WO2017216826A1 - 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器 - Google Patents

透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器 Download PDF

Info

Publication number
WO2017216826A1
WO2017216826A1 PCT/JP2016/002927 JP2016002927W WO2017216826A1 WO 2017216826 A1 WO2017216826 A1 WO 2017216826A1 JP 2016002927 W JP2016002927 W JP 2016002927W WO 2017216826 A1 WO2017216826 A1 WO 2017216826A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
less
adhesive
barrier
Prior art date
Application number
PCT/JP2016/002927
Other languages
English (en)
French (fr)
Inventor
小林 玄明
初夫 松尾
Original Assignee
コダマ樹脂工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コダマ樹脂工業株式会社 filed Critical コダマ樹脂工業株式会社
Priority to PCT/JP2016/002927 priority Critical patent/WO2017216826A1/ja
Priority to KR1020197001661A priority patent/KR102191634B1/ko
Priority to JP2018522900A priority patent/JP6518839B2/ja
Priority to CN201680086859.6A priority patent/CN109328167B/zh
Publication of WO2017216826A1 publication Critical patent/WO2017216826A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Definitions

  • the present invention relates to a chemical-resistant blow-molded laminated container having excellent transparency and a small amount of impure particulate elution, and more specifically, excellent in chemical resistance and mechanical strength, for example, stored at 40 ° C. for 30 days.
  • This is a blow-molded (contained blow-molded) laminated container that has a very low elution amount (number / ml) of impure fine particles in chemicals and fragrances, etc. of 10 or less. Impurity particles with excellent transparency that can be used as an ultra-high-purity chemical container.
  • the present invention relates to a chemical resistant blow-molded laminated container with a small amount of elution.
  • a container made of a chemical resistant plastic such as a glass container or a sealer bottle (commercially available fragrance container) or a metal container coated with an inner surface is used as a container for storing chemicals or fragrances.
  • a glass container is inconvenient to handle because it is heavy, and may be broken by dropping.
  • a molded container made of polyethylene resin has the advantage that it is difficult to break during handling and is lightweight.
  • high-purity chemicals used for etching and cleaning in semiconductor manufacturing such as sulfuric acid, nitric acid, hydrogen peroxide water, and high-purity solvent-based resists and dilution solvents used for semiconductor processes and liquid crystal displays,
  • high-purity chemicals used for etching and cleaning in semiconductor manufacturing such as sulfuric acid, nitric acid, hydrogen peroxide water, and high-purity solvent-based resists and dilution solvents used for semiconductor processes and liquid crystal displays
  • methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, acetone, ethyl acetate, toluene, dimethylformamide, ethylene glycol acetate, methoxypropyl acetate, butyl cellosolve, etc. and used for pharmaceuticals such as sterilization, disinfection, and drug substance
  • High purity solvents such
  • the impure fine particles are leached from the resin composition forming the container into the chemical that is the content, and the degree to which the impure fine particles impair the content is indicated.
  • the degree of cleanness is that after forming a test container and storing ultrapure water in the test container for a certain period (30 days at 23 ° C.), the particle size is 0.2 ⁇ m or more in 1 ml of water stored in the resin container. Calculate how many fine particles there are.
  • Measuring apparatus A particle counter “KL-26” RION KL-26 manufactured by Rion Co., Ltd. is used.
  • Sample to be measured An ultrapure water filled in a molded container, stored at 23 ° C. for 30 days, and collected from a container left standing for 20 minutes in an upright state is used as a sample to be measured.
  • the particle counter Prior to measurement, the particle counter is purged with ultrapure water, and then the measuring device is washed twice with 25 ml of ultrapure water. 4). After washing, ultrapure water is injected into a 10 ml particle counter and the number of particles is measured.
  • This operation is performed twice to confirm that the number of particles of 0.2 ⁇ m or more is zero (A). 5.
  • the measuring device is washed twice with a 25 ml measuring sample. 6). After washing, 10 ml is injected into a particle counter from a container (bottle) filled with ultrapure water as a measurement sample, and the number of particles is measured. This operation is performed twice to obtain an average value (B) of the number of particles of 0.2 ⁇ m or more. 7).
  • the particle value in 1 ml is calculated from the measured value by the following formula.
  • Elution amount of impure fine particles of 2 ⁇ m or more is 5 or less, and elution amount of impure fine particles having a particle size of 0.2 ⁇ m or more in 1 ml of ultrapure water after 30 days storage at 40 ° C. ml) is required to be 10 or less.
