WO2018004307A1 - 고농도 마이오-이노시톨의 효소적 제조방법 - Google Patents

고농도 마이오-이노시톨의 효소적 제조방법 Download PDF

Info

Publication number
WO2018004307A1
WO2018004307A1 PCT/KR2017/006983 KR2017006983W WO2018004307A1 WO 2018004307 A1 WO2018004307 A1 WO 2018004307A1 KR 2017006983 W KR2017006983 W KR 2017006983W WO 2018004307 A1 WO2018004307 A1 WO 2018004307A1
Authority
WO
WIPO (PCT)
Prior art keywords
myo
phosphate
inositol
glucose
mono
Prior art date
Application number
PCT/KR2017/006983
Other languages
English (en)
French (fr)
Inventor
양성재
조현국
이영미
김성보
조성준
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN201780053190.5A priority Critical patent/CN109715795A/zh
Priority to US16/314,178 priority patent/US10752888B2/en
Priority to EP17820583.7A priority patent/EP3480305A4/en
Publication of WO2018004307A1 publication Critical patent/WO2018004307A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2428Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01001Phosphorylase (2.4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01007Sucrose phosphorylase (2.4.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01002Glucokinase (2.7.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03025Inositol-phosphate phosphatase (3.1.3.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01003Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01068Isoamylase (3.2.1.68)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01004Inositol-3-phosphate synthase (5.5.1.4)

