WO2017221553A1 - 蓄電デバイス用外装材及び蓄電デバイス - Google Patents

蓄電デバイス用外装材及び蓄電デバイス Download PDF

Info

Publication number
WO2017221553A1
WO2017221553A1 PCT/JP2017/016880 JP2017016880W WO2017221553A1 WO 2017221553 A1 WO2017221553 A1 WO 2017221553A1 JP 2017016880 W JP2017016880 W JP 2017016880W WO 2017221553 A1 WO2017221553 A1 WO 2017221553A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
layer
resin
heat
parts
Prior art date
Application number
PCT/JP2017/016880
Other languages
English (en)
French (fr)
Inventor
ウェイ ホウ
輝利 熊木
誠 唐津
孝司 長岡
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Priority to KR1020187027015A priority Critical patent/KR20180114171A/ko
Priority to CN202311030810.7A priority patent/CN117096510A/zh
Priority to KR1020207030534A priority patent/KR20200123867A/ko
Priority to CN201780026877.XA priority patent/CN109075271A/zh
Priority to US16/312,765 priority patent/US11731398B2/en
Priority to KR1020227020875A priority patent/KR20220095245A/ko
Priority to DE112017003136.2T priority patent/DE112017003136T5/de
Publication of WO2017221553A1 publication Critical patent/WO2017221553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is for batteries and capacitors used for portable devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, storage devices such as batteries and capacitors used for storage of night electricity.
  • the present invention relates to an exterior material and an electricity storage device.
  • phosphoric acid-containing (meth) acrylate means “phosphoric acid-containing acrylate or / and phosphoric acid-containing methacrylate”.
  • Lithium ion secondary batteries are widely used as power sources for notebook computers, video cameras, mobile phones, electric vehicles, and the like.
  • this lithium ion secondary battery one having a configuration in which the periphery of a battery main body (a main body including a positive electrode, a negative electrode, and an electrolyte) is surrounded by a case is used.
  • a case material exterior material
  • a material having a structure in which an outer layer made of a heat-resistant resin film, an aluminum foil layer, and an inner layer made of a thermoplastic resin film are bonded and integrated in this order is known.
  • a laminated packaging material including an inner layer made of a resin film, a first adhesive layer, a metal layer, a second adhesive layer, and an outer layer made of a resin film, wherein the first adhesive layer and the second adhesive layer
  • a packaging material is known in which at least one of the agent layers is composed of an adhesive composition containing, as an essential component, a resin having an active hydrogen group in the side chain, a polyfunctional isocyanate, and a polyfunctional amine compound (see Patent Document 1). ).
  • a polyamide film or a polyester film having a thickness of 9 to 50 ⁇ m is laminated on at least one surface of an aluminum foil, and a film of polypropylene, maleic acid-modified polypropylene, ethylene-acrylate copolymer or ionomer resin having a thickness of at least 9 to 50 ⁇ m.
  • a film of polypropylene, maleic acid-modified polypropylene, ethylene-acrylate copolymer or ionomer resin having a thickness of at least 9 to 50 ⁇ m.
  • the tensile strength to break in 4 directions (0 °, 45 °, 90 ° and 135 °) in the tensile test of polyamide film or polyester film is 150 N / mm 2 or more and 4 directions
  • a battery case packaging material using a polyamide or polyester film having an elongation of 80% or more is known (see Patent Document 2).
  • delamination peeling
  • delamination is likely to occur between the metal foil layer and the outer resin layer when molding is performed at a deep molding depth, and severe such as high temperature and high humidity.
  • delamination is likely to occur between the metal foil layer and the outer resin layer.
  • the packaging material described in Patent Document 2 has a problem that when forming with a deep forming depth, stress concentrates locally on the metal foil, and pinholes and cracks are likely to occur.
  • a power storage device exterior material including a heat-resistant resin layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between these two layers
  • the heat resistant resin layer comprises a heat resistant resin film having a hot water shrinkage of 1.5% to 12%
  • An exterior material for an electricity storage device wherein the heat-resistant resin layer and the metal foil layer are bonded via an outer adhesive layer made of a cured film of an electron beam curable resin composition.
  • the electron beam curable resin composition further includes one or more compounds selected from the group consisting of a silane coupling agent, an acid anhydride, and phosphoric acid-containing (meth) acrylate.
  • a silane coupling agent an acid anhydride
  • phosphoric acid-containing (meth) acrylate An exterior material for an electricity storage device according to 1.
  • the electron beam curable resin composition further contains one or more resins selected from the group consisting of epoxy resins, oxetane resins, and vinyl ether resins. Exterior material.
  • the content of the acrylate resin is 50% by mass to 98% by mass
  • the content of the silane coupling agent is 0.1% by mass to 5% by mass
  • the acid anhydride is used.
  • the content of the product is 0.1% by mass to 5% by mass
  • the content of the phosphoric acid-containing (meth) acrylate is 0.1% by mass to 10% by mass
  • the content of the photo radical polymerization initiator is 0.1% by mass.
  • % To 5% by mass, the content of one or more resins selected from the group consisting of epoxy resins, oxetane resins and vinyl ether resins is 1% to 20% by mass
  • the content of the photocationic polymerization initiator is 7.
  • the external storage material for an electricity storage device according to 6 above wherein the content is 0.5% by mass to 5% by mass.
  • An exterior case for an electricity storage device comprising the molded body of the exterior material described in any one of 1 to 9 above.
  • An electricity storage device body The exterior material according to any one of the preceding items 1 to 9 and / or the exterior member comprising the exterior case according to the previous item 10, The electricity storage device, wherein the electricity storage device body is covered with the exterior member.
  • a first laminate in which a heat resistant resin film having a hot water shrinkage of 1.5% to 12% is bonded to one surface of a metal foil layer via an electron beam curable resin composition A preparation process; Irradiating the first laminate with an electron beam from the heat-resistant resin film side; Preparing a second laminate in which a heat-fusible resin film is bonded to the other surface of the metal foil layer of the first laminate after the electron beam irradiation via a thermosetting adhesive; And a step of heat-treating the second laminated body.
  • electron beam curing (such as photocuring) of the electron beam curable resin composition can be performed in a shorter time compared to curing of a thermosetting resin that requires heat aging for several days.
  • time required from introduction to product completion can be greatly shortened.
  • the electron beam curable resin composition further includes the specific compound, delamination (peeling) between the outer layer and the metal foil layer is more sufficiently prevented. Can do.
  • the outer layer and the metal foil layer can be used even in severe environments such as high temperature and high humidity. It is possible to prevent delamination during the time.
  • [12] In the invention of [12], it has heat resistance, and even if molding is performed with a deep molding depth, pinholes and cracks are not generated, and excellent moldability can be ensured. Even when used in a severe environment such as high temperature and high humidity, it is possible to manufacture an exterior device for an electricity storage device that can sufficiently prevent delamination between the outer layer and the metal foil layer. Moreover, since hardening of an outer side adhesive agent (electron beam curable resin composition) is performed by electron beam irradiation, production efficiency can be improved notably.
  • an outer side adhesive agent electron beam curable resin composition
  • FIG. 1 shows an embodiment of a power storage device exterior material 1 according to the present invention.
  • the exterior material 1 is used as an exterior material for a battery such as a lithium ion secondary battery.
  • the exterior material 1 may be used as the exterior material 1 as it is without being molded (see FIG. 4), or used as a molding case 10 after being subjected to molding such as deep drawing molding or overhang molding. (See FIG. 4).
  • a heat resistant resin layer (outer layer) 2 is laminated and integrated on one surface (upper surface) of a metal foil layer 4 via an outer adhesive layer (first adhesive layer) 5.
  • a heat-fusible resin layer (inner layer) 3 is laminated and integrated on the other surface (lower surface) of the metal foil layer 4 via an inner adhesive layer (second adhesive layer) 6. Yes (see FIG. 1).
  • FIG. 2 shows another embodiment of the power storage device exterior material 1 according to the present invention.
  • the exterior material 1 has a heat-resistant resin layer (outer layer) 2 laminated and integrated on one surface (upper surface) of the metal foil layer 4 via an outer adhesive layer (first adhesive layer) 5.
  • a heat-fusible resin layer (inner layer) 3 is laminated and integrated on the other surface (lower surface) of the metal foil layer 4 via an inner adhesive layer (second adhesive layer) 6.
  • An easy adhesion layer 8 is laminated on the lower surface of the heat resistant resin layer (outer layer) 2, and the outer adhesive layer (first adhesive layer) 5 is laminated on the lower surface of the easy adhesion layer 8.
  • the heat-resistant resin layer (outer layer) 2 is a member mainly responsible for ensuring good moldability as the exterior material 1, that is, mainly responsible for preventing breakage due to necking of the aluminum foil during molding. Is.
  • the “hot water shrinkage” is the dimension in the stretching direction of the test piece before and after immersion when the test piece (10 cm ⁇ 10 cm) of the heat-resistant resin stretched film 2 is immersed in hot water at 95 ° C. for 30 minutes. This is the rate of change, and is calculated by the following formula.
  • Hot water shrinkage (%) ⁇ (XY) / X ⁇ ⁇ 100
  • X Dimensions in the stretching direction before the immersion treatment
  • Y Dimensions in the stretching direction after the immersion treatment.
  • adopting a biaxially stretched film is an average value of the dimensional change rate in two extending directions.
  • the thickness of the heat resistant resin layer 2 is preferably 12 ⁇ m to 50 ⁇ m. It is possible to secure sufficient strength as an exterior material by setting it above the preferred lower limit value, and to improve the formability by reducing the stress at the time of stretch molding or drawing by setting the preferred lower limit value or less. Can do.
  • an easy adhesion layer 8 is laminated on the inner surface (surface on the metal foil layer 4 side) of the heat resistant resin layer 2.
  • the outer adhesive layer 5 and Adhesiveness and adhesiveness can be improved, whereby the adhesiveness and adhesiveness between the heat-resistant resin layer 2 and the metal foil layer 4 can be improved.
  • the wettability on the inner surface of the heat resistant resin layer 2 (the surface on which the easy adhesion layer 8 is laminated) by performing a corona treatment or the like in advance before the easy adhesion layer 8 is laminated.
  • the easy-adhesion layer 8 can be formed by applying and drying an aqueous emulsion (aqueous emulsion) of one or more selected resins.
  • the coating method is not particularly limited, and examples thereof include a spray coating method, a gravure roll coating method, a reverse roll coating method, and a lip coating method.
  • the packaging material When the packaging material is heat-sealed for sealing, it is possible to sufficiently prevent delamination (peeling) between the outer layer (heat-resistant resin layer) 2 and the metal foil layer 4, and the packaging material 1 Can be sufficiently prevented from causing delamination (peeling) between the outer layer (heat-resistant resin layer) 2 and the metal foil layer 4 even when used in a severe environment such as high temperature and humidity.
  • the mass ratio of urethane resin / epoxy resin in the easy-adhesion layer 8 is preferably in the range of 98/2 to 40/60. In this case, the heat-resistant resin layer 2 and The adhesive force with the outer adhesive layer 5 can be further improved. If the content ratio of the urethane resin is larger than the urethane resin / epoxy resin content ratio (98/2), the degree of crosslinking is insufficient, and it is difficult to obtain sufficient solvent resistance and adhesive strength. . On the other hand, if the content ratio of the urethane resin is smaller than the urethane resin / epoxy resin content ratio (40/60), it takes too much time until the crosslinking is completed, which is not preferable. In particular, the mass ratio of urethane resin / epoxy resin in the easy-adhesion layer 8 is more preferably in the range of 90/10 to 50/50.
  • the mass ratio of (meth) acrylic ester resin / epoxy resin in the easy-adhesion layer 8 is preferably in the range of 98/2 to 40/60. Can further improve the adhesive force between the heat-resistant resin layer 2 and the outer adhesive layer 5.
  • the content ratio of the (meth) acrylic acid ester resin is larger than the content ratio of the (meth) acrylic acid ester resin / epoxy resin (98/2), the degree of cross-linking is insufficient, and the solvent resistance and adhesive strength are reduced. Since it becomes difficult to obtain sufficiently, it is not preferable.
  • the mass ratio of (meth) acrylic ester resin / epoxy resin in the easy-adhesion layer 8 is more preferably in the range of 90/10 to 50/50.
  • Surfactants such as glycols and glycol ethylene oxide adducts may be added to the aqueous resin emulsion (resin-water emulsion) for forming the easy-adhesion layer 8. Since a sufficient defoaming effect can be obtained in the emulsion, the easy-adhesion layer 8 excellent in surface smoothness can be formed.
  • the surfactant is preferably contained in the resin aqueous emulsion in an amount of 0.01% by mass to 2.0% by mass.
  • the resin aqueous emulsion (resin-water emulsion) for forming the easy-adhesion layer 8 preferably contains inorganic fine particles such as silica and colloidal silica. In this case, an antiblocking effect is obtained. Can do.
  • the inorganic fine particles are preferably added in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin content.
  • the outer adhesive layer (first adhesive layer) 5 is formed of an adhesive made of a cured film of an electron beam curable resin composition.
  • the electron beam curable resin composition preferably contains an acrylate resin and a radical photopolymerization initiator.
  • the electron beam curing time can be further shortened, and the lead time can be further shortened.
  • the acrylate resin is not particularly limited.
  • the photo radical polymerization initiator is not particularly limited, and examples thereof include benzophenone, benzoin alkyl ether (benzoethyl ether, benzobutyl ether, etc.), benzyl dimethyl ketal, and the like.
  • the electron beam curable resin composition is one selected from the group consisting of a silane coupling agent, an acid anhydride, and a phosphoric acid-containing (meth) acrylate, in addition to the acrylate resin and the photo radical polymerization initiator. Or it is preferable to contain 2 or more types of compounds.
  • the phosphoric acid-containing (meth) acrylate (monomer) is not particularly limited, and examples thereof include monomers such as acryloyloxyethyl acid phosphate and bis (2- (meth) acryloyloxyethyl) acid phosphate. .
  • a photocationic polymerization initiator when one or two or more resins selected from the group consisting of the epoxy resin, oxetane resin and vinyl ether resin are contained, it is preferable to contain a photocationic polymerization initiator at the same time. At the same time, delamination can be more sufficiently prevented by including a cationic photopolymerization initiator.
  • a photocationic polymerization initiator For example, onium salt etc. are mentioned.
  • the onium salt is not particularly limited, and examples thereof include a sulfonium salt, an iodonium salt, a bromonium salt, a diazonium salt, and a chloronium salt.
  • the sulfonium salt is not particularly limited.
  • triphenylsulfonium hexafluorophosphate triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [ Diphenylsulfonio] diphenylsulfide-bishexafluorophosphate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide-bishexafluoroantimonate, 4,4′-bis [di ( ⁇ - Hydroxyethoxy) phenylsulfonio] diphenyl sulfide-bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexa
  • the iodonium salt is not particularly limited.
  • diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluoro A phosphate etc. are mentioned.
  • the electron beam curable resin composition is: a) an acrylate resin; b) a radical photopolymerization initiator; c) an acid anhydride; d) a silane coupling agent; e) phosphoric acid-containing (meth) acrylate; f) one or more resins selected from the group consisting of epoxy resins, oxetane resins and vinyl ether resins; g) a photocationic polymerization initiator; A composition containing is particularly preferred.
  • the content of the acrylate resin is 50% by mass to 98% by mass
  • the content of the silane coupling agent is 0.1% by mass to 5% by mass
  • the content of the acid anhydride is included.
  • the content of the phosphoric acid-containing (meth) acrylate is 0.1% by mass to 10% by mass, and the content of the photo radical polymerization initiator is 0.1% by mass to 0.1% by mass. 5% by mass, the content of one or more resins selected from the group consisting of epoxy resins, oxetane resins and vinyl ether resins is 1% by mass to 20% by mass, and the content of the photocationic polymerization initiator is 0.00.
  • the content is desirably 5% by mass to 5% by mass.
  • the thickness of the outer adhesive layer (first adhesive layer) 5 is preferably set to 1 ⁇ m to 6 ⁇ m.
  • the metal foil layer 4 plays a role of imparting gas barrier properties to the exterior material 1 to prevent oxygen and moisture from entering.
  • said metal foil layer 4 For example, aluminum foil, copper foil, etc. are mentioned, Aluminum foil is generally used.
  • the thickness of the metal foil layer 4 is preferably 9 ⁇ m to 120 ⁇ m. When it is 9 ⁇ m or more, it is possible to prevent the occurrence of pinholes during rolling when manufacturing metal foil, and when it is 120 ⁇ m or less, it is possible to reduce the stress during forming such as overhang forming and draw forming, thereby improving formability. be able to.
  • the thickness of the metal foil layer 4 is particularly preferably 20 ⁇ m to 100 ⁇ m.
  • the metal foil layer 4 is preferably subjected to chemical conversion treatment on at least the inner surface (the surface on the inner adhesive layer 6 side).
  • chemical conversion treatment By performing such chemical conversion treatment, corrosion of the metal foil surface by the contents (battery electrolyte or the like) can be sufficiently prevented.
  • the metal foil is subjected to chemical conversion treatment by the following treatment.
