WO2018011970A1 - モータ一体型流体機械 - Google Patents

モータ一体型流体機械 Download PDF

Info

Publication number
WO2018011970A1
WO2018011970A1 PCT/JP2016/070965 JP2016070965W WO2018011970A1 WO 2018011970 A1 WO2018011970 A1 WO 2018011970A1 JP 2016070965 W JP2016070965 W JP 2016070965W WO 2018011970 A1 WO2018011970 A1 WO 2018011970A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
fluid machine
unit
cooling air
cooling
Prior art date
Application number
PCT/JP2016/070965
Other languages
English (en)
French (fr)
Inventor
俊平 山崎
兼本 喜之
史紀 加藤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2018527350A priority Critical patent/JP6674545B2/ja
Priority to CN201680087688.9A priority patent/CN109477486B/zh
Priority to EP16908871.3A priority patent/EP3486490B1/en
Priority to US16/316,869 priority patent/US11821428B2/en
Priority to PCT/JP2016/070965 priority patent/WO2018011970A1/ja
Publication of WO2018011970A1 publication Critical patent/WO2018011970A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/04Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor

Definitions

  • the present invention relates to a motor-integrated fluid machine.
  • Patent Document 1 describes a fluid machine that cools a motor and a fluid machine main body by covering the motor with a cooling air guide that conducts the cooling air discharged from a cooling fan to the fluid machine main body.
  • Patent Document 2 describes a fluid machine that cools a fluid machine main body by conducting cooling air discharged from a cooling fan to the fluid machine main body with a cooling air guide.
  • the motor in order to cool the fluid machine main body and the motor, the motor is controlled by a cooling air guide that conducts the cooling air discharged from the cooling fan to the fluid machine main body. cover. Therefore, the cooling air is discharged from the cooling fan, and flows in the cooling air guide along the motor to cool the motor, and then the fluid machine main body is cooled.
  • the cooling air suction port of the cooling fan is provided on the opposite side of the motor in the axial direction, a space for intake air must be secured outside in the axial direction of the fluid machine, which increases the space required for installation. There's a problem.
  • the motor is cooled only in the portion covered with the cooling air guide, and the cooling air does not flow in other portions, so that there is a problem that the motor is insufficiently cooled.
  • the cooling air suction port of the cooling fan is provided on the axial motor side, and the cooling air discharged from the cooling fan is conducted to the fluid machine main body.
  • the fluid machine body is efficiently cooled by devising the cross-sectional shape of the cooling air guide.
  • the cooling air since the cooling air is sucked from the gap between the motor and the cooling air guide, the cooling air cannot be sufficiently sucked when this distance is small, and there is a problem that the cooling of the fluid machine main body is insufficient. Further, the cooling of the motor is not taken into consideration.
  • an object of the present invention is to provide a motor-integrated fluid machine having improved performance and reliability by efficiently cooling the fluid machine body and the motor without increasing the installation space.
  • a fluid mechanical unit that compresses or expands the fluid
  • a motor unit having a drive shaft connected to the fluid machine unit, a rotor that rotates integrally with the drive shaft, a stator that applies a rotational force to the rotor, and a motor casing that houses the rotor and the stator;
  • a cooling fan that is connected to the opposite side of the drive shaft to the fluid machine unit, sucks cooling air from the motor unit side, and cools the motor unit and the fluid machine unit; Between the motor unit and the cooling fan, the minimum cross-sectional area of the cooling air passage from the radially outer side to the drive shaft is larger than the minimum cross-sectional area of the cooling air passage from the motor unit side to the cooling fan. It is characterized by being.
  • a fluid mechanical unit that compresses or expands the fluid A motor unit having a drive shaft connected to the fluid machine unit, a rotor that rotates integrally with the drive shaft, a stator that applies a rotational force to the rotor, and a motor casing that houses the rotor and the stator; , A cooling fan connected to the opposite side of the drive shaft to the fluid machine unit, sucking cooling air from the motor unit side, and cooling the fluid machine unit and the motor unit; A fan cover for accommodating the cooling fan, When the maximum diameter of the opening on the motor casing side of the fan cover is D, the opening area of the opening is S, and the separation distance between the opening and the motor casing is h, h> S / ( ⁇ D) It is characterized by satisfying.
  • the fluid machine main body and the motor are efficiently cooled without increasing the installation space, and the performance and reliability are improved.
  • a motor-integrated fluid machine can be provided.