  • Cans and sealer bottles with fluorine coating on the inner surface of metal cans are used on the market as containers used in the perfume field, but in the case of metal cans, there are problems of dents and rust. The problem of quality deterioration as a fragrance frequently occurs.
  • the weight average molecular weight of the raw material resin made of polyethylene or ethylene- ⁇ -olefin copolymer is in a certain range
  • the content of the light-shielding pigment and the dispersant in the resin composition is in a certain range
  • the resin composition A container molded from a resin composition composed of polyethylene or ethylene- ⁇ -olefin copolymer with a low molecular weight polymer and additive content less than a certain weight in the product is excellent in mechanical strength and easy to handle. It has been proposed as a light-shielding container for high-purity chemicals having a light-shielding property (see Patent Document 1), which is easy and has very little leaching of impure fine particles into stored and stored chemicals.
  • this container satisfies the cleanliness of less than 500 / ml according to the conventional measurement method, but does not become less than 5 / ml, and has an oxygen barrier property to prevent alteration of the contained liquid. There was a problem such as not having.
  • At least the inner surface of the resin is made of a resin of polyethylene or ethylene- ⁇ -olefin copolymer having a density of 940 to 970 Kg / m 3, and the neutralizing agent, antioxidant and light-resistant stabilizer in the resin are quantified by liquid chromatography.
  • the content is 0.01% by weight or less with respect to the total weight of the resin, and the resin has a weight average molecular weight of 120,000 to 260,000 as measured by gel permeation chromatography. Minute High purity solvent containers amount 1,000 of the polymer is less than 2.5% by weight relative to the total weight of the resin (see Patent Document 2) are proposed.
  • the high purity solvent container of Patent Document 2 satisfies the cleanliness of less than 500 / ml by the conventional measurement method, but the cleanliness does not become less than 5 / ml and prevents the contained liquid content from being altered. There is a problem that it is inferior in ultraviolet blocking ability.
  • a polyethylene or ethylene- ⁇ -olefin copolymer resin having a density of 940 to 970 kg / m 3, at least 0.01 wt% to 5 wt% of a light-shielding pigment such as titanium oxide or carbon black, and a liquid or gas barrier resin
  • a high-purity chemical container comprising a resin composition to which 4 to 25% by weight of the resin is added, wherein the resin has a weight average molecular weight of 120,000 to 260,000 as measured by gel permeation chromatography, A polymer having a weight average molecular weight of 1,000 or less is less than 5% by weight of the resin, and the ⁇ -olefin is selected from propylene, butene-1,4-methyl-pentene-1, hexene-1 and octene-1. At least one kind of high-purity chemical container (see Patent Document 3) has been proposed.
  • Patent Document 3 still satisfies the cleanliness of less than 500 / ml by the conventional measurement method, and has a problem that the cleanliness does not fall below 5 / ml.
  • Solvents containing poly (ethylene-co-vinyl alcohol) and an inner layer made of a high-purity resin containing various types of neutralizing agents, antioxidants, and light stabilizers at a maximum content of 0.01% by weight A container in which an intermediate layer of a barrier resin and an outer layer made of a resin composition containing a light-shielding substance are blow-molded, and the minimum absorbance at a wavelength of 400 nm or less of all layers of the container measured by a spectrophotometer is 2.
  • the absorption coefficient at a wavelength of 400 nm obtained by dividing the absorbance of all layers of the container by the thickness of the entire layer is not less than 1.5 mm ⁇ 1 and also at a wavelength of 600 nm.
  • High purity chemicals liquid container see Patent Document 4 it has been proposed, wherein the extinction coefficient is 1.5 mm-1 or less.
  • the high-purity chemical solution container of Patent Document 4 satisfies the cleanliness of less than 100 / ml by the conventional measurement method, and has a problem that the cleanliness does not become 5 / ml or less.
  • Patent Document 1 Japanese Patent No. 2805723
  • Patent Document 2 Japanese Patent No. 2749513
  • Patent Document 3 Japanese Patent No. 2805188
  • Patent Document 4 Japanese Patent No. 4167745
  • Patent Document 5 Japanese Patent No. 5706512
  • a test container is molded, and the test container is filled with ultrapure water and filled in 1 ml of ultrapure water after being stored at 23 ° C. for 30 days.
