WO2017222000A1 - 放射性廃棄物固化体の製造方法 - Google Patents

放射性廃棄物固化体の製造方法 Download PDF

Info

Publication number
WO2017222000A1
WO2017222000A1 PCT/JP2017/022939 JP2017022939W WO2017222000A1 WO 2017222000 A1 WO2017222000 A1 WO 2017222000A1 JP 2017022939 W JP2017022939 W JP 2017022939W WO 2017222000 A1 WO2017222000 A1 WO 2017222000A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
radioactive waste
source
radioactive
solidified
Prior art date
Application number
PCT/JP2017/022939
Other languages
English (en)
French (fr)
Inventor
木ノ瀬 豊
慎介 宮部
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to GB1819549.5A priority Critical patent/GB2570971A/en
Priority to JP2018524151A priority patent/JP6557416B2/ja
Priority to CA3027528A priority patent/CA3027528C/en
Priority to US16/308,619 priority patent/US11120922B2/en
Publication of WO2017222000A1 publication Critical patent/WO2017222000A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/308Processing by melting the waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Definitions

  • the present invention relates to a method for producing a radioactive waste solidified body in which an adsorbent containing titanium adsorbing a radioactive element is vitrified.
  • contaminated water containing radioactive elements discharged from the Fukushima Daiichi nuclear facility is treated with an adsorbent, but at present, the treatment of the treated adsorbent is also a problem.
  • the method of vitrifying radioactive waste is being studied from the viewpoint of stably storing spent fuel at nuclear power plants and radioactive waste generated at reprocessing facilities for a long period of time.
  • Radioactive waste vitrified for example, a method of using the borosilicate glass (e.g., see Patent Documents 1 ⁇ 2.), PbO- B 2 O 3 -ZnO and PbO-B 2 O 3 -SiO 2 based glass (For example, see Patent Document 3), a method using a magnesium phosphate glass (for example, see Patent Document 4), a method using Fe 2 O 3 —P 2 O 3 glass (for example, Patent Document 3) 5) is proposed.
  • a method of using the borosilicate glass e.g., see Patent Documents 1 ⁇ 2.
  • PbO- B 2 O 3 -ZnO and PbO-B 2 O 3 -SiO 2 based glass for example, see Patent Document 3
  • Patent Document 4 a method using a magnesium phosphate glass
  • Patent Document 3 a method using Fe 2 O 3 —P 2 O 3 glass
  • the object of the present invention is to vitrify the adsorbent containing titanium adsorbing radioactive elements, to contain the adsorbent containing titanium adsorbing many radioactive elements, and to further suppress the elution of radioactive elements. It is to provide a solidified waste.
  • the present inventors have used an adsorbent containing titanium adsorbed with a radioactive element as a main TiO 2 source, and further a SiO 2 source and an M 2 O source (M is An alkali metal element is added.)
  • M is An alkali metal element is added.
  • the mixture obtained by adding is melted by heating, an M 2 O—SiO 2 —TiO 2 glass solidified body is obtained.
  • the vitrified body can contain a large amount of used adsorbent containing titanium in the glass at a lower temperature than when borosilicate glass is used.
  • this glass solidified body became a radioactive waste solidified body in which elution of the radioactive element was suppressed, and came to complete this invention.
  • the invention to be provided by the present invention is to heat and melt a mixture containing an adsorbent containing titanium adsorbing a radioactive element, an SiO 2 source and an M 2 O source (M represents an alkali metal element). It is a manufacturing method of the radioactive waste solidified body characterized by setting it as a glass solidified body.
  • an adsorbent containing titanium adsorbing radioactive elements can be vitrified, and an adsorbent containing titanium adsorbing many radioactive elements can be contained.
  • a radioactive waste solidified body in which elution of elements is suppressed can be provided.
  • the X-ray diffraction pattern of the adsorbent (Nb-CST) used in the examples. 1 is an X-ray diffraction pattern of a granulated product sample obtained in Example 1.
  • the present invention in the method for producing a solidified radioactive waste according to the present invention, a mixture containing an adsorbent containing titanium adsorbing a radioactive element, an SiO 2 source and an M 2 O source (M represents an alkali metal element) is heated and melted.
  • a vitrified body is obtained. That is, the present invention basically includes the following steps (a) to (c).
  • the raw material mixing step is a step of preparing a uniform raw material mixture by mixing each raw material.
  • the adsorbent containing titanium that has adsorbed the radioactive element in the raw material mixing step is an adsorbent containing titanium adsorbing the radioactive element.
  • radioactive element adsorbed by the adsorbent containing titanium examples include metal ion elements such as Cs, Sr, Ru, and Sb, and these may be those in which one or more metal ions are adsorbed. Good. Among these, Cs and Sr are particularly preferable.
  • Examples of the adsorbent containing titanium include silicotitanate, alkali 9 titanate and titanium hydroxide, and these may be used alone or in combination of two or more.
  • the adsorbent containing titanium may be crystalline or amorphous.
  • the silicotitanate has a general formula: A 4 Ti 4 Si 3 O 16 ⁇ nH 2 O (wherein A represents one or two alkali metals selected from Na and K, and n is 0 to 8) And a silicon titanate (hereinafter sometimes referred to as “GTS”) having a Ti / Si molar ratio of 4/3 and A ′ 2 Ti 2 O 3 (SiO 4 ) ⁇ nH 2 O (Wherein A represents one or two alkali metal elements selected from Na and K, x represents 0 to 2), and the molar ratio of Ti / Si is 2/1. And silicotitanate (hereinafter sometimes referred to as “CST”). Silicotitanate may contain 0.1 to 20% by mass of Nb, Al, Zr and the like.
  • the alkali alkali 9 is represented by the general formula: A ′′ 4 Ti 9 O 20 ⁇ mH 2 O (where A ′′ represents one or two alkali metals selected from Na and K, and m is 0 to 10). 9 titanic acid alkali (hereinafter sometimes referred to as “SNT”).
  • the titanium hydroxide examples include titanium hydroxides described in JP2014-142336A and JP2013-78725A.
  • sucked the radioactive element can be contained in a raw material mixture by 1 type (s) or 2 or more types.
  • the adsorbent containing titanium adsorbing the radioactive element may contain an organic and / or inorganic bander.
  • Adsorbents containing titanium adsorbing radioactive elements are often used as large granulated particles having a particle size of 300 to 2000 ⁇ m. These granulated particles are dispersed in the raw material mixture.
  • pulverization or pulverization can be performed as desired in advance.
  • silica such as white carbon, silica sol, fumed silica, silica gel, and fused silica
  • natural silica such as silica sand, diatom, and silica
  • M 2 O source (M represents an alkali metal element) related to the raw material mixing step
  • an oxide, hydroxide, carbonate, nitrate, or the like containing M element can be used.
  • the alkali metal element (M) contained in the raw material mixture is preferable from the viewpoint that the binding force of M 2 O—SiO 2 is stronger than other alkali metal elements when Na is vitrified.
  • the SiO 2 source and the M 2 O source may be a compound containing an SiO 2 source and an M 2 O source.
  • the compound containing the SiO 2 source and the M 2 O source include alkali silicates.
  • the alkali silicate include alkali metasilicate, alkali orthosilicate, alkali disilicate, alkali tetrasilicate, and water glass.
  • the SiO 2 source and the M 2 O source are preferably alkali silicates which are compounds containing SiO 2 and M 2 O, and in particular, sodium metasilicate has a Na 2 O: SiO 2 molar ratio of 1: 1. From the viewpoint of easy composition adjustment.
  • the SiO 2 source and the M 2 O source may be hydrated or anhydrous, but from the viewpoint of low weight loss and good melting efficiency when melted and vitrified, the anhydride Is particularly preferred.
  • the amount of each raw material blended should be adjusted so that the composition of the raw material mixture is at least as follows, and the radioactive element is eluted while encapsulating the adsorbent containing titanium adsorbing many radioactive elements in the vitrified body. This is preferable from the viewpoint of obtaining a solidified radioactive waste.
  • M 2 O 15 to 35% by mass, preferably 15 to 30% by mass, TiO 2 ; 25 to 50% by mass, preferably 28 to 45% by mass, SiO 2 : 15 to 35% by mass, preferably 15 to 30% by mass
  • the molar ratio of M 2 O / SiO 2 in the raw material mixture is 0.80 to 1.20, preferably 0.85 to 1.15 from the viewpoint of vitrification at a temperature of 1200 ° C. or less. preferable. Further, the molar ratio of TiO 2 / SiO 2 in the raw material mixture is preferably 0.80 to 1.30, preferably 0.85 to 1.25 from the viewpoint of vitrification at a temperature of 1200 ° C. or lower. .