Definitions

  • the present application relates to a method for producing high concentration myo-inositol using myo-inositol monophosphate synthetase consisting of the amino acid sequence of SEQ ID NO: 1 and myo-inositol monophosphate dephosphatase consisting of the amino acid sequence of SEQ ID NO: 3.
  • Myo-inositol an essential ingredient in most higher animals, is widely used as a health functional material in food, feed, cosmetics, and pharmaceuticals.
  • myo-inositol is known to play an important role in cholesterol and fat metabolism and is reported to be effective in preventing and treating hypercholesterolemia.
  • it has been used as a cosmetic material because it has a skin function such as anti-aging through moisturizing maintenance, sebum control, antioxidant control.
  • Derivatives that can synthesize myo-inositol as a raw material are also spotlighted as high value-added materials.
  • D-chiro-inositol and D-pinitol which are reported as important mediators of insulin signaling and are known to be effective in treating type 2 diabetes,
  • D-pinitol As a therapeutic agent for Alzheimer's disease (2000. J Biol Chem. 275: 18495-18502), synthetic raw materials of physiologically active substances (US Pat. No. 5,412,080), synthetic raw materials of liquid crystal compounds (German Patent No. 3,405,663) Scyllo-inositol, which is expected.
  • Myo-inositol is purified by physicochemical (acid, base, heat, pressure, etc.) extraction from rice bran, corn steep liquor, and the like in a conventional manner.
  • the production method through direct extraction from the raw materials is not only low in yield, but also contains a large amount of various impurities in the extract for each raw material is difficult to control the yield and purity in the purification process is known to be very low production efficiency.
  • fermentative production methods have been reported to isolate and purify myo-inositol from fermentation broth by newly discovering strains with high production capacity of myo-inositol or by genetically modifying synthetic metabolic pathways.
  • Producing strains include Saccharomyces cerevisiae , Candida (Patent Japan Kokai 8-00258, Patent Japan Kokai 8-38188, Patent Japan Kokai 8-89262, Patent Japan Kokai 9-117295, Patent Japan Kokai 10-42860, Patent Japan Kokai 10-42882, Patent Japan Kokai 10-42883, Patent Japan Kokai 2000-41689, Patent Japan Kokai 9-220093, Patent Japan Kokai 10-271995), Pichia pastoris (Patent Japan Kokai 2011-55722) and Escherichia coli (1999. J. Am. Chem. Soc. 121: 3799-3800, patent WO2009 / 145838) and the like have been reported.
  • the fermentative methods are low in productivity and have not been put into practical
  • the present inventors have made intensive efforts to develop a novel production method capable of producing high concentrations of myo-inositol, and as a result, the myo-inositol monophosphate synthetase and / or myo-inositol monophosphate dephosphorase of the present application. This application was completed by confirming that myo-inositol can be produced in high yield.
  • the object of the present application is to form a myo-inositol monophosphate synthase consisting of the amino acid sequence of SEQ ID NO: 1 and myo-inositol monophosphate dephosphatase consisting of the amino acid sequence of SEQ ID NO: 3 It provides a method for producing myo-inositol using monophosphate phosphatase).
  • Myo-inositol-mono-phosphate dephosphatase consisting of the amino acid sequence of SEQ ID NO: 3 of the present application, can convert myo-inositol-mono-phosphate to myo-inositol in a very high yield in a short time (1). About 85% in time response).
  • myo-inositol is produced in the extracellular enzyme reaction buffer, myo-inositol can be produced at a lower cost than the fermentation method using recombinant cells.
  • FIG. 1 schematically shows the conversion pathway of myo-inositol and enzymes involved in it.
  • Figure 2 is a chromatographic confirmation of the recombinant enzyme produced from (A) a transformant comprising the enzyme of SEQ ID NO: 1, and (B) a transformant comprising the enzyme of SEQ ID NO: 3.
  • M is the protein size marker
  • CFE is the cell disruption supernatant
  • PE is the purified enzyme.
  • FIG. 4 shows HPLC results of analyzing whether myo-inositol is produced from glucose-6-phosphate by simultaneously using myo-inositol monophosphate synthase and myo-inositol monophosphate dephosphatase.
  • the present application provides, as one embodiment, myo-inositol monophosphate synthase consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present application provides a myo-inositol monophosphate phosphatase consisting of the amino acid sequence of SEQ ID NO: 3.
  • myo-inositol monophosphate synthase and myo-inositol monophosphate dephosphatase of the present application have at least 80%, 90%, 95%, 97% or 99% homology with the amino acid sequence of SEQ ID NO: 1, respectively.
  • Branches can include polypeptides.
  • a protein comprising the amino acid sequence of SEQ ID NO: 1 or 3 does not exclude a meaningless sequence addition or a naturally occurring mutation, or a potential mutation thereof, before or after the amino acid sequence of SEQ ID NO: 1 or 3; It falls within the scope of the application.
  • the myo-inositol monophosphate synthase may be encoded by the nucleotide sequence of SEQ ID NO: 2, the myo-inositol monophosphate dephosphatase is added to the nucleotide sequence of SEQ ID NO: 4 May be encrypted. Further, the myo-inositol monophosphate synthase and myo-inositol monophosphate dephosphatase are at least 80%, 90%, 95%, 97% or 99% homologous to the nucleotide sequence of SEQ ID NO: 2 or 4, respectively.
  • the branch may be one encoded by a nucleotide sequence.
  • homology means a degree of agreement with a given amino acid sequence or base sequence and may be expressed as a percentage.
  • homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology”.
  • % homology For example, using standard software that calculates parameters such as score, identity and similarity, in particular BLAST 2.0, or by hybridization experiments used under defined stringent conditions Appropriate hybridization conditions, which are defined within the scope of the art, are well known to those skilled in the art, and are well known to those skilled in the art (e.g. J.
  • stringent conditions refers to conditions that enable specific hybridization between polynucleotides. For example, such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology).
  • the stringent conditions can be adjusted to confirm homology.
  • low stringency hybridization conditions corresponding to Tm values of 55 ° C.
  • 5 ⁇ SSC, 0.1% SDS, 0.25% milk, and formamide free or 30% formamide, 5XSSC, 0.5% SDS conditions
  • Mild stringency hybridization conditions correspond to high Tm values, for example 40% formamide with 5X or 6XSSC can be used.
  • High stringency hybridization conditions correspond to the highest Tm values, for example 50% formamide, 5X or 6XSSC conditions may be used. However, it is not limited to the above example.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of the hybridization.
  • complementary is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include isolated nucleic acid fragments that are complementary to the entire sequence as well as substantially similar nucleic acid sequences.
  • polynucleotides having homology can be detected using hybridization conditions including hybridization steps at Tm values of 55 ° C. and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • DNA RNA
  • DNA DNA
  • mismatch positions can be even more important and the length of the oligonucleotide can determine its specificity (Sambrook et al., Supra, 11.7-11.8 Reference).
  • polynucleotides can be detected using hybridization conditions that are lower than 500 mM salt and include a hybridization step of at least 37 ° C., and a wash step in 2 ⁇ SSPE of at least 63 ° C.
  • the hybridization conditions may comprise a hybridization step lower than 200 mM salt and at least 37 ° C.
  • the hybridization conditions may include 63 ° C. and 2 ⁇ SSPE in both hybridization and washing steps.
  • the length of the hybridizing nucleic acid can be, for example, at least about 10 nucleotides, 15 nucleotides, 20 nucleotides, or at least 30 nucleotides.
  • those skilled in the art can adjust the temperature and wash solution salt concentration as needed depending on factors such as the length of the probe.
  • Myo-inositol monophosphate synthase and myo-inositol monophosphate dephosphatase of the present application may be an enzyme derived from the genus Thermotoga , specifically, thermomotoga Neapolitana neapolitana ) may be an enzyme derived from, but is not limited thereto.
  • the present application provides a nucleic acid encoding a myo-inositol monophosphate synthetase of the present application or a myo-inositol monophosphate dephosphatase of the present application.
  • the present application provides a transformant comprising a nucleic acid encoding a myo-inositol monophosphate synthase or a myo-inositol monophosphate dephosphatase.
  • the term "transformation” refers to introducing a vector comprising a nucleic acid encoding a target protein into a host cell so that the protein encoding the nucleic acid in the host cell can be expressed.
  • the transformed nucleic acid may include all of them, as long as they can be expressed in the host cell, regardless of whether they are inserted into or located outside the chromosome of the host cell.
  • the nucleic acid also includes DNA and RNA encoding the target protein.
  • the nucleic acid may be introduced in any form as long as it can be introduced into and expressed in a host cell.
  • the nucleic acid may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all the elements necessary for its expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the nucleic acid.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the nucleic acid may be introduced into the host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that the gene sequence and the promoter sequence to initiate and mediate the transcription of the nucleic acid encoding the target protein of the present application.
  • Methods for transforming a vector of the present application include any method for introducing nucleic acids into cells, and can be carried out by selecting appropriate standard techniques as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method and the like, but is not limited thereto.
  • electroporation calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method and the like, but is not limited thereto.
  • the host cell it is preferable to use a host having high DNA introduction efficiency and high expression efficiency of the introduced DNA.
  • the host cell may be E. coli, but is not limited thereto.
  • the present application provides the myo-inositol monophosphate synthetase and myo-inositol monophosphate dephosphatase of the present application, the myo-inositol monophosphate synthase and myo-inositol monophosphate of the present application.
  • a composition for producing myo-inositol comprising a culture of a microorganism expressing dephosphoryase or a myo-inositol monophosphate synthetase of the present application and a microorganism expressing myo-inositol monophosphate dephosphatase.
  • the composition for producing myo-inositol of the present application is a microorganism expressing an enzyme involved in the myo-inositol production route (see FIG. 1) of the present application, an enzyme involved in the myo-inositol production route of the present application, or It may further comprise a culture of microorganisms expressing enzymes involved in the myo-inositol production route of the present application.
  • myo-inositol using myo-inositol monophosphate synthase and / or myo-inositol monophosphate dephosphatase of the present application
  • the enzymes included in the composition and the substrate used for the production of myo-inositol are not limited.
  • composition for producing myo-inositol of the present application may include (a) (i) starch, maltodextrin, sucrose or a combination thereof, glucose, glucose-1-phosphate or glucose-6-phosphate; (ii) phosphate; (iii) phosphoglucomutase or glucose phosphatase; And / or (iv) ⁇ -glucan phosphorylase, starch phosphorylase, maltodextrin phosphorylase, sucrose phosphorylase, ⁇ -amylase, pullulanase, isoamylase, glucoamylase or sucrase ; Or (b) a microorganism expressing the enzyme of item (a) or a culture of the microorganism expressing the enzyme of item (a), but is not limited thereto.
