WO2018008669A1 - めっき用樹脂組成物及びめっき成形品 - Google Patents

めっき用樹脂組成物及びめっき成形品 Download PDF

Info

Publication number
WO2018008669A1
WO2018008669A1 PCT/JP2017/024593 JP2017024593W WO2018008669A1 WO 2018008669 A1 WO2018008669 A1 WO 2018008669A1 JP 2017024593 W JP2017024593 W JP 2017024593W WO 2018008669 A1 WO2018008669 A1 WO 2018008669A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
mass
resin composition
copolymer
monomer
Prior art date
Application number
PCT/JP2017/024593
Other languages
English (en)
French (fr)
Inventor
藤原隆祥
松本なな
Original Assignee
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60912819&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018008669(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本エイアンドエル株式会社 filed Critical 日本エイアンドエル株式会社
Priority to CN202311303572.2A priority Critical patent/CN117844131A/zh
Priority to CN201780042485.2A priority patent/CN109790363B/zh
Priority to US16/315,855 priority patent/US20190322786A1/en
Publication of WO2018008669A1 publication Critical patent/WO2018008669A1/ja
Priority to US17/727,446 priority patent/US20220251271A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F253/00Macromolecular compounds obtained by polymerising monomers on to natural rubbers or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a resin composition for plating and a plated molded article, which are excellent in impact resistance and fluidity, and have a good balance of plating adhesion strength, plating deposition properties and thermal cycle properties.
  • a composition comprising a polycarbonate resin and an ABS resin (hereinafter referred to as a PC / ABS resin) has excellent impact resistance, heat resistance, and molding processability. Therefore, it is suitable for vehicle parts, home appliances, and office equipment parts. It is used for various purposes including the beginning. In particular, there is a tendency for vehicle parts and the like to increase in size, and the shape tends to be more complicated. In addition, in order to reduce the weight of the vehicle, the thickness of the molded product tends to be designed to be thinner, so a material having excellent performance such as molding processability, impact resistance, and heat resistance is required. There is a case where PC / ABS resin is adopted as one of the options.
  • the plating process of PC / ABS-based resin generally comprises steps such as degreasing, chemical etching, neutralization, catalyst application, activation, electroless plating, acid activity, electroplating, and so-called catalyst-accelerator method. Is the mainstream.
  • the electroless plating solution used in this construction method for example, the electroless nickel plating solution contains hypophosphite as a reducing agent, but this hypophosphite affects environmental problems.
  • Pd—Sn colloidal catalyst method is disclosed in Japanese Patent Laid-Open No. 7-11487 (Patent Document 1), Japanese Patent Laid-Open No. 11-61425 (Patent Document 2), and the like.
  • the PC / ABS resin used in the conventional resin plating method is also generally used in these direct plating methods, but the PC / ABS resin is a molded product in the electrolytic copper plating process of the direct plating method.
  • plating does not easily deposit on the surface, and an unattached portion of plating expressed as skipping tends to occur, and particularly in a molded product having a complicated product shape, there is a problem that the tendency becomes extremely high.
  • it is desired that a good plating appearance can be maintained even when used in an environment where the temperature fluctuates severely hereinafter referred to as “cooling cycle”).
  • Patent Document 3 As a PC resin composition for electroless plating having excellent electroless plating characteristics, a polycarbonate resin, an aromatic vinyl monomer, and a vinyl cyanide monomer are used. Although a resin composition for electroless plating comprising a copolymer composed of a polymer and a rubbery polymer and having a specified graft ratio is disclosed, it is not satisfactory in terms of plating deposition in the direct plating method. It was. Japanese Patent Application Laid-Open No.
  • Patent Document 4 has excellent direct plating properties, in particular, excellent elongation properties (precipitation rate) of electrolytic copper plating, and excellent physical properties such as moldability, impact resistance, and heat resistance.
  • a resin composition for direct plating a resin composition comprising a graft copolymer composed of a rubber-like polymer, an aromatic vinyl compound, a vinyl cyanide compound, and other monovinyl compounds having an average particle diameter within a certain range, and a polycarbonate resin.
  • An object of the present invention is to provide a resin composition for plating and a plated molded article which are excellent in impact resistance and fluidity and have a good balance of plating adhesion strength, plating precipitation and thermal cycle performance. That is, the present invention provides a resin composition for plating that is excellent in impact resistance and fluidity, and has a good balance of plating adhesion strength, plating precipitation, and thermal cycleability after molding, and plating adhesion strength, It aims at providing the molded article which is excellent in the balance of plating precipitation property and cold-heat cycle property.
  • the inventors of the present invention can eliminate the above-mentioned problems by including a specific amount of a polycarbonate resin, a graft copolymer, and a copolymer, and further defining the content of the oligomer component in the resin composition. As a result, the present invention has been completed.
  • the present invention includes the following [1] to [5].
  • the content of the polycarbonate resin (A) is 20 to 60% by mass with respect to 100% by mass in total of (A), (B) and (C).
  • the rubbery polymer content is 7 to 20% by mass with respect to the resin composition.
  • the content of the oligomer component is less than 1% by mass with respect to the resin composition.
  • the content of the polycarbonate resin (A) is 30 to 50% by mass with respect to a total of 100% by mass of (A), (B) and (C),
  • a resin composition for plating [3] The resin composition for plating according to [1] or [2], wherein the content of the rubbery polymer is 10 to 15% by mass with respect to the resin composition.
  • the content of the vinyl cyanide monomer constituting the copolymer (C) is 30 to 40% by mass with respect to the copolymer (C).
  • [5] A plated molded product, wherein a molded product obtained by molding the resin composition for plating according to any one of [1] to [4] is plated.
  • a plating resin composition and a plated molded article that are excellent in impact resistance and fluidity, and that have a good balance of plating adhesion strength, plating precipitation, and thermal cycle performance.
  • a direct plating method is particularly suitable.
  • the resin composition for plating of the present invention contains a polycarbonate resin (A), a graft copolymer (B), and a copolymer (C).
  • the polycarbonate resin (A) is a polymer obtained by a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted or a transesterification method in which a dihydroxydiaryl compound and a carbonic ester such as diphenyl carbonate are reacted.
  • Examples include 2,2-bis (4-hydroxyphenyl) propane; polycarbonate resin produced from “bisphenol A”.
  • dihydroxydiaryl compound examples include bisphenol 4-, bis (4-hydroxydiphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2, 2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3- 3-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4- Bis (hydroxyaryl) alkanes such as hydroxy-3,5-dichlorophenyl) propane, 1,1-bi Bis (hydroxyaryl) cycloalkanes such as (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4′-di
  • Trihydric or higher phenols include phloroglucinol, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene, 4,6-dimethyl-2,4,6-tri- (4 -Hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) benzol, 1,1,1-tri- (4-hydroxyphenyl) ethane and 2,2-bis- [4,4- Bis (4-hydroxyphenyl) cyclohexyl] propane and the like.
  • the mass average molecular weight of the polycarbonate resin is usually 10,000 to 80,000, preferably 15,000 to 60,000.
  • a molecular weight regulator, a catalyst, etc. can be used as needed.
  • the mass average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the graft copolymer (B) is obtained by graft polymerization of a rubbery polymer and a monomer component containing an aromatic vinyl monomer.
  • the rubbery polymer constituting the graft copolymer (B) is not particularly limited, and is a conjugate of polybutadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), etc. obtained by a known polymerization method.
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • One kind of ethylene-propylene rubber such as diene rubber, ethylene-propylene rubber, ethylene-propylene-nonconjugated diene (ethylidene norbornene, dicyclopentadiene, etc.) rubber, acrylic rubber such as polybutyl acrylate rubber, and silicone rubber Or 2 or more types can be used.
  • the acrylic rubber includes rubber having a core-shell structure.
  • Examples of rubber having a core-shell structure include, for example, conjugated diene rubber / acrylic rubber, silicone rubber / acrylic rubber, hard polymer (glass transition temperature of 20 ° C. or higher) / acrylic rubber. Etc.
  • the hard polymer (glass transition temperature is 20 ° C. or higher) contains at least one selected from aromatic vinyl monomers, vinyl cyanide monomers, and (meth) acrylate monomers. And a polymer obtained by polymerizing the monomers to be polymerized.
  • polybutadiene rubber polybutadiene rubber
  • styrene-butadiene rubber polystyrene-butadiene rubber
  • ethylene-propylene-nonconjugated diene rubber conjugated diene rubber / acrylic rubber
  • silicone rubber / acrylic rubber silicone rubber / acrylic rubber
  • hard polymer glass transition temperature of 20 ° C. or higher
  • the glass transition temperature of the hard polymer can be calculated from the FOX equation.
  • the mass average particle diameter of the rubbery polymer is not particularly limited, but is preferably 0.1 to 2.0 ⁇ m from the viewpoint of impact resistance and thermal cycleability after plating, and has good plating adhesion and plating precipitation. From the viewpoint, 0.2 to 1.0 ⁇ m is more preferable. It can also be adjusted by agglomerating and expanding a rubbery polymer having a mass average particle diameter of 0.05 to 0.3 ⁇ m.
  • the graft copolymer (B) of the present invention is obtained by graft polymerization of the above rubbery polymer with a monomer component containing an aromatic vinyl monomer.
  • the content of the rubbery polymer in the graft copolymer (B) is preferably 20 to 80% by mass and more preferably 40 to 70% by mass from the balance of physical properties such as impact resistance and fluidity.
  • aromatic vinyl monomer constituting the graft copolymer (B) examples include styrene, ⁇ -methylstyrene, paramethylstyrene, bromostyrene and the like, and one or more of them can be used. In particular, styrene and ⁇ -methylstyrene are preferable.
  • the monomer component forming the graft copolymer (B) may contain other monomers copolymerizable with the aromatic vinyl monomer, and the vinyl cyanide monomer Body, (meth) acrylic acid ester monomer, amide monomer, unsaturated carboxylic acid monomer and the like, and one kind or two or more kinds can be used.
  • vinyl cyanide monomers include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and examples of (meth) acrylic acid ester monomers include methyl (meth) acrylate and (meth) acrylic acid.