  • the amount of the raw material mixture of the adsorbent containing titanium adsorbed with the radioactive element is 50 to 75% by mass, preferably 65 to 72% by mass. It is preferable from the viewpoint of obtaining a solidified radioactive waste that can contain an adsorbent containing titanium adsorbed and suppress elution of radioactive elements.
  • a radioactive waste solidified body in which elution of radioactive elements is suppressed can be obtained.
  • a metal oxide source that can be used, an oxide, a hydroxide, a carbonate, a nitrate, or the like containing a metal element (A) can be used.
  • the metal oxide source (1) a compound containing a metal oxide source and an SiO 2 source, (2) a compound containing a metal oxide source and an M 2 O source, (3) a metal oxide source, Even if a compound containing an SiO 2 source and an M 2 O source is used, it cannot be used.
  • the amount of the metal oxide source to be added is 1 to 10% by mass, preferably 3 to 10% by mass in terms of metal oxide in the raw material mixture, and the radioactive waste solidified body further suppresses elution of radioactive elements. From the viewpoint of obtaining, when using the above-mentioned (1) to (3) as the metal oxide source, the amount of M 2 O, SiO 2 , TiO 2 and the metal oxide derived from the metal oxide source in the raw material mixture However, the metal oxide source may be added so as to be within the above ranges.
  • the mixing means of each raw material in the raw material mixing step is not particularly limited, and it is preferable to carry out by a dry method so that the above-mentioned raw materials are uniformly dispersed.
  • Examples of the apparatus used in the uniform mixing operation include apparatuses such as a high speed mixer, a super mixer, a turbosphere mixer, a Henschel mixer, a nauter mixer, a ribbon blender, and a V-type mixer. These uniform mixing operations are not limited to the illustrated mechanical means. If desired, the particle size may be adjusted by grinding with a jet mill or the like. Also, at the laboratory level, home mixing or manual mixing is sufficient. The raw material mixture in which the raw materials thus obtained are uniformly mixed is subjected to the (b) melting step of the next step.
  • the melting step is a step of heating and melting a raw material mixture in which the raw materials obtained above are uniformly mixed.
  • the temperature for melting by heating is 1000 ° C. or higher. This is because if the temperature for melting by heating is less than 1000 ° C., it is difficult to melt the mixture and it is difficult to obtain a homogeneous glass melt.
  • vitrification at a low temperature is possible as compared with the method using borosilicate glass. From the viewpoint of taking advantage of this advantage, the temperature for heating and melting is 1100 to 1300 ° C., particularly 1100 to 1250 ° C. It is preferable that
  • the heating and melting time is not critical, and it may be performed so that a homogeneous glass melt is obtained.
  • a homogeneous glass melt can be obtained by heat treatment for 1 hour or longer, preferably 2 to 5 hours.
  • the homogeneous glass melt thus obtained is subjected to the next step (c) cooling step.
  • Cooling process is a process of cooling the homogeneous glass melt obtained above and obtaining a radioactive waste solidified body as a glass solidified body.
  • a vitrified solid body can be easily obtained in any case. preferable.
  • the method for rapidly cooling the glass melt is not particularly limited as long as it can be rapidly cooled, and can be performed by known water cooling or air cooling.
  • the radioactive waste solidified body of the present invention as a vitrified body is obtained, the particle size may be adjusted by further pulverizing, classifying or the like as necessary.
  • the mixed gel was aged at room temperature for 1 hour after the addition of the aqueous titanium tetrachloride solution.
  • (2) Second Step The mixed gel obtained in the first step was placed in an autoclave, heated to 170 ° C. over 1 hour, and then reacted for 24 hours with stirring while maintaining this temperature. The slurry after the reaction was filtered, washed and dried to obtain a mixture of massive crystalline silicotitanate and 9 sodium titanate. The obtained bulk adsorbent was ground with a mortar and classified with a 100 ⁇ m sieve, and the powder under the sieve was used as an adsorbent (GTS + SNT) sample. The obtained granular material was subjected to an X-ray diffraction structure.
  • the obtained granular material is a main phase Na 4 Ti 4 Si 3 O 16 .nH 2 O, Na 4 Ti 9 O 20 .mH 2 O is detected, and the crystalline silicotitanate and It was confirmed to be a mixture of 9 sodium titanates.
  • the ratio of the height of MP derived from Na 4 Ti 9 O 20 ⁇ 5 to 7H 2 O observed in the range was 38.5%.
  • the Cs adsorption (GTS + SNT) sample had the following composition. Na 2 O; 10.4 wt% SiO 2 ; 13.8 wt% TiO 2 ; 50.8 wt% Cs 2 O; 7.0 wt%
  • Nb-CST sample ⁇ Preparation of adsorbent (Nb-CST)>
  • First Step No. 3 sodium silicate 115 g, caustic soda aqueous solution 670.9 g, and ion-exchanged water 359.1 g were mixed and stirred to obtain a mixed aqueous solution.
  • 25.5 g of niobium hydroxide (Nb 2 O 5 : 76.5% by mass) was added and mixed by stirring, and then 412.3 g of titanium tetrachloride aqueous solution was continuously added with a peristaltic pump over 0.5 hour.
  • a mixed gel was produced.
  • the Cs-adsorbed Nb-CST sample had the following composition. Na 2 O; 11.3 wt% SiO 2; 16.4wt% TiO 2 ; 34.9 wt% Nb 2 O 5 ; 9.2 wt% Cs 2 O; 5.7 wt%
  • FIG. 3 shows an X-ray diffraction pattern of the obtained granulated product sample.
  • FIG. 3 also shows the X-ray diffraction pattern of the raw material mixture. From the result of FIG. 3, it was confirmed that a clear diffraction peak could not be confirmed, and that it was completely vitrified.
  • ⁇ Comparative Example 1 60 parts of ZnO and 20 parts of B 2 O 3 were mixed with 20 parts of a Cs adsorption (GTS + SNT) sample, and the raw material mixture was placed in a platinum crucible and heated and melted at 1100 ° C. for 2 hours. Next, the crucible was tilted in a SUS tank filled with water, and the heated melt was discharged and water-crushed (rapidly cooled). The granulated product was dried and pulverized to adjust the particle size to 0.5 to 1 mm, and then subjected to XRD analysis.
  • FIG. 4 shows an X-ray diffraction pattern of the obtained granulated product sample.
  • FIG. 4 also shows the X-ray diffraction pattern of the raw material mixture. From the result of FIG. 4, a clear diffraction peak could be confirmed, and complete vitrification could not be performed.
  • FIG. 4 shows an X-ray diffraction pattern of the obtained granulated product sample. From the result of FIG. 4, a clear diffraction peak could be confirmed, and complete vitrification could not be performed.
  • Example 2 ⁇ ⁇ Preparation of Na 2 O ⁇ SiO 2 component> A commercially available anhydrous metasilicate soda (manufactured by Nippon Chemical Industry Co., Ltd.) having the following composition was used as the Na 2 O ⁇ SiO 2 component.
  • Example 3 ⁇ ⁇ Preparation of Na 2 O ⁇ SiO 2 component> A commercially available anhydrous metasilicate soda (manufactured by Nippon Chemical Industry Co., Ltd.) having the following composition was used as the Na 2 O ⁇ SiO 2 component.
  • Example 4 ⁇ ⁇ Preparation of Na 2 O ⁇ SiO 2 component> A commercially available anhydrous metasilicate soda (manufactured by Nippon Chemical Industry Co., Ltd.) having the following composition was used as the Na 2 O ⁇ SiO 2 component. Na 2 O; 50.93 wt% SiO 2 ; 45.93 wt% Na 2 O / SiO 2 molar ratio; 1.072 ⁇ Preparation of vitrified body> 15 g of the Cs adsorption (GTS + SNT) sample prepared above, 5.76 g of anhydrous sodium metasilicate prepared above and 2.22 g of aluminum hydroxide were mixed to obtain a mixture having at least the following composition.
  • GTS + SNT Cs adsorption
  • Example 5 ⁇ ⁇ Preparation of Na 2 O ⁇ SiO 2 component> A commercially available anhydrous metasilicate soda (manufactured by Nippon Chemical Industry Co., Ltd.) having the following composition was used as the Na 2 O ⁇ SiO 2 component.
  • Example 6 ⁇ ⁇ Preparation of Na 2 O ⁇ SiO 2 component> A commercially available anhydrous metasilicate soda (manufactured by Nippon Chemical Industry Co., Ltd.) having the following composition was used as the Na 2 O ⁇ SiO 2 component. Na 2 O; 50.93 wt% SiO 2 ; 45.93 wt% Na 2 O / SiO 2 molar ratio; 1.072 ⁇ Preparation of vitrified body> 15 g of the Cs adsorption (GTS + SNT) sample prepared above, 5.76 g of anhydrous sodium metasilicate prepared above and 3.48 g of zirconium hydroxide were mixed to obtain a mixture having at least the following composition.
  • GTS + SNT Cs adsorption
  • Example 7 ⁇ ⁇ Preparation of Na 2 O ⁇ SiO 2 component> A commercially available anhydrous metasilicate soda (manufactured by Nippon Chemical Industry Co., Ltd.) having the following composition was used as the Na 2 O ⁇ SiO 2 component.
  • GTS + SNT Cs adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、放射性元素を吸着したチタンを含む吸着剤をガラス化し、多くの放射性元素を吸着したチタンを含む吸着剤を封じ込めることができ、更に、放射性元素の溶出を抑制した放射性廃棄物固化体を提供する。 本発明の放射性廃棄物固化体の製造方法は、放射性元素を吸着したチタンを含む吸着剤、SiO源及びMO源(Mは、アルカリ金属元素を示す。)を含む混合物を加熱溶融してガラス固化体とすることを特徴とし、前記チタンを含む吸着剤が、シリコチタネート、9チタン酸アルカリ及び水酸化チタンから選ばれる1種又は2種以上であることが好ましい。

