WO2018003994A1 - 熱収縮性フィルム、箱状包装資材及び電池セル - Google Patents

熱収縮性フィルム、箱状包装資材及び電池セル Download PDF

Info

Publication number
WO2018003994A1
WO2018003994A1 PCT/JP2017/024243 JP2017024243W WO2018003994A1 WO 2018003994 A1 WO2018003994 A1 WO 2018003994A1 JP 2017024243 W JP2017024243 W JP 2017024243W WO 2018003994 A1 WO2018003994 A1 WO 2018003994A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
shrinkable film
less
box
film
Prior art date
Application number
PCT/JP2017/024243
Other languages
English (en)
French (fr)
Inventor
小林 修二
啓太 池田
雅樹 三輪
裕輝 齋藤
周二郎 堀
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60785134&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018003994(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202310013095.XA priority Critical patent/CN116063830A/zh
Priority to CN201780040051.9A priority patent/CN109415520B/zh
Priority to JP2018525311A priority patent/JP6471833B2/ja
Publication of WO2018003994A1 publication Critical patent/WO2018003994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • B32B7/028Heat-shrinkability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat-shrinkable film, a box-shaped packaging material, and a battery cell. Specifically, the present invention relates to a heat-shrinkable film, a box-shaped packaging material, and a battery cell excellent in durability after coating and coating retention.
  • Square battery cells are used in vehicle batteries used in hybrid cars and electric cars, and in power supply devices for charging natural energy and midnight power.
  • the prismatic battery cell is used by being covered with a heat-shrinkable film and tube for insulation, waterproofing, protection and the like.
  • a battery cell package covered with a film and a tube generally, a rectangular package (for example, a rectangular package body in which a body 102 of a rectangular battery cell 101 is wound around a belt-like film 100 as shown in FIG. 3 or the like) 4), and one end side (bottom) 201 of a tube-shaped film 200 or the like as shown in FIG. 4 is sealed, and a rectangular package 400 (in the form of a bag is inserted into a rectangular battery cell 101). (See FIG. 6).
  • the battery cell 101 cannot be sufficiently covered, and the battery cell 101 is exposed when water accumulates on the bottom of the housing into which the battery cell 101 is inserted due to condensation or the like. May cause a short circuit.
  • the film and tube made of polyester resin also have a problem that secondary shrinkage occurs due to repeated heating and cooling, and a covering condition is liable to occur.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a heat-shrinkable film, a box-shaped packaging material, and a battery cell excellent in durability after coating and coating retention.
  • the present inventors have succeeded in obtaining a heat-shrinkable film that can solve the above-mentioned problems of the prior art, and have completed the present invention. That is, the present invention is as follows.
  • the heat-shrinkable film of the present invention is a single-layer or multi-layer heat-shrinkable film having a surface layer mainly composed of copolymerized polyester on at least one main surface, and satisfies the following a) to d): It is characterized by that. a) The heat of crystal fusion ( ⁇ Hm) when the temperature is raised at 10 ° C./min by differential scanning calorimetry is 20 J / g or less. b) The fusion temperature (FT1) between one surface and the other surface. The absolute value of the fusion temperature difference (FT1-FT2) with respect to the fusion temperature (FT2) is 20 ° C. or less c) The thermal shrinkage rate in the main shrinkage direction when immersed in warm water at 80 ° C. for 10 seconds is 10% or more and 50 D) Neck-in ratio after immersion for 10 seconds in warm water at 70 ° C. is 2.5% or less
  • the volume resistivity is preferably 1 ⁇ 10 14 ⁇ ⁇ cm or more.
  • the dielectric breakdown voltage is preferably 8 kV or more.
  • the heat shrinkable film is preferably cut into a box-shaped packaging material development.
  • the heat-shrinkable film of the present invention is a single-layer or laminated heat-shrinkable film having a surface layer mainly composed of a copolymerized polyester on at least one surface, and is at least one of the following e) to g): And is cut into a box-shaped packaging material expansion body.
  • e) The fold opening angle (A1) in the main contraction direction and the fold opening angle (A2) in the orthogonal direction orthogonal to the main contraction direction are both 30 ° or less.
  • And the fold opening angle ratio (A1 / A2) between the fold opening angle (A2) in the orthogonal direction perpendicular to the main shrinkage direction is 1.3 or less.
  • the box-shaped packaging material of the present invention is a box-shaped packaging material using the above heat-shrinkable film, and is characterized by including a bending portion and a heat seal portion.
  • the battery cell of the present invention is characterized in that it is covered with the box-shaped packaging material.
  • FIG. 1 is an explanatory diagram of dimensions of a box-shaped package in a heat cycle test according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of dimensions of an aluminum metal lump used in a heat cycle test according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of covering a battery cell with a film and a tube according to the prior art.
  • FIG. 4 is an explanatory diagram of covering a battery cell with a film and a tube according to the prior art.
  • FIG. 5 is a schematic diagram of a box-shaped packaging material development body.
  • FIG. 6 is a schematic diagram of a box-shaped package.
  • main component means to allow other components to be included as long as the action and effect of the resin contained as the main component is not disturbed.
  • the term “main component” does not limit the specific content, but it is preferably a component that occupies 50% by mass or more, and occupies 70% by mass or more. More preferably, it is a component occupying 80% by mass or more, and more preferably 100% by mass or less.
  • the heat-shrinkable film according to the present embodiment includes a film using a copolyester of a dicarboxylic acid component and a diol component.
  • a copolyester of a dicarboxylic acid component and a diol component First, the copolyester used for the heat-shrinkable film will be described.
  • the copolymer polyester is preferably a copolymer polyester in which the main component of the dicarboxylic acid component is terephthalic acid and the main component of the diol component is ethylene glycol. Copolyester may be used individually by 1 type, and may use 2 or more types together.
  • Dicarboxylic acid components include terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4-diphenyl ether dicarboxylic acid, 4,4-diphenoxyethanedicarboxylic acid Acids, aromatic dicarboxylic acids such as 5-Na sulfoisophthalic acid, ethylene-bis-p-benzoic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxy
  • dicarboxylic acid components may be used individually by 1 type, and may use 2 or more types together.
  • dicarboxylic acid terephthalic acid and isophthalic acid are preferable from the viewpoints of preventing perforation and adhesion failure of the heat-shrinkable film of the heat-shrinkable film, and durability and coating retention after coating. It is more preferable to use as a main component.
  • the blending amount of terephthalic acid in the copolyester is 100 mol% of the total amount of the dicarboxylic acid component from the viewpoint of preventing perforation and adhesion failure of the heat-sealable film of the heat-shrinkable film, and durability and coating retention after coating.
  • 75 mol% or more is preferable, 80 mol% or more is more preferable, 85 mol% or more is further preferable, and 100 mol% or less is preferable.
  • diol component examples include ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, polytetramethylene glycol, 1,4-cyclohexanedimethanol and 1,3-propanediol. These diol components may be used individually by 1 type, and may use 2 or more types together. Among these, as the diol component, ethylene glycol, 1,4-butanediol, and the like from the viewpoints of preventing perforation and adhesion failure of the heat-sealing part of the heat-shrinkable film, and durability and coating retention after coating. 1,4-cyclohexanedimethanol is preferred, and ethylene glycol is the main component.
  • the blending amount of ethylene glycol in the copolymerized polyester is based on the viewpoint of preventing perforation and poor adhesion of the heat-shrinkable film heat seal part, and the durability after coating and the coating retention with respect to 100 mol% of the total amount of diol components. Therefore, 40 mol% or more is preferable, 45 mol% or more is more preferable, 50 mol% or more is more preferable, 80 mol% or less is preferable, 75 mol% or less is more preferable, and 70 mol% or less is still more preferable.
  • the copolyester should just have a dicarboxylic acid component and a diol component in a predetermined component amount, and a single copolyester may be used, or two or more copolyesters having different compositions may be mixed and used. .
  • the copolymerized polyester may contain various additives as necessary within the range where the effects of the present invention are exhibited.
  • the additive include an ultraviolet absorber, a light stabilizer, an antioxidant, a hydrolysis inhibitor, a stabilizer, a colorant, an antistatic agent, a lubricant, an inorganic filler, and various resins.
  • the heat-shrinkable film according to the first embodiment is a single-layer or multi-layer heat-shrinkable film having a surface layer mainly composed of a copolymerized polyester on at least one surface.
  • This heat-shrinkable film has a) a heat of crystal fusion ( ⁇ Hm) of 20 J / g or less when heated at 10 ° C./min by differential scanning calorimetry, and b) fusion of one surface to another.
  • FT1-FT2 a heat of crystal fusion
  • the heat shrinkage rate in the main shrinkage direction (hereinafter, simply referred to as “main shrinkage direction”) is 10% or more and 50% or less, and d) after being immersed in 70 ° C. warm water for 10 seconds.
  • the neck-in rate is 2.5% or less.
  • the heat-shrinkable film conforms to JIS K7122, and has a heat of crystal melting ( ⁇ Hm) of 20 J / g or less when the film is heated at a heating rate of 10 ° C./min by differential thermal scanning calorimetry. If the heat of crystal melting ( ⁇ Hm) is 20 J / g or less, the temperature at which heat sealing is possible does not vary depending on the location, and heat sealing does not become unstable.
  • the heat of crystal shrinkage ( ⁇ Hm) of the heat-shrinkable film is preferably 18 J / g or less, and more preferably 16 J / g or less.
  • the heat shrinkable film can prevent the occurrence of crystallinity distribution due to the film processing method and processing conditions when the heat of crystal melting ( ⁇ Hm) of the raw material is 20 J / g or less.
  • the heat-shrinkable film has a fusion temperature (FT1) between one main surface (for example, the surface of the heat-shrinkable film with respect to the cover) and the other surface (for example, the back surface of the heat-shrinkable film with respect to the cover).
  • the absolute value of the fusion temperature difference (FT1-FT2) from the fusion temperature (FT2) is 20 ° C. or less, preferably 15 ° C. or less, and more preferably 10 ° C. or less. If the absolute value of the melting temperature difference (FT1-FT2) is 20 ° C.
  • TD Transverse Direction
  • MD Machine Direction
  • the heat shrinkage rate of the heat-shrinkable film is 10% or more, preferably 12% or more, and preferably 14% or more in the main shrinkage direction when immersed in warm water at 80 ° C. for 10 seconds. More preferably, it is 50% or less, preferably 48% or less, and more preferably 46% or less. If the heat shrinkable film has a heat shrinkage rate of 10% or more, the heat shrinkable film is processed into a box-shaped package as shown in FIG. In the step of covering the cell, there is no risk that moisture cannot enter between the battery cell and the heat-shrinkable film due to condensation without being tightly adhered.
  • the heat shrinkable film has a heat shrinkage rate of 50% or less
  • the heat shrinkable film has an orthogonal direction (hereinafter simply referred to as “orthogonal direction”) that is orthogonal to the main shrinkage direction when it is contracted by a shrinker. ) Does not cause a big deal.
  • orthogonal direction hereinafter simply referred to as “orthogonal direction”
  • shrinkage occurs in the heat-shrinkable film, a part of the battery cannot be covered in the shrinking process, and the insulating property may be lowered.
  • even if the heat-shrinkable film can be coated at this stage there is no room for size and shape. Therefore, secondary shrinkage of the heat-shrinkable film occurs due to repeated rise and fall of the temperature of the battery mounting portion of the car.
  • shrinkage control it is possible to cope by increasing the height of the heat shrinkable film.
  • a lot of extra material will be used, which is not preferable in terms of cost, and will also cover parts that do not require coating, such as electrodes. Therefore, shrinkage is more appropriate than the size of the coating material. It is preferable in terms of quality design.
  • the heat-shrinkable film has a neck-in rate of 2.5% or less, preferably 2.3% or less when immersed in warm water at 70 ° C. for 10 seconds together with the heat shrinkage rate, preferably 2.1% or less.
  • the following is more preferable. If the neck-in rate is 2.5% or less, the above-described temperature increase and decrease of the battery mounting part will gradually cause shrinkage and neck-in, and part of the battery will be exposed. Will not occur.
  • the heat-shrinkable film satisfies both the heat-shrinkage rate and the neck-in rate, so that it does not cause poor coating even when used for a long period of time, and maintains excellent insulation and waterproofness. Will be able to.
  • a heat shrinkage rate and a neck-in rate can be adjusted with the extending