  • Ethyl, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenyl (meth) acrylate, 4-tert-butylphenyl (meth) acrylate, (meth) acrylic acid ( Di) bromophenyl, (meth) acrylic acid chlorophenyl, etc. can be exemplified, amide monomers can be exemplified by acrylamide, methacrylamide, etc., and unsaturated carboxylic acid monomers can be exemplified by acrylic acid, methacrylic acid, malein Examples include acid, fumaric acid, itaconic acid and the like.
  • composition ratio of the above monomers graft-polymerized on the rubber polymer there is no particular limitation on the composition ratio of the above monomers graft-polymerized on the rubber polymer, but the aromatic vinyl monomer is 50 to 90% by mass, the vinyl cyanide monomer is 10 to 50% by mass, and Other copolymerizable monomer composition ratio of 0 to 40% by mass, aromatic vinyl monomer 30 to 80% by mass, (meth) acrylic acid ester monomer 20 to 70% by mass and copolymerizable Composition ratio of 0 to 50% by mass of other vinyl monomers, 20 to 70% by mass of aromatic vinyl monomers, 20 to 70% by mass of (meth) acrylic acid ester monomers, vinyl cyanide type
  • the composition ratio is preferably 10 to 60% by mass of the monomer and 0 to 50% by mass of the other copolymerizable monomer (the total amount of monomers graft-polymerized to the rubbery polymer is 100% by mass) And).
  • the graft ratio of the graft copolymer (B) and the reduced viscosity of the acetone-soluble component are not particularly limited, but the graft ratio should be 20 to 150% from the viewpoint of balance of physical properties such as impact resistance and fluidity. Preferably, 30 to 100% is more preferable, and 36 to 75% is particularly preferable.
  • the reduced viscosity of the acetone-soluble component is preferably 0.2 to 1.5 dl / g, and more preferably 0.3 to 1.0 dl / g.
  • the graft ratio and the reduced viscosity of the acetone-soluble component can be determined as follows.
  • Graft rate Graft rate (%) (XY) / Y ⁇ 100
  • X Acetone insoluble content after vacuum drying
  • Y Amount of rubbery polymer in the graft copolymer
  • dl / g The acetone-soluble component is dissolved in N, N-dimethylformamide to obtain a solution having a concentration of 0.4 g / 100 ml, and the reduced viscosity is determined from the flow-down time measured at 30 ° C. using a Cannon-Fenske type viscosity tube.
  • the graft copolymer (B) obtained as described above usually contains a grafted polymer (component b1) in which a monomer component containing an aromatic vinyl monomer is grafted to a rubbery polymer.
  • a copolymer (b2 component) in which a monomer component containing an aromatic vinyl monomer not grafted to a rubbery polymer is copolymerized is included. Therefore, in this invention, when b2 component is contained in the graft copolymer (B), it means that the copolymer (C) is contained.
  • the copolymer (C) is obtained by polymerizing monomer components including an aromatic vinyl monomer and a vinyl cyanide monomer.
  • Examples of the aromatic vinyl monomer constituting the copolymer (C) include styrene, ⁇ -methylstyrene, paramethylstyrene, bromostyrene and the like, and one or more of them can be used. In particular, styrene and ⁇ -methylstyrene are preferable.
  • Examples of the vinyl cyanide monomer constituting the copolymer (C) include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile and the like, and one or more of them can be used. Particularly preferred is acrylonitrile.
  • the copolymer (C) may contain other monomers copolymerizable with an aromatic vinyl monomer and a vinyl cyanide monomer, and are (meth) acrylic acid esters.
  • the monomer include an amide monomer, an unsaturated carboxylic acid monomer, and the like, and one or more can be used.
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ( Examples thereof include phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, (di) bromophenyl (meth) acrylate, chlorophenyl (meth) acrylate, etc.
  • Examples of the unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid.
  • the composition ratio of the monomer constituting the copolymer (C) is not particularly limited, but the aromatic vinyl monomer is 50 to 90% by mass, the vinyl cyanide monomer is 10 to 50% by mass, and the copolymer is copolymerized. Possible other monomer composition ratio of 0 to 40% by mass, aromatic vinyl monomer 20 to 70% by mass, vinyl cyanide monomer 10 to 60% by mass, (meth) acrylic acid ester A composition ratio of 20 to 70% by mass of a monomer and 0 to 50% by mass of another copolymerizable monomer may be mentioned.
  • the content of the vinyl cyanide monomer constituting the copolymer (C) is preferably 25 to 45% by mass (particularly 30 to 40% by mass) from the viewpoint of plating precipitation.
  • the reduced viscosity of the copolymer (C) is not particularly limited, but is preferably 0.2 to 1.5 dl / g from the viewpoint of balance of physical properties such as impact resistance and fluidity, and 0.3 to 1. More preferably, it is 0 dl / g.
  • the reduced viscosity can be determined by the following method.
  • the copolymer (C) is dissolved in N, N-dimethylformamide to obtain a solution having a concentration of 0.4 g / 100 ml, and the reduced viscosity is determined from the flow-down time measured at 30 ° C. using a Cannon-Fenske type viscosity tube. Ask.
  • the polymerization method of the graft copolymer (B) and copolymer (C) constituting the plating resin composition is not particularly limited.
  • the content of the polycarbonate resin (A) is 100% by mass in total of the polycarbonate resin (A), the graft copolymer (B), and the copolymer (C). It must be 20 to 60% by mass, preferably 25 to 55% by mass, and more preferably 30 to 50% by mass. By adjusting so that it may become the said range, the balance of impact resistance, fluidity
  • the plating resin composition of the present invention is a copolymer obtained by graft-polymerizing an aromatic vinyl monomer (in particular, an aromatic vinyl monomer and a vinyl cyanide monomer) to a rubber polymer.
  • an aromatic vinyl monomer in particular, an aromatic vinyl monomer and a vinyl cyanide monomer
  • the content of the copolymer can be calculated from the graft ratio of the graft copolymer (B) and the mass of the rubbery polymer.
  • the resin composition for plating according to the present invention has a content of a copolymer of an aromatic vinyl monomer and a vinyl cyanide monomer (excluding those graft-polymerized on a rubbery polymer) with a polycarbonate resin ( It is preferably 10 to 75% by mass, more preferably 20 to 65% by mass, and still more preferably 30 to 55% with respect to 100% by mass in total of A), the graft copolymer (B), and the copolymer (C). % By mass. By adjusting so that it may become the said range, the effect which this invention show
  • the content of the copolymer is obtained by determining the mass of the aromatic vinyl monomer and the vinyl cyanide monomer not grafted to the rubber polymer from the graft ratio of the graft copolymer (B). It can calculate as mass which added content of copolymer (C) to.
  • the content of the rubber-like polymer needs to be 7 to 20% by mass with respect to the resin composition, more preferably 10 to 15% by mass, The content is preferably 11 to 14% by mass. By adjusting so that it may become the said range, the balance of plating precipitation property and plating adhesion strength can be improved.
  • the total content of the aromatic vinyl monomer and the vinyl cyanide monomer constituting the graft copolymer (B) and the copolymer (C) is: It is preferably 20 to 73% by mass, more preferably 30 to 65% by mass, with respect to 100% by mass in total of the polycarbonate resin (A), the graft copolymer (B), and the copolymer (C). More preferably, it is 36 to 59% by mass. By adjusting so that it may become the said range, the balance of plating precipitation property and plating adhesion strength can be improved.
  • the content of the oligomer component needs to be less than 1% by mass with respect to the resin composition, and is preferably less than 0.8% by mass.
  • the oligomer component is a dimer or trimer of monomers used for polymerization contained in the resin composition, specifically, a dimer of styrene, a dimer of acrylonitrile and styrene. And styrene trimer and acrylonitrile and styrene trimer.
  • the amount of the oligomer component can be measured under the following conditions using gas chromatography.
  • ⁇ Gas chromatograph measurement conditions> Apparatus: Gas chromatograph GC-2010 manufactured by Shimadzu Corporation Column name: DB-5 (Liquid film thickness ⁇ length 0.25 ⁇ m ⁇ 30 m) Column temperature: maintained at 70 ° C. for 5 minutes, then heated up to 320 ° C. over 20 minutes, and maintained at 320 ° C. for 9 minutes.
  • the relative molar sensitivity can be obtained by calculation assuming that the relative molar sensitivity is almost directly proportional to the number of carbons contained.
  • an organic component containing a heteroelement such as O, Cl, and N can also be obtained by calculating the relative molar sensitivity from the effective carbon number in the compound proposed by Sternberg et al.
  • a known method can be used without any particular limitation, a method of blending each constituent resin with a reduced oligomer content, a degassing step when melt-kneading the resin composition Or increasing the vacuum level of deaeration.
  • Examples of the method for reducing the oligomer content of each constituent resin include optimization of the monomer composition at the time of polymerization, reduction of the temperature at the time of polymerization, optimization of the type and addition amount of the catalyst at the time of polymerization, and the like.
  • the plating resin composition of the present invention may be mixed with other thermoplastic resins within a range that does not impair the purpose.
  • other thermoplastic resins include acrylic resins such as polymethyl methacrylate, polybutylene terephthalate resins, polyethylene terephthalate resins, polyamide resins, imide resins, and polylactic acid resins.
  • the plating resin composition of the present invention includes a hindered amine light stabilizer, a hindered phenol-based, a sulfur-containing organic compound-based, a phosphorus-containing organic compound-based antioxidant, a phenol-based, an acrylate-based, etc.
  • Stabilizers benzoates, benzotriazoles, benzophenones, salicylates, UV absorbers, organic nickels, lubricants such as higher fatty acid amides, plasticizers such as phosphate esters, polybromophenyl ether, tetrabromobisphenol A, brominated epoxy oligomers, halogenated compounds such as brominated compounds, phosphorus compounds, flame retardants and flame retardants such as antimony trioxide, odor masking agents, pigments such as carbon black and titanium oxide, and dyes It can also be added. Furthermore, reinforcing agents and fillers such as talc, calcium carbonate, aluminum hydroxide, glass fibers, glass flakes, glass beads, glass wool, carbon fibers, and metal fibers can be added.
  • the total content of the polycarbonate resin (A), the graft copolymer (B), and the copolymer (C) in the plating resin composition of the present invention is 50% by mass with respect to the total amount of the plating resin composition.
  • the above is preferable, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the effect which this invention shows as the said content rate is 50 mass% or more improves more.
  • the notched Charpy impact value (test piece thickness: 4 mm thickness, measurement temperature: 23 ° C.) of the resin composition for plating according to the present invention in accordance with ISO test method 179 is preferably 5 to 90 kJ / m 2 , more preferably 10 to 80 kJ / m 2 . By adjusting so that it may become the said range, while being excellent by impact resistance, it is excellent in the balance of plating adhesion strength, plating precipitation property, and thermal cycle property.