  • the chemical-resistant blow-molded laminated container excellent in transparency previously proposed by the present applicant is excellent in chemical resistance, mechanical strength, etc., and is stored and stored such as chemicals and fragrances. Elution amount of impure particles with a particle size of 0.2 ⁇ m or more in 1 ml of ultrapure water after 30 days storage at 23 ° C.
  • Transmittance of visible light from 500 to 800 nm is 35 Or more, since the ultraviolet transmittance at a wavelength 200 ⁇ 400 nm there is a need to add expensive nucleating agent or light stabilizer to impart 1% or less of the characteristic, there is a problem that increase in cost.
  • the object of the present invention is excellent in chemical resistance, mechanical strength, etc., and the cleanliness as an index indicating the number of impure fine particles leached from the container side into ultra-high purity chemicals stored and stored is 23 ° C. And 30 or less after storage for 30 days, and 10 or less after storage at 40 ° C. for 30 days.
  • the contained liquid content can be visually confirmed from the outside. It has excellent barrier properties and oxygen barrier properties, and the outer layer ultra-high molecular weight high-density polyethylene resin has a visible light transmittance of 35% or more at a wavelength of 500 to 800 nm, and transmits ultraviolet light at a wavelength of 200 to 400 nm. In order to give a characteristic of 1% or less, an expensive nucleating agent or a light-resistant stabilizer is not added. To provide a low chemical resistance blow molding laminated containers impure fine particles elution excellent also usable transparency as pure ampoule.
  • each layer formed by laminating is a chemical-resistant blow-molded laminated container that has transparency and has a visibility comparable to that of a transparent glass bottle, and does not have an adhesive functional group as the inner layer 1.
  • an intentionally added additive or By using a polyamide resin that does not contain additives including lubricants the amount of impure fine particles eluted after storage for 30 days at 23 ° C. (number / ml) is 5 or less, and the amount of impure fine particles eluted after storage for 30 days at 40 ° C.
  • Cleanness of (number / ml) of 10 or less can be achieved, and by using ethylene vinyl alcohol copolymer resin as a barrier layer, gas barrier properties can be improved, and expensive nucleating agents and light stabilizers are used in the outer layer.
  • Chemical resistant blowing with a small amount of impure fine particles that can be used as a container for ultra-high-purity chemicals that contain a lot of expensive and dangerous chemicals such as fragrances and photoresist solutions. It has been found that a molded molded container can be obtained, and the present invention has been achieved.
  • the invention of claim 1 of the present invention for solving the above-mentioned problem is to laminate the following inner layer 1, inner layer 2, barrier / adhesive resin layer, adhesive layer, barrier layer and outer layer 1 in order from the inside to the outside of the container.
  • Each of the above layers is a chemical-resistant blow-molded laminated container having transparency, and the elution amount of impure fine particles (number / ml) after storage at 23 ° C. for 30 days is 5 or less and 30 days at 40 ° C. It is a chemical-resistant blow-molded laminated container with excellent transparency and low elution amount of impure fine particles, wherein the elution amount of impure fine particles (number / ml) after storage is 10 or less.
  • Inner layer 1 is an additive-free fluororesin that has no adhesive functional group, has adhesiveness to the fluororesin of the inner layer 2 but has no adhesiveness to other layers, and has 0 weight loss on heating. 20% by mass or less.
  • Inner layer 2 An additive-free fluororesin having an adhesive functional group and adhesiveness to the fluororesin and barrier / adhesive resin layer of the inner layer 1, and having a loss on heating of 0.40% by mass or less.
  • Barrier / adhesive resin layer At least one polyamide selected from the group consisting of polyamides obtained by ring-opening polycondensation of caprolactam, which does not contain additives that are intentionally added or lubricants.
  • Adhesive layer a maleic anhydride-modified polyolefin resin.
  • Barrier layer an ethylene vinyl alcohol copolymer resin.
  • Outer layer 1 Ultrahigh molecular weight high-density polyethylene resin containing maleic anhydride-modified polyolefin resin, having excellent adhesion to the barrier layer and having an ultraviolet transmittance of 1% or less at a wavelength of 200 to 400 nm.
  • the invention of claim 2 of the present invention is formed by laminating the following inner layer 1, inner layer 2, barrier / adhesive resin layer, adhesive layer, barrier layer, adhesive layer and outer layer 2 in order from the inside to the outside of the container.