  • the neck-in rate is a value measured as follows. First, the heat-shrinkable film is cut into a size of 140 mm or more in the main shrinkage direction and 100 mm in the orthogonal direction, and the main shrinkage direction and the inner dimension length direction are matched to a fixed frame jig having an inner dimension length of 140 mm and a width of 120 mm. The main contraction direction is 140 mm in length and is attached with both ends fixed. And after immersing the heat-shrinkable film attached to the fixed frame jig in a hot water bath at 70 ° C. for 10 seconds, it is then immersed in cold water at 30 ° C. or lower for 10 seconds to obtain the maximum heat shrinkage rate in the orthogonal direction. The value obtained by dividing the obtained heat shrinkage rate by 2 is the neck-in rate.
  • ⁇ Abrasion resistance> The heat-shrinkable film is applied per 1000 times on the surface of the test piece when a specified load of 4.9 N is applied to the wear wheel and the turntable is rotated at a constant speed of 70 revolutions / minute in a Taber abrasion test according to JIS K7204.
  • the heat-shrinkable film has a wear mass of 15 g or less, the film is rubbed due to vibration between the housing into which the battery is inserted and the insulating material covered with the battery, resulting in perforation and ensuring insulation. You can't get lost.
  • a coating material that easily generates holes due to physical rubbing is not preferable.
  • the wear resistance of the insulating material is required. It is an important factor in quality. Note that the wear mass can be appropriately adjusted depending on the selection of an appropriate material, stretching conditions during film production, and the like.
  • the heat-shrinkable film preferably has a volume resistivity of 1 ⁇ 10 14 ⁇ ⁇ cm or more, and more preferably 1 ⁇ 10 15 ⁇ ⁇ cm or more.
  • the heat-shrinkable film can guarantee the insulation performance if the volume resistivity is 1 ⁇ 10 14 ⁇ ⁇ cm or more, and has resistance without being destroyed even if an overvoltage is applied to the battery. As a result, troubles due to electrical short-circuiting of the battery can be prevented.
  • the dielectric breakdown voltage of the heat-shrinkable film is preferably 8 kV or more, more preferably 10 kV or more, and further preferably 11 kV or more.
  • the heat-shrinkable film can guarantee the insulation performance if the dielectric breakdown voltage is 8 kV or higher, and can withstand without being broken even if an overvoltage is applied. Can prevent troubles.
  • the absolute thickness of the heat-shrinkable film is not particularly limited as long as it satisfies the above volume resistivity and dielectric breakdown voltage.
  • the heat-shrinkable film has a film thickness (absolute average thickness) of preferably 80 ⁇ m or more, more preferably 85 ⁇ m or more from the viewpoints of wear resistance, insulation, and general polyester heat-shrinkable film characteristics. More preferably, it is more preferably 90 ⁇ m or more. Moreover, it is preferable that film thickness is 120 micrometers or less from viewpoints, such as necessity of performing processes, such as folding, and cost.
  • the intrinsic viscosity of the heat-shrinkable film is preferably 0.50 dl / g or more and 1.10 dl / g or less. If the intrinsic viscosity of the heat-shrinkable film is 0.50 dl / g or more, it can be easily formed, and a film having sufficient physical properties and strength can be obtained. Moreover, if the said intrinsic viscosity is 1.10 dl / g or less, it can extrude stably.
  • the intrinsic viscosity of the heat-shrinkable film is more preferably 0.55 dl / g or more, further preferably 0.60 dl / g or more, and 1.0 dl. / G or less is more preferable, and 0.90 dl / g is still more preferable.
  • the intrinsic viscosity of the film was determined by accurately weighing 1 g of a measurement sample and dissolving it in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (mass ratio 1: 1) to a concentration of 0.01 g / cm. 3 is a value obtained by preparing the solution 3 and measuring the relative viscosity ⁇ r with the solvent at 30 ° C.
  • the heat-shrinkable film should just be equipped with the surface layer which consists of copolyester on at least one main surface (for example, surface or back surface).
  • the heat-shrinkable film may be provided with a surface layer made of a copolyester on one main surface, or may be provided on both main surfaces (front surface and back surface).
  • the heat-shrinkable film may be a single-layer film having a surface layer made of a copolyester, or may be a multi-layered film in which another resin layer is laminated on the surface layer.
  • the layer structure of these heat-shrinkable films can be appropriately selected as necessary from the viewpoint of required quality and application.
  • a vapor deposition layer, various coating layers, etc. can also be provided in a heat-shrinkable film as needed.
  • the manufacturing method of a heat-shrinkable film is not specifically limited.
  • the heat-shrinkable film of a single layer film can be produced by a known method such as a T-die method or a tubular method.
  • the heat-shrinkable film of the laminated film can be produced by co-extrusion using a plurality of extruders.
  • the heat-shrinkable film of the laminated film can also be manufactured sequentially by laminating using a press method, a roll nip method or the like after separately forming the resin constituting each layer.
  • the manufactured heat-shrinkable film is cooled with a cooling roll, air, water, etc., and then reheated with hot air, hot water, infrared rays, etc., roll stretching method, tenter stretching method, tubular stretching method, long interval stretching method, etc.
  • Uniaxially or biaxially stretched simultaneously or sequentially MD and TD may be simultaneously stretched, but sequential biaxial stretching in which one of them is performed first is effective.
  • sequential biaxial stretching either MD or TD may be stretched first.
  • the stretching temperature is appropriately changed depending on the softening temperature of the resin constituting the heat-shrinkable film and the use of the heat-shrinkable film. From the viewpoint of reducing the neck-in rate, the stretching temperature is preferably 60 ° C.
  • the draw ratio in the main shrinkage direction is appropriately determined according to the components of the heat-shrinkable film, the stretching means, the stretching temperature, and the product form.
  • the draw ratio in the main shrinkage direction is 1.5 times or more, preferably 2 times or more, more preferably 3 times or more, still more preferably 4 times or more, and further preferably 7 times or less, and preferably 6 times or less.
  • the stretching temperature is typically in the range of 60 ° C to 100 ° C.
  • the draw ratio is increased, the fracture resistance is improved.
  • the heat shrinkage rate is increased accordingly, and the covering property may be affected, so 1.01 times or more and 1.2 times or less is preferable.
  • a heat-shrinkable film can provide and hold
  • the heat-shrinkable film according to the present embodiment can also be used as a box-shaped packaging material developed body having a desired shape by appropriately cutting.
  • deployment body can be used suitably as insulation packaging materials, such as a battery cell, for example.
  • the heat-shrinkable film can be used as a packaging material by performing various processes such as cutting, bending, and adhesion.
  • the shape can be, for example, a box shape or a bag shape. Specifically, a heat-shrinkable film is cut to form a box-shaped unfolded cut body, and further bent and bonded to form a box-shaped packaging material.
  • the amount of heat of crystal melting ( ⁇ Hm), the difference in fusion temperature (FT1-FT2), the heat shrinkage rate, and the neck-in rate are within the predetermined ranges.
  • ⁇ Hm the difference in fusion temperature
  • FT1-FT2 difference in fusion temperature
  • the heat shrinkage rate the neck-in rate
  • the neck-in rate are within the predetermined ranges.
  • There is no distribution of crystallinity in the film and even when one main surface (front surface) and the other main surface (back surface) of the heat-shrinkable film are bonded, adhesion failure may occur.
  • excellent quality in all qualities such as insulation, wear resistance, coating retention, durability, etc. can be obtained. It becomes possible to realize a heat-shrinkable film that can prevent perforation and adhesion failure.
  • the heat-shrinkable film according to the second embodiment includes a single-layer or multi-layer heat-shrinkable film having a surface layer mainly composed of a copolyester on one surface, and is developed as a box-shaped packaging material. It is cut by the body.
  • the box-shaped packaging material expansion body corresponds to the expansion body of the box-shaped packaging material, and can be made into a box-shaped packaging material such as a box-shaped battery cell by performing a predetermined folding process. In the box-shaped packaging material developed body, the dead hold property (ease of folding) and the strength of the fold portion are required at the time of folding.
  • the dead hold property of the box-shaped packaging material developed body can be evaluated by measuring the fold opening angle of the heat-shrinkable film.
  • the fold opening angle of the heat-shrinkable film is such that the fold opening angle (A1) in the main shrinkage direction and the fold opening angle (A2) in the orthogonal direction of the heat-shrinkable film are both 30 ° or less and 28 ° The following is preferable. If the fold opening angles (A1) and (A2) are both 30 ° or less, the folds are easily formed, the shape is not distorted, and processing into a box-shaped packaging material is facilitated.
  • the heat-shrinkable film preferably has a good balance between the fold opening angles (A1) and (A2).
  • the heat shrinkable film has a fold opening angle ratio (A1 / A2) of a fold opening angle (A1) in the main shrinkage direction and a fold opening angle (A2) in the orthogonal direction of 1.3 or less. It is preferable that it is 2 or less. If the fold opening angle ratio (A1 / A2) is 1.3 or less, the desired shape does not become distorted when bent into a box-shaped packaging material, and processing into a box-shaped packaging material Becomes easy.
  • the crease opening angles (A1) and (A2) were determined by cutting a sample into a strip shape from the main shrinkage direction and the orthogonal direction of the heat-shrinkable film, folding the long side of the sample in half, and placing the sample in a room at 20 to 25 ° C ( For example, it is calculated
  • the elongation strength of the fold portion of the box-shaped packaging material development body can be evaluated by measuring the fold tensile elongation at break.
  • the fold tensile elongation at break is the fold tensile elongation at break (E1) in the main shrinkage direction of the heat-shrinkable film and the fold tensile elongation at break (E2) in the orthogonal direction are both 80% or more and 90% or more. More preferred. If the fold tensile elongation at break is 80% or more, the heat-shrinkable film does not break from the crease during processing and during coating, and it is preferable from the viewpoint of durability after coating the battery cell.
  • the fold tensile elongation at break (E1) and (E2) are the same as the measurement of the crease opening angle used in the evaluation of the dead hold property, and a strip-shaped test piece having a crease is cut out and the crease portion is centered. As described above, it can be measured by setting the tensile tester at a distance between chucks of 20 mm and pulling at a test speed of 23 ° C. and 200 mm / min.
  • the heat-shrinkable film was evaluated by the above-described dead hold property, the crease opening angle (A1), (A2), the crease opening angle ratio (A1 / A2), and the crease tensile breaking elongation (E1), (E2). If any of these is within the preferred range, it can be suitably used for the production of a box-shaped packaging material as a box-shaped development material development body. Moreover, it is especially preferable that two or more of the crease opening angle, the crease opening angle ratio (A1 / A2), and the crease tensile breaking elongation of the heat-shrinkable film are in preferable ranges.
  • the heat-shrinkable film has no particular limitation on the shrinkage stress.
  • the heat-shrinkable film preferably has a maximum shrinkage stress of not more than 7.0 MPa, more preferably not more than 5.0 Ma, and more preferably not less than 1.0 MPa when immersed in silicon oil at 80 ° C. for 1 minute. It is preferable that it is 2.0 MPa or more.
  • the heat-shrinkable film does not cause problems such as peeling of the seal part when the object to be coated is coated, and if the shrinkage stress is 1.0 MPa or more, The heat-shrinkable film does not easily wrinkle after coating, and the wrinkles do not become an obstacle to the arrangement when the battery cell is incorporated in an electric circuit or the like.
  • the film thickness, film layer configuration, manufacturing method, and the like of the heat-shrinkable film according to the second embodiment are the same as those in the first embodiment described above.
  • the heat-shrinkable box-shaped packaging material thus obtained has good workability when coating an object to be coated such as a battery cell, and has excellent durability and coating retention after coating. Can be realized.
  • the heat-shrinkable film according to each of the above embodiments is excellent in insulation, durability, wear resistance, and coating retention after coating, it is necessary to use these qualities in fields such as hybrid cars and electric vehicles. It can be suitably used for battery cell insulation used for automobile batteries and the like, battery cells used for power supply devices for charging natural energy and late-night power, and the like.
  • the take-up direction (flow direction) of the laminated film is described as “longitudinal direction” (MD: Machine Direction), and the direction orthogonal to “vertical direction” is described as “transverse direction” (TD: Transverse Direction). To do.