  • the heat-fusible resin layer (inner layer) 3 has excellent chemical resistance against highly corrosive electrolytes used in lithium ion secondary batteries and the like, and heat sealability on the exterior material. It plays the role of granting.
  • the resin constituting the heat-fusible resin layer 3 is not particularly limited.
  • EAA ethylene ethyl acrylate
  • EMMA acid methyl resin
  • EVA ethylene-vinyl acetate copolymer resin
  • maleic anhydride-modified polypropylene and maleic anhydride-modified polyethylene.
  • the inner adhesive layer (second adhesive layer) 6 is not particularly limited, but for example, a curable adhesive is preferably used.
  • the curable adhesive include a thermosetting acrylic adhesive, a thermosetting acid-modified polypropylene adhesive, and a thermosetting polyurethane adhesive.
  • the heat aging treatment temperature for accelerating curing can be lowered (for example, 40 ° C.).
  • the advantageous effect that white powder generation of the fusible resin layer 3 can be sufficiently prevented is obtained.
  • the thickness of the inner adhesive layer 6 is preferably set to 1 ⁇ m to 4 ⁇ m.
  • the power storage device exterior case 10 can be obtained by molding (deep drawing, stretch molding, etc.) the power storage device exterior material 1 of the present invention (see FIG. 4).
  • the exterior material 1 of this invention can also be used as it is, without using for shaping
  • FIG. 3 shows an embodiment of an electricity storage device 30 configured using the exterior material 1 of the present invention.
  • the electricity storage device 30 is a lithium ion secondary battery.
  • an exterior member 15 is configured by a case 10 obtained by molding the exterior material 1 and a planar exterior material 1 that has not been subjected to molding. Yes.
  • a power storage device body portion (electrochemical element or the like) 31 having a substantially rectangular parallelepiped shape is housed in a housing recess of the molded case 10 obtained by molding the exterior material 1 of the present invention.
  • the outer packaging material 1 of the present invention is disposed on the inner layer 3 side inward (lower side) without being molded, and the peripheral portion of the inner layer 3 of the planar outer packaging material 1 and the outer packaging
  • the inner layer 3 of the flange part (sealing peripheral part) 29 of the case 10 is sealed and sealed by heat sealing, whereby the power storage device 30 of the present invention is configured (see FIGS. 3 and 4).
  • the inner surface of the housing recess of the outer case 10 is an inner layer (heat-bonding resin layer) 3, and the outer surface of the housing recess is an outer layer (heat-resistant resin layer) 2 ( (See FIG. 4).
  • reference numeral 39 denotes a heat seal part in which the peripheral part of the outer packaging material 1 and the flange part (sealing peripheral part) 29 of the outer case 10 are joined (fused).
  • the tip end portion of the tab lead connected to the electricity storage device main body 31 is led out of the exterior member 15, but is not shown.
  • the power storage device main body 31 is not particularly limited, and examples thereof include a battery main body, a capacitor main body, and a capacitor main body.
  • the width of the heat seal portion 39 is preferably set to 0.5 mm or more. Sealing can be reliably performed by setting it as 0.5 mm or more.
  • the width of the heat seal portion 39 is preferably set to 3 mm to 15 mm.
  • the exterior member 15 is configured by the exterior case 10 obtained by molding the exterior material 1 and the planar exterior material 1 (see FIGS. 3 and 4).
  • the exterior member 15 may be configured by a pair of exterior materials 1 or may be configured by a pair of exterior cases 10.
  • the electron beam curable resin composition is cured by irradiating the first laminated body with an electron beam from the heat resistant resin film side (curing step).
  • the electron beam include ultraviolet light, visible light, X-ray, and ⁇ -ray.
  • the amount of irradiation light is not particularly limited, but is preferably set to 50 mJ / cm 2 to 1000 mJ / cm 2 .
  • thermosetting adhesive for example, a thermosetting acrylic adhesive, a thermosetting polypropylene adhesive, a thermosetting polyurethane adhesive etc. are mentioned.
  • thermosetting adhesive is cured by performing a heat treatment on the second laminate (aging process).
  • the heat treatment is preferably performed at 35 ° C. to 45 ° C.
  • the time for the heat treatment is not particularly limited.
  • the heat treatment is performed for 3 days to 15 days. Preferably it is done.
  • the said manufacturing method is only what showed the suitable example, and the exterior
  • Example 1 A chemical conversion treatment solution comprising phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, alcohol on both surfaces of an aluminum foil (A8079 aluminum foil defined in JIS H4160) 4 having a thickness of 35 ⁇ m After coating, the film was dried at 180 ° C. to form a chemical conversion film. The amount of chromium deposited on this chemical film was 10 mg / m 2 per side.
  • the surface on the side of the easy adhesive layer of the polyamide film 2 with the easy adhesive layer 8 was superposed on and bonded to the outer adhesive application surface of one surface of the aluminum foil 4 to obtain a first laminate.
  • the photocurable resin composition was photocured by irradiating UV light of 300 mJ / cm 2 from the polyamide film 2 surface to the first laminate to form a cured film (outer adhesive layer 5).
  • thermosetting acid-modified polypropylene adhesive was applied to the other surface of the aluminum foil 4 of the first laminate so that the mass after drying becomes 2.5 g / m 2.
  • a second laminate was obtained by bonding an unstretched polypropylene film 3 having a thickness of 30 ⁇ m to the inner adhesive-coated surface.
  • the second laminate is left to stand in a 40 ° C. environment for 9 days and subjected to a heat aging treatment to cure the thermosetting inner adhesive to form the inner adhesive layer 6 as shown in FIG.
  • An exterior material 1 for an electricity storage device having a configuration was obtained.
  • Example 2 As a photocurable resin composition (outside adhesive), 90 parts by mass of urethane acrylate resin having two acryloyl groups, 0.2 parts by mass of benzophenone, 5 parts by mass of maleic anhydride, and 5 parts by mass of methyltrimethoxysilane are contained. Except having used the photocurable resin composition, it carried out similarly to Example 1, and obtained the exterior
  • Example 3 As a photocurable resin composition (outer adhesive), 94 parts by mass of urethane acrylate resin having two acryloyl groups, 5 parts by mass of benzophenone, 0.2 parts by mass of maleic anhydride, 0.2 parts by mass of methyltrimethoxysilane Except having used the photocurable resin composition to contain, it carried out similarly to Example 1, and obtained the exterior
  • Example 4 As a photocurable resin composition (outer adhesive), 91 parts by mass of urethane acrylate resin having two acryloyl groups, 3 parts by mass of benzophenone, 3 parts by mass of maleic anhydride, 3 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid Except that the photocurable resin composition containing 0.3 parts by mass of phosphate was used, the electricity storage device exterior material 1 having the configuration shown in FIG. 2 was obtained in the same manner as in Example 1.
  • a photocurable resin composition As a photocurable resin composition (outer adhesive), 90 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid Except for using a photocurable resin composition containing 2 parts by mass of phosphate, 2 parts by mass of epoxy resin, and 0.5 parts by mass of triphenylsulfonium hexafluorophosphate (sulfonium salt), An exterior material 1 for an electricity storage device having the configuration shown in 2 was obtained.
  • Example 7 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid
  • the electricity storage having the structure shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 2 parts by mass of phosphate, 8 parts by mass of epoxy resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate was used.
  • Device exterior material 1 was obtained.
  • Example 8 As a photocurable resin composition (outer adhesive), 70 parts by mass of urethane acrylate resin having two acryloyl groups, 1 part by mass of benzophenone, 1 part by mass of maleic anhydride, 1 part by mass of methyltrimethoxysilane, acryloyloxyethyl acid A power storage device having the structure shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 2 parts by mass of phosphate, 20 parts by mass of epoxy resin, and 5 parts by mass of triphenylsulfonium hexafluorophosphate was used. Device exterior material 1 was obtained.
  • Example 9 As the biaxially stretched polyamide film 2, a biaxially stretched polyamide film having a hot water shrinkage of 5.0% was used in the same manner as in Example 7, and the exterior material for an electricity storage device having the configuration shown in FIG. 1 was obtained.
  • the biaxially stretched polyamide film having a hot water shrinkage of 5.0% was obtained by setting the heat setting temperature when the polyamide film was biaxially stretched to 191 ° C.
  • Example 10 As the biaxially stretched polyamide film 2, a biaxially stretched polyamide film having a hot water shrinkage of 10.0% was used in the same manner as in Example 7, and the exterior material for an electricity storage device having the configuration shown in FIG. 1 was obtained.
  • the biaxially stretched polyamide film having a hot water shrinkage of 10.0% was obtained by setting the heat setting temperature when the polyamide film was biaxially stretched to 160 ° C.
  • Example 12 As a photocurable resin composition (outer adhesive), 82 parts by mass of a polyester acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid
  • the electricity storage having the structure shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 2 parts by mass of phosphate, 8 parts by mass of epoxy resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate was used.
  • Device exterior material 1 was obtained.
  • Example 13 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzoin ethyl ether, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxy
  • the structure shown in FIG. 2 is the same as that of Example 1 except that a photocurable resin composition containing 2 parts by mass of ethyl acid phosphate, 8 parts by mass of epoxy resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate is used.
  • the outer packaging material 1 for an electricity storage device was obtained.
  • Example 14 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzyldimethyl ketal, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxy
  • the structure shown in FIG. 2 is the same as that of Example 1 except that a photocurable resin composition containing 2 parts by mass of ethyl acid phosphate, 8 parts by mass of epoxy resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate is used.
  • the outer packaging material 1 for an electricity storage device was obtained.
  • Example 16 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid
  • the electricity storage of the structure shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 2 parts by mass of phosphate, 8 parts by mass of vinyl ether resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate was used.
  • Device exterior material 1 was obtained.
  • Example 20 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of vinyltriethoxysilane, acryloyloxyethyl acid
  • the electricity storage having the configuration shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 2 parts by mass of phosphate, 8 parts by mass of oxetane resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate was used.
  • Device exterior material 1 was obtained.
  • Example 21 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of allyltrimethoxysilane, acryloyloxyethyl acid
  • the electricity storage having the structure shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 2 parts by mass of phosphate, 8 parts by mass of epoxy resin, and 2 parts by mass of triphenylsulfonium hexafluorophosphate was used.
  • Device exterior material 1 was obtained.
  • Example 22 As a photocurable resin composition (outer adhesive), 82 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, bis (2- (Methacryloyloxyethyl) acid phosphate 2 parts by mass, epoxy resin 8 parts by mass, triphenylsulfonium hexafluorophosphate 2 parts by mass A photocurable resin composition was used in the same manner as in Example 1, except that An exterior material 1 for an electricity storage device having the configuration shown in 2 was obtained.
  • Example 23 The same as in Example 1 except that 99 parts by mass of urethane acrylate resin having two acryloyl groups and 1 part by mass of benzophenone were used as the photocurable resin composition (outer adhesive). Thus, an exterior material 1 for an electricity storage device having the configuration shown in FIG. 2 was obtained.
  • Example 24 As a photocurable resin composition (outer adhesive), 45 parts by mass of urethane acrylate resin having two acryloyl groups, 5 parts by mass of benzophenone, 3 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid
  • the electricity storage of the configuration shown in FIG. 2 was performed in the same manner as in Example 1 except that a photocurable resin composition containing 20 parts by mass of phosphate, 20 parts by mass of epoxy resin, and 5 parts by mass of triphenylsulfonium hexafluorophosphate was used.
  • Device exterior material 1 was obtained.
  • Example 27 As a photocurable resin composition (outer adhesive), 79 parts by mass of urethane acrylate resin having two acryloyl groups, 2 parts by mass of benzophenone, 2 parts by mass of maleic anhydride, 2 parts by mass of methyltrimethoxysilane, acryloyloxyethyl acid Except that the photocurable resin composition containing 15 parts by mass of phosphate was used, the electricity storage device exterior material 1 having the configuration shown in FIG. 2 was obtained in the same manner as in Example 1.
  • Example 28 Except that the easy-adhesion layer 8 was not provided, the power storage device exterior material 1 having the configuration shown in FIG. 1 was obtained in the same manner as in Example 7.
  • Example 1 An exterior material for an electricity storage device was obtained in the same manner as in Example 7 except that a biaxially stretched polyamide film having a hot water shrinkage rate of 1.0% was used as the biaxially stretched polyamide film 2.
  • the biaxially stretched polyamide film having a hot water shrinkage rate of 1.0% was obtained by setting the heat setting temperature when the polyamide film was biaxially stretched to 221 ° C.
  • Example 2 An exterior material for an electricity storage device was obtained in the same manner as in Example 7, except that a biaxially stretched polyamide film having a hot water shrinkage of 15.0% was used as the biaxially stretched polyamide film 2.
  • the biaxially stretched polyamide film having a hot water shrinkage of 15.0% was obtained by setting the heat setting temperature at 135 ° C. when the polyamide film was biaxially stretched.
  • ⁇ Comparative Example 3> A chemical conversion treatment solution comprising phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, alcohol on both surfaces of an aluminum foil (A8079 aluminum foil defined in JIS H4160) 4 having a thickness of 35 ⁇ m After coating, the film was dried at 180 ° C. to form a chemical conversion film. The amount of chromium deposited on this chemical film was 10 mg / m 2 per side.
  • thermosetting adhesive (outer adhesive) containing 80 parts by mass of acid-modified polyolefin resin and 20 parts by mass of polyisocyanate on one surface of the chemical conversion-treated aluminum foil 4 is 4 g / It was coated so as to be in m 2.
  • a resin obtained by mixing 70 parts by mass of a urethane resin and 30 parts by mass of an epoxy resin on one side of a biaxially stretched polyamide film 2 having a hot water shrinkage of 2.0% and a thickness of 15 ⁇ m is spray-coated.
  • the easy adhesion layer 8 having a thickness of 0.05 ⁇ m was formed by drying, and the biaxially stretched polyamide film 2 with the easy adhesion layer 8 was obtained.
  • the biaxially stretched polyamide film 2 having a hot water shrinkage rate of 2.0% was obtained by setting the heat setting temperature when the polyamide film was biaxially stretched to 214 ° C.
  • a surface of the polyamide film 2 with the easy adhesion layer 8 on the surface of the aluminum foil 4 on which the adhesive layer was applied was superposed and bonded to obtain a first laminate.
  • the first laminate was left to stand in a 60 ° C. environment for 9 days and subjected to a heat aging treatment to cure the outer adhesive.
  • the cured film was peeled off from the glass plate, it was cut into a size of 15 mm in width and 100 mm in length to produce a test piece, and the above-mentioned test piece was made at a pulling rate of 200 mm / min using a Shimadzu Strograph (AGS-5kNX). A tensile test of the test piece was performed to measure the Young's modulus (MPa).
  • ⁇ Sealability evaluation method> Evaluation of the presence or absence of delamination when forming with a deep forming depth
  • deep drawing is performed to the outer material by using the above-mentioned deep-drawing tool to a substantially rectangular parallelepiped shape (length of 55 mm ⁇ width of 35 mm ⁇ 5 mm) (substantially rectangular parallelepiped shape with one surface open). It was.
  • the heat-resistant resin layer 2 was molded so as to be outside the molded body.
  • Two molded bodies were prepared for each example and each comparative example, and flange portions (sealing peripheral portions; see FIG. 4) 29 of the two molded bodies 10 were brought into contact with each other and overlapped to 170 ° C.
  • a test body having a width of 15 mm and a length of 150 mm was cut out from the obtained exterior material, and peeled between the aluminum foil and the heat-resistant resin layer in a region extending from one end in the length direction of the test body to a position 10 mm inward. I was damned.
  • Laminate strength was “2.0 N / 15 mm width” or more (pass) “ ⁇ ”: Laminate strength was “1.5 N / 15 mm width” or more and less than “2.0 N / 15 mm width” (pass) “X”: The laminate strength was less than “1.5 N / 15 mm width” (failed).
  • the power storage device exterior materials of Examples 1 to 28 of the present invention have excellent moldability without causing pinholes or cracks even when molding is performed at a deep molding depth.
  • delamination can be suppressed even when molding is performed at a deep molding depth, and even at high temperatures, the laminate strength is high and hot water resistance is good, and even when used in harsh environments such as high temperatures and humidity, Lamination (peeling) can be prevented.
  • an exterior material for an electricity storage device is, for example, -Electric storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.)-Used as exterior materials for various electric storage devices such as lithium ion capacitors and electric double layer capacitors.
  • the power storage device according to the present invention includes an all-solid battery in addition to the power storage device exemplified above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Plasma & Fusion (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

