信装置100の構成の一例を示す説明図である。図3では、本実施形態に係るセンサとして、モータ1、モータ2、モータ3それぞれに対応する複数のセンサ、マイクロホン、および並進3軸の加速度センサを示している。
 図3では、各モータに対応する複数のセンサとして、リミットセンサと、原点センサと、インクリメンタルエンコーダとを示している。各モータに対応する複数のセンサは、変化量を示すデジタル信号を出力するセンサの一例である。図3に示す例では、送信装置100は、モータに対応する複数のセンサから6つのデジタル信号を取得する。また、図3に示す例では、モータ1、モータ2、モータ3それぞれに対応する複数のセンサから取得される、計18つのデジタル信号が、デジタル信号を出力するセンサから取得される信号に基づく変化量のデータに該当する。
 また、図3に示すマイクロホンと、並進3軸の加速度センサとは、変化量を示すアナログ信号を出力するセンサの一例である。図3に示す例では、送信装置100は、マイクロホンと、並進3軸の加速度センサとから、4つのアナログ信号を取得する。
 以下、説明の便宜上、図3を参照して、送信装置100の構成の一例を説明する。なお、送信装置100がセンサから取得する信号は、図2、図3に示す例に限られない。例えば、送信装置100は、アブソリュートエンコーダや力センサなどの様々なセンサから出力される信号を、取得することが可能である。
[2-1-1]アナログ-デジタル変換回路102
 アナログ-デジタル変換回路102は、アナログ信号を出力するセンサから取得される信号を、デジタル信号に変換する。アナログ-デジタル変換回路102により変換されたデジタル信号は、アナログ信号を出力するセンサから取得される信号に基づく変化量のデータに該当する。
 アナログ-デジタル変換回路102としては、例えば、デルタシグマ型のアナログ-デジタル変換器110が挙げられる。デルタシグマ型のアナログ-デジタル変換器110は、マイクロホンと並進3軸の加速度センサとから取得される4つのアナログ信号を、4つのデジタル信号に変換する。
 図3に示すように、アナログ-デジタル変換回路102が、デルタシグマ型のアナログ-デジタル変換器110である場合には、センサから取得されるアナログ信号は、1ビットのデジタル信号に変換される。よって、アナログ-デジタル変換回路102が、デルタシグマ型のアナログ-デジタル変換器110である場合には、センサから取得されるアナログ信号に基づく変化量のデータを、低遅延で伝送することが可能となる。
 また、デルタシグマ型のアナログ-デジタル変換器110は、他の型のアナログ-デジタル変換回路よりも小規模な回路で実現可能である。よって、アナログ-デジタル変換回路102が、デルタシグマ型のアナログ-デジタル変換器110である場合には、アナログ-デジタル変換回路102の小規模化を図ることができる。
 なお、アナログ-デジタル変換回路102は、デルタシグマ型のアナログ-デジタル変換器110に限られない。例えば、アナログ-デジタル変換回路102は、逐次比較型のアナログ-デジタル変換回路などの、任意の型のアナログ-デジタル変換回路であってもよい。
 アナログ-デジタル変換回路102により変換されたデジタル信号は、シリアライザ104に伝達される。また、後述するように、シリアライザ104では、伝達される変化量のデータがシリアライズされる。つまり、図3に示す構成の送信装置100においてシリアライズされる変化量のデータには、アナログ-デジタル変換回路102により変換されたデータが含まれる。
[2-1-2]シリアライザ104
 シリアライザ104は、変化量のデータをシリアライズし、シリアライズしたデータを片方向通信により送信する。シリアライザ104としては、例えば、入力されるパラレル信号をシリアライズし、シリアル信号を伝送路を介して送信することが可能な、任意の構成の回路(またはIC(Integrated Circuit))が、挙げられる。
 図3に示す例では、22つのデジタル信号(モータ1、モータ2、モータ3それぞれに対応する複数のセンサから取得される18つのデジタル信号、およびデルタシグマ型のアナログ-デジタル変換器110から伝達される4つのデジタル信号)が、シリアライザ104に入力される。そして、シリアライザ104は、入力される22つのデジタル信号を、50[MHz]などの所定のクロックに従ってシリアライズして、シリアライズされた信号を片方向通信により送信する。
 ここで、例えばシリアライザ104におけるクロックが50[MHz]である場合には、送信装置100と受信装置200との間の遅延時間(シリアライザ104と後述するデシリアライザ202との間の遅延時間)は、5.7[μS]程度である。また、シリアライザ104は、理論上、クロック周波数まで信号を伝送することが可能である。なお、シリアライザ104における所定のクロックが、50[MHz]に限られないことは、言うまでもない。
 送信装置100は、例えば図2、図3に示す構成を有する。
 ここで、送信装置100は、シリアライザ104によって、変化量のデータをシリアライズして片方向通信により送信する。
 よって、送信装置100は、センサから取得される信号に基づくデータをシリアルバスを用いて伝送する場合における送信装置10と比較して、下記のような利点(メリット)を有する。