  • Dicarboxylic acid component A terephthalic acid
  • Dicarboxylic acid component B Isophthalic acid
  • Diol component A Ethylene glycol
  • Diol component B 1,4-cyclohexanedimethanol
  • Diol component C 1,4-butanediol
  • the present inventors produced the heat-shrinkable film according to the first embodiment described above, and “heat amount of crystal fusion ( ⁇ Hm)” and “fusion temperature difference (FT1) of the produced heat-shrinkable film. -FT2) "," heat shrinkage rate ",” neck-in rate “, etc., and the relationship with the heat cycle test were investigated. Various measurement conditions are shown below.
  • ⁇ Evaluation method (1) Heat of crystal melting ( ⁇ Hm) In accordance with JIS K7122, the peak area of the thermograph when the temperature of the heat-shrinkable film is increased at a temperature increase rate of 10 ° C./min by a differential scanning calorimeter (model number: “Diamond DSC”, manufactured by PerkinElmer Japan). From this, the heat of crystal fusion ( ⁇ Hm) was determined.
  • the seal temperature was 5 ° C. intervals.
  • the absolute value of the fusion temperature (FT1) between one principal surface (front surface) of the heat-shrinkable film, the fusion temperature (FT2) between the other principal surfaces (back surface), and the difference between FT1 and FT2 was measured.
  • the heat-shrinkable films obtained in the examples and comparative examples were cut into a size of 140 mm or more in the main shrinkage direction and 100 mm in the direction perpendicular to the main shrinkage direction.
  • the main shrinkage direction and the inner dimension length direction were matched to a 120 mm fixed frame jig, the main shrinkage direction was 140 mm long and both ends were fixed, and then immersed in a 70 ° C. hot water bath for 10 seconds. It was immersed in cold water of 30 ° C. or lower for 10 seconds. Thereafter, the maximum heat shrinkage rate in the orthogonal direction was measured, and a value obtained by dividing the measured value by 2 was defined as a neck-in rate (%).
  • Abrasion resistance (wear mass)
  • the heat-shrinkable films obtained in Examples and Comparative Examples were subjected to a Taber abrasion test according to JIS K7204.
  • a test piece was fixed to a rotating table of a Taber type abrasion tester (model number: “Rotary Abraser No. 410”, manufactured by Toyo Seiki Seisakusho), and a specified wear wheel CS-17 was attached.
  • a prescribed load of 4.9 N was applied to the wear wheel, the turntable was rotated at a constant speed of 70 rotations / minute, and the wear mass of the test piece surface was determined from the following formula (1) as the wear mass per 1000 times.
  • Wear mass (g) 1000 / test rotation speed ⁇ (mass after wear ⁇ mass before wear)
  • volume resistivity of the heat-shrinkable films obtained in Examples and Comparative Examples was measured according to JIS K6911.
  • the heat-shrinkable film is cut to a size of MD 100 mm and TD 100 mm, and using a volume resistivity measuring machine (manufactured by Advantest), the two electrodes are brought into contact with the front and back surfaces, a DC voltage of 500 V is applied, and after 1 minute The current flowing between the electrodes was measured and the volume resistivity was investigated.
  • Dielectric breakdown voltage About the heat-shrinkable film obtained by the Example and the comparative example, the dielectric breakdown voltage was measured based on JISC2110. After a test piece was sandwiched between two electrodes of a dielectric breakdown voltage tester (manufactured by Haraguchi Kogyo Co., Ltd.), the voltage was increased at 1 KV / sec to determine the voltage at the moment when dielectric breakdown occurred.
  • Heat cycle test evaluation As shown in FIG. 1, the heat-shrinkable film 10 obtained in Examples and Comparative Examples was 95 mm in length (see L1) and 25.5 mm in width under the sealing conditions described in Table 1. (See L2), after processing into a box shape with a depth of 150 mm (see L3), as shown in FIG. 2, 90 mm in length (see L4), 25 mm in width (see L5), and 145 mm in depth (L6) assuming a rectangular battery cell. The aluminum metal block 20 having a box-like size was covered with hot air at 120 ° C. for 30 seconds. Next, the exposed state of the aluminum metal lump 20 was evaluated by holding the heat cycle at -40 ° C. and 65 ° C.
  • IV Intrinsic Viscosity [dl / g] of the heat-shrinkable films obtained in Examples and Comparative Examples was obtained by accurately weighing 1 g of a measurement sample, phenol / 1, 1, A solution having a concentration of 0.01 g / cm 3 was prepared by dissolving in a mixed solvent of 2,2-tetrachloroethane (mass ratio 1: 1), and the relative viscosity ⁇ r with the solvent at 30 ° C. was measured.
  • Example 1 Copolyesters include 98 mol% terephthalic acid and 2 mol% isophthalic acid as the dicarboxylic acid component, 55 mol% ethylene glycol as the diol component, 30 mol% 1,4-cyclohexanedimethanol and 1,4-butane.
  • a copolymer polyester having a component amount of 15 mol% of diol was used. Using this copolymer polyester, after melt-kneading at a set temperature of each extruder of 240 ° C. or more and 260 ° C.
  • the thickness ratio of each layer is 1/6 / Coextruded so as to be 1 (a three-layer structure of the same material), taken up by a cast roll at 55 ° C., and cooled and solidified to obtain an unstretched laminated sheet.
  • the obtained sheet was stretched 5.0 times in the transverse uniaxial direction at a preheating temperature of 100 ° C. and a stretching temperature of 90 ° C., and then heat-treated at 75 ° C. to obtain a 100 ⁇ m heat-shrinkable film ( Intrinsic viscosity: 0.77 dl / g) was obtained.
  • the heat shrinkable film obtained had a heat of crystal fusion ( ⁇ Hm) of 5.5 J / g, an absolute value of the fusion temperature difference (FT1-FT2) of 0 ° C., and a heat shrinkage rate of 28%.
  • the neck-in rate was 1.5%
  • the wear mass was 8.9 g
  • the volume resistivity was 1.06 ⁇ 10 17 ⁇ ⁇ cm
  • the dielectric breakdown voltage was 13.3 kV.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 1 below.
  • Examples of the copolyester include 90 mol% terephthalic acid and 10 mol% isophthalic acid as a dicarboxylic acid component, 65 mol% ethylene glycol as a diol component, 20 mol% 1,4-cyclohexanedimethanol and 1,4-butane.
  • a copolymer polyester having a component amount of 15 mol% of diol was used. Using this copolymer polyester, after melt-kneading at a set temperature of each extruder of 240 ° C. or more and 260 ° C.
  • the thickness ratio of each layer is 1/6 / Coextruded so as to be 1 (three-layer structure of the same material), taken up with a cast roll at 35 ° C., and cooled and solidified to obtain an unstretched laminated sheet.
  • the obtained sheet was stretched 2.2 times in the transverse uniaxial direction at a preheating temperature of 110 ° C. and a stretching temperature of 88 ° C., and then heat-treated at 91 ° C. to obtain a 100 ⁇ m heat-shrinkable film ( Intrinsic viscosity: 0.78 dl / g) was obtained.
  • the heat shrinkable film obtained had a heat of crystal fusion ( ⁇ Hm) of 7.2 J / g, an absolute value of the fusion temperature difference (FT1-FT2) of 0 ° C., and a heat shrinkage rate of 24%.
  • the neck-in rate was 1.5%
  • the wear mass was 8.7 g
  • the volume resistivity was 2.75 ⁇ 10 17 ⁇ ⁇ cm
  • the dielectric breakdown voltage was 9.0 kV.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 1 below.
  • Example 1 A heat-shrinkable film (inherent viscosity: 0.77 dl / g) was prepared and evaluated in the same manner as in Example 1 except that the stretching temperature was 80 ° C.
  • the heat shrinkable film obtained had a heat of crystal fusion ( ⁇ Hm) of 5.7 J / g, an absolute value of the fusion temperature difference (FT1-FT2) of 0 ° C., and a heat shrinkage rate of 49%.
  • the neck-in rate was 3%
  • the wear mass was 11.7 g
  • the volume resistivity was 6.86 ⁇ 10 16 ⁇ ⁇ cm
  • the dielectric breakdown voltage was 14.7 kV.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 1 below.
  • copolyester As the copolyester, a copolyester having 100 mol% terephthalic acid as a dicarboxylic acid component, 95 mol% ethylene glycol as a diol component, and 5 mol% 1,4-butanediol was used. Using this copolymerized polyester, it was melt-molded using a single screw extruder equipped with a round die at the tip and immediately immersed in cold water to obtain a tube-shaped molded product. The obtained tubular molded product was continuously supplied to the next stretching step. In the stretching step, the tube-shaped molded product is sent out at a constant speed while applying pressure by compressed gas from one end to the inside of the tube, and then heated by hot water at 90 ° C.
  • the stretched tube cooled by the cylindrical tube was sandwiched between a pair of nip rolls, and was taken up and wound up as a drawn tube (heat-shrinkable film) while maintaining the drawing tension.
  • the film thickness was stretched to 80 ⁇ m.
  • the obtained heat-shrinkable film (intrinsic viscosity: 0.72 dl / g) had a heat of crystal fusion ( ⁇ Hm) of 37.8 J / g, and the absolute value of the fusion temperature difference (FT1-FT2) was 75 ° C.
  • the heat shrinkage rate is 38%
  • the neck-in rate is 1.3%
  • the wear mass is 4.1 g
  • the volume resistivity is 8.94 ⁇ 10 15 ⁇ ⁇ cm
  • the dielectric breakdown voltage is It was 13 kV.
  • the sample preparation seal conditions for the heat cycle test were held at 230 ° C. for 1.5 seconds.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 1 below.
  • the heat-shrinkable film obtained had a heat of crystal fusion ( ⁇ Hm) of 3.7 J / g, an absolute value of the fusion temperature difference (FT1-FT2) of 5 ° C., and a heat shrinkage rate of 43%.
  • the neck-in rate was 6.5%
  • the wear mass was 32.1 g
  • the volume resistivity was 8.55 ⁇ 10 16 ⁇ ⁇ cm
  • the dielectric breakdown voltage was 10.4 kV.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 1 below.
  • ⁇ Reference Example 1> A heat-shrinkable film was prepared and evaluated in the same manner as in Comparative Example 2 except that polyvinyl chloride was used in place of the copolymerized polyester and the thickness was 100 ⁇ m. No heat of crystal melting ( ⁇ Hm) was detected in the obtained heat-shrinkable film, the absolute value of the fusion temperature difference (FT1-FT2) was 0 ° C., and the heat shrinkage rate was 43.5%. The rate was 5.8%, the wear mass was 16.3 g, the volume resistivity was 1.77 ⁇ 10 16 ⁇ ⁇ cm, and the dielectric breakdown voltage was 11.9 kV. The sample preparation seal conditions for the heat cycle test were held at 190 ° C. for 1 second. The evaluation results of the obtained heat-shrinkable film are shown in Table 1 below.
  • the heat-shrinkable films according to Example 1 and Example 2 have Comparative Examples 1 to 3 and Reference Example 1 in all qualities such as insulation, abrasion resistance, coating retention, and durability. Was excellent. Furthermore, the heat-shrinkable films according to Example 1 and Example 2 were less in wear mass and superior in wearability than Comparative Example 3 and Reference Example 1.
  • the present inventors produced the heat-shrinkable film according to the second embodiment described above, and “crease opening angles (A1), (A2)”, “folding” of the produced heat-shrinkable film.
  • the relationship between the opening angle ratio (A1 / A2) ”and“ fold tensile elongation at break (E1), (E2) ”and the heat cycle test was examined. Various measurement conditions are shown below. The heat cycle test was evaluated under the same conditions as in Example 1.
  • Fold opening angle A strip sample having a length of 125 mm and a width of 30 mm was cut out from the heat shrinkable film obtained in Examples and Comparative Examples from the main shrink direction and the orthogonal direction perpendicular to the main shrink direction.
  • the long side of the strip-shaped sample was folded in two and crushed by a press machine at 0.1 MPa for 10 seconds.
  • the fold opening angle in the main contraction direction was A1, and the fold opening angle in the direction orthogonal to the main contraction direction was A2.
  • Example 3 A heat-shrinkable film was produced in the same manner as in Example 1.
  • the obtained heat-shrinkable film was cut to obtain a box-shaped packaging material development body 300 provided with a cut portion 302 and a mountain fold portion 301 as shown in FIG.
  • the fold opening angle (A1) of the obtained heat-shrinkable film after bending is 26.1 °
  • the fold opening angle (A2) is 23.4 °
  • the fold opening angle ratio (A1 / A2) was 1.12
  • the crease tensile break elongation (E1) was 97%
  • the crease tensile break elongation (E2) was 613%
  • the shrinkage stress was 3.35 MPa.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 2 below.
  • Example 4 A heat-shrinkable film was produced in the same manner as in Example 2. The obtained heat-shrinkable film was cut, and as shown in FIG. 5, a cut-out portion 302 and a mountain fold portion 301 were provided to form a box-shaped packaging material development body 300, and evaluation was performed after bending.
  • the fold opening angle (A1) of the obtained heat-shrinkable film after bending is 15.6 °
  • the fold opening angle (A2) is 15.3 °
  • the fold opening angle ratio (A1 / A2) was 1.02
  • the fold tensile elongation at break (E1) was 329%
  • the fold tensile elongation at break (E2) was 284%
  • the shrinkage stress was 1.01 MPa.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 2 below.
  • Example 5 The film was evaluated by bending as in Comparative Example 3 except that the film thickness was 100 ⁇ m.
  • the fold opening angle (A1) of the obtained heat-shrinkable film after bending is 19.1 °
  • the fold opening angle (A2) is 15.3 °
  • the fold opening angle ratio (A1 / A2) was 1.25
  • fold tensile elongation at break (E1) was 208%
  • fold tensile elongation at break (E2) was 447%
  • the shrinkage stress was 2.99 MPa.
  • the sample preparation seal conditions for the heat cycle test were held at 180 ° C. for 1 second.
  • the evaluation results of the obtained heat-shrinkable film are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Packages (AREA)
  • Wrappers (AREA)