  • Plating resin composition of the present invention according to ISO test method 1133, 220 ° C., a melt volume flow rate (MVF) are in conditions of 98.07N load, preferably 6 ⁇ 30cm 3/10 minutes, more preferably is 8 ⁇ 27cm 3/10 minutes.
  • MVF melt volume flow rate
  • the mixing of the resin containing the plating resin composition can be carried out by melt-kneading using a known kneader such as a commonly used roll, Banbury mixer, extruder, kneader.
  • a known kneader such as a commonly used roll, Banbury mixer, extruder, kneader.
  • the resin composition for plating thus obtained is molded by injection molding, extrusion molding, compression molding, injection compression molding, blow molding or the like, and the obtained resin molded product is obtained by a known plating method such as a normal plating method.
  • plating can be performed under the same conditions as the ABS resin plating conditions, it is particularly preferable to use the direct plating method.
  • melt volume flow rate (MVR) Using the pellets obtained in each Example and Comparative Example, the melt volume flow rate was measured under the conditions of 220 ° C. and 98.07 N load in accordance with ISO test method 1133. Unit: cm 3/10 minutes
  • Plating adhesion strength The pellets obtained in each Example and Comparative Example were formed into a flat plate molded product (55 ⁇ 90 ⁇ 3 mm) for plating with an injection molding machine, and were deposited after direct plating by the following method. Based on JIS H-8630, the adhesion strength of the plating film is indicated by the stress (N) when the metal film of the plated product is cut at intervals of 1 cm reaching the base material and the metal film is peeled off in the vertical direction. .
  • ⁇ Plating process> The plate for plating was dipped in a CRP cleaner at 40 ° C. for 3 minutes. The degreased flat plate was washed with water at 30 ° C. and then immersed in an etching solution at 67 ° C.
  • the etched flat plate was washed with water at 30 ° C. for 2 minutes and then immersed in a CRP reducer at 25 ° C. for 3 minutes for neutralization.
  • the neutralized plate is washed with water at 30 ° C. for 2 minutes, pre-dipped in hydrochloric acid at 25 ° C. for 1 minute, and then immersed in a CRP catalyst at 35 ° C. for 6 minutes to perform Pd—Sn colloid catalysis. It was. After the catalyzed flat plate was washed with water at 30 ° C. for 2 minutes, it was immersed in 45 ° C.
  • CRP selectors A and B for 3 minutes to conduct a conductor.
  • the conductive plate was washed with water at 30 ° C. for 2 minutes, and then an electric copper plating bath using a CRP copper was passed at 25 ° C. for 2 hours with a current density of 3 A / dm 2 to obtain a film thickness of 50 ⁇ m.
  • An electrolytic copper plating film was deposited on a flat plate. The flat plate after the electrolytic copper plating was washed with water at 30 ° C., and then the flat plate plated with copper was aged at 80 ° C. for 2 hours and left overnight.
  • Plating Precipitation Pellets obtained in each Example and Comparative Example were formed into a flat plate product for plating (55 ⁇ 90 ⁇ 3 mm) with an injection molding machine, and the width was 1 mm in the short side direction every 9 mm in the long side direction. 45 mm incisions are alternately placed on the left and right to create a corrugated flat plate, and after direct plating is performed by the following method, the degree of deposition of the plating film is visually determined for the degree of occurrence of unplated portions (skip) in the deposition process, The determination was made according to the following criteria. ⁇ : Good without skipping. (Triangle
  • ⁇ Plating process> The plate for plating was dipped in a CRP cleaner at 40 ° C. for 3 minutes.
  • the degreased flat plate was washed with water at 30 ° C. and then immersed in an etching solution (chromic acid: 400 g / l, sulfuric acid: 200 cc / l) at 67 ° C. for 10 minutes for etching.
  • the etched flat plate was washed with water at 30 ° C. for 2 minutes and then immersed in a CRP reducer at 25 ° C. for 3 minutes for neutralization.
  • the neutralized plate is washed with water at 30 ° C. for 2 minutes, pre-dipped in hydrochloric acid at 25 ° C.
  • Plating swelling / cracking is seen as a whole, which is poor.
  • the plate for plating was dipped in a CRP cleaner at 40 ° C. for 3 minutes.
  • the degreased flat plate was washed with water at 30 ° C. and then immersed in an etching solution (chromic acid: 400 g / l, sulfuric acid: 200 cc / l) at 67 ° C. for 10 minutes for etching.
  • the etched flat plate was washed with water at 30 ° C. for 2 minutes and then immersed in a CRP reducer at 25 ° C. for 3 minutes for neutralization.
  • the neutralized plate is washed with water at 30 ° C.
  • the plating film was deposited on a flat plate. Subsequently, a semi-bright nickel film: 6 ⁇ m, a bright nickel film: 4 ⁇ m, and a chromium plating film: 0.1 to 0.3 ⁇ m were deposited in a general decorative electroplating process.
  • Polycarbonate resin (A) Polycarbonate resin (A): Polycarbonate resin composed of phosgene and bisphenol A and having a viscosity average molecular weight of 20,500.
  • Graft Copolymer (B) A glass reactor was charged with 50 parts by mass of agglomerated and enlarged styrene-butadiene rubber latex (mass average particle size 0.25 ⁇ m) in terms of solid content, stirring was started, and nitrogen substitution was performed. . After nitrogen substitution, when the temperature inside the tank was raised to 65 ° C., 0.2 parts by mass of lactose, 0.1 parts by mass of anhydrous sodium pyrophosphate and 0.005 parts by mass of ferrous sulfate were added to 10 parts by mass of deionized water. After the aqueous solution dissolved in the solution was added, the temperature was raised to 70 ° C.
  • the graft ratio of the obtained graft copolymer (B) was 37.0%, and the reduced viscosity of the acetone soluble part was 0.39 dl / g.
  • the mass average particle diameter of the above-mentioned agglomerated styrene-butadiene rubber latex was determined as follows. The sample was stained with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope. An area of 800 rubber particles was measured using an image analysis processor (apparatus name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), the equivalent circle diameter (diameter) was determined, and the mass average particle diameter was calculated.
  • copolymer (C-1) 33 parts of acrylonitrile, 67 parts of styrene, 15 parts of ethylbenzene as a solvent, 1,1-di (t-butylperoxy) cyclohexane as an initiator (10 hour half-life temperature) 90.7 ° C) and 0.05 part of t-dodecyl mercaptan as a chain transfer agent were prepared, and the mixture was cooled and stored at 5 ° C or lower. The prepared mixed solution was continuously fed at a rate of 1.44 kg / hr to a reactor equipped with a double helical ribbon blade having a capacity of 20 L and maintained at a reaction temperature of 127 ° C. to perform polymerization.
  • the mixed solution containing the copolymer was continuously withdrawn by a pump at the same rate as the supply rate, and sent to a gas-liquid separation device maintained at 289 ° C. and 45 torr to separate the copolymer and the unreacted solution. .
  • the separated copolymer was pelletized to obtain a copolymer (C-1).
  • the polymerization rate was 51%, and the copolymer when the polymerization rate was reached was used for evaluation of physical properties and the like.
  • copolymer (C-2) 27 parts of acrylonitrile, 73 parts of styrene, 12 parts of ethylbenzene as a solvent, 1,1-di (t-hexylperoxy) cyclohexane as an initiator (10-hour half-life)
  • a mixed solution was prepared using 0.018 part of a temperature of 86.7 ° C.) and 0.33 part of t-dodecyl mercaptan as a chain transfer agent, and stored at 5 ° C. or lower.
  • the prepared mixed solution was continuously fed at a rate of 1.52 kg / hr to a reactor with a double helical ribbon blade having a volume of 20 L maintained at a reaction temperature of 125 ° C.
  • the mixed solution containing the copolymer was continuously extracted by a pump at the same rate as the supply rate, and was sent to a gas-liquid separator maintained at 285 ° C. and 45 torr to separate the copolymer and the unreacted solution. .
  • the separated copolymer was pelletized to obtain a copolymer (C-2).
  • the polymerization rate was 45%, and the copolymer when the polymerization rate was reached was used for evaluation of physical properties and the like.
  • copolymer (C-3) 29 parts of acrylonitrile, 71 parts of styrene, 16 parts of ethylbenzene as a solvent, and 0.1 part of t-butylcumyl peroxide (10-hour half-life temperature 119.5 ° C.) as an initiator.
  • a mixed solution using 025 parts and 0.39 parts of t-dodecyl mercaptan as a chain transfer agent was prepared and stored at 5 ° C. or lower.
  • the prepared mixed solution was continuously fed at 1.32 kg / hr to a reactor having a volume of 20 L with a double helical ribbon blade maintained at a reaction temperature of 155 ° C. to carry out polymerization.
  • the mixed solution containing the copolymer was continuously extracted by a pump at the same rate as the supply rate, and was sent to a gas-liquid separator maintained at 260 ° C. and 45 torr to separate the copolymer and the unreacted solution. .
  • the separated copolymer was pelletized to obtain a copolymer (C-3).
  • the polymerization rate was 56%, and the copolymer when the polymerization rate was reached was used for evaluation of physical properties and the like.
  • Examples 1 to 8 and Comparative Examples 1 to 5 After mixing the polycarbonate resin (A), the graft copolymer (B) and the copolymer (C) at the blending ratio shown in Table 1, the main screw was rotated in a ⁇ 35 mm twin screw extruder set at a cylinder temperature of 250 ° C. It was melt-kneaded and pelletized under the conditions of several 300 rpm and a discharge rate of 15 kg / hr. Using the obtained pellet, the content of the oligomer component was measured. In addition, a test piece for measuring physical properties and a flat plate for plating were molded using an injection molding machine (cylinder temperature 250 ° C., mold temperature 60 ° C.) using the pellets. Next, the physical properties, plating adhesion strength, plating precipitation property, and thermal cycle property were measured using the test piece and the flat plate. The results are shown in Table 1.
  • Examples 1 to 8 using the plating resin composition of the present invention are all excellent in impact resistance and fluidity, and have a good balance of plating adhesion strength, plating precipitation, and thermal cycle performance.
  • An excellent molded product was obtained.
  • Comparative Example 1 was inferior in impact resistance because the amount of the polycarbonate resin (A) did not reach the lower limit specified in the present application.
  • Comparative Example 2 the content of the rubbery polymer did not reach the lower limit specified in the present application, so that the plating adhesion strength, the plating precipitation property, and the thermal cycle property were inferior.
  • Comparative Example 3 the rubbery polymer content exceeded the upper limit specified in the present application, so that the fluidity, plating deposition property, and cooling and cycling properties were inferior.
  • the comparative example 4 was inferior to metal-plating precipitation property and a thermal cycle property. Since the amount of polycarbonate resin (A) exceeded the upper limit prescribed
  • the plating resin composition of the present invention is excellent in impact resistance and fluidity, and has a good balance of plating adhesion strength, plating precipitation, and thermal cycle performance.
  • it can be used for various purposes according to market needs.

