WO2018008381A1 - Élément optique, structure de couche active et dispositif d'affichage - Google Patents

Élément optique, structure de couche active et dispositif d'affichage Download PDF

Info

Publication number
WO2018008381A1
WO2018008381A1 PCT/JP2017/022624 JP2017022624W WO2018008381A1 WO 2018008381 A1 WO2018008381 A1 WO 2018008381A1 JP 2017022624 W JP2017022624 W JP 2017022624W WO 2018008381 A1 WO2018008381 A1 WO 2018008381A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical element
quantum well
conductivity type
less
Prior art date
Application number
PCT/JP2017/022624
Other languages
English (en)
Japanese (ja)
Inventor
義昭 渡部
河角 孝行
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018526005A priority Critical patent/JP7147560B2/ja
Priority to DE112017003372.1T priority patent/DE112017003372T5/de
Publication of WO2018008381A1 publication Critical patent/WO2018008381A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • an optical element includes a first conductivity type layer, a second conductivity type layer, and an active layer.
  • the first conductivity type layer has a current confinement structure configured such that a current injection region is constricted.
  • the active layer is an active layer provided between the first conductivity type layer and the second conductivity type layer, and has one quantum well layer or a plurality of quantum well layers.
  • the thickness of the quantum well layer is 10 nm or less, and the total thickness of the plurality of quantum well layers is 10 nm or less.
  • the first conductivity type layer includes a first cladding layer, and a first guide layer provided between the first cladding layer and the active layer
  • the second conductivity type layer includes a second cladding layer, and a second guide layer provided between the second cladding layer and the active layer
  • the refractive index difference between the first cladding layer and the first guide layer is 0.01 or more and 0.10 or less
  • the difference in refractive index between the second cladding layer and the second guide layer may be not less than 0.01 and not more than 0.10.
  • the light emitted from the optical element can be output with high output and wide spectrum width as described above.
  • the thickness of the first guide layer is 50 nm or more and 200 nm or less
  • the thickness of the second guide layer may be 50 nm or more and 200 nm or less.
  • the emission color is red, taking into consideration the control of the emission pattern (spreading of emitted light) and the confinement of carriers, the refractive index difference between the first cladding layer and the first guide layer and the refraction of the second cladding layer and the second guide layer.
  • the rate difference is preferably 0.06 or more and 0.30 or less.
  • the difference in refractive index between the first cladding layer and the first guide layer and the second cladding layer and the second guide layer is preferably 0.02 or more and 0.06 or less.
  • an optical element As described above, according to the present technology, it is possible to provide an optical element, an active layer structure, and a display device that can emit light with high output and a wide spectrum width. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • the lower end of the p-type cladding layer 131 coincides with the lower end of the ridge portion 10, but this need not be the case, and the lower end of the ridge portion 10 includes a part of the p-type guide layer 132. Also good.
  • FIG. 3 is a schematic diagram showing the band structure of each layer.
  • the horizontal direction indicates energy (E in the figure), and indicates that the energy is higher toward the left side.
  • the vertical direction indicates the stacking direction of the layers constituting the optical element 100.
  • the lower energy band is a valence band (VB), and the higher energy band is a conduction band (CB).
  • conventional structure there is a structure including an active layer having a plurality of thin quantum wells (hereinafter, conventional structure 1).
  • conventional structure 1 in order to widen the spectrum width, the wavelength of each quantum well is changed variously to obtain a wide spectrum width.
  • injected carriers are dispersed in the plurality of quantum wells, the carrier distribution is likely to be non-uniform, and high gain is difficult to obtain.
  • FIG. 5 is a table showing the characteristics of the SLD having the conventional structure and the SLD according to the present embodiment.
  • the well width T is small and the carrier density is large, the quantum effect of the quantum well is increased, the use efficiency of injected carriers is promoted, and the output and temperature characteristics are improved. Moreover, the active layer loss is also reduced by reducing the volume of the active layer 20.
  • the well width T is reduced, that is, the optical loss of the active layer light absorption in the non-excitation region is reduced by the amount that the volume of the active layer 20 is reduced, and the heat source around the active layer is reduced. Further, it is effective in further improving the light emission efficiency or energy efficiency, lowering the temperature inside the device, and thus improving the reliability.
  • the light confinement ratio in the quantum well formed by the quantum well layer 20a is preferably 3% or less.
  • the light confinement rate in the quantum well means the ratio of the light density confined in the quantum well. Conventionally, the light confinement rate in the quantum well is generally 4% or more.
  • the material of the quantum well layer 20a is not particularly limited, but the emission color of the optical element 100 varies depending on the material of the quantum well layer 20a.
  • the quantum well layer 20a is made of AlInGaP, red light having an emission wavelength of 550 to 900 nm (practical range of 630 to 680 nm) is generated.
  • the quantum well layer 20a is made of AlInGaN, blue-violet to green light having an emission wavelength of 400 to 1000 nm (practical range of 400 to 550 nm) is generated.