Abstract

ヒートシール部の穴あき及び接着不良を防ぐことができ、被覆後の耐久性及び被覆保持性に優れた熱収縮性フィルムなどを提供すること。熱収縮性フィルムは、共重合ポリエステルを主成分とする表面層を少なくとも一方の表面に備えた単層又は複層の熱収縮性フィルムであって、a)示差走査型熱量測定により、10℃/分で昇温した際の結晶融解熱量(△Hm)が20J/g以下であり、b)一方の表面同士の融着温度(FT1)と他方の表面同士の融着温度(FT2)との融着温度差(FT1-FT2)の絶対値が20℃以下であり、c)80℃の温水中に10秒間浸漬した際の主収縮方向における熱収縮率が10%以上50%以下であり、d)70℃の温水中に10秒間浸漬した後のネックイン率が2.5%以下である。

Description

熱収縮性フィルム、箱状包装資材及び電池セル
 本発明は、熱収縮性フィルム、箱状包装資材及び電池セルに関し、詳しくは、被覆後の耐久性及び被覆保持性に優れた熱収縮性フィルム、箱状包装資材及び電池セルに関する。
 ハイブリッドカー及び電気自動車などに使用される車両用バッテリー、自然エネルギー及び深夜電力を充電するための電源装置などでは、角型電池セルが使用されている。角形電池セルは、絶縁、防水、保護などのために熱収縮性のフィルム及びチューブによって被覆されて用いられる。
 フィルム及びチューブによって被覆された電池セルの包装体としては、一般的に、図3に示すような帯状のフィルム100などに角型の電池セル101の胴体部102を巻き付けた角型包装体(例えば、特許文献1参照)、及び図4に示すようなチューブ状のフィルム200などの一端側(底)201をシールし、袋状にして角型の電池セル101を挿入する角型包装体400(図6参照)などが提案されている。しかしながら、これらの包装体では、必ずしも十分に電池セル101を被覆できず、結露などで電池セル101を挿入する筐体の底に水がたまった際に、電池セル101が剥き出しになっている部分で短絡が発生する場合がある。
 また、図4に示した例では、フィルム200によって被覆された電池セル101の底部がシール部と接触するので、フィルム200などを被覆した電池セル101が自立しない場合がある。また、近年では、車中でのバッテリーが配置される空間の占める体積を少なくして、車の小型化を図る傾向がある。バッテリーからの発熱を効率よく放熱する技術としては、電池セル101からの放熱を電池セル101が収納される筐体底面から行う技術が確立されている。しかしながら、図4に示した例では、電池セル101の底面が筐体に十分接触しないので、放熱性が悪い場合がある。これらの改良のために、フィルム200によって被覆された電池セル101が自立できるように底部にガゼットが設けられた角型包装体が提案されている(例えば、特許文献2参照)。
実用新案登録第3200706号公報 実用新案登録第3195394号公報
 しかしながら、特許文献2に記載の角型包装体では、フィルムなどの厚みが薄い場合には、底部にガゼットを入れることで底部を平らにすることは可能であるが、フィルムなどの厚みを薄くすると、破れるなどの別の不具合が発生しやすくなる。また、一般的に電池セル被覆用として必要な厚みを有するフィルムなどでは、特許文献2に記載の角型包装体のように、ガゼットを設けて底部を平らにするように折り加工が多いと加工が困難となる場合がある。このような問題に対応するには、図5に示すように、フィルムを断裁して山折り部301(図5の破線参照)及び切り込み部302(図5の実線参照)を設けた箱状包装資材展開体300とし、フィルムの一端側303が箱状包装体400の内側となり、フィルムの他端側304が箱状包装体400の外側となるようにしてヒートシール加工で箱状に組立てた箱状包装体400(図6参照)とすることが有効である。
 また、これら電池セルの絶縁被覆用のフィルム及びチューブとしては、従来は、塩化ビニル製のものが多く用いられてきたが、近年、環境への配慮などの理由から非塩化ビニル化の要求がある。また、塩化ビニル製のフィルム及びチューブの場合、特に車両用途では長期に振動を与えると、筐体とフィルムなどとが擦れることでフィルムなどが破れる恐れがある。そこで、これらの改良のため、ポリエステル系樹脂製のフィルム及びチューブが検討されている。しかしながら、ポリエステル系樹脂製のチューブ及びフィルムは、一般にヒートシール加工が難しく、袋状及び箱状の包装体に加工する際に、ヒートシール部で接着不良及び穴あきなどが起こりやすい。また、長期耐久性の観点では、塩化ビニル製のフィルム及びチューブと同様に、破れ及び擦れなどが発生する場合もある。さらに、ポリエステル系樹脂製のフィルム及びチューブは、寒暖の繰り返しにより二次収縮が起こり、被覆状態不良が起こりやすいという問題もある。
 本発明は、上記課題に鑑みてなされたものであり、被覆後の耐久性及び被覆保持性に優れた熱収縮性フィルム、箱状包装資材及び電池セルを提供することを目的とする。
 本発明者らは鋭意検討した結果、上記従来技術の課題を解決し得る熱収縮性フィルムを得ることに成功し、本発明を完成するに至った。すなわち、本発明は、以下のとおりである。
 本発明の熱収縮性フィルムは、共重合ポリエステルを主成分とする表面層を少なくとも一方の主面に備えた単層又は複層の熱収縮性フィルムであって、下記a)~d)を満たすことを特徴とする。
 a)示差走査型熱量測定により、10℃/分で昇温した際の結晶融解熱量(△Hm)が20J/g以下
 b)一方の表面同士の融着温度(FT1)と他方の表面同士の融着温度(FT2)との融着温度差(FT1-FT2)の絶対値が20℃以下
 c)80℃の温水中に10秒間浸漬した際の主収縮方向における熱収縮率が10%以上50%以下
 d)70℃の温水中に10秒間浸漬した後のネックイン率が2.5%以下
 上記熱収縮性フィルムにおいては、JIS K7204に準拠したテーバー摩耗試験において、摩耗輪に規定の荷重4.9Nを加え、回転台を一定速度70回転/分で回転させた際の試験片表面の1000回当たりの下記式(1)から算出した摩耗質量が15g以下であることが好ましい。
 摩耗質量(g)=1000/試験回転数×(摩耗後の質量-摩耗前の質量)・・・式(1)
 上記熱収縮性フィルムにおいては、体積固有抵抗が1×1014Ω・cm以上であることが好ましい。
 上記熱収縮性フィルムにおいては、絶縁破壊電圧が8kV以上であることが好ましい。
 上記熱収縮性フィルムにおいては、絶縁被覆用であることが好ましい。
 上記熱収縮性フィルムにおいては、電池セル被覆用であることが好ましい。
 上記熱収縮性フィルムにおいては、箱状包装資材展開体に裁断されてなることが好ましい。
 本発明の熱収縮性フィルムは、共重合ポリエステルを主成分とする表面層を少なくとも一方の表面に備えた単層又は積層の熱収縮性フィルムであって、下記のe)~g)の少なくとも1つを満たし、箱状包装資材展開体に裁断されてなることを特徴とする。
 e)主収縮方向の折目開き角度(A1)と主収縮方向に直交する直交方向の折目開き角度(A2)とが、いずれも30°以下
 f)主収縮方向の折目開き角度(A1)と主収縮方向に直交する直交方向の折目開き角度(A2)との折目開き角度比(A1/A2)が、1.3以下
 g)主収縮方向の折目部の引張破断伸び(E1)と主収縮方向に直交する直交方向の折目部の引張破断伸び(E2)とのいずれも80%以上
 本発明の箱状包装資材は、上記熱収縮性フィルムを用いた箱状包装資材であって、折り曲げ加工部及びヒートシール部を備えたことを特徴とする。
 本発明の電池セルは、上記箱状包装資材で被覆されてなることを特徴とする。
 本発明によれば、被覆後の耐久性及び被覆保持性に優れた熱収縮性フィルム、箱状包装資材及び電池セルを実現できる。
図1は、本発明の実施例に係るヒートサイクル試験における箱状包装体の寸法の説明図である。 図2は、本発明の実施例に係るヒートサイクル試験で用いられるアルミ金属塊の寸法の説明図である。 図3は、従来技術のフィルム及びチューブによる電池セルの被覆の説明図である。 図4は、従来技術のフィルム及びチューブによる電池セルの被覆の説明図である。 図5は、箱状包装資材展開体の模式図である。 図6は、箱状包装体の模式図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の実施の形態によって何ら限定されるものではない。
 なお、本明細書において、「主成分とする」とは、主成分として含有される樹脂が有する作用及び効果を妨げない範囲で、他の成分を含むことを許容する意味である。また、「主成分とする」とは、具体的な含有率を制限するものではないが、構成成分全体に対する含有率が50質量%以上を占める成分であることが好ましく、70質量%以上を占める成分であることがより好ましく、80質量%以上を占める成分であることが更に好ましく、また100質量%以下の範囲を占める成分である。
 本実施の形態に係る熱収縮性フィルムは、ジカルボン酸成分とジオール成分との共重合ポリエステルを用いたフィルムを含むものである。まず、熱収縮性フィルムに用いられる共重合ポリエステルについて説明する。
(共重合ポリエステル)
 共重合ポリエステルとしては、ジカルボン酸成分の主成分がテレフタル酸であり、かつ、ジオール成分の主成分がエチレングリコールである共重合ポリエステルであるものが好ましい。共重合ポリエステルは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ジカルボン酸成分としては、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2,5-ジクロロテレフタル酸、2-メチルテレフタル酸、4,4-スチルベンジカルボン酸、4,4-ビフェニルジカルボン酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビス安息香酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4-ジフェニルエーテルジカルボン酸、4,4-ジフェノキシエタンジカルボン酸、5-Naスルホイソフタル酸、エチレン-ビス-p-安息香酸等の芳香族ジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂肪族ジカルボン酸が挙げられる。これらのジカルボン酸成分は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、ジカルボン酸としては、熱収縮性フィルムのヒートシール部の穴あき及び接着不良を防ぐ観点、被覆後の耐久性及び被覆保持性の観点から、テレフタル酸及びイソフタル酸が好ましく、テレフタル酸を主成分とすることがより好ましい。
 共重合ポリエステルにおけるテレフタル酸の配合量は、熱収縮性フィルムのヒートシール部の穴あき及び接着不良を防ぐ観点、被覆後の耐久性及び被覆保持性の観点から、ジカルボン酸成分の総量100モル%に対し、75モル%以上が好ましく、80モル%以上がより好ましく、85モル%以上が更に好ましく、また100モル%以下が好ましい。
 ジオール成分としては、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、ポリテトラメチレングリコール、1,4-シクロヘキサンジメタノール及び1,3-プロパンジオールが挙げられる。これらのジオール成分は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、ジオール成分としては、熱収縮性フィルムのヒートシール部の穴あき及び接着不良を防ぐ観点、被覆後の耐久性及び被覆保持性の観点から、エチレングリコール、1,4-ブタンジオール及び1,4-シクロヘキサンジメタノールが好ましく、エチレングリコールを主成分とすることがより好ましい。
 共重合ポリエステルにおけるエチレングリコールの配合量は、ジオール成分総量100モル%に対して、熱収縮性フィルムのヒートシール部の穴あき及び接着不良を防ぐ観点、被覆後の耐久性及び被覆保持性の観点から、40モル%以上が好ましく、45モル%以上がより好ましく、50モル%以上が更に好ましく、また80モル%以下が好ましく、75モル%以下がより好ましく、70モル%以下が更に好ましい。
 また、共重合ポリエステルはジカルボン酸成分及びジオール成分が所定の成分量になればよく、単独の共重合ポリエステルを用いてもよく、異なる組成の共重合ポリエステルを2種以上混合して用いてもよい。
 共重合ポリエステルは、本発明の効果を奏する範囲で、必要に応じて各種の添加剤を含んでいてもよい。添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、加水分解防止剤、安定剤、着色剤、帯電防止剤、滑剤、無機フィラー、各種樹脂などが挙げられる。以下、第1の実施の形態及び第2の実施の形態について詳細に説明する。
(第1の実施の形態)
 第1の実施の形態に係る熱収縮性フィルムは、共重合ポリエステルを主成分とする表面層を少なくとも一方の表面に備えた単層又は複層の熱収縮性フィルムである。この熱収縮性フィルムは、a)示差走査型熱量測定により、10℃/分で昇温した際の結晶融解熱量(△Hm)が20J/g以下であり、b)一方の表面同士の融着温度(FT1)と他方の表面同士の融着温度(FT2)との融着温度差(FT1-FT2)の絶対値が20℃以下であり、c)80℃の温水中に10秒間浸漬した際の熱収縮率が最大となる主収縮方向(以下、単に「主収縮方向」という)における熱収縮率が10%以上50%以下であり、d)70℃の温水中に10秒間浸漬した後のネックイン率が2.5%以下である。