Description

放射性廃棄物固化体の製造方法
 本発明は、放射性元素を吸着したチタンを含む吸着剤をガラス化する放射性廃棄物固化体の製造方法に関するものである。
 福島第一原子力施設から排出される放射性元素を含む汚染水は、多くの場合は、吸着剤を用いて処理されているが、現在、処理済み吸着剤の処理も問題になっている。
 放射性廃棄物をガラス化する方法は、原子力発電所の使用済み燃料や再処理施設において発生した放射性廃棄物を長時間安定的に保管する観点から、検討が進められている。
 放射性廃棄物ガラス固化体としては、例えば、ホウケイ酸塩ガラスを用いる方法(例えば、特許文献1~2参照。)、PbO-B-ZnOやPbO-B-SiO系ガラスを用いる方法(例えば、特許文献3参照。)、リン酸マグネシウム系ガラスを用いる方法(例えば、特許文献4参照。)、Fe-P系ガラスを用いる方法(例えば、特許文献5参照。)等が提案されている。
特表2009-526967号公報 特表2007-527005号公報 特開2003-50297号公報 特開2005-207885号公報 特開2014-142336号公報
現在、高レベル放射性廃棄物はホウケイ酸ガラスによりガラス化されている。
結晶性シリコチタネートは、セシウム、更にはストロンチウムに対して優れた吸着能を有することから原子力発電所の排水処理の吸着剤として使用されている。しかしながら、放射性元素を吸着したチタンを含む吸着剤をホウケイ酸ガラスでガラス化する場合には、1500℃以上の高温を必要とし、また、ガラス中に封じ込める放射性元素を含む吸着剤は、ガラス組成的に多くても25質量%程度にする必要がある。このため、放射性廃棄物を保管するのに必要なスペースの確保も、これまで以上に必要になる。
 従って、本発明の目的は、放射性元素を吸着したチタンを含む吸着剤をガラス化し、多くの放射性元素を吸着したチタンを含む吸着剤を封じ込めることができ、更に、放射性元素の溶出を抑制した放射性廃棄物固化体を提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、放射性元素を吸着したチタンを含む吸着剤を主たるTiO源として、更にSiO源及びMO源(Mは、アルカリ金属元素を示す。)を添加して得られる混合物を加熱溶融するとMO-SiO-TiO系のガラス固化体が得られること。また、該ガラス固化体は、ホウケイ酸ガラスを用いた場合に比べて、低温で、且つ多くの使用済みのチタンを含む吸着剤をガラス中に封じ込めることができること。また、該ガラス固化体は放射性元素の溶出が抑制された放射性廃棄物固化体となることを見出し、本発明を完成するに到った。
 即ち、本発明が提供しようとする発明は、放射性元素を吸着したチタンを含む吸着剤、SiO源及びMO源(Mは、アルカリ金属元素を示す。)を含む混合物を加熱溶融してガラス固化体とすることを特徴とする放射性廃棄物固化体の製造方法である。
 本発明の放射性廃棄物固化体の製造方法によれば、放射性元素を吸着したチタンを含む吸着剤をガラス化し、多くの放射性元素を吸着したチタンを含む吸着剤を封じ込めることができ、また、放射性元素の溶出を抑制した放射性廃棄物固化体を提供することができる。
実施例で用いた吸着剤(GTS+SNT)のX線回折図。 実施例で用いた吸着剤(Nb-CST)のX線回折図。 実施例1で得られた水砕品試料のX線回折図。 比較例1及び比較例2で得られた水砕品試料のX線回折図。 実施例4~6で得られた空冷品試料のX線回折図。
 以下、本発明を好ましい実施形態に基づいて説明する。
 本発明の放射性廃棄物固化体の製造方法は、放射性元素を吸着したチタンを含む吸着剤、SiO源及びMO源(Mは、アルカリ金属元素を示す。)を含む混合物を加熱溶融してガラス固化体とすることを特徴とするものである。
 即ち、本発明は、基本的に下記の(a)~(c)の工程を有するものである。
(a)原料混合工程
(b)溶融化工程
(c)冷却工程
(a)原料混合工程
原料混合工程は、各原料を混合処理して均一な原料混合物を調製する工程である。
 原料混合工程に係る放射性元素を吸着したチタンを含む吸着剤は、チタンを含む吸着剤に放射性元素を吸着させたものである。
 チタンを含む吸着剤が吸着する放射性元素としては、例えばCs、Sr、Ru、Sb等の金属イオン元素が挙げられ、これらは1種又は2以上の金属イオンが吸着されているものであってもよい。これらの中、特にCs、Srが好ましい。
 チタンを含む吸着剤としては、例えば、シリコチタネート、9チタン酸アルカリ及び水酸化チタン等が挙げられ、これらは1種又は2種以上で用いられたものであってもよい。また、チタンを含む吸着剤は、結晶質のものであっても非晶質のものであってもよい。
 前記シリコチタネートとしては、一般式;ATiSi16・nHO(式中、AはNa及びKから選ばれる1種又は2種のアルカリ金属を示し、nは0~8の数を示す。)で表されるTi/Siのモル比が4/3のシリコチタネート(以下、「GTS」と呼ぶことがある)及びA’Ti(SiO)・nHO(式中、Aは、Na及びKから選ばれる1種又は2種のアルカリ金属元素を示す。xはnは0~2を示す。)で表されるTi/Siのモル比が2/1のシリコチタネート(以下、「CST」と呼ぶことがある)が挙げられる。
 また、シリコチタネートは、Nb、Al、Zr等を0.1~20質量%含有するものであってもよい。
 前記9チタン酸アルカリは、一般式;A”Ti20・mHO(式中、A”はNa及びKから選ばれる1種又は2種のアルカリ金属を示し、mは0~10の数を示す。)で表される9チタン酸アルカリ(以下、「SNT」と呼ぶことがある)が挙げられる。
 前記水酸化チタンは、例えば、特開2014-142336号公報、特開2013-78725号公報に記載された水酸化チタンが挙げられる。
 本発明において、放射性元素を吸着したチタンを含む吸着剤は、1種又は2種以上で原料混合物に含有させることができる。
  また、放射性元素を吸着したチタンを含む吸着剤は、有機及び/又は無機バンダーを含有するものであってもよい。
 放射性元素を吸着したチタンを含む吸着剤は、多くの場合、粒径が300~2000μmの大きな粒状の造粒粒子として用いられる場合があるが、これらの造粒粒子は、原料混合物中への分散性をよくするため、本発明において、各原料を混合する前に、予め所望により粉砕や解砕処理を施すことができる。
 原料混合工程に係るSiO源としては、ホワイトカーボン、シリカゾル、ヒュームドシリカ、シリカゲル、溶融シリカ等の化学合成シリカ、珪砂、珪藻、珪石等の天然シリカ等を用いることが出来る。