  • the materials of the quantum well layer 20a include AlGaN (emission wavelength ultraviolet region to 400 nm), AlGaAs (emission wavelength 750 to 850 nm, infrared region), InGaAs (emission wavelength 800 to 980 nm, infrared region), InGaAsP (emission wavelength 1.2). To 1.6 ⁇ m, infrared region) and the like.
  • the light confinement ratio in the quantum well can be adjusted to 3% or less.
  • the thicknesses of the p-type guide layer 132 and the n-type guide layer 142 are each preferably 10 nm to 500 nm, and more preferably 50 nm to 200 nm.
  • the above 10 nm to 500 nm is a numerical range that can be taken in the device design of SLD, and 50 nm to 200 nm is a numerical range that considers not only light confinement but also light emission pattern control (spreading of emitted light) and carrier confinement. is there.
  • the refractive index difference between the p-type cladding layer 131 and the p-type guide layer 132 (hereinafter referred to as p-type refractive index difference) and the refractive index difference between the n-type cladding layer 141 and the n-type guide layer 142 (hereinafter referred to as n-type refractive index difference).
  • p-type refractive index difference refractive index difference between the n-type cladding layer 141 and the n-type guide layer 142
  • n-type refractive index difference Can also adjust the light confinement rate in the quantum well to 3% or less.
  • the p-type refractive index difference and the n-type refractive index difference are each preferably 0.03 to 0.50, and 0.06 More than 0.30 is more suitable.
  • 0.03 to 0.50 is a numerical range that can be taken in the device design of the SLD, and 0.06 to 0.30 is not only the confinement of light but also the control of the light emission pattern (spreading of the emitted light) This is a numerical range that also considers the confinement of carriers.
  • the range from 0.01 to 0.10 is a numerical range that can be taken in the device design of the SLD, and the range from 0.02 to 0.06 is not only the confinement of light but also the control of the light emission pattern (spreading of the emitted light) This is a numerical range that also considers the confinement of carriers.
  • the waveguide length when the waveguide length is increased, the light intensity is increased because the light is amplified through a longer path until the light is emitted.
  • the gain spectrum wavelength dependence
  • the emission spectrum width is narrowed. For this reason, low coherence property falls. That is, the output and coherence have a trade-off relationship.
  • the size of the SLD becomes large, which is not suitable for downsizing of the package, the influence of the entire waveguide loss is increased, and the light change efficiency is also lowered.
  • the injection electrode is divided or the material and structure of the active layer are divided into parts. Need to change. In the former case, it is necessary to drive the divided electrodes with separate drivers, which is expensive. In the latter case, it is difficult to manufacture, for example, since crystal regrowth is required, and the cost is high.
  • composition and film thickness of the active layer can be sufficiently detected by EDX (Energy Dispersive X-ray Spectrometry) analysis or WDX (Wavelength Dispersive X-ray Spectroscopy) analysis after TEM (Transmission Electron Microscope) analysis. Further, not only the film thickness but also the optical confinement ratio can be calculated by combining optical waveguide calculation.
  • FIG. 12 schematically shows a configuration of a display device that uses an SLD that is an optical element according to the embodiment as a light source.
  • the display device 200 is a raster scan projector.
  • a two-dimensional light modulation element such as a DMD (Digital Micro-mirror Device) manufactured using MEMS (Micro Electro Mechanical System) technology may be used.
  • DMD Digital Micro-mirror Device
  • MEMS Micro Electro Mechanical System
  • the one quantum well layer is an optical element made of AlInGaN.
  • An optical element The light emitted from the optical element can be scanned two-dimensionally, and based on image data, an image generation unit capable of controlling the luminance by the projected light,
  • the optical element is A first conductivity type layer having a current confinement structure configured to confine a current injection region; A second conductivity type layer; An active layer provided between the first conductivity type layer and the second conductivity type layer, the active layer having one quantum well layer or a plurality of quantum well layers,
  • a display device comprising: an active layer having a thickness of 10 nm or less and a total thickness of the plurality of quantum well layers being 10 nm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Le problème à résoudre dans le cadre de la présente invention consiste à fournir un élément optique avec lequel une lumière ayant une sortie élevée et une large largeur de spectre peut être émise, et à fournir une structure de couche active et un dispositif d'affichage. La solution consiste en un élément optique de la présente technologie qui comprend une couche d'un premier type de conductivité, une couche d'un second type de conductivité et une couche active. La couche d'un premier type de conductivité présente une structure de constriction de courant qui est configurée de sorte à resserrer une région d'injection d'un courant. La couche active est disposée entre la couche d'un premier type de conductivité et la couche d'un second type de conductivité et comprend une seule couche de puits quantique ou plusieurs couches de puits quantiques. L'épaisseur de la seule couche de puits quantique est égale ou inférieure à 10 nm et l'épaisseur totale des multiples couches de puits quantiques est égale ou inférieure à 10 nm.
PCT/JP2017/022624 2016-07-04 2017-06-20 Élément optique, structure de couche active et dispositif d'affichage WO2018008381A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018526005A JP7147560B2 (ja) 2016-07-04 2017-06-20 スーパールミネッセンスダイオード及び表示装置
DE112017003372.1T DE112017003372T5 (de) 2016-07-04 2017-06-20 Optisches element, aktive schichtstruktur und anzeigevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016132464 2016-07-04
JP2016-132464 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018008381A1 true WO2018008381A1 (fr) 2018-01-11