<結晶融解熱量(△Hm)>
 熱収縮性フィルムは、JIS K7122に準拠し、示差熱走査型熱量測定により、昇温速度10℃/分でフィルムを昇温した際の結晶融解熱量(△Hm)が20J/g以下である。結晶融解熱量(△Hm)が20J/g以下であれば、ヒートシールが可能な温度が場所によって異なる現象が起こらず、ヒートシールが不安定になることがない。熱収縮性フィルムの結晶融解熱量(△Hm)は、18J/g以下が好ましく、16J/g以下がより好ましい。
 一般的に、結晶性が低い原材料でフィルムを構成する場合は、フィルムの場所によって結晶性の高いところと低いところという分布ができにくく、フィルム加工方法及び加工条件に制約はない。これに対して、結晶性が高い原材料でフィルムを構成する場合は、フィルムの加工方法及び加工条件によって、表面及び裏面の結晶性が相互に異なり易くなるだけでなく、同一面同士でもフィルムの場所によって結晶性が異なり易いので、フィルム加工方法及び加工条件により結晶性に分布ができてしまう場合がある。そこで、熱収縮フィルムは、原材料の結晶融解熱量(△Hm)が20J/g以下であることにより、フィルム加工方法及び加工条件による結晶性の分布の発生を防ぐことができる。
<融着温度差(FT1-FT2)>
 熱収縮性フィルムは、一方の主面(例えば、被覆体に対する熱収縮性フィルムの表面)同士の融着温度(FT1)と他方の表面(例えば、被覆体に対する熱収縮性フィルムの裏面)同士の融着温度(FT2)との融着温度差(FT1-FT2)の絶対値が20℃以下であり、15℃以下が好ましく、10℃以下が更に好ましい。融解温度差(FT1-FT2)の絶対値が20℃以下であれば、熱収縮性フィルムの一方の主面(例えば、表面)と他方の主面(例えば、裏面)とをヒートシールする際に、融着温度を低い方の条件に合わせてヒートシール加工を行っても、ヒートシールが不十分になり接着不良が起こるなどの不具合が生じない。また、融着温度を高い方に合わせてヒートシール加工を行っても、融着温度の低い面のシール部に過熱による穴あきなどの不具合が発生することがない。このように、一方の主面と他方の主面とをヒートシールする場合であっても、融解温度差(FT1-FT2)の絶対値が20℃以下であれば、ヒートシール加工を好適に行うことができる。
 本実施の形態において、融着温度とは、以下の条件で測定したものである。まず、熱収縮性フィルムを横方向(TD:Transverse Direction)60mm、縦方向(MD:Machine Direction)30mmの大きさに切り取り、熱収縮性フィルムの各面同士を重ねた後、10mm幅のヒートシールバーを有するヒートシーラーに、ヒートシールバーの長手方向とTDを合わせてセットする。そして、シール温度を5℃間隔で、各所定の温度で片側より加熱し、0.1MPaの圧力で60秒間ヒートシールした後、10秒間放置してシール部を剥離し、3回繰り返し(N=3)実施して全て破れずに剥離できる最高温度が融着温度である。
<熱収縮率>
 熱収縮性フィルムの熱収縮率は、80℃の温水中に10秒間浸漬した際の主収縮方向における熱収縮率が10%以上であり、12%以上であることが好ましく、14%以上であることがより好ましく、50%以下であり、48%以下であることが好ましく、46%以下であることがより好ましい。熱収縮性フィルムは、熱収縮性フィルムの熱収縮率が10%以上であれば、図6に示すように、箱状包装体に加工してバッテリーに被せた後、シュリンカーで収縮して電池セルに被覆する工程において、タイトに密着できずに、電池セルと熱収縮性フィルムとの間に結露などにより水分が入り込むリスクが生じることもない。また、熱収縮性フィルムは、熱収縮性フィルムの熱収縮率が50%以下であれば、シュリンカーで収縮させた際に、主収縮方向に直交する直交方向(以下、単に「直交方向」という)に大きな引けが生じることもない。熱収縮性フィルムは、引けが生じると、収縮加工において、バッテリーの一部が被覆できなくなってしまい、絶縁性が低下する場合がある。また、熱収縮性フィルムは、仮にこの段階で被覆できたとしても、寸法形状に余裕がないため、車のバッテリー搭載部の温度の上昇と下降の繰り返しにより、熱収縮性フィルムに二次収縮が発生し、その結果電池セルの一部が被覆できなくなってしまうリスクが高まる。なお、収縮性のコントロール以外にも、熱収縮性フィルムの高さ寸法を大きくすることで対応することも可能である。しかしながら、余分な材料を多く使用することになり、コスト面で好ましくなく、電極等の被覆不要な部分まで被覆してしまうことにもなるので、被覆材の寸法よりも、収縮性を適切なものとすることが品質設計上好ましい。
<ネックイン率>
 熱収縮性フィルムは、上記熱収縮率と共に、70℃の温水に10秒浸漬した時のネックイン率が2.5%以下であり、2.3%以下であることが好ましく、2.1%以下であることがより好ましい。ネックイン率が2.5%以下であれば、上述したバッテリー搭載部の温度の上昇と下降との繰り返しにより、少しずつ収縮及びネックインが進み、バッテリーの一部が剥き出しになってしまうという不具合が生じることがない。このように、熱収縮性フィルムは、上記熱収縮率及び上記ネックイン率をどちらも満足することで、長期間使用しても被覆不良などが起こらず、優れた絶縁性や防水性を維持することができるものとなる。なお、熱収縮率及びネックイン率は、フィルム製造時の延伸条件などにより調整することができる。
 本実施の形態において、ネックイン率とは、以下により測定した値である。まず、熱収縮性フィルムを主収縮方向に140mm以上、直交方向に100mmの大きさに切り取り、内寸長さ140mm、幅120mmの固定枠治具に主収縮方向と内寸長さ方向を合わせて、主収縮方向を140mm長さで両端を固定した状態で取り付ける。そして、固定枠治具に取り付けた熱収縮性フィルムを70℃の温水バスに10秒間浸漬した後、30℃以下の冷水に10秒間浸漬して、直交方向の最大の熱収縮率を求めて得らえた熱収縮率を2で割った値がネックイン率である。
<耐摩耗性>
 熱収縮性フィルムは、JIS K7204に準拠したテーバー摩耗試験において、摩耗輪に規定の荷重4.9Nを加え、回転台を一定速度70回転/分で回転させた際の試験片表面の1000回当たりの下記式(1)から算出した摩耗質量が15g以下であることが好ましく、12g以下であることがより好ましく、10g以下であることが更に好ましい。
 摩耗質量(g)=1000/試験回転数×(摩耗後の質量-摩耗前の質量) ・・・式(1)
 熱収縮性フィルムは、摩耗質量が15g以下であれば、バッテリーが挿入される筐体とバッテリーに被覆された絶縁材との振動により擦れが発生した結果、穴あきが発生して絶縁性が担保できなくなることがない。一般に、絶縁性保持の観点から、物理的な擦れによる穴あき等が発生し易い被覆材は好ましくない。特に車両用に使用されるバッテリーにおいては、電池セルを収納する筐体と、電池セルに被覆された絶縁材とが、振動により擦れが発生することがあるため、絶縁材の耐摩耗性は要求品質上重要な要素である。なお、摩耗質量は、適切な材料選択、フィルム製造時の延伸条件などにより、適宜調整することができる。
<体積固有抵抗>
 熱収縮性フィルムは、体積固有抵抗が、1×1014Ω・cm以上であることが好ましく、1×1015Ω・cm以上であることがより好ましい。熱収縮性フィルムは、体積固有抵抗が1×1014Ω・cm以上であれば、絶縁性能を担保可能であり、バッテリーに過電圧がかかってしまった場合でも、破壊せずに耐性を有することができるので、バッテリーの電気的ショートによるトラブルを防止することができる。
<絶縁破壊電圧>
 熱収縮性フィルムの絶縁破壊電圧は、8kV以上であることが好ましく、10kV以上であることがより好ましく、11kV以上であることが更に好ましい。熱収縮性フィルムは、絶縁破壊電圧が8kV以上であれば、絶縁性能を担保可能であり、過電圧がかかってしまった場合でも、破壊せずに耐性を有することができるので、バッテリーの電気的ショートによるトラブルを防止することができる。熱収縮性フィルムの絶縁破壊電圧の上限値に特に制限はなく、例えば、20kV以下である。
<フィルム厚み>
 絶縁性に関する特性については、熱収縮性フィルムのフィルム厚み(絶対厚み)との関係がある。一般的に、フィルム厚みが厚いほど絶縁性は上がり、より絶縁性に関する特性を担保できる。熱収縮性フィルムは、上記体積固有抵抗及び絶縁破壊電圧を満足すれば絶対厚みに特に制限はない。熱収縮性フィルムは、耐摩耗性、絶縁性及び一般的なポリエステル系熱収縮性フィルムの特性などの観点から、フィルム厚み(絶対平均厚み)は、80μm以上であることが好ましく、85μm以上であることがより好ましく、90μm以上であることが更に好ましい。また、フィルム厚みは、折りなどの加工を行う必要性及びコストなどの観点から、120μm以下であることが好ましい。
<フィルムの固有粘度>
 熱収縮性フィルムの固有粘度は、0.50dl/g以上1.10dl/g以下であることが好ましい。熱収縮性フィルムの固有粘度が、0.50dl/g以上であれば、容易に製膜でき、物性、強度も充分なフィルムが得られる。また、当該固有粘度が、1.10dl/g以下であれば、安定して押出することができる。上述した効果がより一層向上する観点から、熱収縮性フィルムの固有粘度は、0.55dl/g以上であることがより好ましく、0.60dl/g以上であることが更に好ましく、また1.0dl/g以下であることがより好ましく、0.90dl/gであることが更に好ましい。なお、上記フィルムの固有粘度は、測定試料1gを精秤し、フェノール/1,1,2,2-テトラクロロエタン(質量比1対1)の混合溶媒に溶解させて濃度が0.01g/cmの溶液を調製し、30℃における溶媒との相対粘度ηrを測定して求めた値である。
<フィルムの層構成>
 熱収縮性フィルムは、共重合ポリエステルからなる表面層を少なくとも一方の主面(例えば、表面又は裏面)に備えていればよい。熱収縮性フィルムは、共重合ポリエステルからなる表面層を一方の主面に備えていてもよく、両主面(表面及び裏面)に備えていてもよい。また、熱収縮性フィルムは、共重合ポリエステルからなる表面層の単層フィルムであってもよく、表面層に他の樹脂層が積層された複数層の積層フィルムであってもよい。これら熱収縮性フィルムの層構成は、要求品質や用途の観点等から、必要に応じて適宜選択することができる。なお、熱収縮性フィルムには、さらに必要に応じて、蒸着層や各種コート層などを設けることもできる。
<熱収縮性フィルムの製造方法>
 熱収縮性フィルムの製造方法は、特に限定されるものではない。単層フィルムの熱収縮性フィルムは、例えば、Tダイ法、チューブラ法など公知の方法により製造することができる。積層フィルムの熱収縮性フィルムは、複数の押出機を用いて共押出しすることにより製造することができる。また、積層フィルムの熱収縮性フィルムは、各層を構成する樹脂を別々にシート化した後に、プレス法、ロールニップ法などを用いて積層して逐次的に製造することもできる。
 製造された熱収縮性フィルムは、冷却ロール、空気、水などで冷却された後、熱風、温水、赤外線などで再加熱され、ロール延伸法、テンター延伸法、チューブラ延伸法、長間隔延伸法などにより、同時又は逐次に一軸又は二軸延伸される。二軸延伸は、MDとTDの延伸は同時に行われてもよいが、いずれか一方を先に行う逐次二軸延伸が効果的である。逐次二軸延伸では、MD及びTDのどちらが先に延伸してもよい。延伸温度は、熱収縮性フィルムを構成する樹脂の軟化温度及び熱収縮性フィルムの用途によって適宜変更される。延伸温度は、ネックイン率を低減する観点から、60℃以上が好ましく、70℃以上がより好ましく、85℃以上が更に好ましく、90℃以上がより更に好ましく、また130℃以下が好ましく、120℃以下がより好ましい。主収縮方向の延伸倍率は、熱収縮性フィルムの構成成分、延伸手段、延伸温度、製品形態に応じて適宜決定される。主収縮方向の延伸倍率は、1.5倍以上であり、2倍以上が好ましく、3倍以上がより好ましく、4倍以上が更に好ましく、また7倍以下であり、6倍以下が好ましい。
 車載バッテリーに用いられる電池セルの被覆絶縁用のように、ほぼ一方向の収縮特性を必要とする用途の場合でも、主収縮方向に対する直交方向に収縮特性を阻害しない範囲で延伸をすることも効果的となる。延伸温度は、典型的には60℃以上100℃以下の範囲である。また延伸倍率については、大きくなるほど耐破断性は向上するが、それに伴い熱収縮率が上昇し、被覆性に影響を及ぼすことがあるため、1.01倍以上1.2倍以下が好ましい。また、熱収縮性フィルムは、延伸後に延伸フィルムの分子配向が緩和しない時間内に速やかに、熱収縮性フィルムの冷却を行うことにより、収縮性を付与して保持することができる。
 また、本実施の形態に係る熱収縮性フィルムは、適宜裁断することにより、所望形状の箱状包装資材展開体として用いることもできる。この箱状包装資材展開体は、例えば、電池セルなどの絶縁包装材として好適に用いることができる。また、熱収縮性フィルムは、裁断、折り曲げ、接着等の各種加工を施し、包装資材とすることができる。形状としては、例えば、箱状や袋状とすることができる。具体的には、熱収縮性フィルムを裁断加工して箱状展開断裁体とし、さらに折り曲げ、接着加工を施すことにより、箱状包装資材とすることができる。