成形深さの深い成形を行ってもピンホールやクラックが発生せず優れた成形性を確保できると共に、成形深さの深い成形を行っても或いは高温多湿等の苛酷な環境下で使用してもデラミネーションを十分に防止できる蓄電デバイス用外装材を提供する。 【解決手段】外側層としての耐熱性樹脂層2と、内側層としての熱融着性樹脂層3と、これら両層間に配置された金属箔層4と、を含み、耐熱性樹脂層2は、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムからなり、耐熱性樹脂層2と金属箔層4とが、電子線硬化性樹脂組成物の硬化膜からなる外側接着剤層5を介して接着された構成とする。

Description

蓄電デバイス用外装材及び蓄電デバイス
 本発明は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイス用の外装材および蓄電デバイスに関する。
 なお、本願の特許請求の範囲および本明細書において、「リン酸含有(メタ)アクリレート」の語は、「リン酸含有アクリレート又は/及びリン酸含有メタアクリレート」を意味するものである。
 リチウムイオン2次電池は、例えばノートパソコン、ビデオカメラ、携帯電話、電気自動車等の電源として広く用いられている。このリチウムイオン2次電池としては、電池本体部(正極、負極及び電解質を含む本体部)の周囲をケースで包囲した構成のものが用いられている。このケース用材料(外装材)としては、耐熱性樹脂フィルムからなる外層、アルミニウム箔層、熱可塑性樹脂フィルムからなる内層がこの順に接着一体化された構成のものが公知である。
 例えば、樹脂フィルムからなる内層、第1接着剤層、金属層、第2接着剤層、及び樹脂フィルムからなる外層を備えた積層型包装材料であって、前記第1接着剤層および第2接着剤層の少なくとも一方が、側鎖に活性水素基を有する樹脂、多官能イソシアネート類、および多官能アミン化合物を必須成分とする接着剤組成物からなる包装材が知られている(特許文献1参照)。
 また、少なくともアルミニウム箔の片面に、厚さ9~50μmのポリアミドフィルムまたはポリエステルフィルムをラミネートすると共に、少なくとも厚さ9~50μmのポリプロピレン、マレイン酸変性ポリプロピレン、エチレン-アクリレート共重合体またはアイオノマー樹脂のフィルムを最も外側にラミネートし、ポリアミドフィルムまたはポリエステルフィルムの引張試験における4方向(0°、45°、90°及び135°)の破断までの引張強さが150N/mm2以上であり、かつ4方向の伸びが80%以上であるポリアミドまたはポリエステルフィルムを用いてなる電池ケース用包材が公知である(特許文献2参照)。
特開2008-287971号公報 特開2000-123800号公報
 しかしながら、上記特許文献1、2に記載の技術では、包装材としての十分な耐熱性と優れた成形性を両立することはできなかった。
 また、特許文献1に記載の包装材では、成形深さの深い成形を行った場合に金属箔層と外側樹脂層との間でデラミネーション(剥離)が発生しやすいし、高温多湿等の苛酷な環境下で使用した場合において金属箔層と外側樹脂層との間でデラミネーションが発生しやすい。
  また、特許文献2に記載の包装材では、成形深さの深い成形を行うと、金属箔の局所に応力が集中して、ピンホールやクラックが発生しやすいという問題があった。
  本発明は、かかる技術的背景に鑑みてなされたものであって、耐熱性を備えている上に、成形深さの深い成形を行ってもピンホールやクラックが発生せず優れた成形性を確保できると共に、成形深さの深い成形を行っても或いは高温多湿等の苛酷な環境下で使用してもデラミネーション(剥離)を十分に抑止できる蓄電デバイス用外装材及び蓄電デバイス用外装ケースを提供することを目的とする。また、このような外装材または/および外装ケースで外装されてなる蓄電デバイスを提供することを目的とする。
  前記目的を達成するために、本発明は以下の手段を提供する。
 [1]外側層としての耐熱性樹脂層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む蓄電デバイス用外装材において、
  前記耐熱性樹脂層は、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムからなり、
  前記耐熱性樹脂層と前記金属箔層とが、電子線硬化性樹脂組成物の硬化膜からなる外側接着剤層を介して接着されていることを特徴とする蓄電デバイス用外装材。
 [2]前記電子線硬化性樹脂組成物は、アクリレート樹脂と、光ラジカル重合開始剤と、を含む前項1に記載の蓄電デバイス用外装材。
 [3]前記電子線硬化性樹脂組成物は、さらに、シランカップリング剤、酸無水物およびリン酸含有(メタ)アクリレートからなる群より選ばれる1種または2種以上の化合物を含有する前項2に記載の蓄電デバイス用外装材。
 [4]前記電子線硬化性樹脂組成物は、さらに、エポキシ樹脂、オキセタン樹脂およびビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂を含有する前項2または3に記載の蓄電デバイス用外装材。
 [5]前記電子線硬化性樹脂組成物は、さらに、光カチオン重合開始剤を含有する前項4に記載の蓄電デバイス用外装材。
 [6]前記電子線硬化性樹脂組成物は、アクリレート樹脂と、光ラジカル重合開始剤と、シランカップリング剤と、酸無水物と、リン酸含有(メタ)アクリレートと、エポキシ樹脂、オキセタン樹脂及びビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂と、光カチオン重合開始剤と、を含有する前項1に記載の蓄電デバイス用外装材。
 [7]前記電子線硬化性樹脂組成物において、前記アクリレート樹脂の含有率が50質量%~98質量%、前記シランカップリング剤の含有率が0.1質量%~5質量%、前記酸無水物の含有率が0.1質量%~5質量%、リン酸含有(メタ)アクリレートの含有率が0.1質量%~10質量%、前記光ラジカル重合開始剤の含有率が0.1質量%~5質量%、エポキシ樹脂、オキセタン樹脂及びビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂の含有率が1質量%~20質量%、前記光カチオン重合開始剤の含有率が0.5質量%~5質量%である前項6に記載の蓄電デバイス用外装材。
 [8]前記硬化膜のヤング率が90MPa~400MPaである前項1~7のいずれか1項に記載の蓄電デバイス用外装材。
 [9]前記耐熱性樹脂層と前記外側接着剤層との間に易接着層が配置されている前項1~8のいずれか1項に記載の蓄電デバイス用外装材。
 [10]前項1~9のいずれか1項に記載の外装材の成形体からなる蓄電デバイス用外装ケース。
 [11]蓄電デバイス本体部と、
  前項1~9のいずれか1項に記載の外装材及び/又は前項10に記載の外装ケースからなる外装部材とを備え、
  前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
 [12]金属箔層の一方の面に、電子線硬化性樹脂組成物を介して、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムが接着された第1積層体を準備する工程と、
  前記第1積層体に対して前記耐熱性樹脂フィルム側から電子線を照射する工程と、
 前記電子線照射後の第1積層体の金属箔層の他方の面に、熱硬化性接着剤を介して熱融着性樹脂フィルムが接着された第2積層体を準備する工程と、
  前記第2積層体に加熱処理を行う工程と、を含むことを特徴とする蓄電デバイス用外装材の製造方法。
 [1]の発明では、耐熱性樹脂層が、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムからなると共に、耐熱性樹脂層と金属箔層とが、電子線硬化性樹脂組成物の硬化膜からなる外側接着剤層を介して接着された構成であるから、耐熱性を備える上に、深絞り成形、張り出し成形等の冷間(常温)成形により、成形深さの深い成形を行ってもピンホールやクラックが発生せず優れた成形性を確保できる。また、成形深さの深い成形を行っても或いは高温多湿等の苛酷な環境下で使用しても、外側層(耐熱性樹脂層)と金属箔層の間のデラミネーション(剥離)を十分に防止することができる。更に、電子線硬化性樹脂組成物の電子線硬化(光硬化等)は、数日間の加熱エージングを必要とする熱硬化性樹脂の硬化と比較して短い時間で行い得るので、リードタイム(資材投入から製品完成までに要する時間)を大幅に短縮できる利点もある。
 [2]の発明では、電子線硬化性樹脂組成物は、アクリレート樹脂と、光ラジカル重合開始剤と、を含む構成であるから、電子線硬化(光硬化等)の時間がより短縮され得て、リードタイムをさらに短縮できる。
 [3]の発明では、電子線硬化性樹脂組成物は、さらに上記特定の化合物を含有する構成であるので、外側層と金属箔層の間のデラミネーション(剥離)をより十分に防止することができる。
 [4]の発明では、外側層と金属箔層の間のデラミネーションをより十分に防止できる。
 [5]の発明では、外側層と金属箔層の間のデラミネーションをより一層十分に防止できる。
 [6]の発明では、外側層と金属箔層の間のデラミネーションの発生を確実に防止できる。
 [7]の発明では、外側層と金属箔層の間のデラミネーションの発生をより確実に防止できる。
 [8]の発明では、硬化膜のヤング率が90MPa~400MPaであるから、外側層と金属箔層の間のデラミネーションをより十分に防止できると共に、高温環境下でのラミネート強度も十分に向上させることができる。
 [9]の発明では、耐熱性樹脂層と外側接着剤層との間に易接着層が配置されているから、高温多湿等の苛酷な環境下で使用しても、外側層と金属箔層の間のデラミネーションをより十分に防止できる。
 [10]の発明では、良好な成形がなされた外装ケースが提供される。また、この外装ケースは、高温多湿等の苛酷な環境下で使用しても、外側層と金属箔層の間のデラミネーションを十分に防止することができるし、生産性に優れている。
 [11]の発明では、成形深さの深い成形を行っても或いは高温多湿等の苛酷な環境下で使用してもデラミネーションを十分に防止できる外装部材で外装された蓄電デバイスを提供できる。
 [12]の発明では、耐熱性を備え、成形深さの深い成形を行ってもピンホールやクラックが発生せず優れた成形性を確保できると共に、成形深さの深い成形を行っても或いは高温多湿等の苛酷な環境下で使用しても、外側層と金属箔層の間のデラミネーションを十分に防止できる蓄電デバイス用外装材を製造できる。また、外側の接着剤(電子線硬化性樹脂組成物)の硬化を電子線照射により行うので、生産効率を顕著に向上させることができる。
本発明に係る蓄電デバイス用外装材の一実施形態を示す断面図である。 本発明に係る蓄電デバイス用外装材の他の実施形態を示す断面図である。 本発明に係る蓄電デバイスの一実施形態を示す断面図である。 図3の蓄電デバイスを構成する外装材(平面状のもの)、蓄電デバイス本体部及び外装ケース(立体形状に成形された成形体)をヒートシールする前の分離した状態で示す斜視図である。
 本発明に係る蓄電デバイス用外装材1の一実施形態を図1に示す。この外装材1は、リチウムイオン2次電池等の電池用外装材として用いられるものである。前記外装材1は、成形を施されることなくそのまま外装材1として使用されてもよいし(図4参照)、例えば、深絞り成形、張り出し成形等の成形に供されて成形ケース10として使用されてもよい(図4参照)。
 前記蓄電デバイス用外装材1は、金属箔層4の一方の面(上面)に外側接着剤層(第1接着剤層)5を介して耐熱性樹脂層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に内側接着剤層(第2接着剤層)6を介して熱融着性樹脂層(内側層)3が積層一体化された構成である(図1参照)。
 本発明に係る蓄電デバイス用外装材1の他の実施形態を図2に示す。この外装材1は、金属箔層4の一方の面(上面)に外側接着剤層(第1接着剤層)5を介して耐熱性樹脂層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に内側接着剤層(第2接着剤層)6を介して熱融着性樹脂層(内側層)3が積層一体化された構成からなり、さらに前記耐熱性樹脂層(外側層)2の下面に易接着層8が積層され、該易接着層8の下面に前記外側接着剤層(第1接着剤層)5が積層されている。即ち、耐熱性樹脂層(外側層)2/易接着層8/外側接着剤層5/金属箔層4/内側接着剤層6/熱融着性樹脂層(内側層)3の積層構造になっている(図2参照)。本実施形態では、前記耐熱性樹脂層2の下面にグラビアコート法により易接着層8が積層されている。
 本発明において、前記外側層2は、耐熱性樹脂層で形成されている。前記耐熱性樹脂層2を構成する耐熱性樹脂としては、外装材1をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱融着性樹脂層3を構成する熱融着性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱融着性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。
 前記耐熱性樹脂層(外側層)2は、外装材1として良好な成形性を確保する役割を主に担う部材である、即ち成形時のアルミニウム箔のネッキングによる破断を防止する役割を主に担うものである。
 本発明において、前記耐熱性樹脂層2は、熱水収縮率が1.5%~12%の耐熱性樹脂フィルムにより構成される必要がある。熱水収縮率が1.5%未満では、成形時に割れやクラックが発生しやすいという問題を生じる。一方、熱水収縮率が12%を超えると、外側層2と金属箔層4の間でデラミネーション(剥離)が発生しやすい。中でも、前記耐熱性樹脂フィルムとして、熱水収縮率が1.8~11%の耐熱性樹脂フィルムを用いるのが好ましい。更に、熱水収縮率が1.8%~6%の耐熱性樹脂フィルムを用いるのがより好ましい。前記耐熱性樹脂フィルムとしては、耐熱性樹脂延伸フィルムを用いるのが好ましい。
 なお、前記「熱水収縮率」とは、耐熱性樹脂延伸フィルム2の試験片(10cm×10cm)を95℃の熱水中に30分間浸漬した際の浸漬前後の試験片の延伸方向における寸法変化率であり、次式で求められる。