Family

ID=60912615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022624 WO2018008381A1 (fr) 2016-07-04 2017-06-20 Élément optique, structure de couche active et dispositif d'affichage

Country Status (3)

Country Link
JP (1) JP7147560B2 (fr)
DE (1) DE112017003372T5 (fr)
WO (1) WO2018008381A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204847A (ja) * 2018-05-22 2019-11-28 旭化成株式会社 窒化物半導体レーザ素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022526A2 (fr) * 2008-08-26 2010-03-04 Exalos Ag Diode superluminescente, ou puce d’amplification
JP2011187581A (ja) * 2010-03-05 2011-09-22 Nec Corp 半導体発光素子、半導体発光素子の製造方法、画像表示装置用光源および画像表示装置
JP2013165239A (ja) * 2012-02-13 2013-08-22 Canon Inc スーパールミネッセントダイオード、スーパールミネッセントダイオードを備えたsd−octシステム
WO2016098273A1 (fr) * 2014-12-19 2016-06-23 ソニー株式会社 Structure à couche active, élément électroluminescent semi-conducteur, et dispositif d'affichage
WO2016103835A1 (fr) * 2014-12-26 2016-06-30 ソニー株式会社 Dispositif optique à semi-conducteurs

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778985B2 (ja) 1989-05-26 1998-07-23 日本電信電話株式会社 スーパールミネツセントダイオード
JPH06204605A (ja) * 1993-01-07 1994-07-22 Hitachi Ltd 半導体レーザ装置
JP2980302B2 (ja) * 1994-03-02 1999-11-22 日本電気株式会社 半導体レーザ
JP4161603B2 (ja) * 2001-03-28 2008-10-08 日亜化学工業株式会社 窒化物半導体素子
JP2002314205A (ja) * 2001-04-19 2002-10-25 Sharp Corp 窒化物半導体発光素子ならびにそれを用いた光学装置および発光装置
JP2003218468A (ja) * 2002-01-17 2003-07-31 Sony Corp 半導体レーザ素子及びその製造方法
JP4955195B2 (ja) * 2004-03-31 2012-06-20 日亜化学工業株式会社 窒化物半導体素子
WO2006075759A1 (fr) * 2005-01-17 2006-07-20 Anritsu Corporation Element optique a semi-conducteurs presentant des caracteristiques d'emission de large spectre optique, son procede de fabrication, et laser a semi-conducteurs de type a resonateur externe
JP5170954B2 (ja) * 2005-07-11 2013-03-27 三菱電機株式会社 半導体レーザ装置
JP2007095857A (ja) * 2005-09-28 2007-04-12 Rohm Co Ltd 半導体レーザ
JP5026115B2 (ja) * 2007-03-15 2012-09-12 日本電信電話株式会社 量子井戸構造、半導体レーザ、分光計測装置及び量子井戸構造の製造方法
JP2008311640A (ja) * 2007-05-16 2008-12-25 Rohm Co Ltd 半導体レーザダイオード
JP5204690B2 (ja) * 2009-02-24 2013-06-05 浜松ホトニクス株式会社 分布帰還型半導体レーザ及びその製造方法
JP2011003661A (ja) * 2009-06-17 2011-01-06 Rohm Co Ltd 半導体レーザ素子
JP2011023493A (ja) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp 半導体レーザ
JP5651077B2 (ja) * 2011-06-29 2015-01-07 住友電気工業株式会社 窒化ガリウム系半導体レーザ素子、及び、窒化ガリウム系半導体レーザ素子の製造方法
US20150263231A1 (en) * 2012-09-28 2015-09-17 Canon Kabushiki Kaisha Optical semiconductor device, driving method thereof, and optical coherence tomography apparatus having the optical semiconductor device