  ・データの伝送における遅延時間が小さい
  ・センサ数が増えたとしても、遅延時間の増大が抑えられる
  ・送信装置100と受信装置200との間において、時間の同期処理が必要ない
  ・パケット通信が行われないので、パケット通信に係る処理による遅延が生じず、かつ、パケット通信に係るハードウェアコストおよびソフトウェアコストの増加はない
  ・バスを切り替える制御回路が必要ではないため回路規模が小さい
  ・センサにインクリメンタルエンコーダが含まれる場合であっても、送信装置100は、エンコーダ信号を位置情報に変換するエンコーダ位置取得回路を備える必要はない(換言すると、送信装置100は、インクリメンタルエンコーダから出力されるエンコーダ信号をそのままシリアライズする構成をとることができる)
 なお、本実施形態に係る送信装置の構成は、図2、図3に示す例に限られない。
 例えば、本実施形態に係る送信装置が、アナログ信号を出力するセンサが出力する信号を取得しない場合には、本実施形態に係る送信装置は、アナログ-デジタル変換回路102を備えない構成をとることが可能である。
[2-2]受信装置200
 受信装置200は、片方向通信により送信されたデータを受信し、デシリアライズする。
 以下、図2を例に挙げて、受信装置200の構成の一例を説明する。ここで、図2に示す受信装置200は、図2に示す送信装置100に対応する受信装置である。
 図2に示すように、受信装置200は、例えば、デシリアライザ202と、デジタル-アナログ変換回路204と、エンコーダ位置取得回路206とを備える。
[2-2-1]デシリアライザ202
 デシリアライザ202は、送信装置100のシリアライザ104から片方向通信により送信されたデータを受信し、デシリアライズする。
 デシリアライザ202としては、例えば、入力されるシリアル信号をデシリアライズして、パラレル信号に変換することが可能な、任意の構成の回路(またはIC)が、挙げられる。
[2-2-2]デジタル-アナログ変換回路204
 デジタル-アナログ変換回路204は、デシリアライザ202から伝達されるデジタル信号をアナログ信号に変換する。デジタル-アナログ変換回路としては、例えば、パルス幅変調型のデジタル-アナログ変換回路などの、任意の型のデジタル-アナログ変換回路が挙げられる。
 エンコーダ位置取得回路206は、デシリアライザ202から伝達される複数のエンコーダ信号に基づいて、インクリメンタルエンコーダにおいて検出された位置を特定し、位置を示す位置情報を得る。ここで、デシリアライザ202から伝達される複数のエンコーダ信号は、図2に示す送信装置100がインクリメンタルエンコーダから取得した信号である。つまり、エンコーダ位置取得回路206は、インクリメンタルエンコーダから送信装置100を介して取得されるエンコーダ信号を、位置情報に変換する。
 受信装置200は、例えば図2に示す構成を有する。
 なお、本実施形態に係る受信装置の構成は、図2に示す例に限られない。
 例えば、本実施形態に係る受信装置は、本実施形態に係る送信装置が信号を取得するセンサに対応する構成(換言すると、本実施形態に係る送信装置に対応する構成)をとることが可能である。一例を挙げると、本実施形態に係る送信装置がアナログ信号を出力するセンサが出力する信号を取得しない場合には、本実施形態に係る受信装置は、デジタル-アナログ変換回路204を備えていなくてもよい。また、他の例を挙げると、送信装置100がインクリメンタルエンコーダから信号を受信しない構成である場合には、本実施形態に係る受信装置は、エンコーダ位置取得回路206を備えていなくてもよい。
[2-3]本実施形態に係る伝送システムが奏する効果
 本実施形態に係る伝送システム1000は、例えば図2に示すように、本実施形態に係る送信装置100と、本実施形態に係る受信装置200とを有する。
 伝送システム1000では、送信装置100を有することによって、センサから取得される信号に基づく変化量のデータが、シリアライズされて片方向通信により送信装置100から受信装置200へと伝送される。
 よって、伝送システム1000では、センサから取得される信号に基づくデータを伝送することが、実現される。
 また、伝送システム1000では、例えば下記の効果が奏される。なお、伝送システム1000において奏される効果が、下記に示す例に限られないことは、言うまでもない。
  ・送信装置100と受信装置200とが有線で通信を行う場合において、省配線化が実現される
  ・省配線化によって、例えば、送信装置100と受信装置200とを1本の信号線で接続することが可能となるので、当該信号線の断線の検出がより容易となる。なお、断線の検出に係る処理は、受信装置200が行ってもよいし、受信装置200が受信したデータを処理する処理装置(例えば、プロセッサや、後述する信号処理モジュールなど)によって行われてもよい
  ・送信装置100から受信装置200への変化量のデータの伝送における低遅延化が実現される
(本実施形態に係る伝送システムの適用例)
 次に、上述した本実施形態に係る伝送システムの適用例について、説明する。