Abstract

耐衝撃性、流動性に優れ、かつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れる、めっき用樹脂組成物及びめっき成形品を提供する。 ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)を含有する樹脂組成物であって、下記条件(1)~(5)を満足するめっき用樹脂組成物。 (1)ポリカーボネート樹脂(A)の含有量が、(A)、(B)及び(C)の合計100質量%に対して、20~60質量%。 (2)グラフト共重合体(B)が、ゴム質重合体と、芳香族ビニル系単量体を含む単量体成分とがグラフト重合して成るグラフト共重合体。 (3)共重合体(C)が、芳香族ビニル系単量体とシアン化ビニル系単量体を含む単量体成分を重合して成る共重合体。 (4)ゴム質重合体の含有量が、樹脂組成物に対して7~20質量%。 (5)オリゴマー成分の含有量が、樹脂組成物に対して1質量%未満。

Description

めっき用樹脂組成物及びめっき成形品
 本発明は、耐衝撃性、流動性に優れ、かつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れるめっき用樹脂組成物及びめっき成形品に関する。
 ポリカーボネート樹脂とABS系樹脂からなる組成物(以下、PC/ABS系樹脂と記す)は、耐衝撃性、耐熱性、成形加工性に優れることから、車輌用部品、家庭電化製品、事務機器部品をはじめとする多様な用途に使用されている。特に、車輌用部品等は大型化の傾向が見られ、形状がより複雑なデザインになる傾向にある。また、車輌重量の軽量化のために、成形品肉厚は薄肉化に設計される方向にあるため、成形加工性、耐衝撃性、及び耐熱性などの性能に優れている材料が求められる。その選択肢の一つとしてPC/ABS系樹脂が採用されるケースが見られる。加えて、これら用途において、意匠的に金属調外観を有し、かつ軽量化を求められる部品にはPC/ABS系樹脂に装飾用のめっきを施して使用する例が多い。従来、PC/ABS系樹脂のめっき処理工程は、一般に脱脂、化学エッチング、中和、触媒付与、活性化、無電解めっき、酸活性、電気めっきなどの工程からなる、いわゆるキャタリスト-アクセレーター法が主流である。しかしながら、この工法で用いられる無電解めっき液において、例えば無電解ニッケルめっき液は、還元剤として次亜リン酸塩を含有しているが、この次亜リン酸塩は環境問題に影響するため、リン規制対応や、高COD廃液であることから排水規制が非常に厳しく、廃水処理のコストが非常に高くなるという問題がある。また、pH調整に用いられているアンモニアの臭気による作業環境の悪化も問題となっている。また同様に、無電解銅めっき液には、還元剤としてホルマリンが使用されているが、ホルマリンの使用は、種々の健康上及び環境問題上に悪影響を与える問題が指摘されている。
 さらに、このめっき液には、銅イオンをアルカリ溶液中に可溶化させるための強力な錯化剤が用いられるため、めっき液の廃水処理において、金属イオン除去のために廃水処理のコストが非常に高くなる等、種々の問題点を抱えている。
 これらキャタリスト-アクセレーター法における、健康上、及び地球環境に関わる法規制などへの対応、及び安全な作業環境の確保などの要望から、めっき工法改善の一環として、無電解めっき浴を使用しないめっき法(ダイレクトめっき法、ダイレクトプレーティング法等と呼ばれている)が実用化に向けて検討が行われている。例えば、Pd-Snコロイド触媒法が、特開平7-11487号公報(特許文献1)、特開平11-61425号公報(特許文献2)等に開示されている。
 従来の樹脂めっき工法で用いられていたPC/ABS系樹脂も、一般的にはこれらダイレクトめっき法に用いられる場合があるが、ダイレクトめっき法の電気銅めっき工程においてPC/ABS系樹脂は成形品表面にめっきが析出し難く、スキップと表現されるめっきの未着部が発生し易いという傾向があり、特に製品形状の複雑な成形品においては、その傾向が極めて高くなるという問題がある。また、めっき成形品としては、温度変動の激しい環境下で使用しても良好なめっき外観を維持できる(以下、「冷熱サイクル性」と呼ぶ)ことが望まれている。
 特開平8-269313号公報(特許文献3)には、無電解メッキ特性に優れた無電解メッキ用のPC系樹脂組成物として、ポリカーボネート系樹脂に、芳香族ビニル単量体、シアン化ビニル単量体、ゴム質重合体で構成され、そのグラフト率を規定した共重合体を含む無電解メッキ用樹脂組成物が開示されているが、ダイレクトめっき法におけるめっき析出性において十分満足できるものではなかった。
 特開2003-327817号公報(特許文献4)には、ダイレクトめっき性、特に電気銅めっきの伸び性(析出速度)に優れ、かつ、成形性、耐衝撃性、耐熱性等の物性に優れたダイレクトめっき用樹脂組成物として、平均粒子径がある範囲のゴム状重合体、芳香族ビニル化合物、シアン化ビニル化合物、及び他のモノビニル化合物で構成されるグラフト共重合体とポリカーボネート樹脂からなる樹脂組成物が開示されているが、めっき用樹脂成形品の連続成形時における不具合により、めっき製品としての冷熱サイクル性において十分満足できるものではなかった。
特開平7-11487号公報
特開平11-61425号公報
特開平8-269313号公報
特開2003-327817号公報
 本発明は、耐衝撃性、流動性に優れ、かつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れるめっき用樹脂組成物及びめっき成形品を提供することを目的とする。すなわち、本発明は、耐衝撃性及び流動性に優れ、成形後は、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れるめっき用樹脂組成物を提供すること、並びに、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れる成形品を提供することを目的とする。
 本発明者らは鋭意検討した結果、ポリカーボネート樹脂、グラフト共重合体、及び共重合体を特定量含有し、さらに樹脂組成物中のオリゴマー成分の含有量を規定することで、上記課題を解消できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]~[5]で構成される。
[1]ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)を含有する樹脂組成物であって、下記条件(1)~(5)を満足するめっき用樹脂組成物。
(1)ポリカーボネート樹脂(A)の含有量が、(A)、(B)及び(C)の合計100質量%に対して、20~60質量%。
(2)グラフト共重合体(B)が、ゴム質重合体と、芳香族ビニル系単量体を含む単量体成分とがグラフト重合して成るグラフト共重合体。
(3)共重合体(C)が、芳香族ビニル系単量体とシアン化ビニル系単量体を含む単量体成分を重合して成る共重合体。
(4)ゴム質重合体の含有量が、樹脂組成物に対して7~20質量%。
(5)オリゴマー成分の含有量が、樹脂組成物に対して1質量%未満。
[2]ポリカーボネート樹脂(A)の含有量が、(A)、(B)及び(C)の合計100質量%に対して、30~50質量%であることを特徴とする[1]に記載のめっき用樹脂組成物。
[3]ゴム質重合体の含有量が、樹脂組成物に対して10~15質量%であることを特徴とする[1]又は[2]に記載のめっき用樹脂組成物。
[4]共重合体(C)を構成するシアン化ビニル系単量体の含有量が、共重合体(C)に対して、30~40質量%であることを特徴とする[1]~[3]の何れか1つに記載のめっき用樹脂組成物。
[5][1]~[4]の何れか1つに記載のめっき用樹脂組成物を成形して得られる成形品に、めっきが施されていることを特徴とするめっき成形品。
 本発明によれば、耐衝撃性、流動性に優れ、かつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れるめっき用樹脂組成物及びめっき成形品を提供することができる。また、用いるめっき法としては、特にダイレクトめっき法が適する。
 以下、本発明につき詳細に説明する。
 本発明のめっき用樹脂組成物は、ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)を含有するものである。
 ポリカーボネート樹脂(A)としては、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネート等の炭酸エステルとを反応させるエステル交換法によって得られる重合体であり、代表的なものとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン、;“ビスフェノールA”から製造されたポリカーボネート樹脂が挙げられる。
 上記ジヒドロキシジアリール化合物としては、ビスフェノールAの他に、ビス(4-ヒドロキシジフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-第3ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパンのようなビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンのようなビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテルのようなジヒドロキシジアリールエーテル類、4,4’-ジヒドロキシジフェニルスルファイド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルファイドのようなジヒドロキシジアリールスルファイド類、4,4’-ジヒドロキシジフェニルスルホキシドのようなジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホンのようなジヒドロキシジアリールスルホン類等が挙げられる。
 これらは単独又は2種類以上混合して使用されるが、これらの他に、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル類等を混合しても良い。