 以上説明したように、第1の実施の形態によれば、結晶融解熱量(ΔHm)、融着温度差(FT1-FT2)、熱収縮率及びネックイン率が所定範囲内となるので、熱収縮フィルム内での結晶性の分布が生じることがなく、熱収縮性フィルムの一方の主面(表面)と他方の主面(裏面)とを接着する場合であっても、接着不良が生じることもなく、熱収縮時の裂けの発生及び急激なネックインを防ぐことができる。これにより、絶縁性、耐摩耗性、被覆保持性、耐久性などの全ての品質において優れたものが得られるので、被覆後の耐久性及び被覆保持性に優れるだけでなく、ヒートシール部の穴あき及び接着不良も防ぐことができる熱収縮性フィルムを実現することが可能となる。
(第2の実施の形態)
 第2の実施の形態に係る熱収縮性フィルムは、共重合ポリエステルを主成分とする表面層を少なくとも一方の表面に備えた単層又は複層の熱収縮性フィルムを含み、箱状包装資材展開体に裁断されてなるものである。箱状包装資材展開体は、箱状包装資材の展開体に相当するものであり、所定の折り加工を施すことにより、箱型の電池セルなどの箱状包装資材とすることができる。箱状包装資材展開体においては、折り加工などの際に、デットホールド性(折曲易さ)及び折目部の強度が必要とされる。
<折目開き角度>
 箱状包装資材展開体のデッドホールド性は、熱収縮性フィルムの折目開き角度を測定することにより評価ができる。熱収縮性フィルムの折目開き角度は、熱収縮性フィルムの主収縮方向の折目開き角度(A1)及び直交方向の折目開き角度(A2)が、いずれも30°以下であり、28°以下であることが好ましい。折目開き角度(A1),(A2)がいずれも30°以下であれば、折目が付きやすくなって形状がいびつになることなく、また箱状包装資材への加工が容易となる。
 熱収縮性フィルムは、折目開き角度(A1),(A2)のバランスが良いことが好ましい。熱収縮性フィルムは、主収縮方向の折目開き角度(A1)及び直交方向の折目開き角度(A2)の折目開き角度比(A1/A2)が、1.3以下であり、1.2以下であることが好ましい。折目開き角度比(A1/A2)が、1.3以下であれば、折り曲げ加工により箱状包装資材にしたとき、所望の形状がいびつになることがなく、また箱状包装資材への加工が容易となる。
 折目開き角度(A1),(A2)は、熱収縮性フィルムの主収縮方向及び直交方向からそれぞれ短冊状にサンプルを切り出し、サンプルの長辺を2つ折りにし、20℃~25℃の室内(例えば、23℃の環境下)にあるプレス機にて0.1MPaで10秒間の条件で押し潰して折目部を付与し、折曲部の角度を測定することで求められる。
<折目引張破断伸び>
 箱状包装資材展開体の折目部の伸び強度は、折目引張破断伸びを測定することにより評価ができる。折目引張破断伸びは、熱収縮性フィルムの主収縮方向の折目引張破断伸び(E1)及び直交方向の折目引張破断伸び(E2)が、いずれも80%以上であり、90%以上がより好ましい。折目引張破断伸びが、80%以上であれば、加工途中及び被覆時に、折目部から熱収縮性フィルムが破断することがなく、また電池セルに被覆した後の耐久性の観点から好ましい。
 折目引張破断伸び(E1),(E2)は、デットホールド性の評価で用いた折目開き角度の測定と同様にして、折目を付与した短冊状試験片を切り出し、折目部を中心として、チャック間距離20mmで引張試験機にセットし、23℃、200mm/minの試験速度で引張ることにより測定できる。
 熱収縮性フィルムは、上記デットホールド性で評価した、折目開き角度(A1),(A2)、折目開き角度比(A1/A2)及び、折目引張破断伸び(E1),(E2)のいずれかが、好ましい範囲にあれば箱状展開資材展開体として箱状包装資材の製造に好適に用いることができる。また、熱収縮性フィルムは、折目開き角度、折目開き角度比(A1/A2)及び、折目引張破断伸びの2つ以上が、それぞれ好ましい範囲にあることが特に好ましい。
(収縮応力)
 熱収縮性フィルムは、収縮応力に特に制限はない。熱収縮性フィルムは、80℃のシリコンオイル中に1分間浸漬した際の最大収縮応力が、7.0MPa以下であることが好ましく、5.0Ma以下であることがより好ましく、また1.0MPa以上であることが好ましく、2.0MPa以上であることがより好ましい。熱収縮性フィルムは、収縮応力が7.0MPa以下であれば、被覆対象物を被覆した際にシール部が剥がれるなどの不具合が生じることがなく、また収縮応力が1.0MPa以上であれば、被覆後に熱収縮性フィルムがシワになりにくく、電池セルを電気回路などに組み込む際にシワが配列の障害となることがない。
 第2の実施の形態に係る熱収縮性フィルムのフィルム厚み、フィルム層構成及び製造方法などは、上述した第1の実施の形態と同様である。
 以上説明したように、第2の実施の形態によれば、折目開き角度(A1,A2)、折目開き角度比(A1/A2)又は折目引張破断伸び(E1,E2)のいずれか1つが所定範囲内となるので、折り曲げ加工及びヒートシール加工により箱状包材資材とする際に良好なデッドホールド性及び折目部の伸び強度が得られる箱状包材資材展開体を得ることができる。これにより得られた熱収縮性の箱状包装資材は、例えば、電池セルなどの被覆対象物を被覆する際に作業性がよく、被覆後の耐久性及び被覆保持性に優れた箱状包装資材を実現することができる。したがって、第2の実施の形態によれば、箱状包装資材へ加工工程での加工性(折り曲げ性、折り曲げ時のバランス)、被覆後の被覆性及び耐久性(強度)に優れるだけでなく、被覆保持性も優れた熱収縮性フィルムを実現できる。
 上記各実施の形態に係る熱収縮性フィルムは、被覆後の絶縁性、耐久性、耐摩耗性及び被覆保持性に優れているので、これらの品質を要求される分野、例えば、ハイブリッドカー及び電気自動車などに使用される車両用バッテリー、自然エネルギー及び深夜電力を充電するための電源装置などに使用される電池セルの絶縁被覆用途などに好適に使用することができる。
 以下、本発明の効果を明確にするために行った実施例について説明する。なお、本発明は、以下の実施例、比較例及びによって何ら限定されるものではない。また、以下の実施例では、積層フィルムの引き取り方向(流れ方向)を「縦方向」(MD:Machine Direction)、「縦方向」に直交する方向を「横方向」(TD:Transverse Direction)と記載する。
 下記表1、表2に記載された成分を以下に示す。
 ジカルボン酸成分A:テレフタル酸
 ジカルボン酸成分B:イソフタル酸
 ジオール成分A:エチレングリコール
 ジオール成分B:1,4-シクロヘキサンジメタノール
 ジオール成分C:1,4-ブタンジオール
 まず、本発明者らは、上述した第1の実施の形態に係る熱収縮性フィルムを作製し、作製した熱収縮性フィルムの「結晶融解熱量(△Hm)」、「融着温度差(FT1-FT2)」、「熱収縮率」、「ネックイン率」などとヒートサイクル試験との関係を調べた。各種測定条件を以下に示す。
<評価方法>
(1)結晶融解熱量(△Hm)
 JIS K7122に準拠し、示差走査型熱量計(型番:「Diamond DSC」、パーキンエルマージャパン社製)により、昇温速度10℃/分で熱収縮性フィルムを昇温した際のサーモグラフのピーク面積から結晶融解熱量(△Hm)を求めた。
(2)融着温度(FT)
 実施例及び比較例で得られた熱収縮性フィルムをTD60mm、MD30mmの大きさに切り取り、熱収縮性フィルムの各面同士を2枚重ねて、10mm幅のヒートシールバーを有するヒートシーラーに、ヒートシールバーの長手方向に熱収縮性フィルムのTDを合わせセットした後、所定の温度で片側より加熱し、0.1MPaの圧力で60秒間ヒートシールした。その後、10秒間放置してシール部を剥離した。以上を3回実施(N=3)して、全て破れずに剥離できる最高温度を融着温度とした。シール温度は5℃間隔とした。熱収縮性フィルムの一方の主面(表面)同士の融着温度(FT1)、他方の主面(裏面)同士の融着温度(FT2)、及びFT1-FT2の差の絶対値を測定した。
(3)熱収縮率
 実施例及び比較例で得られた熱収縮性フィルムをMD20mm、TD100mmの大きさに切り取り、80℃の温水バスに10秒間浸漬した後、30℃以下の冷水に10秒間浸漬してTDの収縮量を測定した。熱収縮率は、収縮前の原寸に対する収縮量の比率を%値で示す。
(4)ネックイン率
 実施例及び比較例で得られた熱収縮性フィルムを主収縮方向に140mm以上、主収縮方向と直交する直交方向に100mmの大きさに切り取り、内寸長さ140mm、幅120mmの固定枠治具に主収縮方向と内寸長さ方向を合わせて、主収縮方向を140mm長さで両端を固定した状態で取り付けた後、70℃の温水バスに10秒間浸漬した後、30℃以下の冷水に10秒間浸漬した。その後、直交方向の最大の熱収縮率を測定し、測定した値を2で割った値をネックイン率(%)とした。
(5)耐摩耗性(摩耗質量)
 実施例及び比較例で得られた熱収縮性フィルムについて、JIS K7204に準拠し、テーバー摩耗試験を行った。テーバー式摩耗試験機(型番:「ロータリーアブレッサーNo.410」、東洋精機製作所製)の回転台に試験片を固定し、規定の摩耗輪CS-17を取付けた。摩耗輪に規定の荷重4.9Nを加え、回転台を一定速度70回転/分で回転させ、試験片表面の摩耗性を1000回当たりの摩耗質量を以下の式(1)から求めた。
 摩耗質量(g)=1000/試験回転数×(摩耗後の質量-摩耗前の質量) ・・・式(1)
(6)体積固有抵抗
 実施例及び比較例で得られた熱収縮性フィルムについて、JIS K6911に準拠し、体積固有抵抗を測定した。熱収縮性フィルムをMD100mm、TD100mmの大きさに切り取り、体積固有抵抗測定機(アドバンテスト社製)を用いて、二つの電極を表面と裏面に接触させ、500Vの直流電圧を印可し、1分後の電極間に流れる電流を測定し体積固有抵抗値を調査した。
(7)絶縁破壊電圧
 実施例及び比較例で得られた熱収縮性フィルムについて、JIS C2110に準拠し、絶縁破壊電圧を測定した。絶縁破壊電圧試験機(原口工業社製)の2つの電極間に試験片を挟んだ後、1KV/secで電圧を上昇させ、絶縁破壊の起こる瞬間の電圧を求めた。
(8)ヒートサイクル試験評価
 図1に示すように、実施例及び比較例で得られた熱収縮性フィルム10を、表1に記載のシール条件で、縦95mm(L1参照)、横25.5mm(L2参照)、奥行き150mm(L3参照)の箱状に加工した後、図2に示すように、角形電池セルを想定した縦90mm(L4参照)、横25mm(L5参照)、奥行き145mm(L6参照)の箱状の大きさのアルミ金属塊20に、120℃で30秒間熱風を当てて被せた。次に、-40℃及び65℃にてそれぞれ0.5時間保持し、昇温、降温にそれぞれ0.5時間かけるヒートサイクルを1000回実施し、アルミ金属塊20の剥き出し状態について評価した。評価基準を以下に示す。
 ○:被覆状態正常
 △:電池セル一部剥き出し
 ×:シール部に穴あきが発生し、ヒートサイクル試験ができなかった
(9)固有粘度の測定
 実施例及び比較例で得られた熱収縮性フィルムの固有粘度(IV:Intrinsic Viscosity)[dl/g]は、測定試料1gを精秤し、フェノール/1,1,2,2-テトラクロロエタン(質量比1対1)の混合溶媒に溶解させて濃度が0.01g/cmの溶液を調製し、30℃における溶媒との相対粘度ηrを測定して求めた。
(実施例1)
 共重合ポリエステルとしては、ジカルボン酸成分としてのテレフタル酸98モル%及びイソフタル酸2モル%と、ジオール成分としてのエチレングリコール55モル%、1,4-シクロヘキサンジメタノール30モル%及び1,4-ブタンジオール15モル%の成分量の共重合ポリエステルを用いた。この共重合ポリエステルを用いて、2台の押出機及び2種3層マルチマニホールド口金により、各押出機の設定温度を240℃以上260℃以下で溶融混練後、各層の厚み比が1/6/1(同材料の3層構成)となるように共押出し、55℃のキャストロールで引き取り、冷却固化させて未延伸積層シートを得た。次に、フィルムテンターを用いて、得られたシートを予熱温度100℃、延伸温度90℃で横一軸方向に5.0倍延伸後、75℃にて熱処理を行い、100μmの熱収縮性フィルム(固有粘度:0.77dl/g)を得た。得られた熱収縮性フィルムの結晶融解熱量(ΔHm)は5.5J/gであり、融着温度差(FT1-FT2)の絶対値は0℃であり、熱収縮率は28%であり、ネックイン率は1.5%であり、摩耗質量は8.9gであり、体積固有抵抗は1.06×1017Ω・cmであり、絶縁破壊電圧は13.3kVであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表1に示す。
(実施例2)
 共重合ポリエステルとしては、ジカルボン酸成分としてのテレフタル酸90モル%及びイソフタル酸10モル%と、ジオール成分としてのエチレングリコール65モル%、1,4-シクロヘキサンジメタノール20モル%及び1,4-ブタンジオール15モル%の成分量の共重合ポリエステルを用いた。この共重合ポリエステルを用いて、2台の押出機及び2種3層マルチマニホールド口金により、各押出機の設定温度を240℃以上260℃以下で溶融混練後、各層の厚み比が1/6/1(同材料の3層構成)となるように共押出し、35℃のキャストロールで引き取り、冷却固化させて未延伸積層シートを得た。次に、フィルムテンターを用いて、得られたシートを予熱温度110℃、延伸温度88℃で横一軸方向に2.2倍延伸後、91℃にて熱処理を行い、100μmの熱収縮性フィルム(固有粘度:0.78dl/g)を得た。得られた熱収縮性フィルムの結晶融解熱量(ΔHm)は7.2J/gであり、融着温度差(FT1-FT2)の絶対値は0℃であり、熱収縮率は24%であり、ネックイン率は1.5%であり、摩耗質量は8.7gであり、体積固有抵抗は2.75×1017Ω・cmであり、絶縁破壊電圧は9.0kVであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表1に示す。