  • Embodiment 1 of the present invention It is a cross-sectional view of the motor-integrated fluid machine in Embodiment 1 of the present invention. It is a schematic diagram of the suction side cooling air flow of the motor-integrated fluid machine according to the first embodiment of the present invention. It is a cross-sectional view of a motor-integrated fluid machine in Embodiment 2 of the present invention. It is a cross-sectional view of a motor-integrated fluid machine in Embodiment 3 of the present invention. It is a cross-sectional view of a motor-integrated fluid machine in Embodiment 4 of the present invention.
  • FIG. 1 shows a cross-sectional view of the motor-integrated fluid machine in the first embodiment.
  • Reference numeral 1 indicates a compressor unit as a whole.
  • Reference numeral 2 is a compressor casing constituting the outer shell of the compressor unit 1
  • reference numeral 3 is a fixed scroll provided on the compressor casing 2 and provided with a spiral wrap portion 3a
  • reference numeral 4 is a spiral wrap portion 4a. Shows the orbiting scroll in which is erected.
  • the orbiting scroll 4 is driven via a drive shaft 5 that is a rotating shaft of the motor and an eccentric portion (not shown) provided at the end of the drive shaft 5 on the compressor unit 1 side.
  • a plurality of compression chambers 6 are formed between the lap portion 4 a of the orbiting scroll 4 and the lap portion 3 a of the fixed scroll 3.
  • the orbiting scroll 4 performs the orbiting motion by the rotation prevention mechanism (not shown) provided between the drive shaft 5 and the compressor casing 2 and the orbiting scroll 4, and is configured between the fixed scroll 3. Compression is performed by reducing the chamber 6 toward the center.
  • the motor unit 11 that drives the compressor unit 1 includes a motor casing 12, a stator 13a and a rotor 13b housed in the motor casing 12, and is coupled to a drive shaft 5 that is attached through the rotor 13b.
  • the cooling fan 21 is housed in a fan cover 22 attached on the opposite side of the drive shaft 5 from the compressor unit 1, and the cooling air suction port 23 opens in the axial direction toward the motor unit 11.
  • the air guide duct 25 allows the cooling fan 21 and the compressor unit 1 to communicate with each other.
  • the cooling fan 21 rotates when the motor unit 11 is driven, sucks the suction side cooling air 31 from the cooling air suction port 23 opened in the axial direction, and discharges the discharge side cooling air 32 into the fan cover 22.
  • the suction-side cooling air 31 passes from the outside of the fluid machine through a radial cooling air passage 33 formed between the end surface of the motor casing 12 and the fan cover 22, and passes through the axial cooling air passage 34 to the cooling fan intake port 23. To reach. At this time, a part of the cooling air flowing into the radial cooling air passage 33 is the motor casing side cooling air 31 a sucked from the radial side surface of the motor casing 12, and cools the motor unit 11.
  • the discharge-side cooling air 32 flows from the fan cover 22 into the air guide duct 25, flows into the compressor unit 1, and cools the fixed scroll 3 by flowing through the back surface of the fixed scroll wrap portion 3a.
  • the orbiting scroll 4 is cooled by flowing through the back surface of 4a.
  • FIG. 2 is a schematic diagram of the cooling air passage.
  • the suction-side cooling air 31 flows in the radial cooling air passage 33 from the radially outer peripheral side toward the inner peripheral side, and then flows in the axial cooling air passage 34 from the motor unit 11 side to the cooling fan 21 side.
  • the cooling air passes through the cross-sectional area S 1 in the radial direction cooling air passage 33 becomes a side surface (curved surface portion) area of approximate cylindrical shape in FIG.
  • the cooling air passage cross-sectional area S 2 of the axial direction cooling air passage 34 has a substantially cylindrical cross-section (planar portion) area in FIG. 2 and the axis of the fan cover 22 that guides the cooling air to the cooling air suction port 23. This is the area obtained by subtracting the cross-sectional area of the drive shaft 5 from the directional cross-sectional area.
  • Axis feature of this embodiment is directed minimum value of the cooling air passage cross-sectional area S 1 in the radial direction cooling air passage 33 extending from the radially outer side to the drive shaft and (minimum sectional area) S 1min, from the motor unit side to the cooling fan
  • the relationship of the minimum value (minimum cross-sectional area) S 2min of the cooling air passage cross-sectional area S 2 of the directional cooling air passage 34 is expressed as S 1min > S 2min It is in that.
  • the distance between the end surface of the motor casing 12 and the fan cover 22 is a constant value h regardless of the location.
  • the diameter of the cooling air inlet 23 is defined as the smallest diameter portion in the axial direction cooling air passage 34, and the diameter of the drive shaft 5 at the cooling air inlet 23 is defined as d.