 さらに、上記のジヒドロキシジアリール化合物と以下に示すような3価以上のフェノール化合物を混合使用しても良い。3価以上のフェノールとしてはフロログルシノール、4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプテン、4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプタン、1,3,5-トリ-(4-ヒドロキシフェニル)ベンゾール、1,1,1-トリ-(4-ヒドロキシフェニル)エタン及び2,2-ビス-[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン等が挙げられる。なお、これらポリカーボネート樹脂を製造するに際し、ポリカーボネート樹脂の質量平均分子量は、通常10000~80000であり、好ましくは15000~60000である。分子量調整剤、触媒等を必要に応じて使用することが出来る。なお、上記質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準物質としてポリスチレンを用いて測定することができる。
 グラフト共重合体(B)は、ゴム質重合体と、芳香族ビニル系単量体を含む単量体成分とがグラフト重合してなるものである。
 グラフト共重合体(B)を構成するゴム質重合体としては特に制限はなく、公知の重合方法により得られる、ポリブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)等の共役ジエン系ゴム、エチレン-プロピレンゴム、エチレン-プロピレン-非共役ジエン(エチリデンノルボルネン、ジシクロペンタジエン等)ゴム等のエチレン-プロピレン系ゴム、ポリブチルアクリレートゴム等のアクリル系ゴム、シリコーン系ゴムを1種又は2種以上用いることができる。上記アクリル系ゴムには、コアシェル構造を有するゴムも含まれる。コアシェル構造を有するゴム(コア/シェルで記載)としては、例えば、共役ジエン系ゴム/アクリル系ゴム、シリコーン系ゴム/アクリル系ゴム、硬質重合体(ガラス転移温度が20℃以上)/アクリル系ゴム等が挙げられる。硬質重合体(ガラス転移温度が20℃以上)としては、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体から選ばれる1種以上を含有する単量体を重合してなる重合体等が挙げられる。上記の中でも、ポリブタジエンゴム、スチレン-ブタジエンゴム、エチレン-プロピレン-非共役ジエンゴム、共役ジエン系ゴム/アクリル系ゴム、シリコーン系ゴム/アクリル系ゴム、硬質重合体(ガラス転移温度が20℃以上)/アクリル系ゴムが好ましい。硬質重合体のガラス転移温度は、FOXの式より算出することができる。
 ゴム質重合体の質量平均粒子径に特に制限はないが、耐衝撃性、及びめっき後の冷熱サイクル性の点から、0.1~2.0μmが好ましく、めっき密着性、及びめっき析出性の点から0.2~1.0μmがより好ましい。また、質量平均粒子径が0.05~0.3μmのゴム質重合体を凝集肥大化させることで調整することもできる。
 本発明のグラフト共重合体(B)は、上述のゴム質重合体に、芳香族ビニル系単量体を含む単量体成分をグラフト重合して得られるものである。
 グラフト共重合体(B)中のゴム質重合体の含有量は、耐衝撃性、流動性などの物性バランスから、20~80質量%が好ましく、40~70質量%がより好ましい。
 グラフト共重合体(B)を構成する芳香族ビニル系単量体としては、スチレン、α-メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、1種又は2種以上用いることができる。特にスチレン、α-メチルスチレンが好ましい。
 さらに、グラフト共重合体(B)を形成する単量体成分には、芳香族ビニル系単量体と共重合可能なその他の単量体が含まれていてもよく、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体、アミド系単量体、不飽和カルボン酸系単量体等が挙げられ、1種又は2種以上用いることができる。シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が例示でき、(メタ)アクリル酸エステル系単量体としては(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4-t-ブチルフェニル、(メタ)アクリル酸(ジ)ブロモフェニル、(メタ)アクリル酸クロルフェニル等が例示でき、アミド系単量体としてはアクリルアミド、メタクリルアミド等が例示でき、不飽和カルボン酸系単量体としてはアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が例示できる。
 ゴム質重合体にグラフト重合される、上記単量体の組成比率に特に制限はないが、芳香族ビニル系単量体50~90質量%、シアン化ビニル系単量体10~50質量%及び共重合可能な他の単量体0~40質量%の組成比率、芳香族ビニル系単量体30~80質量%、(メタ)アクリル酸エステル系単量体20~70質量%及び共重合可能な他のビニル系単量体0~50質量%の組成比率、芳香族ビニル系単量体20~70質量%、(メタ)アクリル酸エステル系単量体20~70質量%、シアン化ビニル系単量体10~60質量%及び共重合可能な他の単量体0~50質量%の組成比率であることが好ましい(ゴム質重合体にグラフト重合される単量体合計量を100質量%とする)。
 グラフト共重合体(B)のグラフト率及びアセトン可溶分の還元粘度に特に制限はないが、耐衝撃性、流動性などの物性バランスの観点から、グラフト率は20~150%であることが好ましく、30~100%がより好ましく、36~75%が特に好ましい。アセトン可溶分の還元粘度は、0.2~1.5dl/gであることが好ましく、0.3~1.0dl/gであることがより好ましい。
 上記グラフト率及びアセトン可溶分の還元粘度は、下記により求めることができる。
分別方法
 三角フラスコにグラフト共重合体(B)を約2g、アセトンを60ml投入し、24時間浸漬させた。その後、遠心分離器を用いて15,000rpmで30分間、遠心分離することで可溶部と不溶部に分離する。不溶分は、真空乾燥により常温で一昼夜乾燥させることで得られる。可溶分は、アセトン可溶部をメタノールに沈殿させ、真空乾燥により常温で一昼夜乾燥させることで得られる。
グラフト率
 グラフト率(%)=(X―Y)/Y×100
X:真空乾燥後のアセトン不溶分量(g)
Y:グラフト共重合体中のゴム質重合体量(g)
アセトン可溶分の還元粘度(dl/g)
 アセトン可溶分をN,N-ジメチルホルムアミドに溶解し、0.4g/100mlの濃度の溶液とした後、キャノンフェンスケ型粘度管を用い30℃で測定した流下時間より還元粘度を求める。
 上述のようにして得られたグラフト共重合体(B)には、通常、ゴム質重合体に芳香族ビニル系単量体を含む単量体成分がグラフトしたグラフト化重合体(b1成分)が主として含有される他、ゴム質重合体にグラフトしていない芳香族ビニル系単量体を含む単量体成分が共重合された共重合体(b2成分)が含まれる。そのため、本発明ではグラフト共重合体(B)に、b2成分が含まれる場合、共重合体(C)を含有していることを意味する。
 共重合体(C)は、芳香族ビニル系単量体とシアン化ビニル系単量体を含む単量体成分を重合して得られる。
 共重合体(C)を構成する芳香族ビニル系単量体としては、スチレン、α-メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、1種又は2種以上用いることができる。特にスチレン、α-メチルスチレンが好ましい。
 共重合体(C)を構成するシアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が挙げられ、1種又は2種以上用いることができる。特にアクリロニトリルが好ましい。
 さらに、共重合体(C)には、芳香族ビニル系単量体及びシアン化ビニル系単量体と共重合可能なその他の単量体が含まれていてもよく、(メタ)アクリル酸エステル系単量体、アミド系単量体、不飽和カルボン酸系単量体等が挙げられ、1種又は2種以上用いることができる。(メタ)アクリル酸エステル系単量体としては(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4-t-ブチルフェニル、(メタ)アクリル酸(ジ)ブロモフェニル、(メタ)アクリル酸クロルフェニル等が例示でき、アミド系単量体としてはアクリルアミド、メタクリルアミド等が例示でき、不飽和カルボン酸系単量体としてはアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が例示できる。
 共重合体(C)を構成する単量体の組成比率に特に制限はないが、芳香族ビニル系単量体50~90質量%、シアン化ビニル系単量体10~50質量%及び共重合可能な他の単量体0~40質量%の組成比率、芳香族ビニル系単量体20~70質量%、シアン化ビニル系単量体10~60質量%、(メタ)アクリル酸エステル系単量体20~70質量%及び共重合可能な他の単量体0~50質量%の組成比率が挙げられる。中でも、共重合体(C)を構成するシアン化ビニル系単量体の含有量が25~45質量%(特に30~40質量%)であることがめっき析出性の点で好ましい。
 共重合体(C)の還元粘度に特に制限はないが、耐衝撃性、流動性などの物性バランスの観点から0.2~1.5dl/gであることが好ましく、0.3~1.0dl/gであることがより好ましい。
 上記還元粘度は、下記方法により求めることができる。
 共重合体(C)を、N,N-ジメチルホルムアミドに溶解し、0.4g/100mlの濃度の溶液とした後、キャノンフェンスケ型粘度管を用い30℃で測定した流下時間より還元粘度を求める。
 上記めっき用樹脂組成物を構成するグラフト共重合体(B)、共重合体(C)の重合方法には特に制限はなく、例えば乳化重合法、懸濁重合法、溶液重合法、塊状重合法及びこれらを組み合わせた方法により製造することができる。