  • starch / maltodextrin phosphorylase (EC 2.4.1.1) and ⁇ -glucan phosphorylase of the present application are phosphorylated transfer of phosphate to glucose to glucose from starch or maltodextrin Any protein that has activity to produce -1-phosphate may be included.
  • Sucrose phosphorylase (EC 2.4.1.7) of the present application may include any protein as long as it has an activity of phosphorylating and transferring phosphate to glucose to produce glucose-1-phosphate from sucrose.
  • Starch liquor glycosylating enzymes of the present application ⁇ -amylase (EC 3.2.1.1), pullulanse (EC 3.2.1.41), glucoamylase (EC 3.2.1.3) and isoamylase May include any protein as long as the protein has an activity of converting starch or maltodextrin into glucose.
  • Sucrase (EC 3.2.1.26) of the present application may include any protein as long as it has a protein converting sucrose to glucose.
  • the phosphoglucomutase (EC 5.4.2.2) of the present application may include any protein as long as the protein has an activity of converting glucose-1-phosphate to glucose-6-phosphate.
  • Glucose kinase may include any protein as long as the protein has the activity of converting the glucose to glucose-6-phosphate.
  • the glucose kinase may be a polyphosphate-dependent glucose kinase, more specifically Deinococcus of amino acid SEQ ID NO: 9 and SEQ ID NO: 11 polyphosphate-dependent glucose kinase from geothermalis or Anaerolinea of amino acid SEQ ID NO: 10 and SEQ ID NO: 12 thermophila derived polyphosphate-dependent glucose kinase.
  • the present application provides a myo-inositol-mono-phosphate dephosphatase, comprising the amino acid sequence of SEQ ID NO: 3 in myo-inositol-mono-phosphate, the myo-inositol-mono-phosphate dephosphorylation.
  • a culture of a microorganism expressing an enzyme or a microorganism expressing the myo-inositol-mono-phosphate dephosphatase to convert the myo-inositol-mono-phosphate to myo-inositol. It provides a method for producing inositol.
  • the preparation method of the present application is a myo-inositol consisting of the amino acid sequence of SEQ ID NO: 1 in glucose-6-phosphate before converting the myo-inositol-mono-phosphate of the present application to myo-inositol
  • a microorganism expressing it or a culture of the microorganism may further comprise converting glucose-6-phosphate to myo-inositol-mono-phosphate.
  • the present application provides a glucose-6-phosphate by contacting glucose-myo-inositol-mono-phosphate synthetase consisting of the amino acid sequence of SEQ ID NO: 1, a microorganism expressing the same or a culture of the microorganism. It provides a method for preparing myo-inositol comprising converting 6-phosphoric acid into myo-inositol-mono-phosphate.
  • the preparation method of the present application comprises the amino acid sequence of SEQ ID NO: 3 in myo-inositol-mono-phosphate after the step of converting glucose-6-phosphate of the present application to myo-inositol-mono-phosphate Contacting a culture of a myo-inositol-mono-phosphate dephosphatase, a microorganism expressing the myo-inositol-mono-phosphate dephosphatase or a microorganism expressing the myo-inositol-mono-phosphate dephosphatase To convert myo-inositol-mono-phosphate to myo-inositol.
  • phosphoglucomutase is expressed in glucose-1-phosphate.
  • Contacting the microorganisms or the culture of the microorganisms may further comprise converting the glucose-1-phosphate to glucose-6-phosphate.
  • the preparation method of the present application before the step of converting glucose-6-phosphate of the present application to fructose-6-phosphate, phosphoglucomutase to glucose-1-phosphate (Glucose-1-phosphate), the phosphor Contacting the culture of the microorganism expressing glucomutase or the microorganism expressing the phosphoglucomutase, may further comprise converting the glucose-1-phosphate to glucose-6-phosphate.
  • the preparation method of the present application is a starch, maltodextrin, sucrose or a combination of ⁇ -glucan phosphorylase, starch phospho before the step of converting glucose-1-phosphate of the present application to glucose-6-phosphate Lilase, maltodextrin phosphorylase or sucrose phosphorylase; Microorganisms expressing the phosphorylase; Or contacting the culture of the microorganism expressing the phosphorylase, and phosphate to convert the starch, maltodextrin, sucrose or a combination thereof to glucose-1-phosphate.
  • the preparation method of the present application may include ⁇ -amylase, pullulanase, glucoamylase, sucrase, or starch, maltodextrin, sucrose, or a combination thereof, before the step of converting the glucose of the present application into glucose-6-phosphate.
  • Isoamylase Microorganisms expressing the amylase, pullulase or sucrase; Or contacting the amylase, pullulase or sucrase with a culture of microorganisms, thereby converting the starch, maltodextrin, sucrose or a combination thereof into glucose.
  • the production method of the present application is a culture of microorganisms expressing 4- ⁇ -glucanotransferase, the 4- ⁇ -glucanotransferase or microorganisms expressing the 4- ⁇ -glucanotransferase.
  • Contacting may further comprise converting the glucose into starch, maltodextrin or sucrose.
  • the 'contacting' of the present application may be carried out for pH 5.0 to 10.0, 50 °C to 90 °C, and / or 1 minute to 24 hours. Specifically, the contact of the present application may be carried out at pH 5.0 to 9.0, pH 6.0 to 8.0, or pH 6.5 to 7.5. In addition, the contact of the present application may be carried out at 60 °C to 80 °C or 65 °C to 75 °C.
  • the contact of the present application is 1 minute to 12 hours, 1 minute to 6 hours, 1 minute to 3 hours, 1 minute to 1 hour, 5 minutes to 24 hours, 5 minutes to 12 hours, 5 minutes to 6 hours, 5 It can be carried out for minutes to 3 hours, 5 minutes to 1 hour, 10 minutes to 24 hours, 10 minutes to 12 hours, 10 minutes to 6 hours, 10 minutes to 3 hours, or 10 minutes to 1 hour.
  • the present application provides a starch, maltodextrin, sucrose, or a combination thereof, and a phosphate comprising: (a) a myo-inositol-mono-phosphate dephosphorylation enzyme consisting of the amino acid sequence of SEQ ID NO: 3; Myo-inositol-mono-phosphate synthetase consisting of the amino acid sequence of SEQ ID NO: 1; Phosphoglucomutase or glucose phosphatase; And ⁇ -glucan phosphorylase, starch phosphorylase, maltodextrin phosphorylase, sucrose phosphorylase, ⁇ -amylase, pullulanase, isoamylase, glucoamylase or sucrase; Or (b) contacting a microorganism expressing the enzyme of item (a) or a culture of the microorganism, the method of preparing myo-inositol.
  • Example 1 myo-inositol Monophosphate Synthetase and Myo-inositol Monophosphate Preparation of Recombinant Expression Vector and Transgenic Microorganism Comprising Genes of Dephosphorylase
  • Thermomotogae a thermophilic microorganism, is provided to provide a novel heat resistant myo-inositol monophosphate synthase and myo-inositol monophosphate phosphatase.
  • Nea appear poly Themotoga neapolitana ) was isolated from each gene, and recombinant expression vectors and transforming microorganisms were prepared respectively.
  • Thermomoto registered with Genbank, selected gene sequences related to the enzymes of the present application for the Neapolitana gene sequences, and the amino acid sequence (SEQ ID NO: 1, myo-inositol monophosphate synthase; SEQ ID NO: 3).
  • SEQ ID NO: 1 myo-inositol monophosphate synthase
  • SEQ ID NO: 3 amino acid sequence
  • SEQ ID NO: 2 myo-inositol monophosphate synthetase
  • SEQ ID NO: 4 myo-inositol monophosphate dephosphatase
  • the genes of the amplified enzyme were inserted into the plasmid vector pET21a for expressing E. coli using restriction enzymes Nde I and Xho I.
  • the recombinant expression vectors named CJ_tn_isyn (myo-inositol monophosphate synthase expression plasmid) and CJ_tn_t6pp (myo-inositol monophosphate dephosphatase expression plasmid) were prepared.
  • CJ_tn_isyn and CJ_tn_t6pp were transformed into E. coli BL21 (DE3) strains using conventional transformation methods (Sambrook et al. 1989) and named E. coli BL21 (DE3) / CJ_tn_isyn and E. coli BL21 (DE3) / CJ_tn_t6pp. Transformed microorganisms were prepared.
  • E. coli BL21 (DE3) / CJ_tn_isyn Escherichia coli BL21 (DE3) / CJ_tn_isyn
  • Escherichia coli BL21 (DE3) / CJ_tn_t6pp Escherichia The coli BL21 (DE3) / CJ_tn_t6pp
  • KCCM Korean Culture Center of Microorganisms
  • E. coli BL21 (DE3) / CJ_tn_isyn and E. coli BL21 (DE3) / CJ_tn_t6pp were each inoculated into a culture tube containing 5 ml of LB liquid medium, 600 The spawns were cultured in a shaker at 37 ° C. until the absorbance at 2.0 nm was reached. The seed cultured culture was inoculated into a culture flask containing an LB liquid medium to carry out the main culture. When the absorbance at 600 nm became 2.0, 1 mM IPTG was added to induce the expression production of the recombinant enzyme.
  • the stirring speed during the incubation process was 200 rpm and the incubation temperature was maintained at 37 °C.
  • the culture solution was centrifuged at 8,000 x g for 20 minutes at 4 °C to recover the cells.
  • the recovered cells were washed twice with 50 mM Tris-HCl (pH 7.0) buffer, suspended in the same buffer and disrupted with an ultrasonic cell crusher.
  • the cell lysate was taken only at the supernatant after centrifugation at 4 ° C. for 20 minutes at 13,000 ⁇ g.
  • Recombinant enzyme was purified from the supernatant using His-tag affinity chromatography. Purified recombinant enzyme solution was used for the characterization of the enzyme after dialysis with 50 mM Tris-HCl (pH 7.0) buffer.
  • the purified recombinant myo-inositol monophosphate synthase (ISYN) and myo-inositol monophosphate dephosphatase (T6PP) were confirmed to be about 43 kDa and 29 kDa, respectively, by SDS-PAGE analysis ( 2).
  • reaction composition for analyzing the activity of myo-inositol monophosphate synthase of the present application 50 mM glucose-6-phosphate suspended in 50 mM Tris-HCl (pH 7.5) buffer solution was used. After reacting the reaction composition with 0.1 unit / ml purified enzyme and glucose-6-phosphate as a substrate at a temperature of 60 ° C. for 1 hour, 10 units / ml phosphatase (Alkaline phosphatase, Calf Intestinal) of each reaction solution was added to each reaction solution. The reaction was analyzed by using HPLC after 1 hour of treatment at 37 ° C.
  • HPLC analysis conditions were carried out using a SP850 (Shodex Co.) column while flowing at a flow rate of 0.6 ml / min at 80 ° C to a mobile phase, and glucose and myo-inositol were detected and analyzed with a Refractive Index Detector.
  • the results of FIG. 3 show that the recombinantly produced myo-inositol monophosphate synthase has the activity of converting glucose-6-phosphate to myo-inositol monophosphate (FIG. 3). Quantitative analysis between the substrate and the product showed that about 85% conversion after about 1 hour reaction.
  • glucose-1-phosphate, glucose-6-phosphate, or inositol monophosphate was used as a substrate for the activity analysis of the myo-inositol monophosphate dephosphatase of the present application, and each substrate was 50 at a concentration of 50 mM.
  • each substrate was 50 at a concentration of 50 mM.
  • the recombinant enzyme of the present application has dephosphorylation activity only against inositol monophosphate as a substrate.
  • the myo-inositol monophosphate synthase and myo-inositol monophosphate dephosphatase of the present application were simultaneously used to analyze whether myo-inositol is produced from glucose-6-phosphate.
  • To the reaction composition was added 0.1 unit / ml of purified recombinant myo-inositol monophosphate synthase and myo-inositol monophosphate dephosphorase, 10 mM MgCl 2 (or MgSO 4 ) and 50 mM glucose-6-phosphate. After reacting at 60 ° C. (50 mM Tris-HCl, pH 7.0 buffer) for 1 hour, the reaction was analyzed using HPLC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 합성효소 및/또는 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 탈인산화 효소를 이용한 마이오-이노시톨 제조방법에 관한 것이다.