  • each cooling air passage has the above-mentioned relationship is as follows. h> (D 2 -d 2 ) / (4D) This means that the distance h between the wall surface of the motor casing 12 and the fan cover 22 is larger than a constant value determined from the diameter D of the cooling air suction port 23 and the diameter d of the drive shaft 5 at the cooling air suction port 23 portion.
  • the minimum value of the flow direction (radial direction) cross-sectional area S 1 of the radial cooling air passage 33 larger than the minimum value of the axial flow direction of the cooling air passage 34 (the axial direction) cross-sectional area S 2
  • the compressor unit 1 is efficiently cooled, And can improve reliability.
  • the cooling air suction port 23 is opened toward the motor unit 11 in the axial direction, it is not necessary to provide an intake space outside the compressor in the axial direction, so that the installation space can be reduced. Since the motor casing side surface cooling air 31a flows over the circumference, the motor unit 11 can be efficiently cooled and the reliability can be improved.
  • the distance between the wall and the fan cover 22 of the motor casing 12 by using an example in which the constant, the cooling air passage cross-sectional area S 1 in the radial direction cooling air passage 33, approximate a cylindrical shape as shown in FIG. 2 and a side surface (curved surface portion) of it, in the form as the axial height of the approximate cylindrical shape varies depending on the circumferential position can also be defined a cooling air passage cross-sectional area S 1 as the area of the side surface portion.
  • the axial cooling air passage 34 is not circular, as the cross-sectional area perpendicular to the axis direction, it is possible to define the cooling air passage cross-sectional area S 2.
  • the cooling fan 21 it is possible to use an axial fan that discharges the discharge-side cooling air 32 in the axial direction to the opposite side of the cooling air intake port 23, but discharges the discharge-side cooling air 32 radially outward.
  • the centrifugal fan By using the centrifugal fan, an increase in the axial dimension of the fluid machine can be suppressed, and the discharge-side cooling air 32 can be easily guided toward the compressor unit 1, thereby simplifying the structure.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-105693
  • a compressor main body and a motor are connected via a drive shaft, and a cooling fan is attached to the opposite side of the drive shaft from the compressor main body.
  • a cooling fan is attached to the opposite side of the drive shaft from the compressor main body.
  • Patent Document 2 the relationship between the radial cooling air passage and the axial cooling air passage is not considered, and the cooling of the motor by the cooling air on the suction side is not considered. This example cannot be easily conceived from Document 2.
  • Example 2 of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a part of the fan cover 22 excluding the portion communicating with the air guide duct 25 protrudes radially outward from the motor casing 12. It is a feature. As shown in the figure, the ratio of the motor casing side cooling air 31a in the cooling air flowing into the radial cooling air passage 33 increases.
  • the flow direction of the cooling air flowing into the radial cooling air passage 33 is restricted by the fan cover 22 and the motor casing side surface cooling air 31a increases, so that the motor unit 11 can be cooled more efficiently and the reliability can be improved.
  • Example 3 of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the third embodiment is characterized in that, in the same motor-integrated fluid machine as in the first embodiment, motor cooling fins 14 having the axial direction as the longitudinal direction are provided on the outer peripheral surface of the motor casing 12. As shown in the figure, the motor casing side cooling air 31 a flows along the motor cooling fins 14 from the compressor unit 1 side toward the cooling fan 21.
  • Example 4 of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a part of the air guide duct 25 opens into the motor casing 12, and the cooling fan 21 and the compressor unit 1 communicate with each other through the wall surface of the motor casing 12. It is characterized by being part of the passage. As shown in the drawing, the cooling air flowing from the cooling fan 21 to the compressor unit 1 flows along the side surface of the motor casing 12 to cool the motor unit 11.
  • the motor unit 11 is made more efficient by causing the discharge side cooling air 32 having a higher flow velocity than the motor casing side surface cooling air 31 a to flow on the side surface of the motor casing 12.
  • the cooling can be improved to improve the reliability.
  • the scroll type air compressor has been described as an example of the fluid machine.
  • the present invention is not limited to this, and is also applicable to a reciprocating compressor and a screw compressor driven by a motor. be able to.
  • the present invention can be applied not only to a compressor but also to a fluid machine driven by a motor, for example, an expander.
  • the radial gap motor was taken as an example for the motor, an axial gap motor capable of reducing the axial dimension can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