 本発明のめっき用樹脂組成物は、ポリカーボネート樹脂(A)の含有量が、ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)の合計100質量%に対して、20~60質量%である必要があり、25~55質量%であることが好ましく、30~50質量%であることがより好ましい。上記範囲となるように調整することにより耐衝撃性、流動性及びめっき析出性のバランスを向上させることができる。
 本発明のめっき用樹脂組成物は、ゴム質重合体に芳香族ビニル系単量体(特に、芳香族ビニル系単量体及びシアン化ビニル系単量体)がグラフト重合してなる共重合体の含有量が、ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)の合計100質量%に対して、5~30質量%が好ましく、より好ましくは10~25質量%、さらに好ましくは15~20質量%である。上記範囲となるように調整することにより、本発明が奏する効果がより向上する。上記共重合体の含有量は、グラフト共重合体(B)のグラフト率及びゴム質重合体の質量から算出することができる。
 本発明のめっき用樹脂組成物は、芳香族ビニル系単量体とシアン化ビニル系単量体の共重合体(ゴム質重合体にグラフト重合したものを除く)の含有量が、ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)の合計100質量%に対して、10~75質量%が好ましく、より好ましくは20~65質量%、さらに好ましくは30~55質量%である。上記範囲となるように調整することにより、本発明が奏する効果がより向上する。上記共重合体の含有量は、グラフト共重合体(B)のグラフト率からゴム質重合体にグラフトされていない芳香族ビニル系単量体とシアン化ビニル系単量体の質量を求め、これに共重合体(C)の含有量を加えた質量として算出することができる。
 本発明のめっき用樹脂組成物は、ゴム質重合体の含有量が、該樹脂組成物に対して7~20質量%である必要があり、10~15質量%であることがより好ましく、さらに好ましくは11~14質量%である。上記範囲となるように調整することによりめっき析出性とめっき密着強度のバランスを向上させることができる。
 本発明のめっき用樹脂組成物中の、グラフト共重合体(B)及び共重合体(C)を構成する芳香族ビニル系単量体及びシアン化ビニル系単量体の含有量の合計が、ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)の合計100質量%に対して、20~73質量%であることが好ましく、より好ましくは30~65質量%、さらに好ましくは36~59質量%である。上記範囲となるように調整することによりめっき析出性とめっき密着強度のバランスを向上させることができる。
 本発明のめっき用樹脂組成物は、オリゴマー成分の含有量が、該樹脂組成物に対して1質量%未満である必要があり、0.8質量%未満であることが好ましい。上記範囲となるように調整することによりめっき析出性を向上させることができる。ここで、オリゴマー成分とは、樹脂組成物中に含まれる重合に用いた単量体の2量体及び3量体であり、具体的にはスチレンの2量体、アクリロニトリルとスチレンの2量体、スチレンの3量体及びアクリロニトリルとスチレンの3量体などが挙げられる。
 オリゴマー成分の量(オリゴマー量)は、ガスクロマトグラフィーを用いて下記条件にて測定することができる。
<サンプル作成>
 樹脂組成物1gを精秤し、N,N-ジメチルホルムアミド50mlに溶解した後、密閉容器内で24時間放置後、これを測定試料とした。
<ガスクロマトグラフ測定条件>
装置:島津製作所社製ガスクロマトグラフGC-2010
カラム名:DB-5(液膜厚×長さ=0.25μm×30m)
カラム温度:70℃で5分間維持後、20分間かけて320℃まで昇温し、320℃に到達後9分間維持した。
サンプル量:1μl
検出器:FID
Inj温度:230℃
Det温度:330℃
キャリアガス:ヘリウム、1.38ml/min
水素:40ml/min
エアー:400ml/min
<定量方法>
 FID検出器では、炭化水素成分に対しては、相対モル感度がほぼ含有炭素数に正比例するとして、計算により求めることが出来る。またO,Cl,Nなどのヘテロ元素を含む有機成分についてもSternbergらによって提唱された化合物中の有効炭素数から相対モル感度を算出して求めることが出来る。検定液として試薬特級DMF溶液中にスチレンを1000ppmになるように秤量し、上記法よりスチレンに対する各成分の相対モル感度を算出し、これをもとにスチレンの2量体、アクリロニトリルとスチレンの2量体、スチレンの3量体及びアクリロニトリルとスチレンの3量体について定量した。定量の際、1つの試料について3回測定し、平均値を樹脂組成物中のオリゴマー成分の含有量とした。
 上記オリゴマー成分の含有量の調整方法としては特に制限なく公知の方法を用いることができ、オリゴマー含有量が低減された各構成樹脂を配合する方法、樹脂組成物を溶融混練する際の脱気工程を増やしたり、脱気の真空度を上げたりする方法などが挙げられる。各構成樹脂のオリゴマー含有量の低減方法としては、重合時の単量体組成の最適化、重合時の温度を下げる、重合時の触媒の種類や添加量の最適化等が挙げられる。
 本発明のめっき用樹脂組成物には、その目的を損なわない範囲内において、他の熱可塑性樹脂を混合することもできる。このような他の熱可塑性樹脂として、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、イミド系樹脂、ポリ乳酸樹脂等を使用することができる。
 さらに、本発明のめっき用樹脂組成物には、ヒンダードアミン系の光安定剤、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系等の酸化防止剤、フェノール系、アクリレート系等の熱安定剤、ベンゾエート系、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系の紫外線吸収剤、有機ニッケル系、高級脂肪酸アミド類等の滑剤、リン酸エステル類等の可塑剤、ポリブロモフェニルエーテル、テトラブロモビスフェノール-A、臭素化エポキシオリゴマー、臭素化等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤、臭気マスキング剤、カーボンブラック、酸化チタン等の顔料、及び染料等を添加することもできる。更に、タルク、炭酸カルシウム、水酸化アルミニウム、ガラス繊維、ガラスフレーク、ガラスビーズ、ガラスウール、炭素繊維、金属繊維等の補強剤や充填剤を添加することもできる。
 本発明のめっき用樹脂組成物におけるポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)の合計の含有割合は、めっき用樹脂組成物の総量に対し、50質量%以上が好ましく、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。上記含有割合が50質量%以上であると、本発明が奏する効果がより向上する。
 本発明のめっき用樹脂組成物の、ISO試験方法179に準拠したノッチ付きシャルピー衝撃値(試験片厚み:4mm厚み、測定温度:23℃)は、5~90kJ/m2が好ましく、より好ましくは10~80kJ/m2である。上記範囲となるように調整することにより、耐衝撃性により優れつつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れる。
 本発明のめっき用樹脂組成物の、ISO試験方法1133に準拠した、220℃、98.07N荷重の条件におけるメルトボリュームフローレイト(MVF)は、6~30cm3/10分が好ましく、より好ましくは8~27cm3/10分である。上記範囲となるように調整することにより、流動性により優れつつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れる。
 上記めっき用樹脂組成物を含有する樹脂の混合は、通常使用されるロール、バンバリーミキサー、押出機、ニーダー等公知の混練機を用い、溶融混練することで実施できる。
 このようにして得られためっき用樹脂組成物は、射出成形、押出成形、圧縮成形、射出圧縮成形、ブロー成形等により成形され、得られた樹脂成形品は、公知のめっき方法、例えば通常のABS樹脂のめっき条件と同様の条件にてめっき加工することができるが、特にダイレクトめっき法を用いることが好ましい。
 以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。なお、実施例中にて示す部及び%は質量に基づくものである。また、各実施例、比較例での各種物性の測定は次の方法による。
[測定及び評価]
 オリゴマー量測定
 各実施例及び比較例で得られた樹脂組成物をガスクロマトグラフィーを用い、上述の方法及び条件にて測定した。
 シャルピー衝撃強度(NC)
 各実施例及び比較例で得られたペレットを用いISO試験方法294に準拠して各種試験片を成形し、ISO試験方法179に準拠し、4mm厚みで、ノッチ付きシャルピー衝撃値を測定した。単位:kJ/m2
 メルトボリュームフローレイト(MVR)
 各実施例及び比較例で得られたペレットを用い、ISO試験方法1133に準拠して、220℃、98.07N荷重の条件でメルトボリュームフローレイトを測定した。単位:cm3/10分
 めっき密着強度
 各実施例及び比較例で得られたペレットを射出成形機にてめっき用平板成形品(55×90×3mm)を成形し、以下の方法にてダイレクトめっきを施した後、析出しためっき膜の密着強度を、JIS H-8630に基づき、めっき成形品の金属膜に基材に達する1cm間隔の切傷を入れ、金属膜を垂直な方向に引き剥がす時の応力(N)で示した。
 <めっき処理工程>