  • Each of the layers is a chemical-resistant blow-molded laminated container having transparency, and the elution amount of impure fine particles (number / ml) after storage at 23 ° C. for 30 days is 5 or less and after storage at 40 ° C. for 30 days It is a chemical-resistant blow-molded laminated container having excellent transparency and a small amount of impure fine particles eluted, wherein the amount of impure fine particles eluted (number / ml) is 10 or less.
  • Inner layer 1 is an additive-free fluororesin that has no adhesive functional group, has adhesiveness to the fluororesin of the inner layer 2 but has no adhesiveness to other layers, and has 0 weight loss on heating. 20% by mass or less.
  • Inner layer 2 An additive-free fluororesin having an adhesive functional group and adhesiveness to the fluororesin and barrier / adhesive resin layer of the inner layer 1, and having a loss on heating of 0.40% by mass or less.
  • Barrier / adhesive resin layer At least one polyamide selected from the group consisting of polyamides obtained by ring-opening polycondensation of caprolactam, which does not contain additives that are intentionally added or lubricants.
  • Adhesive layer a maleic anhydride-modified polyolefin resin.
  • Barrier layer an ethylene vinyl alcohol copolymer resin.
  • Adhesive layer a maleic anhydride-modified polyolefin resin.
  • Outer layer 2 Ultra high molecular weight high density polyethylene resin having an ultraviolet transmittance of 1% or less at a wavelength of 200 to 400 nm.
  • the invention according to claim 3 of the present invention is the chemical resistant blow-molded laminated container according to claim 1 or 2, wherein the fluororesin used for the inner layer 2 is tetrafluoroethylene / hexafluoropropylene / monomer.
  • ( ⁇ ) copolymer tetrafluoroethylene / perfluoro (alkyl vinyl ether) / monomer ( ⁇ ) copolymer, ethylene / tetrafluoroethylene / monomer ( ⁇ ) copolymer, ethylene / tetrafluoroethylene / Hexafluoropropylene / monomer ( ⁇ ) copolymer, chlorotrifluoroethylene / monomer ( ⁇ ) copolymer, chlorotrifluoroethylene / tetrafluoroethylene / monomer ( ⁇ ) copolymer, and ethylene / Chlorotrifluoroethylene / monomer ( ⁇ ) copolymer is at least one selected from the group consisting of copolymers, and the monomer ( ⁇ ) is a monomer having an adhesive functional group. And a fluororesin having the following characteristics.
  • the invention of claim 4 of the present invention is the chemical resistant blow molded laminated container according to any one of claims 1 to 3, wherein the fluororesin used for the inner layer 1 has the adhesive functional group.
  • the fluororesin used for the inner layer 1 has the adhesive functional group.
  • it is a fluororesin having the following characteristics.
  • the polyamide resin has the following characteristics. (Characteristic) Melting point (° C): 170-250 Density (Kg / m3): 1.0 to 1.2
  • the invention according to claim 6 of the present invention is the chemical resistant blow-molded laminated container according to any one of claims 1 to 5, wherein the barrier layer is ethylene having excellent oxygen barrier properties having the following characteristics: It is a vinyl alcohol copolymer resin.
  • the invention according to claim 7 of the present invention is the chemical resistant blow molded laminated container according to claim 1, wherein the outer layer 1 is made of polyethylene or ethylene- ⁇ -olefin copolymer having the following characteristics.
  • High density polyethylene resin organic light-shielding pigments such as quinacridone, phthalocyanine, anthraquinone, monoazo, etc., carbon black, iron oxide, zinc oxide, ultramarine, oxidation for imparting UV blocking and transparency 0.01 to 0.04 mass% of at least one light-shielding pigment selected from the group consisting of at least one light-shielding pigment selected from inorganic light-shielding pigments such as chromium, titanium oxide, and silicon dioxide , Containing 0.05 to 0.30% by weight of antioxidant, 25 to 65% by weight of maleic anhydride-modified polyolefin resin, and having a wavelength of 500 to 80 And the nm visible light transmittance of 35% or more, wherein the ultraviolet transmittance of the
  • the invention according to claim 8 of the present invention is the chemical resistant blow molded laminated container according to claim 2, wherein the outer layer 2 is made of polyethylene or ethylene- ⁇ -olefin copolymer having the following characteristics.