設置スペースを増大することなく、流体機械本体とモータの冷却を効率的に行うことで性能と信頼性を向上させたモータ一体型流体機械を提供する。流体を圧縮または膨張させる流体機械ユニットと、前記流体機械ユニットに接続される駆動軸を有するモータユニットと、前記駆動軸の前記流体機械ユニットと反対側に接続され、前記モータユニット側から冷却風を吸込み、前記モータユニットと前記流体機械ユニットとを冷却する冷却ファンとを備え、前記モータユニットと前記冷却ファンの間で、径方向外側から前記駆動軸へ向かう冷却風通路の最小断面積が、前記モータユニット側から前記冷却ファンへ向かう冷却風通路の最小断面積よりも大であることを特徴とする。

Description

モータ一体型流体機械
 本発明は、モータ一体型流体機械に関する。
 特許文献1には、冷却ファンから吐き出された冷却風を流体機械本体へと導通する冷却風ガイドでモータを覆うことによって、モータと流体機械本体を冷却する流体機械が記載されている。
 特許文献2には、冷却ファンから吐き出された冷却風を冷却風ガイドで流体機械本体に導通することによって、流体機械本体を冷却する流体機械が記載されている。
特許第4625193号公報 特開2014-105693号公報
 流体機械本体とモータが一体となったモータ一体型流体機械においては、流体の圧縮熱や軸受の発熱およびモータの発熱により、各部の温度上昇が起こる。圧縮室の温度上昇は圧縮効率の低下により性能を低下させ、モータや軸受の温度上昇は部品の劣化により信頼性を低下させるため、流体機械本体およびモータの効率的な冷却が重要となる。
 特許文献1の流体機械本体とモータが一体となった流体機械は、流体機械本体とモータを冷却するため、冷却ファンから吐き出された冷却風を流体機械本体へと導通する冷却風ガイドでモータを覆う。よって、冷却風は冷却ファンから吐き出され、冷却風ガイド内をモータに沿って流れることでモータを冷却し、その後、流体機械本体を冷却する。この構造ではモータと軸方向反対側に冷却ファンの冷却風吸い込み口を設けているために、流体機械の軸方向外側に吸気のスペースを確保しなければならず、設置に必要なスペースが増大する問題がある。また、モータの冷却は冷却風ガイドで覆った部分でのみ行い、それ以外の部分は冷却風が流れないため、モータの冷却が不足する問題がある。
 特許文献2の流体機械本体とモータが一体となった流体機械は、冷却ファンの冷却風吸い込み口は軸方向モータ側に設けられ、冷却ファンから吐出された冷却風を流体機械本体へと導通する冷却風ガイドの断面形状を工夫することで流体機械本体を効率的に冷却する。この構造では、モータと冷却風ガイドの隙間から冷却風を吸い込むため、この距離が小さいときに冷却風を十分に吸い込めず、流体機械本体の冷却が不足する問題がある。また、モータの冷却については考慮されていない。
 そこで、本発明は、設置スペースを増大することなく、流体機械本体とモータの冷却を効率的に行うことで性能と信頼性を向上させたモータ一体型流体機械を提供することを目的とする。
 上記課題を解決するために、本発明の「モータ一体型流体機械」の一例を挙げるならば、
流体を圧縮または膨張させる流体機械ユニットと、
前記流体機械ユニットに接続される駆動軸と、前記駆動軸と一体に回転するロータと、前記ロータに回転力を付与するステータと、前記ロータおよび前記ステータを収容するモータケーシングとを有するモータユニットと、
前記駆動軸の前記流体機械ユニットと反対側に接続され、前記モータユニット側から冷却風を吸込み、前記モータユニットと前記流体機械ユニットとを冷却する冷却ファンとを備え、
前記モータユニットと前記冷却ファンの間で、径方向外側から前記駆動軸へ向かう冷却風通路の最小断面積が、前記モータユニット側から前記冷却ファンへ向かう冷却風通路の最小断面積よりも大であることを特徴とするものである。
 また、本発明の「モータ一体型流体機械」の他の一例を挙げるならば、
流体を圧縮または膨張させる流体機械ユニットと、
前記流体機械ユニットに接続される駆動軸と、前記駆動軸と一体に回転するロータと、前記ロータに回転力を付与するステータと、前記ロータおよび前記ステータを収容するモータケーシングとを有するモータユニットと、
前記駆動軸の前記流体機械ユニットと反対側に接続され、前記モータユニット側から冷却風を吸込み、前記流体機械ユニットと前記モータユニットを冷却する冷却ファンと、
前記冷却ファンを収容するファンカバーとを備え、
前記ファンカバーの前記モータケーシング側の開口部の最大直径をDとし、前記開口部の開口面積をSとし、前記開口部と前記モータケーシングとの離間距離をhとしたとき、
h>S/(πD)
を満たすことを特徴とするものである。
 本発明によれば、冷却風の吸い込み損失を低減し冷却風を確保することにより、設置スペースを増大することなく流体機械本体とモータの冷却を効率的に行い、性能と信頼性を向上させたモータ一体型流体機械を提供することができる。
本発明の実施例1におけるモータ一体型流体機械の横断面図である。 本発明の実施例1におけるモータ一体型流体機械の、吸い込み側冷却風流れの模式図である。 本発明の実施例2におけるモータ一体型流体機械の横断面図である。 本発明の実施例3におけるモータ一体型流体機械の横断面図である。 本発明の実施例4におけるモータ一体型流体機械の横断面図である。