Description

고농도 마이오-이노시톨의 효소적 제조방법
본 출원은 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 합성효소 및 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 탈인산화 효소를 이용한 고농도 마이오-이노시톨 제조방법에 관한 것이다.
대부분의 고등 동물에서 필수성분인 마이오-이노시톨(myo-inositol)은 식품, 사료, 화장품, 제약 등에서 건강 기능성 소재로 널리 사용되고 있다. 그 예로, 마이오-이노시톨은 콜레스테롤 및 지방 대사에 중요한 역할을 한다고 알려져 있어, 고콜레스테롤혈증(hypercholesterolemia) 등을 예방하고 치료하는데 효과적이라고 보고된다. 또한, 보습 유지, 피지 조절, 항산화능 조절을 통한 노화억제 등의 피부 기능성이 있어 화장품 소재로도 사용되고 있다.
마이오-이노시톨을 원료로 합성될 수 있는 유도체들 또한 고부가 기능 소재로 각광받고 있다. 그 예로 포스포글리칸의 주요 구성성분으로 인슐린 신호전달의 중요한 매개체로 보고되어 있으며, 제2형 당뇨의 치료에 효과가 있다고 알려져 있는 카이로-이노시톨(D-chiro-inositol) 및 피니톨(D-pinitol), 알츠하이머병의 치료제(2000. J Biol Chem. 275:18495-18502)나, 생리 활성물질의 합성원료(미국 특허 제5,412,080호), 액정 화합물의 합성원료(독일 특허 제3,405,663호)로서 용도가 기대되고 있는 실로-이노시톨(scyllo-inositol) 등이 있다.
지금까지 산업화 규모의 마이오-이노시톨 생산공정을 개발하고 개량하기 위한 다양한 방법들이 보고되고 있다.
종래의 통상적인 방법으로 쌀겨(rice bran) 및 옥수수 침지액(corn steep liquor) 등으로부터 물리화학적(산, 염기, 열, 압력 등) 추출법을 이용하여 마이오-이노시톨을 정제한다. 상기 원료들로부터 직접 추출을 통한 생산방법은 수율이 낮을 뿐 아니라, 원료별 추출액 내에 다양한 다량의 불순물들을 포함하기 때문에 정제공정에서 수율 및 순도 제어가 어려워 생산 효율이 매우 낮은 것으로 알려져 있다.
또 다른 방법으로서, 마이오-이노시톨 고생산능을 보유하는 균주들을 신규 발굴하거나 합성대사경로를 유전자 조작 개량하여 발효배양액으로부터 마이오-이노시톨을 분리, 정제하는 발효적 생산방법들이 보고되고 있다. 생산 균주들로는 Saccharomyces cerevisiae, Candida(특허 일본 Kokai 8-00258, 특허 일본 Kokai 8-38188, 특허 일본 Kokai 8-89262, 특허 일본 Kokai 9-117295, 특허 일본 Kokai 10-42860, 특허 일본 Kokai 10-42882, 특허 일본 Kokai 10-42883, 특허 일본 Kokai 2000-41689, 특허 일본 Kokai 9-220093, 특허 일본 Kokai 10-271995), Pichia pastoris(특허 일본 Kokai 2011-55722) 및 Escherichia coli(1999. J. Am. Chem. Soc. 121:3799-3800, 특허 WO2009/145838) 등이 보고되고 있다. 그러나, 상기 발효적 방법들은 생산성이 낮아 산업화 규모의 생산방법으로는 실용화되어 적용되고 있지 않다.
본 발명자들은 고농도 마이오-이노시톨을 생산할 수 있는 신규의 제조방법을 개발하기 위해 예의 노력한 결과, 본 출원의 마이오-이노시톨 모노인산 합성효소 및/또는 마이오-이노시톨 모노인산 탈인산화 효소를 이용하여 고수율로 마이오-이노시톨을 생산할 수 있음을 확인하여 본 출원을 완성하였다.
본 출원의 목적은 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 합성효소(myo-inositol monophosphate synthase) 및 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 탈인산화효소(myo-inositol monophosphate phosphatase)를 이용한 마이오-이노시톨 제조방법을 제공하는 것이다.
본 출원의 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 탈인산화 효소는 마이오-이노시톨-모노-인산을 빠른 시간 내에 매우 높은 수율로 마이오-이노시톨로 전환시킬 수 있다(1시간 반응 시 약 85%). 또한, 본 출원의 방법에 의하면 세포 외 효소 반응 완충액 내에서의 마이오-이노시톨을 생산하므로 재조합 세포를 이용한 발효 방법과 비교하여 저비용으로 마이오-이노시톨을 생산할 수 있다.
도 1은 마이오-이노시톨의 전환 경로 및 이에 관여하는 효소들을 모식적으로 나타낸 것이다.
도 2는 (A) 서열번호 1의 효소를 포함하는 형질전환체, 및 (B) 서열번호 3의 효소를 포함하는 형질전환체로부터 생산된 재조합 효소를 크로마토그래피로 확인한 것이다. M은 단백질 크기 측정 마커(size marker), CFE는 세포파쇄 상등액, PE는 정제된 효소이다.
도 3은 마이오-이노시톨 모노인산 합성효소의 활성을 확인한 HPLC 결과이다.
도 4는 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화 효소를 동시에 사용하여 포도당-6-인산으로부터 마이오-이노시톨이 생산되는지 분석한 HPLC 결과이다.
이하, 본 출원 내용에 대하여 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시한 일 양태의 설명 및 실시형태는 공통된 사항에 대하여 다른 양태의 설명 및 실시 형태에도 적용될 수 있다. 또한, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 더불어, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
본 출원의 목적을 달성하기 위하여, 본 출원은 하나의 양태로서, 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 합성효소(myo-inositol monophosphate synthase)를 제공한다. 또한, 본 출원은 다른의 양태로서, 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 탈인산화효소(myo-inositol monophosphate phosphatase)를 제공한다.
또한, 본 출원의 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화효소는 각각 서열번호 1의 아미노산 서열과 적어도 80%, 90%, 95%, 97% 또는 99% 상동성을 가지는 폴리펩티드를 포함할 수 있다. 예를 들어, 상기 상동성을 가지며, 상기 서열번호 1 또는 3의 아미노산 서열로 이루어진 단백질과 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 출원의 범위 내에 포함됨은 자명하다.
또한, 본 출원의 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 합성효소 또는 본 출원의 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨 모노인산 탈인산화효소와 상응하는 활성을 가지는 단백질이라면 서열번호 1 또는 3의 아미노산 서열 앞뒤의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이(silent mutation)를 제외하는 것이 아니며, 서열번호 1 또는 3의 아미노산 서열을 포함하는 단백질 또한 본 출원의 범위 내에 속한다.
나아가, 이에 제한되는 것은 아니나, 상기 마이오-이노시톨 모노인산 합성효소는 서열번호 2의 뉴클레오티드 서열에 의해 암호화되는 것일 수 있고, 상기 마이오-이노시톨 모노인산 탈인산화효소는 서열번호 4의 뉴클레오티드 서열에 의해 암호화되는 것일 수 있다. 또한, 상기 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화효소는 각각 서열번호 2 또는 4의 뉴클레오티드 서열과 적어도 80%, 90%, 95%, 97% 또는 99% 상동성을 가지는 뉴클레오티드 서열에 의해 암호화되는 것일 수 있다. 코돈 축퇴성(codon degeneracy)에 의해 상기 서열번호 1 또는 3의 아미노산 서열로 이루어진 단백질 또는 이와 상동성을 가지는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 본 출원의 범위에 포함될 수 있음은 자명하다.
상기에서 용어 "상동성"은 주어진 아미노산 서열 또는 염기 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다. 상기에서 용어 “엄격한 조건”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 예를 들어, 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다.
본 출원에서 상기 엄격한 조건은 상동성을 확인하기 위해 조절될 수 있다. 폴리뉴클레오티드 간의 상동성을 확인하기 위하여, 55℃의 Tm 값에 대응하는, 낮은 엄격도의 혼성화 조건이 이용될 수 있는데, 예를 들어, 5XSSC, 0.1% SDS, 0.25% 밀크, 및 무 포름아미드; 또는 30% 포름아미드, 5XSSC, 0.5% SDS 조건이 이용될 수 있다. 온화한 엄격도의 혼성화 조건은 높은 Tm 값에 대응하며, 예를 들어, 5X 또는 6XSSC를 갖는 40% 포름아미드가 사용될 수 있다. 높은 엄격도의 혼성화 조건은 가장 높은 Tm 값에 대응하며, 예를 들어, 50% 포름아미드, 5X 또는 6XSSC 조건이 이용될 수 있다. 다만, 상기 예에 제한되는 것은 아니다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다. 두 뉴클레오티드 서열 사이의 유사성 또는 상동성 정도가 더 클수록, 그러한 서열을 갖는 폴리뉴클레오티드의 하이브리드에 대한 Tm 값은 더 커질 수 있다. 폴리뉴클레오티드의 혼성화의 상대적 안정성(더 높은 Tm 값에 대응하는)은 하기 순서로 감소한다: RNA : RNA, DNA : RNA, DNA : DNA. 길이가 100 뉴클레오티드 보다 큰 하이브리드에 대하여, Tm 값 계산 수식은 공지되어 있다(Sambrook et al., supra, 9.50-9.51 참조). 더 짧은 폴리뉴클레오티드, 예를 들어, 올리고뉴클레오티드와의 혼성화에 대하여, 미스매치 위치는 보다 더 중요할 수 있고, 올리고뉴클레오티드의 길이가 그 특이성을 결정할 수 있다(Sambrook et al., supra, 11.7-11.8 참조).