  • High density polyethylene resin organic light-shielding pigments such as quinacridone, phthalocyanine, anthraquinone, monoazo, etc., carbon black, iron oxide, zinc oxide, ultramarine, oxidation for imparting UV blocking and transparency 0.01 to 0.04 mass% of at least one light-shielding pigment selected from the group consisting of at least one light-shielding pigment selected from inorganic light-shielding pigments such as chromium, titanium oxide, and silicon dioxide
  • the antioxidant has a transmittance of 0.05 to 0.30 mass%, a visible light transmittance of a wavelength of 500 to 800 nm is 35% or more, and a wavelength of 200 to 400.
  • UV transmittance of the m is characterized in that it is composed of the composition
  • the invention of claim 1 of the present invention is that the inner layer 1, inner layer 2, barrier / adhesive resin layer, adhesive layer, barrier layer and outer layer 1 are laminated in order from the inside to the outside of the container.
  • a transparent, chemical-resistant blow-molded laminated container that has an elution volume of impure fine particles (number / ml) of 5 or less after storage at 23 ° C for 30 days and an elution volume of impure fine particles after storage at 40 ° C for 30 days (Piece / ml) is a chemical-resistant blow-molded laminated container with excellent transparency and a small amount of impure particulate elution, characterized by being 10 or less,
  • the inner layer 1 does not have an adhesive functional group, and the fluororesin of the inner layer 2 has adhesiveness but does not have adhesiveness to other layers.
  • a specific fluororesin is used, and the inner layer 2 has an adhesive functional group, and has an adhesive-free functional heating loss of 0.40% by mass.
  • the cleanliness is 23 ° C.
  • a cleanliness equivalent to a glass bottle of 5 or less after storage for 30 days and 10 or less after storage for 30 days at 40 ° C. can be obtained, improving chemical resistance and reducing alteration of odor components as much as possible. The remarkable effect of being able to To.
  • the oxygen barrier properties are improved, while the fluororesin, polyamide resin, and adhesive resin are melted and the melt tension is lowered at a stretch.
  • problems such as draw-down occur in blow molding.
  • the outer layer 1 has melt tension.
  • Use of ultra-high molecular weight, high-density polyethylene resin with excellent UV blocking properties, transparency and mechanical strength improves moldability and UV blocking properties, so it is expensive and dangerous for fragrances and photoresist solutions.
  • Chemical-resistant blow-molded product with excellent transparency that can be used as a container for ultra-high-purity chemicals with many chemical substances It can provide a container, a marked effect of.
  • the chemical-resistant blow-molded laminated container of the present invention includes a maleic anhydride-modified polyolefin resin as the outer layer 1 and uses an outer layer excellent in adhesiveness with the barrier layer, the outer layer 1 and the barrier layer There is no need to provide an adhesive layer (maleic anhydride-modified polyolefin resin) between them, and there is a remarkable effect that workability and economy are further improved.
  • the chemical-resistant blow-molded laminated container of the present invention is heavy, easily damaged, and unlike a glass bottle that lacks safety, is not easily damaged, has excellent mechanical strength, and has a barrier layer. Oxygen barrier properties are improved by this, so it can be used as a perfume bottle and can be used safely and safely as a versatile plastic container that can be used for various other contents. , Has a remarkable effect. Since the chemical-resistant blow molded laminated container of the present invention has the above-mentioned characteristics, it is easy for the environment and health, contributes to environmental problems and health problems, and is economical because it also reduces costs. There is a remarkable effect of being.
  • the invention of claim 2 of the present invention is formed by laminating the inner layer 1, the inner layer 2, the barrier / adhesive resin layer, the adhesive layer, the barrier layer, the adhesive layer and the outer layer 2 in this order from the inside to the outside of the container.
  • Each of the layers is a chemical-resistant blow-molded laminated container having transparency, and the elution amount of impure fine particles (number / ml) after storage at 23 ° C. for 30 days is 5 or less and after storage at 40 ° C.
  • the chemical-resistant blow-molded laminated container according to claim 2 of the present invention is economically acceptable because an adhesive layer (maleic anhydride-modified polyolefin resin) is provided between the outer layer 2 and the barrier layer.
  • an adhesive layer maleic anhydride-modified polyolefin resin
  • the adhesiveness between the two is ensured, it is used depending on the purpose and purpose. Except for this point, it has the same configuration as the chemical-resistant blow-molded laminated container of claim 1 of the present invention.