 以下、本発明の実施の形態による流体機械として、モータ一体型スクロール式空気圧縮機を例に挙げて、添付図面に従って説明する。なお、実施例を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。
 図1は、本実施例1におけるモータ一体型流体機械の横断面図を示す。符号1は全体として圧縮機ユニットを示す。符号2は圧縮機ユニット1の外殻を構成する圧縮機ケーシング、符号3は圧縮機ケーシング2に設けられ渦巻状のラップ部3aが立設された固定スクロール、符号4は渦巻状のラップ部4aが立設された旋回スクロールを示す。旋回スクロール4は、モータの回転軸である駆動軸5および駆動軸5の圧縮機ユニット1側の端部に設けられた偏芯部(図示せず)を介して駆動される。そして、旋回スクロール4のラップ部4aは、前記固定スクロール3のラップ部3aとの間に複数の圧縮室6を形成する。
 よって、旋回スクロール4は、駆動軸5および圧縮機ケーシング2と旋回スクロール4の間に設けられた自転防止機構(図示せず)により旋回運動を行い、固定スクロール3との間に構成される圧縮室6を中心に向かうに従い縮小させることで圧縮を行う。
 圧縮機ユニット1を駆動するモータユニット11は、モータケーシング12と、これに収められたステータ13aとロータ13bで構成され、ロータ13bに貫通して取り付けられた駆動軸5と連結している。
 冷却ファン21は、駆動軸5の圧縮機ユニット1と反対側に取り付けられたファンカバー22の中に収められ、冷却風吸い込み口23は軸方向でモータユニット11側に開口している。導風ダクト25は、冷却ファン21と圧縮機ユニット1を連通する。
 本実施例における冷却風の流れについて説明する。冷却ファン21は、モータユニット11が駆動されることにより回転し、軸方向に開口した冷却風吸い込み口23より吸い込み側冷却風31を吸い込み、ファンカバー22内に吐き出し側冷却風32を吐き出す。
 吸い込み側冷却風31は流体機械の外部から、モータケーシング12端面とファンカバー22の間に形成される径方向冷却風通路33を通過し、軸方向冷却風通路34を経て冷却ファン吸い込み口23へ到達する。この際、径方向冷却風通路33へ流入する冷却風の一部は、モータケーシング12の径方向側面から吸い込まれるモータケーシング側面冷却風31aであり、モータユニット11の冷却を行う。
 吐き出し側冷却風32は、ファンカバー22から導風ダクト25内へ流入し、圧縮機ユニット1へ流れ込んで、固定スクロールラップ部3aの背面を流れることで固定スクロール3を冷却し、旋回スクロールラップ部4aの背面を流れることで旋回スクロール4を冷却する。
 ここで、本実施例における径方向冷却風通路33と軸方向冷却風通路34の関係について、冷却風通路の模式図である図2を用いて説明する。吸い込み側冷却風31は径方向冷却風通路33を径方向外周側から内周側に向かって流れ、その後、軸方向冷却風通路34をモータユニット11側から冷却ファン21側へ流れる。ここで、径方向冷却風通路33における冷却風通過断面積Sは、図2の概円柱形状の側面(曲面部)面積となり、モータケーシング12端面とファンカバー22の間の距離と、軸中心からの距離(半径)とに比例する。一方で、軸方向冷却風通路34の冷却風通過断面積Sは、図2の概円柱形状の断面(平面部)面積となり、冷却風吸い込み口23へと冷却風を導くファンカバー22の軸方向断面積から駆動軸5の断面積を引いた面積となる。本実施例の特徴は、径方向外側から駆動軸へ向かう径方向冷却風通路33における冷却風通過断面積Sの最小値(最小断面積)S1minと、モータユニット側から冷却ファンへ向かう軸方向冷却風通路34の冷却風通過断面積Sの最小値(最小断面積)S2minの関係を
1min>S2min
としたことにある。
 例えば、図1における流体機械において、モータケーシング12端面とファンカバー22との距離は場所によらず一定値hとする。そして、軸方向冷却風通路34で最も直径が小さい部分として冷却風吸い込み口23の直径をD、冷却風吸い込み口23部での駆動軸5の直径をdとする。このとき径方向冷却風通路33の冷却風通過断面積Sの最小値S1minは、冷却風吸い込み口23の直径Dにおける通過断面積となり、
1min=πDh
となる。一方で、軸方向冷却風通路34の冷却風通過断面積Sの最小値S2minは、
2min=π(D-d)/4
となる。ここで、各冷却風通路が前述の関係となる条件は、
h>(D-d)/(4D)
であり、モータケーシング12壁面とファンカバー22の距離hが、冷却風吸い込み口23の直径D、冷却風吸い込み口23部での駆動軸5の直径dから定まる一定値より大きいことを意味する。
 また、軸方向冷却風通路34の開口部の最大径をD、開口部の開口面積をSとした時、径方向冷却風通路の最小値は πDh となるから、駆動軸の直径dが小さいとすると、 h>S/(πD) の関係を満たせばよい。