 原料混合工程に係るMO源(Mは、アルカリ金属元素を示す。)としては、M元素を含む酸化物、水酸化物、炭酸塩、硝酸塩等を用いることが出来る。本発明において、原料混合物に含有させるアルカリ金属元素(M)としてはNaが特にガラス化した場合にM2O-SiO2の結合力が他のアルカリ金属元素よりも強いという観点から好ましい。
 また、本発明において、SiO源及びMO源は、SiO源とMO源を含む化合物であってもよい。SiO源とMO源を含む化合物としては、ケイ酸アルカリが挙げられる。
 前記ケイ酸アルカリとしては、例えばメタケイ酸アルカリ、オルトケイ酸アルカリ、二ケイ酸アルカリ、四ケイ酸アルカリ、水ガラス等が挙げられる。
 本発明において、SiO源及びMO源は、SiOとMOを含む化合物であるケイ酸アルカリが好ましく、特に、メタケイ酸ナトリウムがNa2O:SiO2モル比が1:1であり、組成調整が容易となる観点から特に好ましい。
 本発明において、SiO源及びMO源は含水物であっても無水物であってもよいが、溶融・ガラス化する際に重量減少が少なく、溶融効率が良いという観点から、無水物が特に好ましい。
 各原料の配合量は、原料混合物の組成が少なくとも下記組成となるように調製することが、多くの放射性元素を吸着したチタンを含む吸着剤をガラス固化体中に封じ込めつつ、放射性元素の溶出を抑えた放射性廃棄物固化体を得る観点から好ましい。
 MO;15~35質量%、好ましくは15~30質量%、
 TiO;25~50質量%、好ましくは28~45質量%、
 SiO;15~35質量%、好ましくは15~30質量%
 また、原料混合物中のMO/SiOのモル比は、0.80~1.20、好ましくは0.85~1.15とすることが1200℃以下の温度でガラス化できるという観点から好ましい。
 また、原料混合物中のTiO/SiOのモル比は、0.80~1.30、好ましくは0.85~1.25とすることが1200℃以下の温度でガラス化できるという観点から好ましい。
 放射性元素を吸着したチタンを含む吸着剤の原料混合物の配合量は,50~75質量%,好ましくは65~72質量%として、原料混合物の組成を前記範囲に調製することが、多くの放射性元素を吸着したチタンを含む吸着剤を封じ込めることができ、また、放射性元素の溶出を抑制した放射性廃棄物固化体を得る観点から好ましい。
 本発明では、更に原料混合物に、Zr、Al、Nb、Zn、Ca及びMgから選ばれる1種又は2種以上の金属元素(A)を含有する金属酸化物源を添加することにより、よりいっそう放射性元素の溶出を抑えた放射性廃棄物固化体を得ることが出来る。
 用いることが出来る金属酸化物源としては、金属元素(A)を含む酸化物、水酸化物、炭酸塩、硝酸塩等を用いることが出来る。
 また、本発明において金属酸化物源として、(1)金属酸化物源とSiO源を含む化合物、(2)金属酸化物源とMO源を含む化合物、(3)金属酸化物源、SiO源及びMO源を含む化合物を用いても差し付けえない。
 金属酸化物源の添加量は、原料混合物中に金属酸化物換算で1~10質量%、好ましくは3~10質量%含有させることが、よりいっそう放射性元素の溶出を抑えた放射性廃棄物固化体を得る観点で好ましい。なお、金属酸化物源として、前記(1)~(3)のものを使用する場合は、原料混合物中のMO、SiO、TiO及び金属酸化物源に由来する金属酸化物の量が、それぞれ上記範囲となるように金属酸化物源を添加すればよい。
 原料混合工程に係る各原料の混合手段は、特に制限されるものではなく、上記各原料が均一に分散した混合物となるように、乾式法にて行うことが好ましい。
 均一混合操作で用いる装置としては、例えばハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー、V型混合機等の装置を用いることができる。なお、これら均一混合操作は、例示した機械的手段に限定されるものではない。また、所望によりジェットミル等で粉砕処理して粒度調整を行っても差し支えない。また、実験室レベルでは、家庭用ミキサー或いは手作業での混合でも十分である。
 かくして得られる各原料が均一に混合された原料混合物は、次工程の(b)溶融化工程に付される。
(b)溶融化工程
 溶融化工程は、上記で得られた各原料が均一に混合された原料混合物を加熱溶融する工程である。
 加熱溶融する温度は、1000℃以上である。この理由は、加熱溶融する温度が1000℃未満では、該混合物の溶融が困難であり、均質なガラス融液が得られに難い傾向があるからである。なお、本発明において、ホウケイ酸ガラスを用いる方法に比べて、低温でのガラス化が可能であることから、この利点を生かす観点から加熱溶融する温度は、1100~1300℃、特に1100~1250℃とすることが好ましい。
 また、本発明において加熱溶融する時間は、臨界的ではなく、均質なガラス融液が得られるように行えばよい。一般に1時間以上、好ましくは2~5時間加熱処理すれば、均質なガラス融液を得ることができる。
 かくして得られる均質なガラス融液は、次工程の(c)冷却工程に付される。
(c)冷却工程
 冷却工程は、上記で得られた均質なガラス融液を冷却してガラス固化体として放射性廃棄物固化体を得る工程である。
 冷却条件については急冷、徐冷を問わず、いずれにしても容易にガラス固化体を得ることが出来るが、より放射性元素の溶出を抑えた放射性廃棄物固化体を得る観点から急冷で行うことが好ましい。
 ガラス融液を急冷する方法としては、急冷できる方法であれば特に制限されるものではなく、公知の水冷、空冷により行うことが出来る。
 かくして、ガラス固化体とした本発明の放射性廃棄物固化体が得られるが、更に必要に応じて粉砕、分級等を行って粒度調整を行ってもよい。
 以下、本発明を実施例で説明するが、本発明はこれらに限定されるものではない。
<Csを吸着した吸着剤の調製>
1.Cs吸着(GTS+SNT)試料:
<吸着剤(GTS+SNT)の調製>
(1)第一工程
 3号ケイ酸ソーダ90g、苛性ソーダ水溶液667.49g及び純水84.38gを混合し撹拌して混合水溶液を得た。この混合水溶液に、四塩化チタン水溶液443.90gをペリスタポンプで1時間20分にわたって連続的に添加して混合ゲルを製造した。当該混合ゲルは、四塩化チタン水溶液の添加後、1時間にわたり室温で静置熟成した。
(2)第二工程
 第一工程で得られた混合ゲルをオートクレーブに入れ、1時間かけて170℃に昇温したのち、この温度を維持しながら撹拌下に24時間反応を行った。反応後のスラリーをろ過、洗浄、乾燥して塊状の結晶性シリコチタネートと9チタン酸ナトリウムの混合物を得た。得られた塊状の吸着剤を乳鉢粉砕および100μmのフルイによる分級によりフルイ下の粉末を、吸着剤(GTS+SNT)試料とした。