   熱水収縮率(%)={(X-Y)/X}×100
   X:浸漬処理前の延伸方向の寸法
   Y:浸漬処理後の延伸方向の寸法。
 なお、2軸延伸フィルムを採用する場合におけるその熱水収縮率は、2つの延伸方向における寸法変化率の平均値である。
 前記耐熱性樹脂延伸フィルムの熱水収縮率は、例えば、延伸加工時の熱固定温度を調整することにより制御することができる。
 前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、延伸ナイロンフィルム等の延伸ポリアミドフィルム、延伸ポリエステルフィルム等が挙げられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムであって、いずれも熱水収縮率が1.5%~12%であるものを用いるのが特に好ましい。また、前記耐熱性樹脂層2としては、同時2軸延伸法により延伸された耐熱性樹脂2軸延伸フィルムを用いるのが好ましい。前記ナイロンとしては、特に限定されるものではないが、例えば、6ナイロン、6,6ナイロン、MXDナイロン等が挙げられる。なお、前記耐熱性樹脂フィルム層2は、単層(単一の延伸フィルム)で形成されていても良いし、或いは、例えば延伸ポリエステルフィルム/延伸ポリアミドフィルムからなる複層(延伸PETフィルム/延伸ナイロンフィルムからなる複層等)で形成されていても良い。
 前記耐熱性樹脂層2の厚さは、12μm~50μmであるのが好ましい。上記好適下限値以上に設定することで外装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形時や絞り成形時の応力を小さくできて成形性を向上させることができる。
 前記耐熱性樹脂層2の内面(金属箔層4側の面)には、易接着層8を積層するのが好ましい。耐熱性樹脂層2の内面(金属箔層4側の面)に、粘着性、接着性に優れる極性樹脂等をコートして易接着層8を積層することによって、前記外側接着剤層5との密着性、接着性を向上させることができ、これにより耐熱性樹脂層2と金属箔層4との密着性、接着性を向上させることができる。なお、前記耐熱性樹脂層2の内面(易接着層8を積層する面)には、易接着層8を積層する前に予めコロナ処理等を行って濡れ性を高めておくのが好ましい。
  前記易接着層8の形成方法は、特に限定されないが、例えば、耐熱性樹脂フィルム2の表面に、エポキシ樹脂、ウレタン樹脂、アクリル酸エステル樹脂、メタアクリル酸エステル樹脂及びポリエチレンイミン樹脂からなる群より選ばれる1種または2種以上の樹脂の水性エマルジョン(水系エマルジョン)を塗布して乾燥させることによって易接着層8を形成することができる。前記塗布方法としては、特に限定されるものではないが、例えば、スプレーコート法、グラビアロールコート法、リバースロールコート法、リップコート法等が挙げられる。
 しかして、前記易接着層8は、エポキシ樹脂、ウレタン樹脂、アクリル酸エステル樹脂、メタアクリル酸エステル樹脂及びポリエチレンイミン樹脂からなる群より選ばれる1種または2種以上の樹脂を含有してなる構成であるのが好ましい。このような構成を採用することにより、耐熱性樹脂層2と外側接着剤層5との接着力をより向上させることができて、この包装材に深絞り成形、張り出し成形等の成形を行った時、封止のために包装材をヒートシールした時に、外側層(耐熱性樹脂層)2と金属箔層4の間にデラミネーション(剥離)が生じるのを十分に防止できると共に、包装材1が高温多湿等の苛酷な環境下で使用された時であっても、外側層(耐熱性樹脂層)2と金属箔層4の間にデラミネーション(剥離)が生じるのを十分に防止できる。
 中でも、前記易接着層8は、ウレタン樹脂及びエポキシ樹脂を含有してなる構成、又は、(メタ)アクリル酸エステル樹脂及びエポキシ樹脂を含有してなる構成であるのが特に好ましい。この場合には、外側層(耐熱性樹脂層)2と金属箔層4の間にデラミネーションが生じるのをより一層十分に抑止することができる。
 上記前者の構成を採用する場合において、易接着層8におけるウレタン樹脂/エポキシ樹脂の含有質量比は98/2~40/60の範囲であるのが好ましく、この場合には耐熱性樹脂層2と外側接着剤層5との接着力をさらに向上させることができる。前記ウレタン樹脂/エポキシ樹脂の含有質量比(98/2)よりもウレタン樹脂の含有比率が大きくなると、架橋度が不足して、耐溶剤性、接着力が十分に得られ難くなるので、好ましくない。一方、前記ウレタン樹脂/エポキシ樹脂の含有質量比(40/60)よりもウレタン樹脂の含有比率が小さくなると、架橋が完了するまでの時間がかかり過ぎるので、好ましくない。中でも、易接着層8におけるウレタン樹脂/エポキシ樹脂の含有質量比は90/10~50/50の範囲であるのがより好ましい。
 また、上記後者の構成を採用する場合において、易接着層8における(メタ)アクリル酸エステル樹脂/エポキシ樹脂の含有質量比は98/2~40/60の範囲であるのが好ましく、この場合には耐熱性樹脂層2と外側接着剤層5との接着力をさらに向上させることができる。前記(メタ)アクリル酸エステル樹脂/エポキシ樹脂の含有質量比(98/2)よりも(メタ)アクリル酸エステル樹脂の含有比率が大きくなると、架橋度が不足して、耐溶剤性、接着力が十分に得られ難くなるので、好ましくない。一方、前記(メタ)アクリル酸エステル樹脂/エポキシ樹脂の含有質量比(40/60)よりも(メタ)アクリル酸エステル樹脂の含有比率が小さくなると、架橋が完了するまでの時間がかかり過ぎるので、好ましくない。中でも、易接着層8における(メタ)アクリル酸エステル樹脂/エポキシ樹脂の含有質量比は90/10~50/50の範囲であるのがより好ましい。
 前記易接着層8を形成するための前記樹脂水性エマルジョン(樹脂-水系エマルジョン)には、グリコール類、グリコールのエチレンオキサイド付加物等の界面活性剤を添加してもよく、この場合には樹脂水性エマルジョンにおいて十分な消泡効果を得ることができるので、表面平滑性に優れた易接着層8を形成できる。前記界面活性剤は、前記樹脂水性エマルジョン中に0.01質量%~2.0質量%含有せしめるのが好ましい。
  また、前記易接着層8を形成するための前記樹脂水性エマルジョン(樹脂-水系エマルジョン)には、シリカ、コロイダルシリカ等の無機微粒子を含有させるのが好ましく、この場合にはブロッキング防止効果を得ることができる。前記無機微粒子は、前記樹脂分100質量部に対して0.1質量部~10質量部添加するのが好ましい。
  前記易接着層8の形成量(乾燥後の固形分量)は、0.01g/m2~0.5g/m2の範囲であるのが好ましい。0.01g/m2以上であることで、耐熱性樹脂層2と外側接着剤層5とを十分に接着できるし、0.5g/m2以下であることでコストを低減できて経済的である。
 前記易接着層(乾燥後)8における前記樹脂の含有率は、88質量%~99.9質量%であるのが好ましい。
 本発明において、前記外側接着剤層(第1接着剤層)5は、電子線硬化性樹脂組成物の硬化膜からなる接着剤で形成される。
  前記電子線硬化性樹脂組成物は、アクリレート樹脂と、光ラジカル重合開始剤と、を含有する組成であるのが好ましい。この場合には、電子線硬化の時間がより短縮化され得てリードタイムをさらに短縮できる。
 前記アクリレート樹脂としては、特に限定されるものではないが、例えば、ウレタンアクリレート樹脂、エポキシアクリレート樹脂及びポリエステルアクリレート樹脂からなる群より選ばれる少なくとも1種の樹脂を用いるのが好ましい。
 前記光ラジカル重合開始剤としては、特に限定されるものではないが、例えば、ベンゾフェノン、ベンゾインアルキルエーテル(ベンゾエチルエーテル、ベンゾブチルエーテル等)、ベンジルジメチルケタール等が挙げられる。
  前記電子線硬化性樹脂組成物は、前記アクリレート樹脂および前記光ラジカル重合開始剤に加えて、さらに、シランカップリング剤、酸無水物およびリン酸含有(メタ)アクリレートからなる群より選ばれる1種又は2種以上の化合物を含有するのが好ましい。
  前記シランカップリング剤としては、特に限定されるものではないが、例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、3-(メタクリロイルオキシ)プロピルトリメトキシシラン等が挙げられる。中でも、前記シランカップリング剤としては、ビニルトリエトキシシラン、アリルトリメトキシシラン等の炭素-炭素二重結合を有するシランカップリング剤を用いるのが好ましく、この場合には特にラジカル重合反応を利用する接着剤との結合を強化させることができる(外側接着剤層5の接着強度を向上できる)。
 前記酸無水物としては、特に限定されるものではないが、例えば、無水マレイン酸、メチル無水マレイン酸、無水イタコン酸、無水ハイミック酸、無水メチルハイミック酸等が挙げられる。中でも、前記酸無水物としては、無水マレイン酸等の炭素-炭素二重結合を有する酸無水物を用いるのが好ましく、このような二重結合を有する酸無水物によりラジカル重合反応をより促進させることができる。
 前記リン酸含有(メタ)アクリレート(モノマー)としては、特に限定されるものではないが、例えば、アクリロイルオキシエチルアシッドホスフェート、ビス(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート等のモノマーが挙げられる。
  前記電子線硬化性樹脂組成物は、さらに、エポキシ樹脂、オキセタン樹脂およびビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂を含有するのが好ましい。このような樹脂を含有した組成とすることにより、デラミネーションをより十分に防止できる。
 また、前記エポキシ樹脂、オキセタン樹脂およびビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂を含有させる場合には同時に光カチオン重合開始剤を含有せしめるのが好ましい。同時に光カチオン重合開始剤を含有せしめることにより、デラミネーションをより一層十分に防止できる。前記光カチオン重合開始剤としては、特に限定されるものではないが、例えば、オニウム塩等が挙げられる。前記オニウム塩としては、特に限定されるものではないが、例えば、スルホニウム塩、ヨードニウム塩、ブロモニウム塩、ジアゾニウム塩、クロロニウム塩等が挙げられる。
 前記スルホニウム塩としては、特に限定されるものではないが、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド-ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、4-(p-ter-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-(p-ter-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド-テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムブロミド等が挙げられる。
 前記ヨードニウム塩としては、特に限定されるものではないが、例えば、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート等が挙げられる。
 中でも、前記電子線硬化性樹脂組成物は、
a)アクリレート樹脂と、
b)光ラジカル重合開始剤と、
c)酸無水物と、
d)シランカップリング剤と、
e)リン酸含有(メタ)アクリレートと、
f)エポキシ樹脂、オキセタン樹脂およびビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂と、
g)光カチオン重合開始剤と、
を含有する組成であるのが特に好ましい。この電子線硬化性樹脂組成物において、前記アクリレート樹脂の含有率が50質量%~98質量%、前記シランカップリング剤の含有率が0.1質量%~5質量%、前記酸無水物の含有率が0.1質量%~5質量%、前記リン酸含有(メタ)アクリレートの含有率が0.1質量%~10質量%、前記光ラジカル重合開始剤の含有率が0.1質量%~5質量%、エポキシ樹脂、オキセタン樹脂およびビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂の含有率が1質量%~20質量%、前記光カチオン重合開始剤の含有率が0.5質量%~5質量%であるのが望ましい。
 前記外側接着剤層(第1接着剤層)5の厚さ(乾燥後の厚さ)は、1μm~6μmに設定されるのが好ましい。
 前記外側接着剤層5を構成する電子線硬化性樹脂組成物の硬化膜のヤング率は90MPa~400MPaの範囲であるのが好ましい。ヤング率が90MPa以上であることで、外側接着剤層5の耐熱性を向上させることができるし、成形深さの深い成形を行っても、外側層2と金属箔層4の間でデラミネーション(剥離)が発生するのを十分に防止できると共に、ヤング率が400MPa以下であることで、前記硬化膜の密着力を十分に向上させることができて高温環境下でのラミネート強度も十分に向上させることができる。中でも、前記外側接着剤層5を構成する硬化膜のヤング率は140MPa~300MPaの範囲であるのが特に好ましい。なお、前記ヤング率は、JIS K7127-1999に準拠して測定されるヤング率である。
 本発明において、前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔等が挙げられ、アルミニウム箔が一般的に用いられる。前記金属箔層4の厚さは、9μm~120μmであるのが好ましい。9μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、120μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記金属箔層4の厚さは、20μm~100μmであるのが特に好ましい。
 前記金属箔層4は、少なくとも内側の面(内側接着剤層6側の面)に、化成処理が施されているのが好ましい。このような化成処理が施されていることで内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
 クロム酸と、
 フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
 アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
 クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
 アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
 クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
 フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
 上記1)~3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。
 前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2~50mg/m2が好ましく、特に2mg/m2~20mg/m2が好ましい。
 前記熱融着性樹脂層(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液等に対しても優れた耐薬品性を具備させるとともに、外装材にヒートシール性を付与する役割を担うものである。
 前記熱融着性樹脂層3を構成する樹脂としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、アイオノマー、エチレンアクリル酸エチル(EEA)、エチレンアクリル酸メチル(EAA)、エチレンメタクリル酸メチル樹脂(EMMA)、エチレン-酢酸ビニル共重合樹脂(EVA)、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン等が挙げられる。
 前記熱融着性樹脂層3の厚さは、15μm~30μmに設定されるのが好ましい。15μm以上とすることで十分なヒートシール強度を確保できるとともに、30μm以下に設定することで薄膜化、軽量化に資する。前記熱融着性樹脂層3は、熱融着性樹脂未延伸フィルム層で形成されているのが好ましく、前記熱融着性樹脂層3は、単層であっても良いし、複層であっても良い。
 前記内側接着剤層(第2接着剤層)6としては、特に限定されるものではないが、例えば、硬化型接着剤を用いるのが好ましい。前記硬化型接着剤としては、例えば、熱硬化型アクリル接着剤、熱硬化型酸変性ポリプロピレン接着剤、熱硬化型ポリウレタン系接着剤等が挙げられる。中でも、熱硬化型アクリル接着剤を用いるのが好ましく、この場合には硬化促進のための加熱エージング処理温度を低くできる(例えば40℃)利点があり、このように低くできることにより加熱エージング処理による熱融着性樹脂層3の白粉発生を十分に防止できるという有利な効果が得られる。前記内側接着剤層6の厚さ(乾燥後の厚さ)は、1μm~4μmに設定されるのが好ましい。
 本発明の蓄電デバイス用外装材1を成形(深絞り成形、張り出し成形等)することにより、蓄電デバイス用外装ケース10を得ることができる(図4参照)。なお、本発明の外装材1は、成形に供されずにそのまま使用することもできる(図4参照)。
 本発明の外装材1を用いて構成された蓄電デバイス30の一実施形態を図3に示す。この蓄電デバイス30は、リチウムイオン2次電池である。本実施形態では、図3、4に示すように、外装材1を成形して得られたケース10と、成形に供されなかった平面状の外装材1とにより、外装部材15が構成されている。しかして、本発明の外装材1を成形して得られた成形ケース10の収容凹部内に、略直方体形状の蓄電デバイス本体部(電気化学素子等)31が収容され、該蓄電デバイス本体部31の上に、本発明の外装材1が成形されることなくその内側層3側を内方(下側)にして配置され、該平面状外装材1の内側層3の周縁部と、前記外装ケース10のフランジ部(封止用周縁部)29の内側層3とがヒートシールによりシール接合されて封止されることによって、本発明の蓄電デバイス30が構成されている(図3、4参照)。なお、前記外装ケース10の収容凹部の内側の表面は、内側層(熱融着性樹脂層)3になっており、収容凹部の外面が外側層(耐熱性樹脂層)2になっている(図4参照)。
 図3において、39は、前記外装材1の周縁部と、前記外装ケース10のフランジ部(封止用周縁部)29とが接合(融着)されたヒートシール部である。なお、前記蓄電デバイス30において、蓄電デバイス本体部31に接続されたタブリードの先端部が、外装部材15の外部に導出されているが、図示は省略している。
 前記蓄電デバイス本体部31としては、特に限定されるものではないが、例えば、電池本体部、キャパシタ本体部、コンデンサ本体部等が挙げられる。
 前記ヒートシール部39の幅は、0.5mm以上に設定するのが好ましい。0.5mm以上とすることで封止を確実に行うことができる。中でも、前記ヒートシール部39の幅は、3mm~15mmに設定するのが好ましい。
 上記実施形態では、外装部材15が、外装材1を成形して得られた外装ケース10と、平面状の外装材1と、からなる構成であったが(図3、4参照)、特にこのような組み合わせに限定されるものではなく、例えば、外装部材15が、一対の外装材1からなる構成であってもよいし、或いは、一対の外装ケース10からなる構成であってもよい。
 次に、本発明に係る、蓄電デバイス用外装材の製造方法の好適例について説明する。まず、金属箔層4の一方の面に、前記電子線硬化性樹脂組成物を介して、熱水収縮率が1.5%~12%である耐熱性樹脂フィルム2が接着された第1積層体を準備する(第1準備工程)。
 次に、前記第1積層体に対して前記耐熱性樹脂フィルム側から電子線を照射して、前記電子線硬化性樹脂組成物を硬化させる(硬化工程)。前記電子線としては、例えば、紫外光、可視光、X線、γ線等が挙げられる。前記紫外光、可視光を照射する場合において、その照射光量は、特に限定されないが、50mJ/cm2~1000mJ/cm2に設定するのが好ましい。
 次に、前記硬化工程を経た第1積層体の金属箔層4の他方の面に、熱硬化性接着剤を介して熱融着性樹脂フィルム3が接着された第2積層体を準備する(第2準備工程)。前記熱硬化性接着剤としては、特に限定されるものではないが、例えば、熱硬化性アクリル接着剤、熱硬化性ポリプロピレン接着剤、熱硬化性ポリウレタン接着剤等が挙げられる。
  次いで、前記第2積層体に加熱処理を行うことによって、熱硬化性接着剤を硬化させる(エージング処理工程)。前記エージング処理工程を経て、本発明の蓄電デバイス用外装材1を得ることができる。前記加熱処理は35℃~45℃で行うのが好ましい。また、前記加熱処理(加熱エージング処理)の時間は、特に限定されるものではないが、例えば熱硬化性接着剤として熱硬化性アクリル接着剤を用いる場合には前記加熱処理は3日間~15日間行うのが好ましい。
 なお、上記製造方法は、好適例を示したものに過ぎず、本発明の蓄電デバイス用外装材1は、上記製造方法で製造されたものに限定されるものではない。
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
 <実施例1>
 厚さ35μmのアルミニウム箔(JIS H4160に規定されるA8079のアルミニウム箔)4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
  次に、前記化成処理済みアルミニウム箔4の一方の面に、アクリロイル基を2つ有するウレタンアクリレート樹脂95質量部、ベンゾフェノン5質量部を含有する光硬化性樹脂組成物(外側接着剤)を乾燥後の質量が4g/m2になるように塗布した。
 一方、熱水収縮率が2.0%であり、厚さが15μmの2軸延伸ポリアミドフィルム2の片面に、ウレタン樹脂70質量部、エポキシ樹脂30質量部が混合されてなる樹脂をスプレーコート法により塗布した後、乾燥させることによって厚さ0.05μmの易接着層8を形成し、易接着層8付き2軸延伸ポリアミドフィルム2を得た。前記熱水収縮率が2.0%の2軸延伸ポリアミドフィルム2は、ポリアミドフィルムを2軸延伸加工する際の熱固定温度を214℃に設定することにより得た。
  前記アルミニウム箔4の一方の面の外側接着剤塗布面に、上記易接着層8付きポリアミドフィルム2の易接着層側の面を重ね合わせて貼り合わせて第1積層体を得た。この第1積層体に対してポリアミドフィルム2面から300mJ/cm2の紫外線を照射することによって光硬化性樹脂組成物を光硬化させて硬化膜(外側接着剤層5)を形成した。
 次に、前記第1積層体のアルミニウム箔4の他方の面に、熱硬化型酸変性ポリプロピレン接着剤からなる内側接着剤を乾燥後の質量が2.5g/m2になるように塗布した後、該内側接着剤塗布面に、厚さ30μmの未延伸ポリプロピレンフィルム3を貼り合わせることによって、第2積層体を得た。
  前記第2積層体を40℃環境下に9日間静置して加熱エージング処理を行うことにより、熱硬化型内側接着剤を硬化させて、内側接着剤層6を形成せしめて、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例2>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂90質量部、ベンゾフェノン0.2質量部、無水マレイン酸5質量部、メチルトリメトキシシラン5質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例3>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂94質量部、ベンゾフェノン5質量部、無水マレイン酸0.2質量部、メチルトリメトキシシラン0.2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例4>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂91質量部、ベンゾフェノン3質量部、無水マレイン酸3質量部、メチルトリメトキシシラン3質量部、アクリロイルオキシエチルアシッドホスフェート0.3質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例5>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂90質量部、ベンゾフェノン0.2質量部、無水マレイン酸0.2質量部、メチルトリメトキシシラン0.2質量部、アクリロイルオキシエチルアシッドホスフェート10質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例6>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂90質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂2質量部、トリフェニルスルホニウムヘキサフルオロホスフェート(スルホニウム塩)0.5質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例7>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例8>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂70質量部、ベンゾフェノン1質量部、無水マレイン酸1質量部、メチルトリメトキシシラン1質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂20質量部、トリフェニルスルホニウムヘキサフルオロホスフェート5質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例9>
  前記2軸延伸ポリアミドフィルム2として、熱水収縮率が5.0%である2軸延伸ポリアミドフィルムを用いた以外は、実施例7と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。前記熱水収縮率が5.0%の2軸延伸ポリアミドフィルムは、ポリアミドフィルムを2軸延伸加工する際の熱固定温度を191℃に設定することにより得た。
 <実施例10>
  前記2軸延伸ポリアミドフィルム2として、熱水収縮率が10.0%である2軸延伸ポリアミドフィルムを用いた以外は、実施例7と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。前記熱水収縮率が10.0%の2軸延伸ポリアミドフィルムは、ポリアミドフィルムを2軸延伸加工する際の熱固定温度を160℃に設定することにより得た。