 以上のように、径方向冷却風通路33の流れ方向(径方向)断面積Sの最小値を、軸方向冷却風通路34の流れ方向(軸方向)断面積Sの最小値より大きくすることで、同一断面積の流れに対して抵抗が大きい隙間流れである径方向冷却風通路33での損失による冷却風量の減少を防止し、圧縮機ユニット1を効率的に冷却することで、性能と信頼性を向上することができる。また、冷却風吸い込み口23が軸方向でモータユニット11側に開口していることで、軸方向で圧縮機外部に吸気スペースを設ける必要がないため設置スペースを低減し、さらにモータケーシング12の全周に渡ってモータケーシング側面冷却風31aが流れるため、モータユニット11を効率的に冷却し信頼性を向上することができる。
 本実施例では、モータケーシング12の壁面とファンカバー22の距離を一定とした例を用いて、径方向冷却風通路33における冷却風通過断面積Sを、図2に示すような概円柱形状の側面(曲面部)としたが、周方向の位置に応じて概円柱形状の軸方向高さが変わるような形状でも、側面部の面積として冷却風通過断面積Sを定義可能である。また、同様に、軸方向冷却風通路34が円形でない場合も、軸と垂直な方向の断面積として、冷却風通過断面積Sを定義可能である。
 なお、冷却ファン21においては、吐き出し側冷却風32を軸方向で冷却風吸い込み口23と反対側に吐き出す軸流ファンを用いることも可能であるが、吐き出し側冷却風32を径方向外側に吐き出す遠心ファンを用いることで、流体機械の軸方向寸法の増加を抑制し、また、吐き出し側冷却風32を圧縮機ユニット1方向へ誘導することが容易となり、構造を簡素とすることができる。
 また、特開2014-105693号公報(特許文献2)に、駆動軸を介して圧縮機本体とモータが接続され、冷却ファンが駆動軸の圧縮機本体と反対側に取り付けられ、冷却風吸い込み口が軸方向モータ側に開口する構成が開示されている。しかし、特許文献2においては、径方向冷却風通路と軸方向冷却風通路の関係については考慮されておらず、また、吸い込み側の冷却風によるモータの冷却についても検討がなされておらず、特許文献2から本実施例が容易に想到できるものではない。
 本発明の実施例2を、図3に基づき説明する。実施例1と同一の構成については、同一の符号を付し、その説明を省略する。本実施例2では、実施例1と同様のモータ一体型流体機械において、ファンカバー22の導風ダクト25へと連通する部分を除いた一部が、モータケーシング12よりも径方向外側に突出していることが特徴である。図に示すように、径方向冷却風通路33へ流入する冷却風における、モータケーシング側面冷却風31aの割合が増加する。
 本実施例においては、実施例1の効果に加え、径方向冷却風通路33へ流入する冷却風の流れ方向がファンカバー22によって規制され、モータケーシング側面冷却風31aが増加することで、モータユニット11をより効率的に冷却し信頼性を向上することができる。
 本発明の実施例3を、図4に基づき説明する。実施例1と同一の構成については、同一の符号を付し、その説明を省略する。本実施例3では、実施例1と同様のモータ一体型流体機械において、モータケーシング12の外周面に軸方向を長手方向とするモータ冷却フィン14を設けた点が特徴である。図に示すように、モータケーシング側面冷却風31aは、圧縮機ユニット1側から冷却ファン21に向かってモータ冷却フィン14に沿って流れる。
 本実施例においては、実施例1の効果に加え、モータケーシング側面冷却風31aがモータケーシング12の周囲を流れる際、モータ冷却フィン14に阻害されることなく流れることで、モータユニット11をより効率的に冷却し信頼性を向上することができる。
 本発明の実施例4を、図5に基づき説明する。実施例1と同一の構成については、同一の符号を付し、その説明を省略する。本実施例4では、実施例1と同様のモータ一体型流体機械において、導風ダクト25の一部がモータケーシング12へ開口し、モータケーシング12の壁面を冷却ファン21と圧縮機ユニット1を連通する通路の一部としたことが特徴である。図に示すように、冷却ファン21から圧縮機ユニット1へ流れる冷却風は、モータケーシング12の側面に沿って流れ、モータユニット11を冷却する。
 本実施例においては、実施例1の効果に加え、モータケーシング側面冷却風31aと比較して流速の早い吐き出し側冷却風32をモータケーシング12の側面に流すことで、モータユニット11をより効率的に冷却し信頼性を向上することができる。
 以上の実施例においては、流体機械としてスクロール式空気圧縮機を例に挙げて説明してきたが、本発明はこれに限らず、モータによって駆動される往復動圧縮機やスクリュー圧縮機にも適用することができる。また、圧縮機に限らずモータによって駆動される流体機械、例えば膨張機にも適用することができる。また、モータについてはラジアルギャップモータを例としたが、軸方向寸法を短縮可能であるアキシャルギャップモータを適用することができる。
 これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
1 圧縮機ユニット
2 圧縮機ケーシング
3 固定スクロール
3a 固定スクロールラップ部
4 旋回スクロール
4a 旋回スクロールラップ部
5 駆動軸
6 圧縮室
11 モータユニット
12 モータケーシング
13a ステータ
13b ロータ
14 モータ冷却フィン
21 冷却ファン
22 ファンカバー
23 冷却風吸い込み口
25 導風ダクト
31 吸い込み側冷却風
31a モータケーシング側面冷却風
32 吐き出し側冷却風
33 径方向冷却風通路
34 軸方向冷却風通路