[I]第1の適用例:ロボット
 図4は、本実施形態に係る伝送システム1000の適用例を示す説明図であり、伝送システム1000が、ロボットアームを含むロボット300に適用される例を示している。
 ロボット300は、例えば、土台302と、本体304と、ロボットアーム306と、1または2以上のセンサ308と、収納部材310と、送信装置100と、受信装置200とを含む。ロボット300は、バッテリなどの内部電源(図示せず)から供給される電力、または、ロボット300の外部電源から供給される電力によって、駆動する。
 送信装置100と受信装置200とは、信号線322により有線で接続される。ここで、信号線322は、ロボットアームの筐体内部に格納されて、受信装置200に有線で接続されてもよい。信号線322がロボットアームの筐体内部に格納される場合には、信号線322がロボットアームの筐体内部に格納されることから、信号線322自体の滅菌処理が容易となる。なお、上述したように、送信装置100と受信装置200とは無線通信を行う構成であってもよい。
 また、ロボット300は、例えば、ロボット300を動かすためのモータ(またはアクチュエータ。以下、同様とする。)を備えていてもよい。ロボット300が備えるモータとしては、例えば後述するロボットアーム306を回転動作させるためのモータなどが、挙げられる。
 ここで、ロボット300としては、例えば、バイラテラルシステムにおけるスレーブ(Slave)側のデバイスに該当するロボットが、挙げられる。ロボット300が、バイラテラルシステムにおけるスレーブ側のデバイスに該当する場合、バイラテラルシステムにおけるマスタ(Master)側のデバイスに該当するロボット(図示せず)の動きに基づき動く。また、ロボット300が、バイラテラルシステムにおけるスレーブ側のデバイスに該当する場合、ロボットアーム306の先端部分(図4に示すA)に設けられるセンサ308の検出結果を示す信号(以下、「センサ信号」と示す場合がある。)は、例えば、ロボット300からマスタ(Master)側のデバイスに該当するロボット(図示せず)へと伝達されてもよい。センサ信号が受信されることによって、マスタ(Master)側のデバイスに該当するロボット(図示せず)は、例えば、受信されたセンサ信号に基づく様々な制御や、当該ロボット(図示せず)の操作者などに対する受信されたセンサ信号に基づくフィードバックなどを、行うことができる。なお、本実施形態に係る伝送システムが適用されるロボットが、バイラテラルシステムにおけるスレーブ側のデバイスに該当するロボットに限られないことは、言うまでもない。
 土台302は、本体304を支える役目を果たし、ロボット300におけるベースとして機能する。
 本体304には、ロボットアーム306の一端が接続される。
 ロボットアーム306は、一端が本体304に接続され他端が可動する。ロボットアーム306は、ロボット300における稼働部に該当する。図4に示す例では、ロボットアーム306が本体304に接続されている部分が回転動作などを行うことなどによって、ロボットアーム306の他端が可動する。
 また、ロボットアーム306の他端側の先端部分(図4に示すA)には、1または2以上のセンサ308が設けられる。センサ308としては、図3を参照して示した各種センサや、アブソリュートエンコーダ、力センサなどの、様々なセンサが挙げられる。
 送信装置100は、ロボットアーム306の他端側に設けられる。図4では、送信装置100として機能するICが搭載された基板が、ロボットアーム306の他端側の先端部分(図4に示すA)に設けられている例を示している。
 送信装置100は、上述したように、1または2以上のセンサ308それぞれから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する。
 収納部材310は、本体304に接続される。収納部材310には、例えば、ロボット300を駆動させるドライバ320A、320B、320Cが収納される。ドライバ320A、320B、320Cとしては、例えばサーボドライバが挙げられる。ドライバ320A、320B、320Cは、ロボット300が備えるモータ(図示せず)を駆動させることによって、ロボット300を駆動させる。
 また、収納部材310には、例えば、受信装置200において受信されたデータに基づく信号(センサから取得される信号に対応する信号)を処理する、信号処理モジュールが設けられていてもよい。
 受信装置200は、上述したように、片方向通信により送信装置100から送信されたデータを受信し、デシリアライズする。
 図4では、受信装置200として機能するICが搭載された基板が、収納部材310に設けられている例を示している。
 なお、本実施形態に係る伝送システムが適用されるロボットにおいて、受信装置200が設けられる位置は、収納部材310に限られない。
 例えば、本実施形態に係る伝送システムが適用されるロボットでは、受信装置200として機能するICが搭載された基板が土台302に配置されることなどにより、受信装置200が土台302に設けられていてもよい。