 <実施例11>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するエポキシアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例12>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するポリエステルアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例13>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾインエチルエーテル2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例14>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンジルジメチルケタール2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例15>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、オキセタン樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例16>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、ビニルエーテル樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例17>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、ジフェニルヨードニウムヘキサフルオロホスフェート(ヨードニウム塩)2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例18>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水イタコン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、オキセタン樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例19>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水ハイミック酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例20>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、ビニルトリエトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、オキセタン樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例21>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、アリルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例22>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、ビス(2-メタアクリロイルオキシエチル)アシッドホスフェート2質量部、エポキシ樹脂8質量部、トリフェニルスルホニウムヘキサフルオロホスフェート2質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例23>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂99質量部、ベンゾフェノン1質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例24>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂45質量部、ベンゾフェノン5質量部、無水マレイン酸3質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート20質量部、エポキシ樹脂20質量部、トリフェニルスルホニウムヘキサフルオロホスフェート5質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例25>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂54質量部、ベンゾフェノン1質量部、無水マレイン酸1質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート2質量部、エポキシ樹脂30質量部、トリフェニルスルホニウムヘキサフルオロホスフェート8質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例26>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂82質量部、ベンゾフェノン2質量部、無水マレイン酸8質量部、メチルトリメトキシシラン8質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例27>
  光硬化性樹脂組成物(外側接着剤)として、アクリロイル基を2つ有するウレタンアクリレート樹脂79質量部、ベンゾフェノン2質量部、無水マレイン酸2質量部、メチルトリメトキシシラン2質量部、アクリロイルオキシエチルアシッドホスフェート15質量部を含有する光硬化性樹脂組成物を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
 <実施例28>
  易接着層8を設けないものとした以外は、実施例7と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。
 <比較例1>
  前記2軸延伸ポリアミドフィルム2として、熱水収縮率が1.0%である2軸延伸ポリアミドフィルムを用いた以外は、実施例7と同様にして、蓄電デバイス用外装材を得た。前記熱水収縮率が1.0%の2軸延伸ポリアミドフィルムは、ポリアミドフィルムを2軸延伸加工する際の熱固定温度を221℃に設定することにより得た。
 <比較例2>
  前記2軸延伸ポリアミドフィルム2として、熱水収縮率が15.0%である2軸延伸ポリアミドフィルムを用いた以外は、実施例7と同様にして、蓄電デバイス用外装材を得た。前記熱水収縮率が15.0%の2軸延伸ポリアミドフィルムは、ポリアミドフィルムを2軸延伸加工する際の熱固定温度を135℃に設定することにより得た。
 <比較例3>
 厚さ35μmのアルミニウム箔(JIS H4160に規定されるA8079のアルミニウム箔)4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
  次に、前記化成処理済みアルミニウム箔4の一方の面に、酸変性ポリオレフィン樹脂80質量部、ポリイソシアネート20質量部を含有する熱硬化型接着剤(外側接着剤)を乾燥後の質量が4g/m2になるように塗布した。
 一方、熱水収縮率が2.0%であり、厚さが15μmの2軸延伸ポリアミドフィルム2の片面に、ウレタン樹脂70質量部、エポキシ樹脂30質量部が混合されてなる樹脂をスプレーコート法により塗布した後、乾燥させることによって厚さ0.05μmの易接着層8を形成し、易接着層8付き2軸延伸ポリアミドフィルム2を得た。前記熱水収縮率が2.0%の2軸延伸ポリアミドフィルム2は、ポリアミドフィルムを2軸延伸加工する際の熱固定温度を214℃に設定することにより得た。
  前記アルミニウム箔4の一方の面の外側接着剤塗布面に、上記易接着層8付きポリアミドフィルム2の易接着層側の面を重ね合わせて貼り合わせて第1積層体を得た。この第1積層体を60℃環境下に9日間静置して加熱エージング処理を行って、外側接着剤を硬化させた。
 次に、加熱エージング処理した後の第1積層体のアルミニウム箔4の他方の面に、熱硬化型酸変性ポリプロピレン接着剤からなる内側接着剤を乾燥後の質量が2.5g/m2になるように塗布した後、該内側接着剤塗布面に、厚さ30μmの未延伸ポリプロピレンフィルム3を貼り合わせることによって、第2積層体を得た。
  前記第2積層体を40℃環境下に9日間静置して加熱エージング処理を行うことにより、熱硬化型内側接着剤を硬化させて、内側接着剤層6を形成せしめて、蓄電デバイス用外装材を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、表1~4において、アクリロイルオキシエチルアシッドホスフェートを「リン酸アクリレートX」と表記し、ビス(2-メタアクリロイルオキシエチル)アシッドホスフェートを「リン酸アクリレートY」と表記し、トリフェニルスルホニウムヘキサフルオロホスフェートを「スルホニウム塩V」と表記し、ジフェニルヨードニウムヘキサフルオロホスフェートを「ヨードニウム塩W」と表記している。
 また、表1~4において、光硬化性樹脂組成物の欄で、「A」はアクリレート樹脂を意味し、「B」は光ラジカル重合開始剤を意味し、「C」は酸無水物を意味し、「D」はシランカップリング剤を意味し、「E」はリン酸含有(メタ)アクリレートを意味し、「F」はエポキシ樹脂、オキセタン樹脂又はビニルエーテル樹脂を意味し、「G」は光カチオン重合開始剤を意味する。
 上記のようにして得られた各蓄電デバイス用外装材について、下記測定法、評価法に基づいて評価を行った。
 <ヤング率測定法>
  実施例、比較例で使用した各外側接着剤(光硬化性樹脂組成物)を光硬化させた硬化膜のヤング率(MPa)をJIS K7127-1999に準拠して測定した。具体的には、各外側接着剤(光硬化性樹脂組成物)をガラス板の上に50μmの厚さで塗布した後、300mJ/cm2の紫外線を照射することによって光硬化性樹脂組成物を光硬化させて厚さ46μmの硬化膜を得た。前記硬化膜をガラス板から剥がした後、幅15mm×長さ100mmの大きさに切り出して試験片を作製し、島津製作所製ストログラフ(AGS-5kNX)を使用して引張速度200mm/分で前記試験片の引張試験を行ってヤング率(MPa)を測定した。
 <成形性評価法>
 株式会社アマダ製の深絞り成形具を用いて外装材に対して縦55mm×横35mm×各深さの略直方体形状(1つの面が開放された略直方体形状)に深絞り成形を行い、即ち成形深さを変えて深絞り成形を行い、得られた成形体におけるコーナー部におけるピンホール及び割れの有無を調べ、このようなピンホール及び割れが発生しない「最大成形深さ(mm)」を調べ、下記判定基準に基づいて評価した。なお、ピンホールや割れの有無は、暗室にて光透過法で調べた。
(判定基準)
「○」…ピンホール及び割れが発生しない最大成形深さが5mm以上である(合格)
「△」…ピンホール及び割れが発生しない最大成形深さが4mm以上5mm未満である(合格)
「×」…ピンホール及び割れが発生しない最大成形深さが4mm未満である(不合格)。
 <シール性評価法>(成形深さの深い成形を行った場合のデラミネーション発生の有無の評価)
  成形深さの深い成形として、上記深絞り成形具を用いて外装材に対して縦55mm×横35mm×5mmの略直方体形状(1つの面が開放された略直方体形状)に深絞り成形を行った。この時、耐熱性樹脂層2が成形体の外側になるように成形を行った。各実施例、各比較例毎にそれぞれ2個の成形体を作製し、2個の成形体10のフランジ部(封止用周縁部;図4参照)29同士を接触させて重ね合わせて170℃×6秒間ヒートシールを行った後、目視観察によりヒートシール部39におけるデラミネーション(剥離)発生の有無および外観の浮きの有無を調べ、下記判定基準に基づいて評価した。
(判定基準)
「○」…デラミネーション(剥離)が認められず、且つ外観の浮きも認められなかった(合格)
「△」…僅かなデラミネーション(剥離)が稀に発生することがあるが、実質的にはデラミネーション(剥離)が無く、且つ外観の浮きもなかった(合格)
「×」…デラミネーション(剥離)が発生しており、外観の浮きもあった(不合格)。
 <耐熱水性評価法>(高温多湿等の苛酷な環境下で使用した場合のデラミネーション発生の有無の評価)
 上記深絞り成形具を用いて外装材に対して縦55mm×横35mm×5mmの略直方体形状(1つの面が開放された略直方体形状)に深絞り成形を行った。この時、耐熱性樹脂層2が成形体の外側になるように成形を行った。各実施例、各比較例毎にそれぞれ2個の成形体を作製し、2個の成形体10のフランジ部(封止用周縁部;図4参照)29同士を接触させて重ね合わせて170℃×6秒間ヒートシールを行い、次にヒートシール物を85℃の熱水中に240時間浸漬した後、取り出して、目視観察によりヒートシール部39におけるデラミネーション(剥離)発生の有無および外観の浮きの有無を調べ、下記判定基準に基づいて評価した。
(判定基準)
「○」…デラミネーション(剥離)が認められず、且つ外観の浮きも認められなかった(合格)
「△」…僅かなデラミネーション(剥離)が稀に発生することがあるが、実質的にはデラミネーション(剥離)が無く、且つ外観の浮きもなかった(合格)
「×」…デラミネーション(剥離)が発生しており、外観の浮きもあった(不合格)。
 <高温でのラミネート強度測定法>
  得られた外装材から幅15mm×長さ150mmの試験体を切り出し、この試験体の長さ方向の一端から10mm内方に入った位置までの領域においてアルミニウム箔と耐熱性樹脂層の間で剥離せしめた。
  JIS K6854-3(1999年)に準拠し、島津製作所製ストログラフ(AGS-5kNX)を使用して,一方のチャックでアルミニウム箔を含む積層体を挟着固定し、他方のチャックで前記剥離した耐熱性樹脂層を挟着固定し、120℃の温度環境下で1分間保持した後、そのまま120℃温度環境下で引張速度100mm/分でT型剥離させた時の剥離強度を測定し、この測定値が安定したところの値を「高温でのラミネート強度(N/15mm幅)」とした。測定結果を下記判定基準に基づいて評価した。
(判定基準)
「○」…ラミネート強度が「2.0N/15mm幅」以上であった(合格)
「△」…ラミネート強度が「1.5N/15mm幅」以上「2.0N/15mm幅」未満であった(合格)
「×」…ラミネート強度が「1.5N/15mm幅」未満であった(不合格)。
 表から明らかなように、本発明の実施例1~28の蓄電デバイス用外装材は、成形深さの深い成形を行ってもピンホールやクラックが発生せず優れた成形性を備えている上に、成形深さの深い成形を行ってもデラミネーション(剥離)を抑制できるし、高温においてもラミネート強度が大きく耐熱水性も良好であって高温多湿等の苛酷な環境下で使用してもデラミネーション(剥離)を防止できる。
 これに対し、本発明の特許請求の範囲の規定範囲を逸脱した比較例1~3では、少なくともいずれかの評価が「×」(劣っている)の評価であった。
 本発明に係る蓄電デバイス用外装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)等の蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材として用いられる。また、本発明に係る蓄電デバイスは、上記例示した蓄電デバイスの他、全固体電池も含む。
 本出願は、2016年6月24日付で出願された日本国特許出願特願2016-125294号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
 ここで用いられた用語及び説明は、本発明に係る実施形態を説明するために用いられたものであって、本発明はこれに限定されるものではない。本発明は、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。
1…蓄電デバイス用外装材
2…耐熱性樹脂層(外側層)
3…熱融着性樹脂層(内側層)
4…金属箔層
5…第1接着剤層(外側接着剤層)
6…第2接着剤層(内側接着剤層)
8…易接着層
10…ケース(成形ケース)
15…外装部材
30…蓄電デバイス
31…蓄電デバイス本体部