Claims (20)

  1.  流体を圧縮または膨張させる流体機械ユニットと、
     前記流体機械ユニットに接続される駆動軸と、前記駆動軸と一体に回転するロータと、前記ロータに回転力を付与するステータと、前記ロータおよび前記ステータを収容するモータケーシングとを有するモータユニットと、
     前記駆動軸の前記流体機械ユニットと反対側に接続され、前記モータユニット側から冷却風を吸込み、前記モータユニットと前記流体機械ユニットとを冷却する冷却ファンとを備え、
     前記モータユニットと前記冷却ファンの間で、径方向外側から前記駆動軸へ向かう冷却風通路の最小断面積が、前記モータユニット側から前記冷却ファンへ向かう冷却風通路の最小断面積よりも大であることを特徴とするモータ一体型流体機械。
  2.  前記冷却ファンは、径方向外側に冷却風を吐き出すことを特徴とする請求項1に記載のモータ一体型流体機械。
  3.  前記冷却ファンの径方向外側の一部と前記モータユニットと反対側とを覆うファンカバーを設けることを特徴とする請求項1に記載のモータ一体型流体機械。
  4.  前記ファンカバーと前記流体機械ユニットとを接続する導風ダクトを設けることを特徴とする請求項3に記載のモータ一体型流体機械。
  5.  前記導風ダクトと前記流体機械ユニットとの間は前記冷却ファンから前記流体機械ユニットに向かって冷却風が流れることを特徴とする請求項4に記載のモータ一体型流体機械。
  6.  前記流体機械ユニットは鏡板とラップ部とを有し、前記モータユニットに接続され旋回運動する旋回スクロールと、前記旋回スクロールのラップ部に対向して配置されたラップ部を有する固定スクロールとを備えることを特徴とする請求項1に記載のモータ一体型流体機械。
  7.  導風ダクトから供給される冷却風で、前記固定スクロールの鏡板の前記ラップ部が形成された面と反対側の面と、前記旋回スクロールの鏡板の前記ラップ部が形成された面と反対側の面とを冷却することを特徴とする請求項6に記載のモータ一体型流体機械。
  8.  前記モータケーシングの外周面に、前記流体機械ユニットから前記冷却ファンに向かう方向を長手方向とする冷却フィンを設けることを特徴とする請求項1に記載のモータ一体型流体機械。
  9.  前記ファンカバーの径方向寸法を前記モータケーシングの径方向寸法よりも大きくすることを特徴とする請求項3に記載のモータ一体型流体機械。
  10.  前記モータケーシングの外周面の一部は前記流体機械ユニット側から前記冷却ファンに向かう冷却風で冷却され、他の一部は前記冷却ファンから前記流体機械ユニット側に向かう冷却風で冷却されることを特徴とする請求項1に記載のモータ一体型流体機械。
  11.  流体を圧縮または膨張させる流体機械ユニットと、
     前記流体機械ユニットに接続される駆動軸と、前記駆動軸と一体に回転するロータと、前記ロータに回転力を付与するステータと、前記ロータおよび前記ステータを収容するモータケーシングとを有するモータユニットと、
     前記駆動軸の前記流体機械ユニットと反対側に接続され、前記モータユニット側から冷却風を吸込み、前記流体機械ユニットと前記モータユニットを冷却する冷却ファンと、
     前記冷却ファンを収容するファンカバーとを備え、
     前記ファンカバーの前記モータケーシング側の開口部の最大直径をDとし、前記開口部の開口面積をSとし、前記開口部と前記モータケーシングとの離間距離をhとしたとき、
    h>S/(πD)
    を満たすことを特徴とするモータ一体型流体機械。
  12.  前記冷却ファンは、径方向外側に冷却風を吐き出すことを特徴とする請求項11に記載のモータ一体型流体機械。
  13.  前記ファンカバーは、前記冷却ファンの径方向外側の一部と前記モータユニットと反対側とを覆うことを特徴とする請求項11に記載のモータ一体型流体機械。
  14.  前記ファンカバーと前記流体機械ユニットとを接続する導風ダクトを設けることを特徴とする請求項11に記載のモータ一体型流体機械。
  15.  前記導風ダクトと前記流体機械ユニットとの間は前記冷却ファンから前記流体機械ユニットに向かって冷却風が流れることを特徴とする請求項14に記載のモータ一体型流体機械。
  16.  前記流体機械ユニットは鏡板とラップ部とを有し、前記モータユニットに接続され旋回運動する旋回スクロールと、前記旋回スクロールのラップ部に対向して配置されたラップ部を有する固定スクロールとを備えることを特徴とする請求項11に記載のモータ一体型流体機械。
  17.  導風ダクトから供給される冷却風で、前記固定スクロールの鏡板の前記ラップ部が形成された面と反対側の面と、前記旋回スクロールの鏡板の前記ラップ部が形成された面と反対側の面とを冷却することを特徴とする請求項16に記載のモータ一体型流体機械。
  18.  前記モータケーシングの外周面に、前記流体機械ユニットから前記冷却ファンに向かう方向を長手方向とする冷却フィンを設けることを特徴とする請求項11に記載のモータ一体型流体機械。
  19.  前記ファンカバーの径方向寸法を、前記モータケーシングの径方向寸法よりも大きくすることを特徴とする請求項11に記載のモータ一体型流体機械。
  20.  前記モータケーシングの外周面の一部は前記流体機械ユニット側から前記冷却ファンに向かう冷却風で冷却され、他の一部は前記冷却ファンから前記流体機械ユニット側に向かう冷却風で冷却されることを特徴とする請求項11に記載のモータ一体型流体機械。
PCT/JP2016/070965 2016-07-15 2016-07-15 モータ一体型流体機械 WO2018011970A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018527350A JP6674545B2 (ja) 2016-07-15 2016-07-15 モータ一体型流体機械
CN201680087688.9A CN109477486B (zh) 2016-07-15 2016-07-15 电动机集成型流体机械
EP16908871.3A EP3486490B1 (en) 2016-07-15 2016-07-15 Motor-integrated fluid machine
US16/316,869 US11821428B2 (en) 2016-07-15 2016-07-15 Motor-integrated fluid machine
PCT/JP2016/070965 WO2018011970A1 (ja) 2016-07-15 2016-07-15 モータ一体型流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070965 WO2018011970A1 (ja) 2016-07-15 2016-07-15 モータ一体型流体機械

Publications (1)

Publication Number Publication Date
WO2018011970A1 true WO2018011970A1 (ja) 2018-01-18

Family

ID=60952038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070965 WO2018011970A1 (ja) 2016-07-15 2016-07-15 モータ一体型流体機械

Country Status (5)

Country Link
US (1) US11821428B2 (ja)
EP (1) EP3486490B1 (ja)
JP (1) JP6674545B2 (ja)
CN (1) CN109477486B (ja)
WO (1) WO2018011970A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033047A (zh) * 2018-03-09 2020-04-17 株式会社日立产机系统 涡旋式流体机械
JP7524837B2 (ja) 2021-06-21 2024-07-30 株式会社デンソー 流体機械