(比較例1)
 延伸温度を80℃としたこと以外は、実施例1と同様に熱収縮性フィルム(固有粘度:0.77dl/g)を作製して評価した。得られた熱収縮性フィルムの結晶融解熱量(ΔHm)は5.7J/gであり、融着温度差(FT1-FT2)の絶対値は0℃であり、熱収縮率は49%であり、ネックイン率は3%であり、摩耗質量は11.7gであり、体積固有抵抗は6.86×1016Ω・cmであり、絶縁破壊電圧は14.7kVであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表1に示す。
(比較例2)
 共重合ポリエステルとしては、ジカルボン酸成分としてのテレフタル酸100モル%と、ジオール成分としてのエチレングリコール95モル%、及び1,4-ブタンジオール5モル%の成分量の共重合ポリエステルを用いた。この共重合ポリエステルを用いて、先端に丸ダイを装着した単軸押出機を用いて溶融成形し、直ちに冷水に浸漬させ、チューブ状の成形物を得た。得られたチューブ状の成形物は連続的に次の延伸工程に供給した。延伸工程において、チューブ状の成形物は、一方の端から圧縮気体による圧力を管の内側に加えつつ一定速度で送り出された後、90℃の温水により加熱され、径方向の延伸倍率を規制するために冷却された円筒管の中を通され、MD1.05倍、TD1.67倍の延伸倍率で延伸された。円筒管で冷却された延伸後のチューブは、一対のニップロールにより挟んで延伸張力を保持しながら延伸チューブ(熱収縮性フィルム)として引き取り巻き取った。フィルム厚みは、80μmとなるように延伸した。得られた熱収縮性フィルム(固有粘度:0.72dl/g)の結晶融解熱量(ΔHm)は37.8J/gであり、融着温度差(FT1-FT2)の絶対値は75℃であり、熱収縮率は38%であり、ネックイン率は1.3%であり、摩耗質量は4.1gであり、体積固有抵抗は8.94×1015Ω・cmであり、絶縁破壊電圧は13kVであった。ヒートサイクル試験のサンプル作製シール条件は、230℃にて1.5秒保持とした。得られた熱収縮性フィルムの評価結果を下記表1に示す。
(比較例3)
 共重合ポリエステルとして、ジカルボン酸成分としてのテレフタル酸100モル%と、ジオール成分としてのエチレングリコール65モル%、1,4-シクロヘキサンジメタノール30モル%及び1,4-ブタンジオール5モル%の成分量の共重合ポリエステルを用いたこと、フィルム厚みを70μmとなるように延伸したこと以外は、比較例2と同様に熱収縮性フィルム(固有粘度:0.76dl/g)を作製して評価した。得られた熱収縮性フィルムの結晶融解熱量(ΔHm)は3.7J/gであり、融着温度差(FT1-FT2)の絶対値は5℃であり、熱収縮率は43%であり、ネックイン率は6.5%であり、摩耗質量は32.1gであり、体積固有抵抗は8.55×1016Ω・cmであり、絶縁破壊電圧は10.4kVであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表1に示す。
<参考例1>
 共重合ポリエステルに代えて、ポリ塩化ビニルを用いたこと及び厚みを100μmとしたこと以外は、比較例2と同様にして熱収縮性フィルムを作製して評価した。得られた熱収縮性フィルムの結晶融解熱量(ΔHm)は検出されず、融着温度差(FT1-FT2)の絶対値は0℃であり、熱収縮率は43.5%であり、ネックイン率は5.8%であり、摩耗質量は16.3gであり、体積固有抵抗は1.77×1016Ω・cmであり、絶縁破壊電圧は11.9kVであった。ヒートサイクル試験のサンプル作製シール条件は、190℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、結晶融解熱量(ΔHm)、融着温度差(FT1-FT2)、熱収縮率及びネックイン率が所定範囲となる場合には、ヒートサイクル試験で良好な評価結果が得られた(実施例1及び実施例2)。これに対して、ネックイン率が大きすぎる場合には、ヒートサイクル試験後に電池セルの一部が剥き出しとなった(比較例1、比較例3)。この結果は、ヒートサイクル試験での温度の上昇と下降との繰り返しにより、急激にネックインが進んだためと考えられる。また、結晶融解熱量(ΔHm)及び融着温度差(FT1-FT2)の絶対値が大きすぎる場合には、ヒートシール時にシール部に穴あきが生じヒートサイクル試験ができなかった(比較例2)。この結果は、結晶融解熱量(ΔHm)が大きすぎたために、熱収縮性フィルム内で結晶性に分布が生じ、ヒートシールが不安定になると共に、融着温度差(FT1-FT2)の絶対値が大きすぎたために、熱収縮性フィルムの表面と裏面とを合わせてシールした際に、接着不良が生じてヒートサイクル試験ができなかったためと考えられる。さらに、ポリ塩化ビニルを用いた場合には、ヒートサイクル試験後に電池セルの一部が剥き出しとなった。この結果は、比較例1、比較例3と同様に、ネックイン率が高すぎたためと考えられる。このように、実施例1及び実施例2に係る熱収縮性フィルムは、絶縁性、耐摩耗性、被覆保持性、耐久性などの全ての品質において、比較例1~比較例3、参考例1に対して優れたものであった。さらに、実施例1及び実施例2に係る熱収縮性フィルムは、比較例3及び参考例1に対して、摩耗質量も少なく、摩耗性が優れていた。
 次に、本発明者らは、上述した第2の実施の形態に係る熱収縮性フィルムを作製し、作製した熱収縮性フィルムの「折目開き角度(A1),(A2)」、「折目開き角度比(A1/A2)」及び「折目引張破断伸び(E1),(E2)」などとヒートサイクル試験との関係を調べた。各種測定条件を以下に示す。また、ヒートサイクル試験は、実施例1などと同様の条件で評価した。
(10)収縮応力
 実施例及び比較例で得られた熱収縮性フィルムを主収縮方向に長さ70mm、幅10mmに切り出し、チャック間距離50mmにてロードセルにタルミが無い様に固定した。その後、80±0.5℃のシリコンバスに試料片を浸漬し、1分間での最大応力を測定した。収縮応力は下記式(2)により算出した。
 収縮応力(MPa)=ロードセルにかかる荷重(N)/試料片の断面積(mm)・・・式(2)
(11)折目開き角度
 実施例及び比較例で得られた熱収縮性フィルムを主収縮方向、及び主収縮方向と直交する直交方向からそれぞれ長さ125mm、幅30mmの短冊状サンプルを切り出した。短冊状サンプルの長辺を2つ折りにし、プレス機にて0.1MPaで10秒間の条件で押し潰して折目を付与した。折目開き角度は、折った後の山折り側のどちらかの平面を水平面に置き、折目の先端から水平にセットした面の1mm部で、浮き上がった面までの長さX(mm)を測定し、tan-1δ=Xからδを求め、3回の測定値の平均値を求めた。主収縮方向の折目開き角度をA1、主収縮方向と直交する方向の折目開き角度をA2とした。
(12)折目引張破断伸び
 折目開き角度の測定方法と同様にして、折目を付与した短冊状サンプルを、更に試験片幅15mmになるように切り出した。折目を付与した短冊状試験片の折目部を中心として、チャック間距離20mmで引張試験機にセットし、23℃、200mm/minの試験速度で引張り、下記式(3)により折目引張破断伸び率を算出し、3回の測定値の平均値を求めた。主収縮方向の折目引張破断伸びをE1、主収縮方向と直交する方向の折目引張破断伸びをE2とした。
 折目引張破断伸び率(%)=(破断したときのチャック間距離/20mm×100 ・・・式(3)
(13)加工性評価
 上述した折目開き角度(A1,A2)及び折目開き角度比(A1/A2)について以下の基準により評価した。下記評価が「○」の場合には、折り曲げ加工時のバランスが向上し、箱状包装資材への加工が容易となった。下記評価が「×」の場合には、折り曲げ加工時のバランスが悪く、箱状包装資材の加工性が悪化した。
 ○:折目開き角度(A1,A2)がいずれも30°以下及び折目開き角度比(A1/A2)が1.3以下であった。
 ×:折目開き角度(A1,A2)の少なくとも一方が30°超え又は折目開き角度比(A1/A2)が1.3越えであった。
(14)耐久性(被覆保持性)評価
 上述した折目引張破断伸び(E1,E2)について以下の基準により評価した。下記評価が「○」の場合には、熱収縮時の伸びが適度な範囲となり、箱状包装資材への加工が容易となった。下記評価が「×」の場合には、熱収縮時の伸びが不良となり、被覆後の箱状包装資材の耐久性及び被覆保持性が悪化した。
 ○:折目引張破断伸び(E1,E2)がいずれも80%以上であった。
 ×:折目引張破断伸び(E1,E2)の少なくとも一方が80%未満であった。
(実施例3)
 実施例1と同様にして熱収縮性フィルムを作製した。得られた熱収縮性フィルムを裁断して図5に示すように、切り込み部302及び山折り部301を設けた箱状包装資材展開体300とした後、折り曲げ加工して評価した。得られた折り曲げ加工後の熱収縮性フィルムの折目開き角度(A1)は26.1°であり、折目開き角度(A2)は23.4°であり、折目開き角度比(A1/A2)は1.12であり、折目引張破断伸び(E1)は97%であり、折目引張破断伸び(E2)は613%であり、収縮応力は3.35MPaであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表2に示す。
(実施例4)
 実施例2と同様にして熱収縮性フィルムを作製した。得られた熱収縮性フィルムを裁断して図5に示すように、切り込み部302及び山折り部301を設けて箱状包装資材展開体300とした後、折り曲げ加工した後に評価した。得られた折り曲げ加工後の熱収縮性フィルムの折目開き角度(A1)は15.6°であり、折目開き角度(A2)は15.3°であり、折目開き角度比(A1/A2)は1.02であり、折目引張破断伸び(E1)は329%であり、折目引張破断伸び(E2)は284%であり、収縮応力は1.01MPaであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表2に示す。
(実施例5)
 フィルム厚みを100μmとしたこと以外は比較例3と同様に折り曲げ加工して評価した。得られた折り曲げ加工後の熱収縮性フィルムの折目開き角度(A1)は19.1°であり、折目開き角度(A2)は15.3°であり、折目開き角度比(A1/A2)は1.25であり、折目引張破断伸び(E1)は208%であり、折目引張破断伸び(E2)は447%であり、収縮応力は2.99MPaであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表2に示す。
(比較例4)
 比較例1と同様に熱収縮性フィルムを作製したこと以外は実施例2と同様に折り曲げ加工して評価した。得られた折り曲げ加工後の熱収縮性フィルムの折目開き角度(A1)は31.8°であり、折目開き角度(A2)は22.8°であり、折目開き角度比(A1/A2)は1.39であり、折目引張破断伸び(E1)は37%であり、折目引張破断伸び(E2)は643%であり、収縮応力は7.87MPaであった。ヒートサイクル試験のサンプル作製シール条件は、180℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表2に示す。
(参考例2)
 参考例1と同様に熱収縮性フィルムを作製したこと以外は実施例2と同様に折り曲げ加工して評価した。得られた折り曲げ加工後の熱収縮性フィルムの折目開き角度(A1)は29.2°であり、折目開き角度(A2)は29.2°であり、折目開き角度比(A1/A2)は1.00であり、折目引張破断伸び(E1)は60%であり、折目引張破断伸び(E2)は127%であり、収縮応力は5.78MPaであった。ヒートサイクル試験のサンプル作製シール条件は、190℃にて1秒保持とした。得られた熱収縮性フィルムの評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、折目開き角度(A1,A2)、折目開き角度比(A1/A2)又は折目引張破断伸び(E1,E2)のいずれか1つが所定範囲内となる場合には、加工性評価及び耐久性評価で良好な評価結果が得られた(実施例3~実施例5)。この結果から、実施例3~実施例5に係る熱収縮性フィルムは、箱状包装資材へ加工工程での加工性(折り曲げ性、折り曲げ時のバランス)、被覆後の被覆性及び耐久性(強度)に優れるだけでなく、更には収縮応力が7.0MPa以下の範囲となり、被覆保持性も優れたものであることが分かった。これに対して、折目開き角度(A1,A2)、折目開き角度比(A1/A2)又は折目引張破断伸び(E1,E2)のいずれか1つが所定範囲外となる場合には、熱収縮性フィルムの折り加工で所望の折目がつかなかったり、折り目部の強度が低いので、箱状包装資材へ加工工程での作業性が悪く、被覆後の被覆性及び耐久性が不良となった(比較例4、参考例2)。
 100,200 フィルム
 101 電池セル
 102 胴体部
 201,303 一端側
 300 箱状包装資材展開体
 301 山折り部
 302 切り込み部
 304 他端側
 400 箱状包装体