  • the effect and effect are the same as those of the chemical-resistant blow-molded laminated container of claim 1 of the present invention.
  • the invention according to claim 3 of the present invention is the chemical resistant blow-molded laminated container according to claim 1 or 2, wherein the fluororesin used for the inner layer 2 is tetrafluoroethylene / hexafluoropropylene / monomer.
  • ( ⁇ ) copolymer tetrafluoroethylene / perfluoro (alkyl vinyl ether) / monomer ( ⁇ ) copolymer, ethylene / tetrafluoroethylene / monomer ( ⁇ ) copolymer, ethylene / tetrafluoroethylene / Hexafluoropropylene / monomer ( ⁇ ) copolymer, chlorotrifluoroethylene / monomer ( ⁇ ) copolymer, chlorotrifluoroethylene / tetrafluoroethylene / monomer ( ⁇ ) copolymer, and ethylene / Chlorotrifluoroethylene / monomer ( ⁇ ) copolymer is at least one selected from the group consisting of copolymers, and the monomer ( ⁇ ) is a monomer having an adhesive functional group.
  • the invention of claim 4 of the present invention is the chemical resistant blow molded laminated container according to any one of claims 1 to 3, wherein the fluororesin used for the inner layer 1 has the adhesive functional group.
  • it is characterized by being a fluororesin having the above-mentioned characteristics, and it has excellent adhesiveness to the fluororesin of the inner layer 2 and can be coextruded at a molding temperature comparable to polyolefin. Has a remarkable effect.
  • the invention of claim 5 of the present invention is the chemical-resistant blow-molded laminated container according to any one of claims 1 to 4, wherein the polyamide resin has the above characteristics. And By improving the adhesion of the inner layer 2 with the fluororesin and making it free of additives and lubricants, the amount of impure particles eluted due to the additives can be greatly reduced, and a cleanliness equivalent to a glass bottle can be obtained. There is a further remarkable effect.
  • the invention according to claim 6 of the present invention is the chemical-resistant blow-molded laminated container according to any one of claims 1 to 5, wherein the barrier layer is excellent in oxygen barrier properties having the above characteristics. It is characterized by being an ethylene vinyl alcohol copolymer resin, There is a further remarkable effect that the oxygen barrier property is surely further improved.
  • the invention of claim 7 of the present invention is the chemical resistant blow molded laminated container of claim 1,
  • the outer layer 1 is an ultra-high molecular weight high-density polyethylene resin composed of polyethylene or ethylene- ⁇ -olefin copolymer having the above characteristics, and quinacridone-based, phthalocyanine-based, anthraquinone-based for imparting ultraviolet blocking properties and transparency.
  • At least one light-shielding pigment selected from organic light-shielding pigments such as monoazo, and inorganic light-shielding pigments such as carbon black, iron oxide, zinc oxide, ultramarine, chromium oxide, titanium oxide, and silicon dioxide 0.01 to 0.04% by mass of at least one light-shielding pigment selected from the group consisting of pigments, 0.05 to 0.30% by mass of antioxidant, and 25 to 65 of maleic anhydride-modified polyolefin resin.
  • organic light-shielding pigments such as monoazo
  • inorganic light-shielding pigments such as carbon black, iron oxide, zinc oxide, ultramarine, chromium oxide, titanium oxide, and silicon dioxide 0.01 to 0.04% by mass of at least one light-shielding pigment selected from the group consisting of pigments, 0.05 to 0.30% by mass of antioxidant, and 25 to 65 of maleic anhydride-modified polyolefin resin.
  • visible light transmittance of wavelength 500 to 800 nm is 35% or more
  • ultraviolet transmittance of wavelength 200 to 400 nm which is characterized in that they are composed of the composition 1 is 1% or less, Fluorine resin, polyamide resin, and adhesive resin are melted and the melt tension drops at a stretch, causing problems such as draw-down in blow molding. For example, a uniform-thick container cannot be molded or defective products are generated. Although there was a problem that the yield deteriorated, the use of an ultra-high molecular weight high density polyethylene resin having a large weight average molecular weight and high melt tension for the outer layer 1 eliminates problems such as drawdown and improves moldability and mechanical strength.