US20150349198A1 (en) * 2014-05-29 2015-12-03 Canon Kabushiki Kaisha Semiconductor light emitting element and optical coherence tomography apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022526A2 (fr) * 2008-08-26 2010-03-04 Exalos Ag Diode superluminescente, ou puce d’amplification
JP2011187581A (ja) * 2010-03-05 2011-09-22 Nec Corp 半導体発光素子、半導体発光素子の製造方法、画像表示装置用光源および画像表示装置
JP2013165239A (ja) * 2012-02-13 2013-08-22 Canon Inc スーパールミネッセントダイオード、スーパールミネッセントダイオードを備えたsd−octシステム
WO2016098273A1 (fr) * 2014-12-19 2016-06-23 ソニー株式会社 Structure à couche active, élément électroluminescent semi-conducteur, et dispositif d'affichage
WO2016103835A1 (fr) * 2014-12-26 2016-06-30 ソニー株式会社 Dispositif optique à semi-conducteurs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204847A (ja) * 2018-05-22 2019-11-28 旭化成株式会社 窒化物半導体レーザ素子
JP7207644B2 (ja) 2018-05-22 2023-01-18 旭化成株式会社 窒化物半導体レーザ素子

Also Published As

Publication number Publication date
JPWO2018008381A1 (ja) 2019-04-18
DE112017003372T5 (de) 2019-03-14
JP7147560B2 (ja) 2022-10-05

Similar Documents

Publication Publication Date Title
JP4701086B2 (ja) 半導体レーザ装置およびレーザ投射装置
US8179941B2 (en) Laser diode and method of manufacturing the same
JP2007273690A (ja) 光半導体素子、及びこれを備えた波長可変光源
JP6103202B2 (ja) 半導体発光装置、スーパールミネッセントダイオード、およびプロジェクター
US8022389B2 (en) Light source, and device
US7592632B2 (en) Light emitting device and display device using the same
JP6040790B2 (ja) 発光装置、スーパールミネッセントダイオード、およびプロジェクター
KR20160078259A (ko) 발광 장치 및 프로젝터
JP2014165328A (ja) 半導体発光素子及び表示装置
US10115866B2 (en) Light emitting device and projector
JP6551508B2 (ja) 半導体発光素子および表示装置
WO2018008381A1 (fr) Élément optique, structure de couche active et dispositif d'affichage
Shimada et al. 640-nm laser diode for small laser display
US10691005B2 (en) Optical element and display apparatus
WO2016098273A1 (fr) Structure à couche active, élément électroluminescent semi-conducteur, et dispositif d'affichage
US11217721B2 (en) Light-emitting device and display apparatus
US9042416B1 (en) High-power low-loss GRINSCH laser
JPH09307190A (ja) AlInGaN系半導体発光素子および半導体発光装置
US11164990B2 (en) Optical device and display apparatus
JP2010034267A (ja) ブロードエリア型半導体レーザ素子、ブロードエリア型半導体レーザアレイ、レーザディスプレイおよびレーザ照射装置
JP2005302843A (ja) 半導体レーザ
KR20040098798A (ko) 양자점 구조를 활성층으로 이용하는 고휘도 발광소자 및그 제조 방법
JP6581419B2 (ja) 分布帰還型横マルチモード半導体レーザ素子
JP2009289921A (ja) 半導体発光素子及び波長可変光源装置
JP2000101196A (ja) 自励発振型半導体レーザ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526005

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823988

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17823988

Country of ref document: EP

Kind code of ref document: A1