구체적으로, 폴리뉴클레오티드는 500 mM 염보다 낮고 적어도 37℃의 혼성화 단계, 및 적어도 63℃의 2XSSPE에서의 세척 단계를 포함하는 혼성화 조건을 사용하여 탐지될 수 있다. 상기 혼성화 조건은 200 mM 염보다 낮고 적어도 37℃의 혼성화 단계를 포함할 수 있다. 또는 상기 혼성화 조건은 혼성화 및 세척 단계 모두에서 63℃ 및 2XSSPE를 포함할 수 있다.
혼성화 핵산의 길이는 예를 들면, 적어도 약 10 뉴클레오티드, 15 뉴클레오티드, 20 뉴클레오티드, 또는 적어도 30 뉴클레오티드일 수 있다. 또한, 당업자는 온도 및 세척 용액 염 농도를 프로브의 길이와 같은 요소에 따라 필요할 경우 조절할 수 있다.
본 출원의 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화효소는 써모토가(Thermotoga) 속 유래의 효소일 수 있으며, 구체적으로 써모토가 네아폴리타나(Thermotoga neapolitana) 유래의 효소일 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 다른 하나의 양태로서, 본 출원의 마이오-이노시톨 모노인산 합성효소 또는 본 출원의 마이오-이노시톨 모노인산 탈인산화효소를 암호화하는 핵산을 제공한다.
본 출원은 또 다른 하나의 양태로서, 본 출원의 마이오-이노시톨 모노인산 합성효소 또는 마이오-이노시톨 모노인산 탈인산화효소를 암호화하는 핵산을 포함하는 형질전환체를 제공한다.
본 출원에서 용어 "형질전환"은 표적 단백질을 암호화하는 핵산 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 핵산이 암호화하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 핵산은 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 핵산은 표적 단백질을 암호화하는 DNA 및 RNA를 포함한다. 상기 핵산은 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 핵산은 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 핵산에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 핵산은 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 암호화하는 핵산의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 벡터를 형질전환 시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌 글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
상기 숙주 세포로는 DNA의 도입효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주를 사용하는 것이 좋은데, 예를 들어 대장균일 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또 다른 하나의 양태로서, 본 출원의 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화효소, 본 출원의 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화효소를 발현하는 미생물 또는 본 출원의 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화효소를 발현하는 미생물의 배양물을 포함하는 마이오-이노시톨 생산용 조성물을 제공한다.
본 출원의 마이오-이노시톨 생산용 조성물은, 본 출원의 마이오-이노시톨 제조 경로(도 1 참고)에 관여하는 효소, 본 출원의 마이오-이노시톨 제조 경로에 관여하는 효소를 발현하는 미생물, 또는 본 출원의 마이오-이노시톨 제조 경로에 관여하는 효소를 발현하는 미생물의 배양물을 추가로 포함할 수 있다. 다만, 이는 예시적인 것으로 본 출원의 마이오-이노시톨 모노인산 합성효소 및/또는 마이오-이노시톨 모노인산 탈인산화효소를 이용하여 마이오-이노시톨을 생산할 수 있다면, 본 출원의 마이오-이노시톨 생산용 조성물에 포함되는 효소 및 마이오-이노시톨 생산에 이용되는 기질이 제한되지 않는다.
또한, 본 출원의 마이오-이노시톨 생산용 조성물은 (a) (i) 전분, 말토덱스트린, 수크로스 또는 이의 조합, 포도당, 포도당-1-인산 또는 포도당-6-인산; (ii) 포스페이트(phosphate); (iii) 포스포글루코무타아제 또는 포도당 인산화 효소; 및/또는 (iv) α-글루칸 포스포릴라아제, 전분 포스포릴라아제, 말토덱스트린 포스포릴라아제, 수크로오스 포스포릴라아제, α-아밀라아제, 풀루란아제, 이소아밀라아제, 글루코아밀라아제 또는 수크라아제; 또는 (b) 상기 항목 (a)의 효소를 발현하는 미생물 또는 상기 상기 항목 (a)의 효소를 발현하는 미생물의 배양물을 추가로 포함할 수 있으나, 이에 제한되지 않는다.
구체적으로, 본 출원의 전분/말토덱스트린 포스포릴라아제(starch/maltodextrin phosphorylase, EC 2.4.1.1) 및 α-글루칸 포스포릴라아제는 포스페이트(phosphate)를 포도당에 인산화 전이시켜 전분 또는 말토덱스트린으로부터 포도당-1-인산을 생산하는 활성을 갖는 단백질이라면 어떠한 단백질도 포함할 수 있다. 본 출원의 수크로스 포스포릴라아제(sucrose phosphorylase, EC 2.4.1.7)는 포스페이트를 포도당에 인산화 전이시켜 수크로스로부터 포도당-1-인산을 생산하는 활성을 갖는 단백질이라면 어떠한 단백질도 포함할 수 있다. 본 출원의 전분 액당화 효소인 α-아밀라아제(α-amylase, EC 3.2.1.1), 풀루란아제(pullulanse, EC 3.2.1.41), 글루코아밀라아제(glucoamylase, EC 3.2.1.3) 및 이소아밀라아제(isoamylase)는 전분 또는 말토덱스트린을 포도당으로 전환시키는 활성을 갖는 단백질이라면 어떠한 단백질도 포함할 수 있다. 본 출원의 수크라제(sucrase, EC 3.2.1.26)는 수크로스를 포도당으로 전환시키는 활성을 갖는 단백질이라면 어떠한 단백질도 포함할 수 있다. 본 출원의 포스포글루코무타아제(phosphoglucomutase, EC 5.4.2.2)는 포도당-1-인산을 포도당-6-인산으로 전환시키는 활성을 갖는 단백질이라면 어떠한 단백질도 포함할 수 있다. 포도당인산화효소(glucokinase)는 포도당에 인산을 전이시켜 포도당-6-인산으로 전환하는 활성을 가지는 단백질이라면 어떠한 단백질도 포함할 수 있다. 구체적으로, 상기 포도당인산화효소는 폴리포스페이트 의존형 포도당인산화 효소일 수 있으며, 보다 구체적으로 아미노산 서열번호 9 및 염기 서열번호 11의 Deinococcus geothermalis 유래 폴리포스페이트-의존형 포도당인산화효소 또는 아미노산 서열번호 10 및 염기 서열번호 12의 Anaerolinea thermophila 유래 폴리포스페이트-의존형 포도당인산화효소일 수 있다.
본 출원은 또 다른 하나의 양태로서, 마이오-이노시톨-모노-인산에 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 탈인산화효소, 상기 마이오-이노시톨-모노-인산 탈인산화효소를 발현하는 미생물 또는 상기 마이오-이노시톨-모노-인산 탈인산화효소를 발현하는 미생물의 배양물을 접촉시켜 마이오-이노시톨-모노-인산을 마이오-이노시톨로 전환하는 단계를 포함하는 마이오-이노시톨 제조방법을 제공한다. 본 양태에서, 본 출원의 제조방법은 본 출원의 마이오-이노시톨-모노-인산을 마이오-이노시톨로 전환하는 단계 이전, 포도당-6-인산에 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 합성효소, 이를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시켜 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계를 추가로 포함할 수 있다.
본 출원은 또 다른 하나의 양태로서, 포도당-6-인산에 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 합성효소, 이를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시켜 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계를 포함하는 마이오-이노시톨 제조방법을 제공한다. 본 양태에서, 본 출원의 제조방법은 본 출원의 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계 이후, 마이오-이노시톨-모노-인산에 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 탈인산화효소, 상기 마이오-이노시톨-모노-인산 탈인산화효소를 발현하는 미생물 또는 상기 마이오-이노시톨-모노-인산 탈인산화효소를 발현하는 미생물의 배양물을 접촉시켜 마이오-이노시톨-모노-인산을 마이오-이노시톨로 전환하는 단계를 추가로 포함할 수 있다.
본 출원의 제조방법은 본 출원의 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계 이전, 포도당-1-인산(glucose-1-phosphate)에 포스포글루코무타아제, 이를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시켜, 상기 포도당-1-인산을 포도당-6-인산으로 전환하는 단계를 추가로 포함할 수 있다.
또한, 본 출원의 제조방법은 본 출원의 포도당-6-인산을 과당-6-인산으로 전환하는 단계 이전, 포도당-1-인산(Glucose-1-phosphate)에 포스포글루코무타아제, 상기 포스포글루코무타아제를 발현하는 미생물 또는 상기 포스포글루코무타아제를 발현하는 미생물의 배양물을 접촉시켜, 상기 포도당-1-인산을 포도당-6-인산으로 전환하는 단계를 추가로 포함할 수 있다.
또한, 본 출원의 제조방법은 본 출원의 포도당-1-인산을 포도당-6-인산으로 전환하는 단계 이전, 전분, 말토덱스트린, 수크로스 또는 이의 조합에 α-글루칸 포스포릴라아제, 전분 포스포릴라아제, 말토덱스트린 포스포릴라아제 또는 수크로오스 포스포릴라아제; 상기 포스포릴라아제를 발현하는 미생물; 또는 상기 포스포릴라아제를 발현하는 미생물의 배양물, 및 포스페이트를 접촉시켜, 상기 전분, 말토덱스트린, 수크로스 또는 이의 조합을 포도당-1-인산으로 전환하는 단계를 추가로 포함할 수 있다.