 得られた粒状物をX線回折構造した。その結果を図1に示す。図1に示すように、得られた粒状物は主相Na4Ti4Si316・nH2Oであり、Na4Ti920・mH2Oが検出され、前記結晶性シリコチタネート及び前記9チタン酸ナトリウムの混合物であることが確認された。また粒状物は2θ=10~13°の範囲に観察されるNa4Ti4Si316・6H2Oに由来するメーンピーク(M.P.)の高さに対して、2θ=8~10°に範囲に観察されるNa4Ti920・5~7H2Oに由来するM.P.の高さの比が38.5%であった。
<Cs吸着(GTS+SNT)試料の調製>
 CsNO3.77gをイオン交換水1000mlに溶解して、ここに上記で調製した吸着剤(GTS+SNT)50gを添加して、室温(25℃)で24時間撹拌を行い、Csを飽和吸着させた。攪拌終了後、常法によりろ過、リパルプ洗浄したのち、乾燥、卓上ミルにより解砕を行いCs吸着(GTS+SNT)試料を得た。
 Cs吸着(GTS+SNT)試料を蛍光X線分析を行った結果、Cs吸着(GTS+SNT)試料は下記の組成を有していた。
 NaO;10.4wt%
 SiO;13.8wt%
 TiO;50.8wt%
 CsO;7.0wt%
2.Cs吸着Nb-CST試料:
<吸着剤(Nb-CST)の調製>
(1)第一工程
 3号ケイ酸ソーダ115g、苛性ソーダ水溶液670.9g、及びイオン交換水359.1gを混合し撹拌して混合水溶液を得た。この混合水溶液に、水酸化ニオブ25.5g(Nb:76.5質量%)を加えて撹拌混合した後、四塩化チタン水溶液412.3gをペリスタポンプで0.5時間にわたり連続的に添加して混合ゲルを製造した。当該ゲルは、四塩化チタン水溶液の添加後、1時間にわたり室温(25℃)で静置熟成した。
(2)第二工程
 第一工程で得られた混合ゲルをオートクレーブに入れ、1時間かけて160℃に昇温したのち、この温度を維持しながら撹拌下に18時間反応を行った。
 反応後のスラリーをろ過、洗浄、乾燥して塊状の結晶性シリコチタネートを得た。得られた塊状の吸着剤を乳鉢粉砕および100μmのフルイによる分級によりフルイ下の粉末を、Cs吸着Nb-CST試料とした。
 得られた粒状物をX線回折測定した。その結果を図2に示す。また、ICP-AESによる組成分析を行った結果、Nbを12.2質量%含有するNaTi(SiO)・2HOで表されるTi/Siのモル比が2/1の結晶性シリコチタネートであることを確認した。
<Cs吸着Nb-CSTの調製>
 CsNO3.77gをイオン交換水1000mlに溶解して、ここに上記で調製した吸着(Nb-CST)50gを添加して、室温(25℃)で24時間撹拌を行い、Csを飽和吸着させた。攪拌終了後、常法によりろ過、リパルプ洗浄したのち、乾燥、卓上ミルにより解砕を行いCs吸着Nb-CST試料を得た。
 Cs吸着Nb-CST試料を蛍光X線分析を行った結果、Cs吸着Nb-CST試料は下記の組成を有していた。
 NaO;11.3wt%
 SiO;16.4wt%
 TiO;34.9wt%
 Nb;9.2wt%
 CsO;5.7wt%
{実施例1}
<NaO・SiO成分の調製>
 25%苛性ソーダ160gに非晶質シリカ(ホワイトカーボン)31.5gを添加して、90℃で2時間加熱反応を行い、更に乾燥機で濃縮したのち電気炉で300℃に加熱して蒸発乾固させた。冷却後、乳鉢にて粉砕してNaO・SiO(NaO;50.8質量%、SiO;49.2質量%、NaO/SiOモル比=1.0)を得た。
<ガラス固化体の調製>
 上記で調製したCs吸着(GTS+SNT)試料10gと、上記で調製したNaO・SiO2 3.84gを混合して、少なくとも下記の組成の原料混合物を得た。
  NaO;23.5wt%
  SiO;27.2wt%
  TiO;42.2wt%
  CsO;5.8wt%
  NaO/SiOモル比;0.88
 次いで、該混合物を白金ルツボに入れ、1100℃で2時間加熱溶融した。
 次いで、水を張ったSUS槽にルツボを傾斜させて、加熱溶融物を流出して水砕(急冷)した。
 水砕品は乾燥後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。得られた水砕品試料のX線回折図を図3に示す。また、図3に原料混合物のX線回折図も併記した。
 図3の結果より、明確な回折ピークが確認できず、完全にガラス化されていることが確認できた。
{比較例1}
 ZnO60部、B20部にCs吸着(GTS+SNT)試料20部を混合して、原料混合物を白金ルツボに入れ、1100℃で2時間加熱溶融した。
 次いで、水を張ったSUS槽にルツボを傾斜させて、加熱溶融物を流出して水砕(急冷)した。
 水砕品は乾燥後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。得られた水砕品試料のX線回折図を図4に示す。また、図4に原料混合物のX線回折図も併記した。
 図4の結果より、明確な回折ピークが確認でき、完全にガラス化を行うことは出来なかった。
{比較例2}
 Cs吸着(GTS+SNT)試料の添加量を26.7部とした以外は比較例1と同様な条件で水砕品を得た。水砕品は乾燥後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。得られた水砕品試料のX線回折図を図4に示す。
 図4の結果より、明確な回折ピークが確認でき、完全にガラス化を行うことは出来なかった。
Figure JPOXMLDOC01-appb-T000001
 図3、図4及び表1から明らかなように、比較例1及び比較例2のホウケイ酸ガラスを用いる方法では、1100℃の加熱温度では、完全にガラス化したものが得られなかったのに対して、本発明の方法によれば、比較例1及び比較例2に比べ原料混合物中の吸着剤の含有量(72wt%)が多いにも拘わらず完全にガラス化したガラス固化体が得られていることが分かる。
{実施例2}
<NaO・SiO成分の調製>
 NaO・SiO成分として下記組成の市販の無水メタ珪酸ソーダ(日本化学工業社製)を使用した。
  NaO;50.93wt%
  SiO;45.93wt%
  NaO/SiOモル比;1.072
<ガラス固化体の調製>
 上記で調製したCs吸着(GTS+SNT)試料10gと、上記で調製した無水メタ珪酸ソーダ 3.84gを混合して、少なくとも下記の組成の混合物を得た。
  NaO;21.7wt%
  SiO;22.7wt%
  TiO;36.7wt%
  CsO;5.0wt%
   NaO/SiOモル比;0.93
 次いで、該混合物を白金ルツボに入れ、1100℃で2時間加熱溶融した。