 上記のめっき用平板を40℃のCRPクリーナーに3分間浸し脱脂した。脱脂後の平板を30℃の水で水洗した後、67℃のエッチング液(クロム酸:400g/l、硫酸:200cc/l)に10分間又は15分間浸しエッチングを行った。エッチング後の平板を30℃の水で2分間水洗した後、25℃のCRPレデューサーに3分間浸し中和処理を行った。中和後の平板を30℃の水で2分間水洗した後、25℃の塩酸に1分間プリディップし、続いて35℃のCRPキャタリストに6分間浸し、Pd-Snコロイド触媒化処理を行った。触媒化後の平板を30℃の水で2分間水洗した後、45℃のCRPセレクターA,Bに3分間浸して導体化処理を行った。導体化処理した平板を30℃の水で2分間水洗した後、CRPカッパーを用いた電気銅めっき浴に25℃で2時間、電流密度3A/dm2の電流を通電して、膜厚50μmの電気銅めっき膜を平板に析出させた。電気銅めっき後の平板を30℃の水で水洗した後、電気銅めっきされた平板を80℃で2時間エージングし一晩放置した。
 めっき析出性
 各実施例及び比較例で得られたペレットを射出成形機にてめっき用平板成形品(55×90×3mm)を成形し、長辺方向9mm毎に短辺方向に幅1mm長さ45mmの切込みを左右交互に入れ波形平板を作成し、以下の方法にてダイレクトめっきを施した後、めっき膜の析出度合いを析出過程におけるめっき未着部(スキップ)の発生度合いを目視判定し、以下の判定基準にて判定した。
 ○:スキップなしで良好。
 △:一部スキップが見られる状態。
 ×:全体的にスキップが見られ不良。 
 <めっき処理工程>
 上記のめっき用平板を40℃のCRPクリーナーに3分間浸し脱脂した。脱脂後の平板を30℃の水で水洗した後、67℃のエッチング液(クロム酸:400g/l、硫酸:200cc/l)に10分間浸しエッチングを行った。エッチング後の平板を30℃の水で2分間水洗した後、25℃のCRPレデューサーに3分間浸し中和処理を行った。中和後の平板を30℃の水で2分間水洗した後、25℃の塩酸に1分間プリディップし、続いて35℃のCRPキャタリストに6分間浸し、Pd-Snコロイド触媒化処理を行った。触媒化後の平板を30℃の水で2分間水洗した後、45℃のCRPセレクターA,Bに3分間浸して導体化処理を行った。導体化処理した平板を30℃の水で2分間水洗した後、CRPカッパーを用いた電気銅めっき浴に25℃で5分間、電流密度2A/dm2の電流を通電して、電気銅めっき膜を平板に析出させた。
 冷熱サイクル性
 各実施例及び比較例で得られたペレットを射出成形機にてめっき用平板成形品(55×90×3mm)を成形し、以下の方法にてダイレクトめっきを施した後、-30℃(1時間)→23℃(0.5時間)→80℃(1時間)→23℃(0.5時間)の順に環境温度を変化させた。これを10サイクル実施した後、各めっき成形品外観に膨れ等の異常の有無を目視判定し、以下の判定基準にて判定した。
 ○:めっき膨れ/割れがなく良好。
 △:一部にめっき膨れ/割れが見られる状態。
 ×:全体的にめっき膨れ/割れが見られ不良。
 <めっき処理工程>
 上記のめっき用平板を40℃のCRPクリーナーに3分間浸し脱脂した。脱脂後の平板を30℃の水で水洗した後、67℃のエッチング液(クロム酸:400g/l、硫酸:200cc/l)に10分間浸しエッチングを行った。エッチング後の平板を30℃の水で2分間水洗した後、25℃のCRPレデューサーに3分間浸し中和処理を行った。中和後の平板を30℃の水で2分間水洗した後、25℃の塩酸に1分間プリディップし、続いて35℃のCRPキャタリストに6分間浸し、Pd-Snコロイド触媒化処理を行った。触媒化後の平板を30℃の水で2分間水洗した後、45℃のCRPセレクターA,Bに3分間浸して導体化処理を行った。導体化処理した平板を30℃の水で2分間水洗した後、CRPカッパーを用いた電気銅めっき浴に25℃で15分間、電流密度2A/dm2の電流を通電して、15μmの電気銅めっき膜を平板に析出させた。続いて一般的な装飾用電気めっき工程にて、半光沢ニッケル膜:6μm、光沢ニッケル膜:4μm、クロムめっき膜:0.1~0.3μmを析出させた。
ポリカーボネート樹脂(A)
 ポリカーボネート樹脂(A):ホスゲンとビスフェノールAからなる粘度平均分子量20,500のポリカーボネート樹脂。
グラフト共重合体(B)の製造
 ガラスリアクターに、凝集肥大化スチレン-ブタジエンゴムラテックス(質量平均粒子径0.25μm)を固形分換算で50質量部仕込み、撹拌を開始させ、窒素置換を行った。窒素置換後、槽内を昇温させ65℃に到達したところで、ラクトース0.2質量部、無水ピロリン酸ナトリウム0.1質量部及び硫酸第一鉄0.005質量部を脱イオン水10質量部に溶解した水溶液を添加した後に、70℃に昇温させた。その後、アクリロニトリル15質量部、スチレン35質量部、ターシャリードデシルメルカプタン0.05質量部、クメンハイドロパーオキサイド0.3質量部の混合液及びオレイン酸カリウム1.0質量部を脱イオン水20質量部に溶解した乳化剤水溶液を4時間かけて連続的に滴下した。滴下後、3時間保持してグラフト共重合体ラテックスを得た。その後、塩析、脱水、乾燥させ、グラフト共重合体(B)のパウダーを得た。得られたグラフト共重合体(B)のグラフト率は37.0%、アセトン可溶部の還元粘度は0.39dl/gであった。また、上記凝集肥大化スチレン-ブタジエンゴムラテックスの質量平均粒子径は下記のように求めた。
 四酸化オスミウム(OsO4)で染色し、乾燥後に透過型電子顕微鏡で写真撮影した。画像解析処理装置(装置名:旭化成(株)製IP-1000PC)を用いて800個のゴム粒子の面積を計測し、その円相当径(直径)を求め、質量平均粒子径を算出した。
共重合体(C-1)の製造
 アクリロニトリルを33部、スチレンを67部、溶媒としてエチルベンゼンを15部、開始剤として1,1-ジ(t-ブチルペルオキシ)シクロへキサン(10時間半減期温度90.7℃)を0.021部、連鎖移動剤としてt-ドデシルメルカプタンを0.15部用いた混合溶液を調製し、5℃以下に冷却保存した。調製した混合溶液を反応温度127℃に保たれた容積20Lのダブルヘリカルリボン翼付きの反応器に1.44kg/hrで連続的に供給し重合を行った。共重合体を含む混合溶液を供給速度と同じ速度でポンプにより連続的に抜き出し、289℃、45torrに保たれた気液分離装置に送液することで、共重合体と未反応溶液に分離した。分離した共重合体をペレット化することで共重合体(C-1)を得た。重合が安定した時の重合率は51%であり、その重合率になったときの共重合体を物性等の評価に用いた。
共重合体(C-2)の製造
 アクリロニトリルを27部、スチレンを73部、溶媒としてエチルベンゼンを12部、開始剤として1,1-ジ(t-へキシルペルオキシ)シクロへキサン(10時間半減期温度86.7℃)を0.018部、連鎖移動剤としてt-ドデシルメルカプタンを0.33部用いた混合溶液を調製し、5℃以下に冷却保存した。調製した混合溶液を反応温度125℃に保たれた容積20Lのダブルヘリカルリボン翼付きの反応器に1.52kg/hrで連続的に供給し重合を行った。共重合体を含む混合溶液を供給速度と同じ速度でポンプにより連続的に抜き出し、285℃、45torrに保たれた気液分離装置に送液することで、共重合体と未反応溶液に分離した。分離した共重合体をペレット化することで共重合体(C-2)を得た。重合が安定した時の重合率は45%であり、その重合率になったときの共重合体を物性等の評価に用いた。
共重合体(C-3)の製造
 アクリロニトリルを29部、スチレンを71部、溶媒としてエチルベンゼンを16部、開始剤としてt-ブチルクミルペルオキシド(10時間半減期温度119.5℃)を0.025部、連鎖移動剤としてt-ドデシルメルカプタンを0.39部用いた混合溶液を調製し、5℃以下に冷却保存した。調製した混合溶液を反応温度155℃に保たれた容積20Lのダブルヘリカルリボン翼付きの反応器に1.32kg/hrで連続的に供給し重合を行った。共重合体を含む混合溶液を供給速度と同じ速度でポンプにより連続的に抜き出し、260℃、45torrに保たれた気液分離装置に送液することで、共重合体と未反応溶液に分離した。分離した共重合体をペレット化することで共重合体(C-3)を得た。重合が安定した時の重合率は56%であり、その重合率になったときの共重合体を物性等の評価に用いた。
実施例1~8及び比較例1~5
 ポリカーボネート樹脂(A)、グラフト共重合体(B)、共重合体(C)を表1記載の配合割合で混合した後、シリンダー温度250℃に設定したφ35mmの2軸押出機にて主スクリュー回転数300rpm、吐出量15kg/hrの条件で溶融混練し、ペレット化した。得られたペレットを用いて、オリゴマー成分の含有量の測定を行った。また、このペレットを用いて射出成形機(シリンダー温度250℃、金型温度60℃)にて物性測定用試験片及びめっき用平板を成形した。次いで、その試験片及び平板を用いて物性ならびにめっき密着強度、めっき析出性、冷熱サイクル性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明のめっき用樹脂組成物を使用した実施例1~8はいずれも、耐衝撃性及び流動性に優れ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れる成形品が得られた。
 比較例1は、ポリカーボネート樹脂(A)量が本願で規定する下限に達しないことから、耐衝撃性に劣るものであった。
 比較例2は、ゴム質重合体の含有量が本願で規定する下限に達しないことから、めっき密着強度、めっき析出性、冷熱サイクル性に劣るものであった。
 比較例3は、ゴム質重合体の含有量が本願で規定する上限を超えることから、流動性、めっき析出性、冷熱サイクル性に劣るものであった。
 比較例4は、オリゴマー含有量が本願で規定する上限を超えることから、めっき析出性、冷熱サイクル性に劣るものであった。
 比較例5は、ポリカーボネート樹脂(A)量が本願で規定する上限を超えることから、流動性、めっき密着強度、めっき析出性に劣るものであった。
 上記のとおり、本発明のめっき用樹脂組成物は、耐衝撃性、流動性に優れ、かつ、めっき密着強度、めっき析出性及び冷熱サイクル性のバランスに優れることから、例えば車両内装、外装用部品等、市場のニーズに合わせて多彩な用途に使用することができる。