또한, 본 출원의 제조방법은 본 출원의 포도당을 포도당-6-인산으로 전환하는 단계 이전, 전분, 말토덱스트린, 수크로스 또는 이의 조합에 α-아밀라아제, 풀루란아제, 글루코아밀라아제, 수크라아제 또는 이소아밀라아제; 상기 아밀라아제, 플루란아제 또는 수크라아제를 발현하는 미생물; 또는 상기 아밀라아제, 플루란아제 또는 수크라아제를 미생물의 배양물을 접촉시켜, 상기 전분, 말토덱스트린, 수크로스 또는 이의 조합을 포도당으로 전환하는 단계를 추가로 포함할 수 있다.
본 출원의 제조방법은 포도당에 4-α-글루카노트랜스퍼라아제, 상기 4-α-글루카노트랜스퍼라아제를 발현하는 미생물 또는 상기 4-α-글루카노트랜스퍼라아제를 발현하는 미생물의 배양물을 접촉시켜, 상기 포도당을 전분, 말토덱스트린 또는 수크로스로 전환하는 단계를 추가로 포함할 수 있다.
본 출원의 제조방법에 있어서, 본 출원의 '접촉'은 pH 5.0 내지 10.0, 50℃ 내지 90℃, 및/또는 1분 내지 24시간 동안 실시할 수 있다. 구체적으로, 본 출원의 접촉은 pH 5.0 내지 9.0, pH 6.0 내지 8.0, 또는 pH 6.5 내지 7.5에서 실시할 수 있다. 또한, 본 출원의 접촉은 60℃ 내지 80℃ 또는 65℃ 내지 75℃에서 실시할 수 있다. 더불어, 본 출원의 접촉은 1분 내지 12시간, 1분 내지 6시간, 1분 내지 3시간, 1분 내지 1시간, 5분 내지 24시간, 5분 내지 12시간, 5분 내지 6시간, 5분 내지 3시간, 5분 내지 1시간, 10분 내지 24시간, 10분 내지 12시간, 10분 내지 6시간, 10분 내지 3시간, 또는 10분 내지 1시간 동안 실시할 수 있다.
본 출원은 또 다른 하나의 양태로서, 전분, 말토덱스트린, 수크로스 또는 이의 조합, 및 포스페이트에 (a) 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 탈인산화 효소; 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 합성효소; 포스포글루코무타아제 또는 포도당 인산화 효소; 및 α-글루칸 포스포릴라아제, 전분 포스포릴라아제, 말토덱스트린 포스포릴라아제, 수크로오스 포스포릴라아제, α-아밀라아제, 풀루란아제, 이소아밀라아제, 글루코아밀라아제 또는 수크라아제; 또는 (b) 상기 항목 (a)의 효소를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시키는 단계를 포함하는, 마이오-이노시톨 제조방법을 제공한다.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 국한되는 것은 아니다.
실시예 1: 마이오-이노시톨 모노인산 합성효소와 마이오-이노시톨 모노인산 탈인산화 효소의 유전자를 포함하는 재조합 발현벡터 및 형질전환 미생물의 제조
본 출원에 적용된 신규 내열성의 마이오-이노시톨 모노인산 합성효소(myo-inositol monophosphate synthase)와 마이오-이노시톨 모노인산 탈인산화 효소(myo-inositol monophosphate phosphatase)를 제공하기 위해 호열성 미생물인 써모토가 네아폴리타나(Themotoga neapolitana)에서 각 유전자를 분리하였고, 재조합 발현벡터 및 형질전환 미생물들을 각각 제조하였다.
구체적으로, Genbank에 등록된 써모토가 네아폴리타나 유전자 서열들을 대상으로 본 출원의 효소들과 관련된 유전자 서열들을 선발하였고, 아미노산 서열(서열번호 1, 마이오-이노시톨 모노인산 합성효소; 서열번호 3, 마이오-이노시톨 모노인산 탈인산화 효소)과 염기 서열(서열번호 2, 마이오-이노시톨 모노인산 합성효소; 서열번호 4, 마이오-이노시톨 모노인산 탈인산화 효소) 정보를 바탕으로 정방향 프라이머(서열번호 5, 마이오-이노시톨 모노인산 합성효소; 서열번호 6, 마이오-이노시톨 모노인산 탈인산화 효소) 및 역방향 프라이머(서열번호 7, 마이오-이노시톨 모노인산 합성효소; 서열번호 8, 마이오-이노시톨 모노인산 탈인산화 효소)를 고안하였다. 합성된 프라이머를 이용하여 써모토가 네아폴리타나 염색체 DNA(genomic DNA)로부터 각 유전자를 중합효소 연쇄반응(PCR)을 이용하여 증폭하였고, 구체적으로 95℃에서 30초 동안 변성, 55℃에서 30초 동안 어닐링 및 68℃에서 2분 동안 중합하였고 상기 반응들은 25회 반복한 조건을 사용하였으며, 증폭된 해당 효소의 유전자들은 제한효소 NdeⅠ 및 XhoⅠ을 사용하여 대장균 발현용 플라스미드 벡터 pET21a(Novagen사)에 삽입하여 CJ_tn_isyn(마이오-이노시톨 모노인산 합성효소 발현 플라스미드)과 CJ_tn_t6pp(마이오-이노시톨 모노인산 탈인산화 효소 발현 플라스미드)라 명명된 재조합 발현벡터를 제작하였다. CJ_tn_isyn와 CJ_tn_t6pp는 통상적인 형질전환 방법(참조: Sambrook et al. 1989)으로 대장균 BL21(DE3) 균주에 형질 전환하여 E. coli BL21(DE3)/CJ_tn_isyn 와 E. coli BL21(DE3)/CJ_tn_t6pp라 명명된 형질전환 미생물을 제조하였다.
각각 서열번호 2번 및 4번의 유전자를 포함하는 재조합 벡터로 형질 전환된 것을 특징으로 하는, 대장균 BL21 (DE3)/CJ_tn_isyn (Escherichia coli BL21 (DE3)/CJ_tn_isyn) 균주 및 대장균 BL21 (DE3)/CJ_tn_t6pp (Escherichia coli BL21 (DE3)/CJ_tn_t6pp) 균주를 부다페스트 조약 하에 2016년 6월 23일자로 한국미생물보존센터 (Korean Culture Center of Microorganisms, KCCM)에 기탁하여 각각 기탁번호 KCCM11849P 및 KCCM11850P를 부여 받았다.
실시예 2: 재조합 효소의 제조
재조합 효소(이하, ISYN 및 T6PP)들을 제조하기 위해, E. coli BL21(DE3)/CJ_tn_isyn와 E. coli BL21(DE3)/CJ_tn_t6pp를 각각 LB 액체배지 5 ml를 포함하는 배양 튜브에 접종하고, 600 nm에서 흡광도가 2.0이 될 때까지 37 ℃의 진탕 배양기에서 종균 배양을 하였다. 본 종균 배양된 배양액을 LB 액체배지를 포함하는 배양 플라스크에 접종하여 본 배양을 진행하였다. 600 nm에서의 흡광도가 2.0이 될 때 1 mM IPTG를 첨가하여 재조합 효소의 발현생산을 유도하였다. 상기 배양 과정 중의 교반 속도는 200 rpm이며 배양 온도는 37 ℃가 유지되도록 하였다. 배양액은 8,000×g로 4 ℃에서 20분 동안 원심분리 후 균체를 회수하였다. 회수된 균체는 50 mM Tris-HCl(pH 7.0) 완충용액으로 2회 세척하였고, 동일 완충용액으로 현탁 후 초음파 세포파쇄기를 이용하여 세포를 파쇄하였다. 세포 파쇄물은 13,000×g로 4 ℃에서 20분 동안 원심분리 후 상등액만을 취하였다. 재조합 효소는 상기 상등액으로부터 His-tag 친화 크로마토그래피를 사용하여 정제되었다. 정제된 재조합 효소액은 50 mM Tris-HCl(pH 7.0) 완충용액으로 투석 후 효소의 특성 분석에 사용하였다.
그 결과, 정제된 재조합 마이오-이노시톨 모노인산 합성효소(ISYN)와 마이오-이노시톨 모노인산 탈인산화 효소(T6PP)는 SDS-PAGE 분석을 통하여 각 약 43 kDa과 약 29 kDa 인 것을 확인하였다 (도 2).
실시예 3: 재조합 효소의 활성 분석
본 출원의 마이오-이노시톨 모노인산 합성효소의 활성 분석을 위한 반응 조성물은 50 mM Tris-HCl(pH 7.5) 완충용액에 현탁된 50 mM 포도당-6-인산을 사용하였다. 상기 반응 조성물에 0.1 unit/ml 정제효소와 기질인 포도당-6-인산을 온도 60 ℃에서 1시간 동안 반응 후, 각 반응액에 10 unit/ml 포스파테이즈(NEB사 Alkaline phosphatase, Calf Intestinal)를 첨가하여 온도 37 ℃에서 1시간 처리한 후 HPLC를 이용하여 반응물을 분석하였다. HPLC 분석 조건은 SP850(Shodex사) 컬럼을 사용하여 80 ℃에서 이동상으로 0.6 ml/min 유속으로 흘려 주면서 수행하였으며 Refractive Index Detector로 포도당 및 마이오-이노시톨을 검출 분석하였다. 도 3의 결과는 재조합 생산된 마이오-이노시톨 모노인산 합성효소가 포도당-6-인산을 마이오-이노시톨 모노인산으로 전환하는 활성이 있음을 보여준다 (도 3). 기질 및 산물간 정량 분석 결과 약 1시간 반응 후 약 85% 전환됨을 확인 할 수 있었다.
다음으로, 본 출원의 마이오-이노시톨 모노인산 탈인산화 효소의 활성 분석을 위해 기질로 포도당-1-인산, 포도당-6-인산, 또는 이노시톨 모노인산을 사용하였고, 각 기질은 50 mM 농도로 50 mM Tris-HCl(pH 7.0) 완충용액에서 현탁 후 이용 되었다. 각 반응 조성물에 0.1 unit/ml의 정제효소를 첨가하여 70 ℃에서 약 1시간 동안 반응 후 HPLC를 이용하여 당 정량 및 각 인산당을 분석하였다.
그 결과 본 출원의 재조합 효소는 기질로서 이노시톨 모노인산에 대해서만 탈인산화 활성이 있음을 확인할 수 있었다.
본 출원의 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화 효소를 동시에 사용하여 포도당-6-인산으로부터 마이오-이노시톨이 생산되는지 분석하였다. 반응 조성물로 0.1 unit/ml의 정제된 재조합 마이오-이노시톨 모노인산 합성효소 및 마이오-이노시톨 모노인산 탈인산화 효소, 10 mM MgCl2(또는 MgSO4) 및 50 mM 포도당-6-인산을 첨가하여 60 ℃ (50 mM Tris-HCl, pH 7.0 완충용액) 1시간 동안 반응 후 HPLC를 이용하여 반응물을 분석하였다. HPLC 분석 조건은 SP850(Shodex사) 컬럼을 사용하여 80 ℃에서 이동상으로 0.6 ml/min 유속으로 흘려 주면서 수행하였으며 Refractive Index Detector로 마이오-이노시톨)을 검출 분석하였다. 분석 결과, 상기 재조합 정제효소들을 동시에 첨가한 반응물에서 마이오-이노시톨이 고수율로 생성됨을 확인할 수 있었다 (도 4).
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2017006983-appb-I000001
Figure PCTKR2017006983-appb-I000002