 次いで、融液を板状のSUSに流し入れ、そのまま空冷してガラス固化体を得た。
 空冷品は冷却後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。得られた空冷品試料のXRD分析したところ、明確な回折ピークが確認できず、完全にガラス化されていることが確認できた。
{実施例3}
<NaO・SiO成分の調製>
 NaO・SiO成分として下記組成の市販の無水メタ珪酸ソーダ(日本化学工業社製)を使用した。
  NaO;50.93wt%
  SiO;45.93wt%
  NaO/SiOモル比;1.072
<ガラス固化体の調製>
 上記で調製したCs吸着Nb-CST試料10gと、上記で調製した無水メタ珪酸ソーダ 3.84gを混合して、少なくとも下記の組成の混合物を得た。
  NaO;22.3wt%
  SiO;24.6wt%
  TiO;25.2wt%
  Nb2;6.6wt%
  CsO;4.1wt%
 NaO/SiOモル比;0.88
 次いで、該混合物を白金ルツボに入れ、1100℃で2時間加熱溶融した。
 次いで、加熱溶融物を板状のSUSに流し入れ、そのまま空冷してガラス固化体を得た。
 空冷品は冷却後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。その結果、明確な回折ピークが観察されず、完全にガラス化していることを確認した。
{実施例4}
<NaO・SiO成分の調製>
 NaO・SiO成分として下記組成の市販の無水メタ珪酸ソーダ(日本化学工業社製)を使用した。
  NaO;50.93wt%
  SiO;45.93wt%
  NaO/SiOモル比;1.072
<ガラス固化体の調製>
 上記で調製したCs吸着(GTS+SNT)試料15gと、上記で調製した無水メタ珪酸ソーダ5.76g、水酸化アルミニウム2.22gを混合して、少なくとも下記の組成の混合物を得た。
  NaO;19.5wt%
  SiO;20.5wt%
  TiO;33.2wt%
  CsO;4.6wt%
  Al;6.3wt%
 NaO/SiOモル比;0.92
 次いで、該混合物を白金ルツボに入れ、1140℃で2.5時間加熱溶融した。
 次いで、加熱溶融物を板状のSUSに流し入れ、そのまま空冷してガラス固化体を得た。
 空冷品は冷却後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。得られた空冷品試料のXRDを図5に示す。図5の結果、明確な回折ピークが観察されず、完全にガラス化していることを確認した。
{実施例5}
<NaO・SiO成分の調製>
 NaO・SiO成分として下記組成の市販の無水メタ珪酸ソーダ(日本化学工業社製)を使用した。
  NaO;50.93wt%
  SiO;45.93wt%
  NaO/SiOモル比;1.072
<ガラス固化体の調製>
 上記で調製したCs吸着(GTS+SNT)試料15gと、上記で調製した無水メタ珪酸ソーダ5.76g、水酸化アルミニウム3.17gを混合して、少なくとも下記の組成の混合物を得た。
  NaO;18.8wt%
  SiO;19.7wt%
  TiO;31.8wt%
  CsO;4.4wt%
  Al;8.7wt%
 NaO/SiOモル比;0.92
 次いで、該混合物を白金ルツボに入れ、1140℃で3時間加熱溶融した。
 次いで、加熱溶融物を板状のSUSに流し入れ、そのまま空冷してガラス固化体を得た。
 空冷品は冷却後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。
 得られた空冷品試料のXRDを図5に示す。図5の結果、明確な回折ピークが観察されず、完全にガラス化していることを確認した。
{実施例6}
<NaO・SiO成分の調製>
 NaO・SiO成分として下記組成の市販の無水メタ珪酸ソーダ(日本化学工業社製)を使用した。
  NaO;50.93wt%
  SiO;45.93wt%
  NaO/SiOモル比;1.072
<ガラス固化体の調製>
 上記で調製したCs吸着(GTS+SNT)試料15gと、上記で調製した無水メタ珪酸ソーダ5.76g、水酸化ジルコニウム3.48gを混合して、少なくとも下記の組成の混合物を得た。
  NaO;18.5wt%
  SiO;19.4wt%
  TiO;31.4wt%
  CsO;4.3wt%
  ZrO;4.3wt%
   NaO/SiOモル比;0.92
 次いで、該混合物を白金ルツボに入れ、1140℃で2時間加熱溶融した。
 次いで、加熱溶融物を板状のSUSに流し入れ、そのまま空冷してガラス固化体を得た。
 空冷品は冷却後、粉砕して、0.5~1mに粒度調製した後、XRD分析を行った。得られた空冷品試料のXRDを図5に示す。図5の結果、明確な回折ピークが観察されず、完全にガラス化していることを確認した。
{実施例7}
<NaO・SiO成分の調製>
 NaO・SiO成分として下記組成の市販の無水メタ珪酸ソーダ(日本化学工業社製)を使用した。
  NaO;50.93wt%
  SiO;45.93wt%
  NaO/SiOモル比;1.072
<ガラス固化体の調製>
 上記で調製したCs吸着(GTS+SNT)試料15gと、上記で調製した無水メタ珪酸ソーダ5.76g、水酸化ジルコニウム4.87gを混合して、少なくとも下記の組成の混合物を得た。
  NaO;17.5wt%
  SiO;18.4wt%
  TiO;29.7wt%
  CsO;4.1wt%
  ZrO;5.7wt%
    NaO/SiOモル比;0.92
 次いで、該混合物を白金ルツボに入れ、1140℃で3時間加熱溶融した。
 次いで、加熱溶融物を板状のSUSに流し入れ、そのまま空冷してガラス固化体を得た。
 空冷品は冷却後、粉砕して、0.5~1mmに粒度調製した後、XRD分析を行った。
 得られた空冷品試料のXRDを図5に示す。図5の結果、明確な回折ピークが観察されず完全にガラス化していることを確認した。
Figure JPOXMLDOC01-appb-T000002
<Cs溶出試験>
 実施例で得られた水砕品試料又は空冷品試料2.5gをそれぞれ50mlのイオン交換水とともにテフロン(登録商標)性圧力容器に入れ、2気圧(121℃)、48時間でPCT試験(プレッシャークッカーテスト)を行った。PCT試験後、濾過し、ろ液中のCsイオン濃度をICP-AESで分析した。また、水砕品試料からのCsイオン溶出率を下記計算式により求めた。その結果を表3に示した。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 