 また、本実施形態に係る伝送システムが適用されるロボットでは、受信装置200は、例えば、ロボットアーム306に設けられない任意の位置に設けることが可能である。上記のように、受信装置200がロボットアーム306に設けられないことによって、ロボットアーム306の軽量化(さらに述べれば、ロボットアーム306の他端側の先端部分(図4に示すA)の軽量化)を図ることができる。
 伝送システム1000は、例えば図4に示すようなロボット300に適用される。
 図4に示すロボット300は、送信装置100と受信装置200とを有する。よって、図4に示すロボット300では、下記に示すような効果が奏される。
  ・ロボット300における省配線化が実現される
  ・ロボット300における信号線の断線の検出が容易となる
  ・ロボット300における変化量のデータの伝送における低遅延化が実現される
  ・低遅延化が実現されることによって、例えば、センサの検出値(変化量のデータが示す値)の位相遅れに起因するロボット300の制御性への影響を、軽減することができる
 また、図4に示すロボットアーム306の他端側の先端部分(図4に示すA)のような、ロボットの稼働部の先端の質量を軽減させることは、例えば、モーメント低下による制御性の向上、駆動に必要な力の低減による駆動機構・機械構造の小型・軽量化などの、多くの利点がある。
 ここで、図4に示すロボット300では、送信装置100がロボットアーム306の他端側の先端部分(図4に示すA)に設けられており、受信装置200が、ロボットアーム306に設けられていない。よって、ロボット300では、ドライバ320A、320B、320Cや、信号処理モジュールが、収納部材310内などの、ロボットの稼働部以外に設けることが、実現されている。
 また、“送信装置100がロボットアーム306の他端側の先端部分(図4に示すA)に設けられ、受信装置200が、ロボットアーム306に設けられていない構成”によって、図4に示すロボット300では、さらに下記に示すような効果が奏される。
  ・モーメント低下による制御性の向上、駆動に必要な力の低減による駆動機構・機械構造の小型・軽量化が、実現される
  ・ロボット300が有するロボットアーム306の先端構造(ロボットアーム306の他端側の先端部分の構造)の軽量化が実現される
 ここで、図4に示すように“送信装置100がロボットアーム306の他端側の先端部分(図4に示すA)に設けられ、受信装置200が、ロボットアーム306に設けられていない構成”をとるときに、送信装置100と受信装置200とを信号線により有線で接続する場合を想定すると、配線数が増えることに起因して、例えば下記のような欠点(デメリット)が生じうると考えられる。
  ・配線数が多くなる程、先端構造の動きを制限し、張力負荷(外乱要素)がかかる
  ・配線数が多くなる程、配線の取り回しが困難になる
  ・配線数が多くなる程、配線が断線する可能性が高くなる
 しかしながら、ロボット300では、上述したように省配線化が実現されるので、上記のような配線数が増えることに起因して生じうる欠点が生じる可能性は、低減される。
 以上のように、本実施形態に係る伝送システムがロボットに適用されることによって、ロボットの稼働部の先端の質量の軽量化と、省配線化との両立を実現することができる。また、ロボットの稼働部の先端の質量の軽量化と省配線化との両立が実現されることによって、ロボット開発をより容易とすることが可能となる。
 なお、本実施形態に係る伝送システムが適用されるロボットが、図4に示す例に限られないことは、言うまでもない。
[II]他の適用例
 本実施形態に係る伝送システムの適用例は、ロボットに限られない。
 本実施形態に係る伝送システムは、例えば、“1または2以上のセンサを備える自動車などの移動体”や“1または2以上のセンサを備えるテレビジョン受像機”などの、1または2以上のセンサを備え、当該センサから出力される信号に基づくデータが用いられる、任意のデバイスに適用することが可能である。
 また、本実施形態に係る伝送システムは、例えば、“1または2以上のセンサが設けられるコントローラ、およびゲーム機本体”や“1または2以上のセンサが設けられる定点センサ、およびサーバなどのコンピュータ”などの、1または2以上のセンサを備るデバイスと、センサから出力される信号に基づくデータを処理する処理装置とを有する、任意のシステムに適用することが可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する、送信装置。
(2)
 前記変化量のデータをシリアライズし、シリアライズしたデータを前記片方向通信により送信するシリアライザを備える、(1)に記載の送信装置。
(3)
 アナログ信号を出力する前記センサから取得される信号をデジタル信号に変換するアナログ-デジタル変換回路を備え、
 シリアライズされる前記変化量のデータは、前記アナログ-デジタル変換回路により変換されたデータである、(1)、または(2)に記載の送信装置。
(4)
 前記アナログ-デジタル変換回路は、デルタシグマ型のアナログ-デジタル変換器である、(3)に記載の送信装置。
(5)
 シリアライズされる前記変化量のデータは、デジタル信号を出力する前記センサから取得される信号である、(1)~(4)のいずれか1つに記載の送信装置。