Claims (8)

  1. 마이오-이노시톨-모노-인산에 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 탈인산화효소, 이를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시켜 마이오-이노시톨-모노-인산을 마이오-이노시톨로 전환하는 단계를 포함하는 마이오-이노시톨 제조방법.
  2. 제1항에 있어서, 상기 방법은 상기 마이오-이노시톨-모노-인산을 마이오-이노시톨로 전환하는 단계 이전, 포도당-6-인산에 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 합성효소, 이를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시켜 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계를 추가로 포함하는, 마이오-이노시톨 제조방법.
  3. 제2항에 있어서, 상기 방법은 상기 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계 이전, 포도당-1-인산(glucose-1-phosphate)에 포스포글루코무타아제, 이를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시켜, 상기 포도당-1-인산을 포도당-6-인산으로 전환하는 단계를 추가로 포함하는, 마이오-이노시톨 제조방법.
  4. 제2항에 있어서, 상기 방법은 상기 포도당-6-인산을 마이오-이노시톨-모노-인산으로 전환하는 단계 이전, 포도당(glucose)에 포도당 인산화 효소, 이를 발현하는 미생물 또는 상기 미생물의 배양물, 및 포스페이트를 접촉시켜, 상기 포도당을 포도당-6-인산으로 전환하는 단계를 추가로 포함하는, 마이오-이노시톨 제조방법.
  5. 제3항에 있어서, 상기 방법은 상기 포도당-1-인산을 포도당-6-인산으로 전환하는 단계 이전, 전분, 말토덱스트린, 수크로스 또는 이의 조합에 α-글루카노포스포릴라아제, 전분 포스포릴라아제, 말토덱스트린 포스포릴라아제 또는 수크로오스 포스포릴라아제; 이를 발현하는 미생물; 또는 상기 미생물의 배양물, 및 포스페이트를 접촉시켜, 상기 전분, 말토덱스트린, 수크로스 또는 이의 조합을 포도당-1-인산으로 전환하는 단계를 추가로 포함하는, 마이오-이노시톨 제조방법.
  6. 제4항에 있어서, 상기 방법은 상기 포도당을 포도당-6-인산으로 전환하는 단계 이전, 전분, 말토덱스트린, 수크로스 또는 이의 조합에 α-아밀라아제, 풀루란아제, 글루코아밀라아제, 수크라아제 또는 이소아밀라아제; 이를 발현하는 미생물; 또는 상기 미생물의 배양물을 접촉시켜, 상기 전분, 말토덱스트린, 수크로스 또는 이의 조합을 포도당으로 전환하는 단계를 추가로 포함하는, 마이오-이노시톨 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 접촉은 pH 5.0 내지 10.0, 온도 50℃ 내지 90℃, 및/또는 1분 내지 24시간 동안 실시하는, 마이오-이노시톨 제조방법.
  8. 전분, 말토덱스트린, 수크로스 또는 이의 조합, 및 포스페이트에 (a) 서열번호 3의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 탈인산화 효소; 서열번호 1의 아미노산 서열로 이루어진 마이오-이노시톨-모노-인산 합성효소; 포스포글루코무타아제 또는 포도당 인산화 효소; 및 α-글루칸 포스포릴라아제, 전분 포스포릴라아제, 말토덱스트린 포스포릴라아제, 수크로오스 포스포릴라아제, α-아밀라아제, 풀루란아제, 이소아밀라아제, 글루코아밀라아제 또는 수크라아제; 또는 (b) 상기 항목 (a)의 효소를 발현하는 미생물 또는 상기 미생물의 배양물을 접촉시키는 단계를 포함하는, 마이오-이노시톨 제조방법.
PCT/KR2017/006983 2016-06-30 2017-06-30 고농도 마이오-이노시톨의 효소적 제조방법 WO2018004307A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780053190.5A CN109715795A (zh) 2016-06-30 2017-06-30 用于酶法制备高浓度肌醇的方法
US16/314,178 US10752888B2 (en) 2016-06-30 2017-06-30 Method for enzymatically preparing highly concentrated myo-inositol
EP17820583.7A EP3480305A4 (en) 2016-06-30 2017-06-30 METHOD FOR THE ENZYMATIC PRODUCTION OF HIGHLY CONCENTRATED MYO-INOSITOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160082550 2016-06-30
KR10-2016-0082550 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018004307A1 true WO2018004307A1 (ko) 2018-01-04

Family

ID=60787324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006983 WO2018004307A1 (ko) 2016-06-30 2017-06-30 고농도 마이오-이노시톨의 효소적 제조방법

Country Status (5)