Claims (5)

  1. ポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)を含有する樹脂組成物であって、下記条件(1)~(5)を満足するめっき用樹脂組成物。
    (1)ポリカーボネート樹脂(A)の含有量が、(A)、(B)及び(C)の合計100質量%に対して、20~60質量%。
    (2)グラフト共重合体(B)が、ゴム質重合体と、芳香族ビニル系単量体を含む単量体成分とがグラフト重合して成るグラフト共重合体。
    (3)共重合体(C)が、芳香族ビニル系単量体とシアン化ビニル系単量体を含む単量体成分を重合して成る共重合体。
    (4)ゴム質重合体の含有量が、樹脂組成物に対して7~20質量%。
    (5)オリゴマー成分の含有量が、樹脂組成物に対して1質量%未満。
  2.  ポリカーボネート樹脂(A)の含有量が、(A)、(B)及び(C)の合計100質量%に対して、30~50質量%であることを特徴とする請求項1に記載のめっき用樹脂組成物。
  3.  ゴム質重合体の含有量が、樹脂組成物に対して10~15質量%であることを特徴とする請求項1又は2に記載のめっき用樹脂組成物。
  4.  共重合体(C)を構成するシアン化ビニル系単量体の含有量が、共重合体(C)に対して、30~40質量%であることを特徴とする請求項1~3の何れか1項に記載のめっき用樹脂組成物。
  5.  請求項1~4の何れか1項に記載のめっき用樹脂組成物を成形して得られる成形品に、めっきが施されていることを特徴とするめっき成形品。
PCT/JP2017/024593 2016-07-08 2017-07-05 めっき用樹脂組成物及びめっき成形品 WO2018008669A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202311303572.2A CN117844131A (zh) 2016-07-08 2017-07-05 镀敷用树脂组合物与镀敷成形品
CN201780042485.2A CN109790363B (zh) 2016-07-08 2017-07-05 镀敷用树脂组合物与镀敷成形品
US16/315,855 US20190322786A1 (en) 2016-07-08 2017-07-05 Resin composition for plating, and plated molded article
US17/727,446 US20220251271A1 (en) 2016-07-08 2022-04-22 Resin composition for plating, and plated molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136315A JP6270927B2 (ja) 2016-07-08 2016-07-08 めっき用樹脂組成物及びめっき成形品
JP2016-136315 2016-07-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/315,855 A-371-Of-International US20190322786A1 (en) 2016-07-08 2017-07-05 Resin composition for plating, and plated molded article
US17/727,446 Continuation US20220251271A1 (en) 2016-07-08 2022-04-22 Resin composition for plating, and plated molded article

Publications (1)

Publication Number Publication Date
WO2018008669A1 true WO2018008669A1 (ja) 2018-01-11

Family

ID=60912819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024593 WO2018008669A1 (ja) 2016-07-08 2017-07-05 めっき用樹脂組成物及びめっき成形品

Country Status (4)

Country Link
US (2) US20190322786A1 (ja)
JP (1) JP6270927B2 (ja)
CN (2) CN109790363B (ja)
WO (1) WO2018008669A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186653B2 (ja) * 2019-03-27 2022-12-09 日本エイアンドエル株式会社 熱可塑性樹脂組成物
CN112714783B (zh) * 2019-03-28 2022-11-11 日本A&L株式会社 热塑性树脂组合物
JP6850932B1 (ja) * 2020-11-10 2021-03-31 日本エイアンドエル株式会社 塗装用樹脂組成物
JP6938753B1 (ja) * 2020-12-23 2021-09-22 テクノUmg株式会社 めっき用樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279789A (ja) * 1997-04-01 1998-10-20 Bayer Ag 減少した堆積物生成を有するポリカーボネート/グラフトポリマー成形組成物
JP2002528589A (ja) * 1998-10-23 2002-09-03 ゼネラル・エレクトリック・カンパニイ ポリカーボネート樹脂/absグラフト共重合体/sanブレンド
JP2003327817A (ja) * 2002-05-07 2003-11-19 Mitsubishi Rayon Co Ltd ダイレクトめっき用樹脂組成物
JP2007197695A (ja) * 2005-12-27 2007-08-09 Toray Ind Inc スチレン系樹脂組成物の製造方法および成形品
CN102719076A (zh) * 2012-07-03 2012-10-10 上海锦湖日丽塑料有限公司 可直接蒸镀成型的树脂组合物及其制备方法
JP2014074159A (ja) * 2012-09-14 2014-04-24 Mitsubishi Engineering Plastics Corp レーザーダイレクトストラクチャリング用樹脂組成物、樹脂成形品、およびメッキ層付樹脂成形品の製造方法
JP2015108075A (ja) * 2013-12-05 2015-06-11 三菱エンジニアリングプラスチックス株式会社 レーザーダイレクトストラクチャリング用熱可塑性樹脂組成物、樹脂成形品、および樹脂成形品の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US729595A (en) * 1903-03-16 1903-06-02 Charles H Coakley Box-fastener.
US4068064A (en) * 1975-12-22 1978-01-10 The Dow Chemical Company Method for preparing monovinyl aromatic monomer-acrylonitrile copolymer
JP3429389B2 (ja) * 1995-04-04 2003-07-22 日本ジーイープラスチックス株式会社 無電解メッキ用樹脂組成物
TWI230726B (en) * 1998-06-17 2005-04-11 Bayer Ag Thermoplastic molding compositions having improved plateability
WO2003016399A1 (en) * 2001-08-10 2003-02-27 Mitsubishi Rayon Co., Ltd. Resin composition for direct vapor deposition, molded articles made by using the same, and surface-metallized lamp housing
JP2006169461A (ja) * 2004-12-20 2006-06-29 Toray Ind Inc ポリカーボネートを含有する熱可塑性樹脂組成物
JP5572287B2 (ja) * 2007-12-27 2014-08-13 ユーエムジー・エービーエス株式会社 めっき基材用強化樹脂組成物および成形品、ならびに電気めっき部品
CN102146203A (zh) * 2011-04-26 2011-08-10 江苏金发科技新材料有限公司 一种高耐热高抗冲可电镀的pc/abs合金材料
CN105874365B (zh) * 2014-01-15 2019-08-09 大日本印刷株式会社 偏振元件、偏振元件的制造方法、光取向装置及偏振元件的组装方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279789A (ja) * 1997-04-01 1998-10-20 Bayer Ag 減少した堆積物生成を有するポリカーボネート/グラフトポリマー成形組成物
JP2002528589A (ja) * 1998-10-23 2002-09-03 ゼネラル・エレクトリック・カンパニイ ポリカーボネート樹脂/absグラフト共重合体/sanブレンド
JP2003327817A (ja) * 2002-05-07 2003-11-19 Mitsubishi Rayon Co Ltd ダイレクトめっき用樹脂組成物
JP2007197695A (ja) * 2005-12-27 2007-08-09 Toray Ind Inc スチレン系樹脂組成物の製造方法および成形品
CN102719076A (zh) * 2012-07-03 2012-10-10 上海锦湖日丽塑料有限公司 可直接蒸镀成型的树脂组合物及其制备方法
JP2014074159A (ja) * 2012-09-14 2014-04-24 Mitsubishi Engineering Plastics Corp レーザーダイレクトストラクチャリング用樹脂組成物、樹脂成形品、およびメッキ層付樹脂成形品の製造方法
JP2015108075A (ja) * 2013-12-05 2015-06-11 三菱エンジニアリングプラスチックス株式会社 レーザーダイレクトストラクチャリング用熱可塑性樹脂組成物、樹脂成形品、および樹脂成形品の製造方法

Also Published As

Publication number Publication date
CN109790363A (zh) 2019-05-21
CN109790363B (zh) 2024-03-15
JP2018002989A (ja) 2018-01-11
JP6270927B2 (ja) 2018-01-31
CN117844131A (zh) 2024-04-09
US20190322786A1 (en) 2019-10-24
US20220251271A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
EP1956043B1 (en) Resin composition for direct metal plating, molded article, and metal-plated molded article
US20220251271A1 (en) Resin composition for plating, and plated molded article
JP5371393B2 (ja) めっき用樹脂組成物、及び樹脂めっき製品
JP5547793B2 (ja) 熱可塑性樹脂組成物及び成形品
JP4766909B2 (ja) ダイレクトめっき用樹脂組成物およびめっき装飾製品。
JP4947923B2 (ja) ダイレクトめっき用樹脂組成物およびめっき装飾製品。
JP7186653B2 (ja) 熱可塑性樹脂組成物
JP4914577B2 (ja) ダイレクトめっき用樹脂組成物およびめっき装飾製品。
EP4269457A1 (en) Resin composition for plating
JP4084876B2 (ja) メッキ用樹脂組成物およびメッキ成形品
EP3647370B1 (en) Thermoplastic resin composition, molded resin article thereof, and coated article
JP6850932B1 (ja) 塗装用樹脂組成物
JP5547796B2 (ja) 熱可塑性樹脂組成物及び成形品
JP2007039489A (ja) グラフト共重合体、熱可塑性樹脂組成物、および成形品
JPWO2019087653A1 (ja) めっき成形品用熱可塑性樹脂組成物およびそれを用いた成形品、めっき成形品
JP2022015970A (ja) めっき用樹脂組成物及びめっき成形品
JP7299399B1 (ja) グラフト共重合体、めっき用樹脂組成物、成形品及びめっき加工品
JP5457518B2 (ja) 車両灯具用熱可塑性樹脂組成物及び成形品
JP2022080834A (ja) めっき用樹脂組成物およびめっき成形品
JP2022187748A (ja) 熱可塑性樹脂組成物および成形品
US20240043684A1 (en) Thermoplastic composition with good plating performance
JP6041381B2 (ja) 車両灯具用熱可塑性樹脂組成物及び成形品
JP2022547243A (ja) 難燃ゴム強化ポリカーボネート系樹脂組成物およびその成形品
JP2022152087A (ja) 熱可塑性樹脂組成物及びその製造方法
JP2017066499A (ja) めっき用樹脂組成物およびめっき成形品。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824272

Country of ref document: EP

Kind code of ref document: A1