(6)
 前記センサには、インクリメンタルエンコーダが含まれる、(1)~(5)のいずれか1つに記載の送信装置。
(7)
 前記片方向通信は、有線通信である、(1)~(6)のいずれか1つに記載の送信装置。
(8)
 センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する送信装置と、
 前記片方向通信により送信されたデータを受信し、デシリアライズする受信装置と、
 を有する、伝送システム。
(9)
 前記センサと前記送信装置とは、一端が本体に接続され他端が可動するロボットアームを有するロボットにおける、前記ロボットアームの前記他端側に設けられ、
 前記受信装置は、前記ロボットアームに設けられない、(8)に記載の伝送システム。
(10)
 一端が本体に接続され他端が可動し、前記他端側にセンサが設けられるロボットアームと、
 前記ロボットアームの前記他端側に設けられ、前記センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する送信装置と、
 前記片方向通信により送信されたデータを受信し、デシリアライズする受信装置と、
 を備える、ロボット。
(11)
 前記受信装置は、前記本体に接続され、前記ロボットを駆動させるドライバが収納される収納部材に設けられる、(10)に記載のロボット。
(12)
 前記受信装置は、前記本体を支える土台に設けられ、(10)に記載のロボット。
 10、100  送信装置
 12、102  アナログ-デジタル変換回路
 14、206  エンコーダ位置取得回路
 16  バス制御回路
 18  シリアルバス制御回路
 104  シリアライザ
 110  デルタシグマ型のアナログ-デジタル変換器
 200  受信装置
 202  デシリアライザ
 204  デジタル-アナログ変換回路
 300  ロボット
 302  土台
 304  本体
 306  ロボットアーム
 308  センサ
 310  収納部材
 1000  伝送システム

Claims (12)

  1.  センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する、送信装置。
  2.  前記変化量のデータをシリアライズし、シリアライズしたデータを前記片方向通信により送信するシリアライザを備える、請求項1に記載の送信装置。
  3.  アナログ信号を出力する前記センサから取得される信号をデジタル信号に変換するアナログ-デジタル変換回路を備え、
     シリアライズされる前記変化量のデータは、前記アナログ-デジタル変換回路により変換されたデータである、請求項1に記載の送信装置。
  4.  前記アナログ-デジタル変換回路は、デルタシグマ型のアナログ-デジタル変換器である、請求項3に記載の送信装置。
  5.  シリアライズされる前記変化量のデータは、デジタル信号を出力する前記センサから取得される信号である、請求項1に記載の送信装置。
  6.  前記センサには、インクリメンタルエンコーダが含まれる、請求項1に記載の送信装置。
  7.  前記片方向通信は、有線通信である、請求項1に記載の送信装置。
  8.  センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する送信装置と、
     前記片方向通信により送信されたデータを受信し、デシリアライズする受信装置と、
     を有する、伝送システム。
  9.  前記センサと前記送信装置とは、一端が本体に接続され他端が可動するロボットアームを有するロボットにおける、前記ロボットアームの前記他端側に設けられ、
     前記受信装置は、前記ロボットアームに設けられない、請求項8に記載の伝送システム。
  10.  一端が本体に接続され他端が可動し、前記他端側にセンサが設けられるロボットアームと、
     前記ロボットアームの前記他端側に設けられ、前記センサから取得される信号に基づく変化量のデータを、シリアライズして片方向通信により送信する送信装置と、
     前記片方向通信により送信されたデータを受信し、デシリアライズする受信装置と、
     を備える、ロボット。
  11.  前記受信装置は、前記本体に接続され、前記ロボットを駆動させるドライバが収納される収納部材に設けられる、請求項10に記載のロボット。
  12.  前記受信装置は、前記本体を支える土台に設けられ、請求項10に記載のロボット。
PCT/JP2017/018325 2016-07-11 2017-05-16 送信装置、伝送システム、およびロボット WO2018012102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017003484.1T DE112017003484T5 (de) 2016-07-11 2017-05-16 Übertragungsvorrichtung, übertragungssystem und roboter
JP2018527413A JPWO2018012102A1 (ja) 2016-07-11 2017-05-16 送信装置、伝送システム、およびロボット