Claims (10)

  1.  共重合ポリエステルを主成分とする表面層を少なくとも一方の主面に備えた単層又は複層の熱収縮性フィルムであって、
     下記a)~d)を満たすことを特徴とする熱収縮性フィルム。
     a)示差走査型熱量測定により、10℃/分で昇温した際の結晶融解熱量(△Hm)が20J/g以下
     b)一方の表面同士の融着温度(FT1)と他方の表面同士の融着温度(FT2)との融着温度差(FT1-FT2)の絶対値が20℃以下
     c)80℃の温水中に10秒間浸漬した際の主収縮方向における熱収縮率が10%以上50%以下
     d)70℃の温水中に10秒間浸漬した後のネックイン率が2.5%以下
  2.  JIS K7204に準拠したテーバー摩耗試験において、摩耗輪に規定の荷重4.9Nを加え、回転台を一定速度70回転/分で回転させた際の試験片表面の1000回当たりの下記式(1)から算出した摩耗質量が15g以下である、請求項1に記載の熱収縮性フィルム。
     摩耗質量(g)=1000/試験回転数×(摩耗後の質量-摩耗前の質量)・・・式(1)
  3.  体積固有抵抗が1×1014Ω・cm以上である、請求項1又は請求項2に記載の熱収縮性フィルム。
  4.  絶縁破壊電圧が8kV以上である、請求項1から請求項3のいずれか1項に記載の熱収縮性フィルム。
  5.  絶縁被覆用である、請求項1から請求項4のいずれか1項に記載の熱収縮性フィルム。
  6.  電池セル被覆用である、請求項1から請求項4のいずれか1項に記載の熱収縮性フィルム。
  7.  箱状包装資材展開体に裁断されてなる、請求項1から請求項6のいずれか1項に記載の熱収縮性フィルム。
  8.  共重合ポリエステルを主成分とする表面層を少なくとも一方の表面に備えた単層又は積層の熱収縮性フィルムであって、
     下記のe)~g)の少なくとも1つを満たし、箱状包装資材展開体に裁断されてなることを特徴とする、熱収縮性フィルム。
     e)主収縮方向の折目開き角度(A1)と主収縮方向に直交する直交方向の折目開き角度(A2)とが、いずれも30°以下
     f)主収縮方向の折目開き角度(A1)と主収縮方向に直交する直交方向の折目開き角度(A2)との折目開き角度比(A1/A2)が、1.3以下
     g)主収縮方向の折目部の引張破断伸び(E1)と主収縮方向に直交する直交方向の折目部の引張破断伸び(E2)とのいずれも80%以上
  9.  請求項7又は請求項8に記載の熱収縮性フィルムを用いた箱状包装資材であって、折り曲げ加工部及びヒートシール部を備えたことを特徴とする、箱状包装資材。
  10.  請求項9に記載の箱状包装資材で被覆されてなることを特徴とする、電池セル。
PCT/JP2017/024243 2016-07-01 2017-06-30 熱収縮性フィルム、箱状包装資材及び電池セル WO2018003994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202310013095.XA CN116063830A (zh) 2016-07-01 2017-06-30 热收缩性膜、箱状包装材料及电池单元
CN201780040051.9A CN109415520B (zh) 2016-07-01 2017-06-30 热收缩性膜、箱状包装材料及电池单元
JP2018525311A JP6471833B2 (ja) 2016-07-01 2017-06-30 熱収縮性フィルム、箱状包装資材及び電池セル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016131986 2016-07-01
JP2016-131986 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003994A1 true WO2018003994A1 (ja) 2018-01-04

Family

ID=60785134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024243 WO2018003994A1 (ja) 2016-07-01 2017-06-30 熱収縮性フィルム、箱状包装資材及び電池セル

Country Status (3)

Country Link
JP (1) JP6471833B2 (ja)
CN (2) CN109415520B (ja)
WO (1) WO2018003994A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246420A1 (ja) 2019-06-05 2020-12-10 東洋紡株式会社 縦(長手)方向を主収縮方向とする熱収縮性ポリエステル系フィルム
JP2021063226A (ja) * 2020-10-23 2021-04-22 三菱ケミカル株式会社 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
JP2021063151A (ja) * 2019-10-10 2021-04-22 三菱ケミカル株式会社 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
EP4258435A3 (en) * 2022-04-05 2024-01-24 Volvo Car Corporation Fixture unit for holding a prismatic battery cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675521B (zh) * 2021-07-02 2023-06-06 欣旺达电动汽车电池有限公司 绝缘膜及锂离子电池包膜方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309424A (ja) * 1987-06-11 1988-12-16 Diafoil Co Ltd 低温収縮ポリエステルフィルム
JP2004083717A (ja) * 2002-08-26 2004-03-18 Kureha Chem Ind Co Ltd 半導電性樹脂組成物、半導電性シート及び電荷制御部材
JP2005131824A (ja) * 2003-10-28 2005-05-26 Mitsubishi Plastics Ind Ltd 熱収縮性積層フィルム
JP2007160544A (ja) * 2005-12-09 2007-06-28 Mitsubishi Plastics Ind Ltd 熱収縮性積層フィルム、並びに該フィルムを用いた成形品、熱収縮性ラベル及び容器
JP2009184340A (ja) * 2007-09-07 2009-08-20 Teijin Dupont Films Japan Ltd 熱収縮性ポリエステル系フィルム
JP2011079229A (ja) * 2009-10-07 2011-04-21 C I Kasei Co Ltd 熱収縮性ポリエステル系フィルム
JP2012054029A (ja) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd 積層式電池
JP2013033668A (ja) * 2011-08-02 2013-02-14 Sanyo Electric Co Ltd 電源装置及び電源装置を備える車両
JP2014534911A (ja) * 2011-10-14 2014-12-25 エーブリー デニソン コーポレイションAvery Dennison Corporation ラベル用のシュリンクフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960868B (zh) * 2004-05-18 2010-05-26 郡是株式会社 多层热收缩性膜的应用和包装电池
US9492987B2 (en) * 2010-12-24 2016-11-15 Toray Industries, Inc. Polyester film and laminate using same
WO2014017457A1 (ja) * 2012-07-24 2014-01-30 ユニチカ株式会社 冷間成形用ポリエステルフィルムおよびその製造方法
JP3195394U (ja) * 2014-10-31 2015-01-15 グンゼ株式会社 熱収縮性包装用袋及びそれで包装した角型包装体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309424A (ja) * 1987-06-11 1988-12-16 Diafoil Co Ltd 低温収縮ポリエステルフィルム
JP2004083717A (ja) * 2002-08-26 2004-03-18 Kureha Chem Ind Co Ltd 半導電性樹脂組成物、半導電性シート及び電荷制御部材
JP2005131824A (ja) * 2003-10-28 2005-05-26 Mitsubishi Plastics Ind Ltd 熱収縮性積層フィルム
JP2007160544A (ja) * 2005-12-09 2007-06-28 Mitsubishi Plastics Ind Ltd 熱収縮性積層フィルム、並びに該フィルムを用いた成形品、熱収縮性ラベル及び容器
JP2009184340A (ja) * 2007-09-07 2009-08-20 Teijin Dupont Films Japan Ltd 熱収縮性ポリエステル系フィルム
JP2011079229A (ja) * 2009-10-07 2011-04-21 C I Kasei Co Ltd 熱収縮性ポリエステル系フィルム
JP2012054029A (ja) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd 積層式電池
JP2013033668A (ja) * 2011-08-02 2013-02-14 Sanyo Electric Co Ltd 電源装置及び電源装置を備える車両
JP2014534911A (ja) * 2011-10-14 2014-12-25 エーブリー デニソン コーポレイションAvery Dennison Corporation ラベル用のシュリンクフィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Eastar Copolyester 6763", TECHNICAL DATA SHEET, 11 April 2016 (2016-04-11), Retrieved from the Internet <URL:http://ws.eastman.com/ProductCatalogApps/PageControllers/ProdDatasheet_PC.aspx?Product=71040786&sCategoryName=Generic#_ga=2.9231221.1772998951.1500523923-1764246701.1500523923> *
THE NIKKAN KOGYO SHINBUN LTD.: "Plastic Seikei Kako Data Book, 2nd edition", 28 January 2002 (2002-01-28), pages 24 - 27 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246420A1 (ja) 2019-06-05 2020-12-10 東洋紡株式会社 縦(長手)方向を主収縮方向とする熱収縮性ポリエステル系フィルム
KR20220016867A (ko) 2019-06-05 2022-02-10 도요보 가부시키가이샤 세로(길이)방향을 주 수축방향으로 하는 열수축성 폴리에스테르계 필름
JP2021063151A (ja) * 2019-10-10 2021-04-22 三菱ケミカル株式会社 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
JP2021063226A (ja) * 2020-10-23 2021-04-22 三菱ケミカル株式会社 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
JP7092173B2 (ja) 2020-10-23 2022-06-28 三菱ケミカル株式会社 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
EP4258435A3 (en) * 2022-04-05 2024-01-24 Volvo Car Corporation Fixture unit for holding a prismatic battery cell

Also Published As

Publication number Publication date
CN109415520B (zh) 2023-01-13
JPWO2018003994A1 (ja) 2018-12-06
CN116063830A (zh) 2023-05-05
JP6471833B2 (ja) 2019-02-20
CN109415520A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6471833B2 (ja) 熱収縮性フィルム、箱状包装資材及び電池セル
JP6032786B2 (ja) 二軸延伸ポリブチレンテレフタレートフィルムを含む冷間成形用電池ケース包材
JP6260314B2 (ja) 二軸配向ポリエステルフィルム
JPWO2018147249A1 (ja) 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
KR102425314B1 (ko) 푸란디카르복실산 유닛을 갖는 폴리에스테르 필름의 제조 방법
KR20150081245A (ko) 폴리에스테르 필름, 상기 필름을 사용한 적층체, 및 상기 적층체와 실란트층을 포함하는 구성체
WO2017170333A1 (ja) 電池包装用積層体
JP6780757B2 (ja) ポリエステルフィルムの製造方法
JP6205868B2 (ja) 二軸配向ポリエステルフィルム
JP6791335B1 (ja) 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
JP7501571B2 (ja) 熱収縮性フィルム、箱状包装資材及び電池セル、熱収縮性フィルムの製造方法
JP2016014083A (ja) 缶の内袋用ポリエステルフィルム
JP6195765B2 (ja) 缶の内袋用ポリエステルフィルム
JP2018001422A (ja) 積層フィルム、積層体及び包装体
JP5937317B2 (ja) 二軸延伸ポリブチレンテレフタレート系フィルムを含むバルーン用包材
JP3323399B2 (ja) 熱収縮性芳香族ポリエステルチューブ、その製造方法およびその利用
WO2020080131A1 (ja) 積層フィルム
JPH1046014A (ja) 熱収縮性芳香族ポリエステルチューブ、その製造方法およびその利用
JPH0150597B2 (ja)
JPH11172020A (ja) 熱収縮性芳香族ポリエステルチューブ、その製造方法およびその利用
JP6641999B2 (ja) 折畳み保持性、低収縮性及び隠蔽性に優れたポリエステルフィルム
JP4221987B2 (ja) 包装用積層フィルム
JP6736836B2 (ja) 折畳み保持性、低収縮性、透明性、耐衝撃性に優れた積層フィルム、ガゼット袋およびブックカバー
JP2004299231A (ja) 延伸ポリエステルフィルム
JP2009160788A (ja) 熱収縮性ポリエステル系フィルムおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525311

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820348

Country of ref document: EP

Kind code of ref document: A1