Country Link
US (1) US10752888B2 (ko)
EP (1) EP3480305A4 (ko)
KR (1) KR20180004025A (ko)
CN (1) CN109715795A (ko)
WO (1) WO2018004307A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000209A (ja) * 2018-07-02 2020-01-09 三菱ケミカル株式会社 ミオ−イノシトール生産能を有する耐酸性微生物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836889B1 (ko) * 2016-01-15 2018-03-09 씨제이제일제당(주) 신규 폴리포스페이트-의존형 포도당인산화효소 및 이를 이용한 포도당-6-인산 제조방법
US11898184B2 (en) 2017-09-07 2024-02-13 Sweet Sense Inc. Low glycemic sugar composition
WO2020213659A1 (ja) * 2019-04-16 2020-10-22 信越化学工業株式会社 ペリクル、ペリクル付露光原版、半導体装置の製造方法、液晶表示板の製造方法、露光原版の再生方法及び剥離残渣低減方法
CN112980754B (zh) * 2019-12-13 2023-11-28 中国科学院天津工业生物技术研究所 一种枯草芽孢杆菌全细胞催化淀粉制备肌醇的方法
CN113913451B (zh) * 2020-07-08 2023-05-26 山东福洋生物科技股份有限公司 一株产肌醇的巴斯德毕赤酵母工程菌的构建方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405663A1 (de) 1984-02-17 1985-08-22 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur herstellung von scyllo-inosit
US5412080A (en) 1993-08-25 1995-05-02 President And Fellow Of Harvard College Enterobactin compounds
JPH08258A (ja) 1994-04-19 1996-01-09 Toray Ind Inc キャンディダ属に属する微生物およびそれを用いたイノシトールの製造方法
JPH0838188A (ja) 1994-07-27 1996-02-13 Toray Ind Inc イノシトールの製造方法およびグルコース代謝拮抗物質耐性株の取得法
JPH0889262A (ja) 1994-07-27 1996-04-09 Toray Ind Inc イノシトールの製造方法および抗生物質耐性株の取得法
JPH09117295A (ja) 1995-10-26 1997-05-06 Toray Ind Inc イノシトールの製造法と3級アミンに耐性を有する株の取得法
JPH09220093A (ja) 1996-02-16 1997-08-26 Toray Ind Inc イノシトール−1−リン酸合成酵素をコードするdna、それを含む組換えdna、形質転換体およびそれを用いたイノシトールの製造方法
JPH1042860A (ja) 1996-08-02 1998-02-17 Toray Ind Inc イノシトールの製造方法およびヘキサクロロシクロヘキサン耐性株の取得法
JPH1042882A (ja) 1996-08-02 1998-02-17 Toray Ind Inc イノシトールの製造法とセチルトリメチルアンモニウム塩に耐性を有する株の取得法
JPH1042883A (ja) 1996-08-02 1998-02-17 Toray Ind Inc イノシトールの製造方法および6−ハロゲノ−6−デオキシグルコース耐性株の取得法
JPH10271995A (ja) 1997-03-31 1998-10-13 Toray Ind Inc グルコース存在下で活性を持つキャンディダ属酵母のプロモーターdna、それを含む組換えdna、形質転換体およびそれを用いたイノシトールの製造方法
JP2000041689A (ja) 1998-05-25 2000-02-15 Toray Ind Inc イノシト―ルの製造方法
WO2009145838A2 (en) 2008-04-04 2009-12-03 Massachusetts Institute Of Technology Cellular production of glucaric acid
JP2011055722A (ja) 2009-09-07 2011-03-24 Nippon Shokubai Co Ltd イノシトールの製造方法
KR20140048334A (ko) * 2011-11-14 2014-04-23 아사히 가세이 케미칼즈 가부시키가이샤 미오이노시톨 및 미오이노시톨 유도체의 제조 방법
WO2015001312A1 (en) * 2013-07-04 2015-01-08 University Court Of The University Of St Andrews Inositol biotransformation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365489A (ja) * 1991-06-12 1992-12-17 Mitsui Toatsu Chem Inc ミオ−イノシトールの製造法
US20060148059A1 (en) * 2002-12-12 2006-07-06 Majumder Arunendra N L Salt tolerant l-myo-inositol 1-phosphate synthase and the process of obtaining the same
JP2006223151A (ja) * 2005-02-16 2006-08-31 Thermostable Enzyme Laboratory Co Ltd 耐熱性イノシトール1燐酸合成酵素及びその利用
CN104245950B (zh) * 2012-02-02 2017-06-09 旭化成株式会社 鲨肌醇的制造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405663A1 (de) 1984-02-17 1985-08-22 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur herstellung von scyllo-inosit
US5412080A (en) 1993-08-25 1995-05-02 President And Fellow Of Harvard College Enterobactin compounds
JPH08258A (ja) 1994-04-19 1996-01-09 Toray Ind Inc キャンディダ属に属する微生物およびそれを用いたイノシトールの製造方法
JPH0838188A (ja) 1994-07-27 1996-02-13 Toray Ind Inc イノシトールの製造方法およびグルコース代謝拮抗物質耐性株の取得法
JPH0889262A (ja) 1994-07-27 1996-04-09 Toray Ind Inc イノシトールの製造方法および抗生物質耐性株の取得法
JPH09117295A (ja) 1995-10-26 1997-05-06 Toray Ind Inc イノシトールの製造法と3級アミンに耐性を有する株の取得法
JPH09220093A (ja) 1996-02-16 1997-08-26 Toray Ind Inc イノシトール−1−リン酸合成酵素をコードするdna、それを含む組換えdna、形質転換体およびそれを用いたイノシトールの製造方法
JPH1042860A (ja) 1996-08-02 1998-02-17 Toray Ind Inc イノシトールの製造方法およびヘキサクロロシクロヘキサン耐性株の取得法
JPH1042882A (ja) 1996-08-02 1998-02-17 Toray Ind Inc イノシトールの製造法とセチルトリメチルアンモニウム塩に耐性を有する株の取得法
JPH1042883A (ja) 1996-08-02 1998-02-17 Toray Ind Inc イノシトールの製造方法および6−ハロゲノ−6−デオキシグルコース耐性株の取得法
JPH10271995A (ja) 1997-03-31 1998-10-13 Toray Ind Inc グルコース存在下で活性を持つキャンディダ属酵母のプロモーターdna、それを含む組換えdna、形質転換体およびそれを用いたイノシトールの製造方法
JP2000041689A (ja) 1998-05-25 2000-02-15 Toray Ind Inc イノシト―ルの製造方法
WO2009145838A2 (en) 2008-04-04 2009-12-03 Massachusetts Institute Of Technology Cellular production of glucaric acid
JP2011055722A (ja) 2009-09-07 2011-03-24 Nippon Shokubai Co Ltd イノシトールの製造方法
KR20140048334A (ko) * 2011-11-14 2014-04-23 아사히 가세이 케미칼즈 가부시키가이샤 미오이노시톨 및 미오이노시톨 유도체의 제조 방법
WO2015001312A1 (en) * 2013-07-04 2015-01-08 University Court Of The University Of St Andrews Inositol biotransformation

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ATWELL, B. J. ET AL.: "Starch and Sucrose Degradation", PLANTS IN ACTION ADAPTATION IN NATURE , PERFORMANCE IN CULTIVATION, 1999, pages 68, XP009513899, ISBN: 0732944392, Retrieved from the Internet <URL:https://web.archive.org/web/20110306083422/http://plantsinaction.science.uq.edu.au/edition1/?q=print/book/export/html/85> *
DATABASE Protein [O] 26 May 2013 (2013-05-26), "myo-inositol-1-phosphate synthase [Thermotoga neapolitana]", XP055573315, Database accession no. WP_015919565 *
DATABASE Protein [O] 30 January 2014 (2014-01-30), "Inositol-1-monophosphatase [Thermotoga neapolitana DSM 4359]", XP055451074, Database accession no. ACM23254 *
DEGUCHI, MICHIHITO ET AL.: "An Engineered Sorbitol Cycle Alters Sugar Composition, Not Growth, in Transformed Tobacco", PLANT, CELL & ENVIRONMENT, vol. 29, 2006, pages 1980 - 1988, XP007912947 *
F.M. AUSUBEL ET AL.: "Current Protocols in Molecular Biology", JOHN WILEY & SONS, INC.
J BIOL CHEM, vol. 275, 2000, pages 18495 - 18502
J. AM. CHEM. SOC., vol. 121, 1999, pages 3799 - 3800
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP3480305A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000209A (ja) * 2018-07-02 2020-01-09 三菱ケミカル株式会社 ミオ−イノシトール生産能を有する耐酸性微生物
JP7115075B2 (ja) 2018-07-02 2022-08-09 三菱ケミカル株式会社 ミオ-イノシトール生産能を有する耐酸性微生物

Also Published As

Publication number Publication date
EP3480305A1 (en) 2019-05-08
KR20180004025A (ko) 2018-01-10
CN109715795A (zh) 2019-05-03
US10752888B2 (en) 2020-08-25
US20190322991A1 (en) 2019-10-24
EP3480305A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018004307A1 (ko) 고농도 마이오-이노시톨의 효소적 제조방법
WO2018004308A2 (ko) 신규 내열성 과당-6-인산-3-에피머화 효소 및 이를 이용한 알룰로스 제조방법
WO2018004310A1 (ko) 타가토스-6-인산 특이적인 신규 내열성 탈인산화 효소 및 이를 이용한 타가토스 제조방법
WO2018182345A1 (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
WO2018093153A1 (ko) 신규한 d-사이코스 3-에피머화 효소 및 이를 이용한 d-사이코스의 제조 방법
WO2019098723A1 (ko) 신규한 d-사이코스 3-에피머화 효소 및 이를 이용한 d-사이코스의 제조 방법
WO2019132556A1 (ko) 신규 내열성 과당-6-인산 3-에피머화 효소 및 이를 이용한 알룰로스 제조방법
WO2017150814A1 (ko) 신규 폴리포스페이트-의존형 포도당인산화효소 및 이를 이용한 포도당-6-인산 제조방법
WO2019112368A1 (ko) 신규한 사이코스-6-인산 탈인산효소, 상기 효소를 포함하는 사이코스 생산용 조성물, 상기 효소를 이용하여 사이코스를 제조하는 방법
JP2022512197A (ja) 新規なプシコース-6-リン酸の脱リン酸化酵素、それを含むプシコース生産用組成物、及びこれを用いたプシコース製造方法
WO2019132558A1 (ko) 신규 내열성 과당-6-인산 3-에피머화 효소 및 이를 이용한 알룰로스 제조방법
WO2021086035A1 (ko) 프럭토오스 6-포스페이트 4-에피머화 효소 및 이의 용도
WO2017123072A1 (ko) 신규 폴리포스페이트-의존형 포도당인산화효소 및 이를 이용한 포도당-6-인산 제조방법
WO2019045510A1 (ko) 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820583

Country of ref document: EP

Effective date: 20190130