US16/307,295 US10666282B2 (en) 2016-07-11 2017-05-16 Transmission device, transmission system, and robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-136550 2016-07-11
JP2016136550 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012102A1 true WO2018012102A1 (ja) 2018-01-18

Family

ID=60953024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018325 WO2018012102A1 (ja) 2016-07-11 2017-05-16 送信装置、伝送システム、およびロボット

Country Status (4)

Country Link
US (1) US10666282B2 (ja)
JP (1) JPWO2018012102A1 (ja)
DE (1) DE112017003484T5 (ja)
WO (1) WO2018012102A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220076131A (ko) * 2020-11-30 2022-06-08 현대자동차주식회사 힘 측정 센서 및 그 센서를 포함하는 로봇

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527821A (ja) * 1991-07-19 1993-02-05 Fanuc Ltd 単方向通信リンクの障害検出方法
JPH0580848A (ja) * 1991-09-18 1993-04-02 Mitsubishi Electric Corp エンコーダ
JPH05113809A (ja) * 1991-10-23 1993-05-07 Fanuc Ltd Cncとエンコーダ間のシリアルインターフエース方式
JPH06250715A (ja) * 1992-12-28 1994-09-09 Smc Corp アクチュエータシステム
JPH0966490A (ja) * 1995-08-30 1997-03-11 Matsushita Electric Ind Co Ltd 産業用ロボットおよびその制御装置
JP2008126328A (ja) * 2006-11-17 2008-06-05 Toyota Motor Corp ロボット装置及びそのセンサ計測情報転送システム
JP2008128861A (ja) * 2006-11-22 2008-06-05 Matsushita Electric Ind Co Ltd 慣性力センサ
JP2010082784A (ja) * 2008-10-02 2010-04-15 Olympus Corp パラレルリンクステージの制御方法およびパラレルリンクステージ
JP2012088281A (ja) * 2010-10-22 2012-05-10 Seiko Instruments Inc 角速度センサ
JP2015089577A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 ロボット、制御装置及びロボットシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185736A (en) * 1989-05-12 1993-02-09 Alcatel Na Network Systems Corp. Synchronous optical transmission system
JP4186935B2 (ja) * 2005-02-14 2008-11-26 ソニー株式会社 多重化装置及び多重化方法、並びに多重化データ送受信システム
US7319406B2 (en) * 2005-09-30 2008-01-15 Rockwell Automation Technologies, Inc. System and method of channel serialization in a safety I/O product
JP5572929B2 (ja) * 2008-03-05 2014-08-20 ソニー株式会社 送信装置
WO2010127187A1 (en) * 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
DE102010042903A1 (de) * 2010-10-26 2012-04-26 Robert Bosch Gmbh Übertragungsverfahren und -System