Claims (12)

  1.  外側層としての耐熱性樹脂層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む蓄電デバイス用外装材において、
      前記耐熱性樹脂層は、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムからなり、
      前記耐熱性樹脂層と前記金属箔層とが、電子線硬化性樹脂組成物の硬化膜からなる外側接着剤層を介して接着されていることを特徴とする蓄電デバイス用外装材。
  2.  前記電子線硬化性樹脂組成物は、アクリレート樹脂と、光ラジカル重合開始剤と、を含む請求項1に記載の蓄電デバイス用外装材。
  3.   前記電子線硬化性樹脂組成物は、さらに、シランカップリング剤、酸無水物およびリン酸含有(メタ)アクリレートからなる群より選ばれる1種または2種以上の化合物を含有する請求項2に記載の蓄電デバイス用外装材。
  4.   前記電子線硬化性樹脂組成物は、さらに、エポキシ樹脂、オキセタン樹脂およびビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂を含有する請求項2または3に記載の蓄電デバイス用外装材。
  5.   前記電子線硬化性樹脂組成物は、さらに、光カチオン重合開始剤を含有する請求項4に記載の蓄電デバイス用外装材。
  6.   前記電子線硬化性樹脂組成物は、アクリレート樹脂と、光ラジカル重合開始剤と、シランカップリング剤と、酸無水物と、リン酸含有(メタ)アクリレートと、エポキシ樹脂、オキセタン樹脂及びビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂と、光カチオン重合開始剤と、を含有する請求項1に記載の蓄電デバイス用外装材。
  7.   前記電子線硬化性樹脂組成物において、前記アクリレート樹脂の含有率が50質量%~98質量%、前記シランカップリング剤の含有率が0.1質量%~5質量%、前記酸無水物の含有率が0.1質量%~5質量%、リン酸含有(メタ)アクリレートの含有率が0.1質量%~10質量%、前記光ラジカル重合開始剤の含有率が0.1質量%~5質量%、エポキシ樹脂、オキセタン樹脂及びビニルエーテル樹脂からなる群より選ばれる1種または2種以上の樹脂の含有率が1質量%~20質量%、前記光カチオン重合開始剤の含有率が0.5質量%~5質量%である請求項6に記載の蓄電デバイス用外装材。
  8.   前記硬化膜のヤング率が90MPa~400MPaである請求項1~7のいずれか1項に記載の蓄電デバイス用外装材。
  9.   前記耐熱性樹脂層と前記外側接着剤層との間に易接着層が配置されている請求項1~8のいずれか1項に記載の蓄電デバイス用外装材。
  10.   請求項1~9のいずれか1項に記載の外装材の成形体からなる蓄電デバイス用外装ケース。
  11.  蓄電デバイス本体部と、
      請求項1~9のいずれか1項に記載の外装材及び/又は請求項10に記載の外装ケースからなる外装部材とを備え、
      前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
  12.   金属箔層の一方の面に、電子線硬化性樹脂組成物を介して、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムが接着された第1積層体を準備する工程と、
      前記第1積層体に対して前記耐熱性樹脂フィルム側から電子線を照射する工程と、
     前記電子線照射後の第1積層体の金属箔層の他方の面に、熱硬化性接着剤を介して熱融着性樹脂フィルムが接着された第2積層体を準備する工程と、
      前記第2積層体に加熱処理を行う工程と、を含むことを特徴とする蓄電デバイス用外装材の製造方法。
PCT/JP2017/016880 2016-06-24 2017-04-28 蓄電デバイス用外装材及び蓄電デバイス WO2017221553A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187027015A KR20180114171A (ko) 2016-06-24 2017-04-28 축전 디바이스용 외장재 및 축전 디바이스
CN202311030810.7A CN117096510A (zh) 2016-06-24 2017-04-28 蓄电装置用外包装材料及蓄电装置
KR1020207030534A KR20200123867A (ko) 2016-06-24 2017-04-28 축전 디바이스용 외장재 및 축전 디바이스
CN201780026877.XA CN109075271A (zh) 2016-06-24 2017-04-28 蓄电装置用外包装材料及蓄电装置
US16/312,765 US11731398B2 (en) 2016-06-24 2017-04-28 Exterior material for power storage device and power storage device
KR1020227020875A KR20220095245A (ko) 2016-06-24 2017-04-28 축전 디바이스용 외장재 및 축전 디바이스
DE112017003136.2T DE112017003136T5 (de) 2016-06-24 2017-04-28 Verpackungsmaterial für Energiespeicher-Vorrichtung und Energiespeicher-Vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016125294A JP6935991B2 (ja) 2016-06-24 2016-06-24 蓄電デバイス用外装材及び蓄電デバイス
JP2016-125294 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017221553A1 true WO2017221553A1 (ja) 2017-12-28