Claims (9)

  1.  放射性元素を吸着したチタンを含む吸着剤、SiO源及びMO源(Mは、アルカリ金属元素を示す。)を含む混合物を加熱溶融してガラス固化体とすることを特徴とする放射性廃棄物固化体の製造方法。
  2.  チタンを含む吸着剤が、シリコチタネート、9チタン酸アルカリ及び水酸化チタンから選ばれる1種又は2種以上であることを特徴とする請求項1記載の放射性廃棄物固化体の製造方法。
  3.  放射性元素が、セシウム及び/又はストロンチウムであることを特徴とする請求項1又は2の何れか一項に記載の放射性廃棄物固化体の製造方法。
  4.  SiO源及びMO源が、ケイ酸アルカリであることを特徴とする請求項1乃至3の何れか一項に記載の放射性廃棄物固化体の製造方法。
  5.  ケイ酸アルカリが、無水物であることを特徴とする請求項4に記載の放射性廃棄物固化体の製造方法。
  6.  ケイ酸アルカリが、メタケイ酸ソーダであることを特徴とする請求項4又は5の何れか一項に記載の放射性廃棄物固化体の製造方法。
  7.  混合物は、少なくともMO;15~35質量%、TiO:25~50質量%及びSiO:15~35質量%を含むことを特徴とする請求項1乃至6の何れか一項に記載の放射性廃棄物固化体の製造方法。
  8.  加熱溶融温度が、1000℃以上であることを特徴とする請求項1乃至7の何れか一項に記載の放射性廃棄物固化体の製造方法。
  9.  混合物は、更にZr、Al、Nb、Zn、Ca及びMgから選ばれる1種又は2種以上の金属元素を含有する金属酸化物源を含むことを特徴とする請求項1乃至8の何れか一項に記載の放射性廃棄物固化体の製造方法。
PCT/JP2017/022939 2016-06-23 2017-06-22 放射性廃棄物固化体の製造方法 WO2017222000A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1819549.5A GB2570971A (en) 2016-06-23 2017-06-22 Method for manufacturing solidified body of radioactive waste
JP2018524151A JP6557416B2 (ja) 2016-06-23 2017-06-22 放射性廃棄物固化体の製造方法
CA3027528A CA3027528C (en) 2016-06-23 2017-06-22 Method for producing solidified radioactive waste
US16/308,619 US11120922B2 (en) 2016-06-23 2017-06-22 Method for producing solidified radioactive waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016124309 2016-06-23
JP2016-124309 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017222000A1 true WO2017222000A1 (ja) 2017-12-28

Family

ID=60784669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022939 WO2017222000A1 (ja) 2016-06-23 2017-06-22 放射性廃棄物固化体の製造方法

Country Status (5)