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025338A1 (ja) * 2016-08-03 2018-02-08 株式会社日立産機システム スクロール式流体機械
DE102020103384A1 (de) * 2020-02-11 2021-08-12 Gardner Denver Deutschland Gmbh Schraubenverdichter mit einseitig gelagerten Rotoren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118397U (ja) * 1987-01-23 1988-07-30
JP2002130161A (ja) * 2000-03-31 2002-05-09 Tokico Ltd スクロール式流体機械
JP2007321563A (ja) * 2006-05-30 2007-12-13 Smc Corp 流体ポンプ装置
JP4625193B2 (ja) 2001-03-19 2011-02-02 株式会社日立製作所 スクロール式流体機械
JP2014105693A (ja) 2012-11-30 2014-06-09 Hitachi Industrial Equipment Systems Co Ltd スクロール式流体機械

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736144Y2 (ja) 1987-09-26 1995-08-16 岩田塗装機工業株式会社 ベルト駆動式空冷オイルレススクロール圧縮機の冷却装置
JP4026099B2 (ja) * 1998-10-15 2007-12-26 アネスト岩田株式会社 スクロール流体機械
JP4298841B2 (ja) 1999-04-02 2009-07-22 株式会社日立製作所 スクロール式流体機械
JP4828915B2 (ja) 2005-10-31 2011-11-30 株式会社日立産機システム スクロール式流体機械
JP5422609B2 (ja) * 2011-06-10 2014-02-19 株式会社日立産機システム スクロール式流体機械
US9013076B2 (en) * 2012-10-10 2015-04-21 Prestolite Electric Inc. Systems and methods for cooling a drive end bearing
JP6058512B2 (ja) 2013-09-30 2017-01-11 株式会社日立産機システム スクロール式流体機械
JP6127308B2 (ja) * 2015-05-01 2017-05-17 株式会社明電舎 回転機
CN105201825B (zh) 2015-09-11 2018-05-04 东北大学 一种多腔涡旋式真空泵
JP6451789B2 (ja) * 2017-06-26 2019-01-16 株式会社デンソー 内燃機関の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118397U (ja) * 1987-01-23 1988-07-30
JP2002130161A (ja) * 2000-03-31 2002-05-09 Tokico Ltd スクロール式流体機械
JP4625193B2 (ja) 2001-03-19 2011-02-02 株式会社日立製作所 スクロール式流体機械
JP2007321563A (ja) * 2006-05-30 2007-12-13 Smc Corp 流体ポンプ装置
JP2014105693A (ja) 2012-11-30 2014-06-09 Hitachi Industrial Equipment Systems Co Ltd スクロール式流体機械

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033047A (zh) * 2018-03-09 2020-04-17 株式会社日立产机系统 涡旋式流体机械
EP3763942A4 (en) * 2018-03-09 2021-08-11 Hitachi Industrial Equipment Systems Co., Ltd. VOLUTE TYPE FLUID MACHINE
US11384763B2 (en) 2018-03-09 2022-07-12 Hitachi Industrial Equipment Systems Co., Ltd. Scroll-type fluid machine with cooling fan including a peripheral wall configured to minimize vortices
JP7524837B2 (ja) 2021-06-21 2024-07-30 株式会社デンソー 流体機械

Also Published As

Publication number Publication date
EP3486490B1 (en) 2021-03-31
JPWO2018011970A1 (ja) 2019-04-25
JP6674545B2 (ja) 2020-04-01
US11821428B2 (en) 2023-11-21
US20230184252A1 (en) 2023-06-15
CN109477486B (zh) 2020-11-17
EP3486490A1 (en) 2019-05-22
EP3486490A4 (en) 2020-02-26
CN109477486A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP7042265B2 (ja) 分離された冷却気路を備えたターボ圧縮機
WO2018011970A1 (ja) モータ一体型流体機械
US11261879B2 (en) Fluid machine
JP6195722B2 (ja) スクロール式流体機械
JP6944853B2 (ja) 電動コンプレッサ
JP2017166330A (ja) 遠心流体機械及び遠心送風機及び遠心圧縮機
WO2014132526A1 (ja) スクロール式流体機械
KR101164588B1 (ko) 터어보압축기
JP2020101168A (ja) スクロール圧縮機
TW201918629A (zh) 圓柱形對稱容積式機器
JP6205478B2 (ja) スクロール式流体機械
JPH0893684A (ja) 遠心送風機
JP2008138532A (ja) 電動コンプレッサ
JP6681788B2 (ja) モータ一体型流体機械
JP6977144B2 (ja) スクロール式流体機械
EP4062068B1 (en) Scroll pump
JP2020183726A (ja) ロータリ圧縮機
JPS63147991A (ja) 複合真空ポンプ
JP2005139976A (ja) スクロール式流体機械
JP6099988B2 (ja) ウォータポンプ
JP2007300763A (ja) 電動機の冷却構造
CN111852945A (zh) 离心泵以及使用了离心泵的冷却系统
JP2023069205A (ja) 電動圧縮機
JP2002257086A (ja) 電動送風機
JP2005337099A (ja) 流体機械

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908871

Country of ref document: EP

Effective date: 20190215