US9490911B2 (en) * 2013-03-15 2016-11-08 Fairfield Industries Incorporated High-bandwidth underwater data communication system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527821A (ja) * 1991-07-19 1993-02-05 Fanuc Ltd 単方向通信リンクの障害検出方法
JPH0580848A (ja) * 1991-09-18 1993-04-02 Mitsubishi Electric Corp エンコーダ
JPH05113809A (ja) * 1991-10-23 1993-05-07 Fanuc Ltd Cncとエンコーダ間のシリアルインターフエース方式
JPH06250715A (ja) * 1992-12-28 1994-09-09 Smc Corp アクチュエータシステム
JPH0966490A (ja) * 1995-08-30 1997-03-11 Matsushita Electric Ind Co Ltd 産業用ロボットおよびその制御装置
JP2008126328A (ja) * 2006-11-17 2008-06-05 Toyota Motor Corp ロボット装置及びそのセンサ計測情報転送システム
JP2008128861A (ja) * 2006-11-22 2008-06-05 Matsushita Electric Ind Co Ltd 慣性力センサ
JP2010082784A (ja) * 2008-10-02 2010-04-15 Olympus Corp パラレルリンクステージの制御方法およびパラレルリンクステージ
JP2012088281A (ja) * 2010-10-22 2012-05-10 Seiko Instruments Inc 角速度センサ
JP2015089577A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 ロボット、制御装置及びロボットシステム

Also Published As

Publication number Publication date
DE112017003484T5 (de) 2019-04-04
JPWO2018012102A1 (ja) 2019-04-25
US10666282B2 (en) 2020-05-26
US20190149161A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN111496823B (zh) 机器人、机器人系统和机器人控制装置
US20050174086A1 (en) Machine controller
JP2008126328A (ja) ロボット装置及びそのセンサ計測情報転送システム
WO2018012102A1 (ja) 送信装置、伝送システム、およびロボット
EP3054618B1 (en) Communication apparatus and motor control apparatus
JP6500453B2 (ja) 回路装置、物理量検出装置、電子機器及び移動体
KR20220166759A (ko) 로봇의 감시 시스템
JP2010068321A (ja) I2cインタフェースを有するシステム及びその方法
JP4728128B2 (ja) 多軸モータ位置検出信号伝達装置
US5948073A (en) Multiplexing bus controller with input conditioning
JPH07177298A (ja) センサシステム
CN114342311B (zh) 用于同步串行数据传输的装置和方法
JPH0420202B2 (ja)
KR950001098B1 (ko) 로봇핸드장치
CN216252836U (zh) 一种通信信号转换装置
JP4337605B2 (ja) 信号伝送システムおよび画像形成装置
WO2021044717A1 (ja) 複合センシングデバイス、回転機器及び回転機器制御システム
KR101826776B1 (ko) Spi 통신에서 프레임 변환회로, 이종 프레임간 통신 시스템 및 방법
KR20240059182A (ko) 테스트 동작을 수행하는 인터페이스
RU2148273C1 (ru) Устройство сопряжения
Panich A mobile robot with a inter-integrated circuit system
JPH01157284A (ja) サーボモータの信号伝送装置
JP2020047046A (ja) データ出力装置、制御装置、制御方法
KR100493009B1 (ko) 다중 신호 라인을 이용한 고속 직렬 버스 인터페이스 시스템
CN113348648A (zh) 用于串行总线系统的用户站的发送/接收装置和用于串行总线系统中的通信的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527413

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17827236

Country of ref document: EP

Kind code of ref document: A1