Family

ID=60784558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016880 WO2017221553A1 (ja) 2016-06-24 2017-04-28 蓄電デバイス用外装材及び蓄電デバイス

Country Status (7)

Country Link
US (1) US11731398B2 (ja)
JP (1) JP6935991B2 (ja)
KR (3) KR20200123867A (ja)
CN (2) CN117096510A (ja)
DE (1) DE112017003136T5 (ja)
TW (1) TWI759309B (ja)
WO (1) WO2017221553A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196945A (ja) * 2019-05-28 2020-12-10 Cdmインフラ環境株式会社 近赤外域のプラズモン吸収をもつナノ粒子の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033414B2 (ja) * 2017-09-14 2022-03-10 昭和電工パッケージング株式会社 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
KR102270874B1 (ko) * 2018-03-09 2021-07-01 주식회사 엘지에너지솔루션 리튬 이차 전지용 파우치 외장재 및 이를 포함하는 리튬 이차 전지
JP7126405B2 (ja) * 2018-08-23 2022-08-26 昭和電工パッケージング株式会社 蓄電デバイス用外装材および蓄電デバイス
KR102301027B1 (ko) 2020-01-14 2021-09-10 주식회사 럭스로보 모듈을 이용한 독자 참여형 전자책 시스템 및 동작 방법
KR20220040761A (ko) 2020-09-24 2022-03-31 삼성전자주식회사 전자장치 및 그 제어방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208518A1 (ja) * 2013-06-24 2014-12-31 大日本印刷株式会社 樹脂組成物
JP2015013935A (ja) * 2013-07-04 2015-01-22 ロックペイント株式会社 活性エネルギー線硬化型ラミネート接着剤樹脂組成物とその製造方法
JP2015044626A (ja) * 2013-07-29 2015-03-12 昭和電工パッケージング株式会社 包装材及び成形ケース

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320962A (ja) * 1989-04-25 1991-01-29 Matsushita Electric Ind Co Ltd 電池の製造法
JPH0322347A (ja) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd 電池の製造法
JP3567230B2 (ja) 1998-10-15 2004-09-22 昭和電工パッケージング株式会社 電池ケース用包材
US7892391B2 (en) * 2004-01-29 2011-02-22 E. I. Du Pont De Nemours And Company Compositions of ethylene/vinyl acetate copolymers for heat-sealable easy opening packaging
JP5519895B2 (ja) * 2005-05-27 2014-06-11 昭和電工パッケージング株式会社 電池ケース用包材及び電池用ケース
JP4380728B2 (ja) 2007-05-16 2009-12-09 ソニー株式会社 積層型包装材料、電池用外装部材および電池
JP2012216509A (ja) * 2011-03-29 2012-11-08 Toray Advanced Film Co Ltd 二次電池外装材用アルミニウム箔積層シートおよび二次電池外装材
JP2013087152A (ja) * 2011-10-14 2013-05-13 Mitsubishi Chemicals Corp 樹脂組成物及び積層体ならびに電池用容器
TWI597162B (zh) * 2011-11-07 2017-09-01 凸版印刷股份有限公司 蓄電裝置用外裝材料
CN105619914B (zh) * 2011-11-11 2018-01-23 大日本印刷株式会社 电化学电池用包装材料
TWI488930B (zh) * 2012-03-12 2015-06-21 Lg Chemical Ltd 壓感性黏著組成物
JP5962346B2 (ja) * 2012-08-31 2016-08-03 大日本印刷株式会社 電池用包装材料
JP5267718B1 (ja) * 2012-11-01 2013-08-21 東洋インキScホールディングス株式会社 電池用包装材用ポリウレタン接着剤、電池用包装材、電池用容器および電池
US10562266B2 (en) * 2013-02-07 2020-02-18 Mitsui Chemicals, Inc. Adhesive, laminate, cell case packaging, cell, high-alkali solution packaging, alcohol-containing solution packaging, and package
JP6230460B2 (ja) 2013-06-17 2017-11-15 昭和電工パッケージング株式会社 成形用包装材
US10033021B2 (en) * 2013-09-20 2018-07-24 Dai Nippon Printing Co., Ltd. Packaging material for cell
WO2015045887A1 (ja) * 2013-09-24 2015-04-02 凸版印刷株式会社 蓄電デバイス用外装材
JP6390127B2 (ja) * 2014-03-14 2018-09-19 凸版印刷株式会社 蓄電デバイス用外装材
JP2016125294A (ja) 2015-01-06 2016-07-11 三菱重工業株式会社 飛来物防護設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208518A1 (ja) * 2013-06-24 2014-12-31 大日本印刷株式会社 樹脂組成物
JP2015013935A (ja) * 2013-07-04 2015-01-22 ロックペイント株式会社 活性エネルギー線硬化型ラミネート接着剤樹脂組成物とその製造方法
JP2015044626A (ja) * 2013-07-29 2015-03-12 昭和電工パッケージング株式会社 包装材及び成形ケース

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196945A (ja) * 2019-05-28 2020-12-10 Cdmインフラ環境株式会社 近赤外域のプラズモン吸収をもつナノ粒子の製造方法
JP7212370B2 (ja) 2019-05-28 2023-01-25 Cdmインフラ環境株式会社 近赤外域のプラズモン吸収をもつナノ粒子の製造方法

Also Published As

Publication number Publication date
CN117096510A (zh) 2023-11-21
KR20180114171A (ko) 2018-10-17
US11731398B2 (en) 2023-08-22
TWI759309B (zh) 2022-04-01
CN109075271A (zh) 2018-12-21
DE112017003136T5 (de) 2019-02-28
JP6935991B2 (ja) 2021-09-15
KR20200123867A (ko) 2020-10-30
TW201836193A (zh) 2018-10-01
JP2017228478A (ja) 2017-12-28
KR20220095245A (ko) 2022-07-06
US20190322076A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2017221553A1 (ja) 蓄電デバイス用外装材及び蓄電デバイス
KR101272542B1 (ko) 전지 외장용 적층체
WO2018061375A1 (ja) 包装材及びその製造方法
JP2017017014A (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP2017071414A (ja) 包装材、ケースおよび蓄電デバイス
JP6738164B2 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP5757119B2 (ja) 電池用外装材及び二次電池
JP6595634B2 (ja) 包装材及び成形ケース
JP7113699B2 (ja) 蓄電デバイス用外装材の製造方法
WO2017169028A1 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP7126405B2 (ja) 蓄電デバイス用外装材および蓄電デバイス
JP7226979B2 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP7142558B2 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP7257568B2 (ja) 蓄電デバイス用外装材
JP7303160B2 (ja) 蓄電デバイス用外装材の製造方法
KR20240096617A (ko) 축전 디바이스용 외장재 및 축전 디바이스
WO2018066196A1 (ja) 包装材の製造方法
JP6948776B2 (ja) 包装材の製造方法
JP2023093511A (ja) 蓄電デバイス用外装材
JP7361487B2 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP6137236B2 (ja) 電池用外装材及び二次電池
JP2022095541A (ja) 蓄電デバイス用外装材および蓄電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020187027015

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815024

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17815024

Country of ref document: EP

Kind code of ref document: A1