Country Link
US (1) US11120922B2 (ja)
JP (2) JP6557416B2 (ja)
CA (1) CA3027528C (ja)
GB (1) GB2570971A (ja)
WO (1) WO2017222000A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018971A (ja) * 2018-07-31 2020-02-06 Dic株式会社 吸着材造粒体、吸着材造粒体の製造方法、及び放射性ストロンチウムを含む水溶液の浄化方法
JP2023010624A (ja) * 2021-07-07 2023-01-20 中国科学院地質與地球物理研究所 質量分析計の基本パラメータを軌道上で較正する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694299A (en) * 1979-12-28 1981-07-30 Mitsui Mining & Smelting Co Solidified radioactive waste * its manufacture
JPS58184598A (ja) * 1982-04-23 1983-10-28 株式会社日立製作所 放射性廃液の固定化方法
JP2001133594A (ja) * 1999-11-05 2001-05-18 Jgc Corp 原子炉冷却水からの放射性核種の除去方法
JP2014134463A (ja) * 2013-01-10 2014-07-24 Toshiba Corp 放射性廃棄物の固化処理方法およびその固化処理装置
JP2015175726A (ja) * 2014-03-14 2015-10-05 日立Geニュークリア・エナジー株式会社 放射性廃棄物の固化処理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117341A (en) 1981-01-12 1982-07-21 Natl Inst For Res In Inorg Mater Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium
JPS5824338A (ja) 1982-03-01 1983-02-14 Masaharu Kaneko 吸着剤
JPS6056299A (ja) 1983-09-08 1985-04-01 水澤化学工業株式会社 粒状放射性廃棄物の固化方法
JPS60100100A (ja) 1983-11-04 1985-06-03 日立造船株式会社 炭化ケイ素の固化処理方法
JPS60137854A (ja) 1983-12-26 1985-07-22 Toshinori Kokubu チタン酸多孔質ガラス及びその製造方法
US5340372A (en) * 1991-08-07 1994-08-23 Pedro Buarque de Macedo Process for vitrifying asbestos containing waste, infectious waste, toxic materials and radioactive waste
US5662579A (en) 1995-03-21 1997-09-02 The United States Of America As Represented By The United States Department Of Energy Vitrification of organics-containing wastes
JP2002087842A (ja) 2000-07-10 2002-03-27 Toagosei Co Ltd 抗菌剤及び抗菌性人工大理石
JP4623697B2 (ja) 2001-08-06 2011-02-02 日揮株式会社 放射性廃棄物処理方法
JP4129237B2 (ja) 2004-01-22 2008-08-06 利典 大倉 放射性廃棄物の固化処理用ガラス
JP4690347B2 (ja) 2004-02-23 2011-06-01 ジオマトリクス ソリューションズ,インコーポレイテッド 放射性および有害廃棄物のホウケイ酸ガラス固定化の方法および組成物
US7550645B2 (en) 2004-02-23 2009-06-23 Geomatrix Solutions, Inc. Process and composition for the immobilization of radioactive and hazardous wastes in borosilicate glass
JP6292854B2 (ja) 2012-12-25 2018-03-14 セントラル硝子株式会社 放射性廃棄物のガラス固化体及びその形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694299A (en) * 1979-12-28 1981-07-30 Mitsui Mining & Smelting Co Solidified radioactive waste * its manufacture
JPS58184598A (ja) * 1982-04-23 1983-10-28 株式会社日立製作所 放射性廃液の固定化方法
JP2001133594A (ja) * 1999-11-05 2001-05-18 Jgc Corp 原子炉冷却水からの放射性核種の除去方法
JP2014134463A (ja) * 2013-01-10 2014-07-24 Toshiba Corp 放射性廃棄物の固化処理方法およびその固化処理装置
JP2015175726A (ja) * 2014-03-14 2015-10-05 日立Geニュークリア・エナジー株式会社 放射性廃棄物の固化処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018971A (ja) * 2018-07-31 2020-02-06 Dic株式会社 吸着材造粒体、吸着材造粒体の製造方法、及び放射性ストロンチウムを含む水溶液の浄化方法
JP2023010624A (ja) * 2021-07-07 2023-01-20 中国科学院地質與地球物理研究所 質量分析計の基本パラメータを軌道上で較正する方法
JP7223904B2 (ja) 2021-07-07 2023-02-16 中国科学院地質與地球物理研究所 質量分析計の基本パラメータを軌道上で較正する方法

Also Published As

Publication number Publication date
JP2019174482A (ja) 2019-10-10
CA3027528A1 (en) 2017-12-28
JP6989568B2 (ja) 2022-01-05
JP6557416B2 (ja) 2019-08-07
CA3027528C (en) 2023-11-28
GB201819549D0 (en) 2019-01-16
JPWO2017222000A1 (ja) 2019-01-17
US20190156964A1 (en) 2019-05-23
US11120922B2 (en) 2021-09-14
GB2570971A (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6697414B2 (ja) シチナカイト構造を有するシリコチタネートを含む組成物を用いるセシウム又はストロンチウムの少なくともいずれかの吸着方法
JP6645203B2 (ja) シチナカイト構造を有するシリコチタネートを含む組成物およびその製造方法
US11471855B2 (en) Adsorption method for at least one of cesium and strontium employing silicotitanate having sitinakite structure
JP6989568B2 (ja) 放射性廃棄物固化体の製造方法
CN110291593B (zh) 用于处理有害污泥和离子交换介质的组合物和方法
JP6689671B2 (ja) イオン交換材料、イオン交換体、イオン吸着装置、水処理システム、イオン交換材料の製造方法、及びイオン交換体の製造方法
JP3662966B2 (ja) 非晶質珪酸ナトリウム・金属硫酸塩複合粉末及びその製造方法
GB2162831A (en) Process for extracting zirconia from dissociated zircon
KR101721243B1 (ko) 5가 양이온으로 치환된 티타노실리케이트의 제조방법 및 이에 의해 제조된 방사성 핵종 제거용 티타노실리케이트계 흡착제
JP2019189516A (ja) シリコチタネート組成物およびその製造方法
KR101869585B1 (ko) 이온교환법을 이용한 리튬-티타늄 산화물의 합성 방법
JP6580085B2 (ja) シチナカイト構造を有するシリコチタネートを用いるセシウム又はストロンチウムの少なくともいずれかの吸着方法
KR101070509B1 (ko) 폐마그크로 연와로부터의 열복사 단열코팅제 제조방법
JP2021090896A (ja) 吸着剤、その製造方法及び水処理方法
JP2016107191A (ja) 吸着剤及びその製造方法
JP2021193355A (ja) 放射性物質吸着剤及びその製造方法
JP4078841B2 (ja) 新規ゼオライトおよびその結晶化方法
KR20180032336A (ko) 4가 양이온이 도입된 방사성 핵종 제거용 티타노실리케이트의 제조방법
JP2000191319A (ja) 加工電気石およびその製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524151

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201819549

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170622

ENP Entry into the national phase

Ref document number: 3027528

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815467

Country of ref document: EP

Kind code of ref document: A1