  • the transparency and the ultraviolet blocking property are surely improved, the visible light transmittance at a wavelength of 500 to 800 nm is surely 35% or more, and the ultraviolet transmittance at a wavelength of 200 to 400 nm is ensured. 1% or less can be achieved, and it is highly transparent and can be used as a container for ultra-high-purity chemicals with a lot of expensive and dangerous chemicals such as fragrances and photoresist solutions. Can be provided more reliably, and by using an antioxidant within the above range, the resin can be prevented from being burned, and the physical properties and the appearance can be prevented from being deteriorated due to the burned resin. Play.
  • the chemical-resistant blow-molded laminated container of the present invention includes a maleic anhydride-modified polyolefin resin as the outer layer 1 and uses an outer layer excellent in adhesiveness with the barrier layer, the outer layer 1 and the barrier layer There is no need to provide an adhesive layer (maleic anhydride-modified polyolefin resin) between them, and there is a further remarkable effect that workability and economy are further improved.
  • the chemical-resistant blow-molded laminated container of the present invention is heavy, easily damaged, and unlike a glass bottle that lacks safety, is not easily damaged, has excellent mechanical strength, and has a barrier layer. Oxygen barrier properties are improved by this, so it can be used as a perfume bottle and can be used safely and safely as a versatile plastic container that can be used for various other contents. , Has a further remarkable effect.
  • the invention of claim 8 of the present invention is the chemical resistant blow molded laminated container of claim 2,
  • the outer layer 2 is an ultra-high molecular weight high-density polyethylene resin composed of polyethylene or ethylene- ⁇ -olefin copolymer having the above characteristics, and quinacridone, phthalocyanine, and anthraquinone series for imparting ultraviolet blocking properties and transparency.
  • At least one light-shielding pigment selected from the group consisting of pigments is 0.01 to 0.04% by mass, antioxidant is 0.05 to 0.30% by mass, and the visible light transmittance is 500 to 800 nm. Is composed of a composition 2 having an ultraviolet transmittance of 1% or less at a wavelength of 200 to 400 nm.
  • the rate can be 1% or less, the volume of ultra-high-purity chemicals such as fragrances and photoresist solutions that contain many expensive and dangerous chemicals As a result, it is possible to more reliably provide a chemical-resistant blow-molded laminated container with excellent transparency and low elution amount of impure fine particles, and by using an antioxidant within the above range, the resin can be prevented from being burned. There is a further remarkable effect that it is possible to prevent deterioration of physical properties and deterioration of appearance.
  • the chemical-resistant blow-molded laminated container of the present invention is heavy, easy to break, hard to break, has excellent mechanical strength, and has a barrier layer compared to a glass bottle lacking safety. Oxygen barrier properties are improved by this, so it can be used as a perfume bottle and can be used safely and safely as a versatile plastic container that can be used for various other contents. , Has a further remarkable effect.
  • FIG. 1 is an explanatory view illustrating a cross section of an example of a chemical-resistant blow-molded laminated container of the present invention.
  • 1A of the chemical resistant blow-molded laminated container 8A of the present invention consists of the fluororesin having no adhesive functional group, and the inner layers 1 and 1B made of the fluororesin having adhesive functional group.
  • Inner layers 2 and 2 are barrier / adhesive resin layers made of the polyamide resin, 3 is an adhesive layer made of maleic anhydride-modified polyolefin resin, 4 is a barrier layer made of ethylene vinyl alcohol copolymer resin, and 5 is The adhesive layer 6A made of maleic anhydride-modified polyolefin resin has a high ultrahigh molecular weight high transmittance of 35% or more for visible light at a wavelength of 500 to 800 nm and 1% or less for ultraviolet transmittance at a wavelength of 200 to 400 nm.
  • the outer layers 2 made of a density polyethylene resin are shown respectively. Each of the layers has excellent transparency. 7 shows the ultra-high purity chemical as the contents.
  • FIG. 2 is an explanatory view illustrating a cross section of another example of the chemical-resistant blow-molded laminated container of the present invention.
  • 1A of the chemical resistant blow-molded laminated container 8B of the present invention is the inner layer 1, 1B made of the fluororesin having no adhesive functional group, and the fluororesin having no adhesive functional group.
  • 2 is a barrier and adhesive resin layer made of the polyamide resin
  • 3 is an adhesive layer made of maleic anhydride-modified polyolefin resin
  • 4 is a barrier layer made of ethylene vinyl alcohol copolymer resin
  • 6B Is excellent in adhesiveness with the barrier layer 4 containing a maleic anhydride-modified polyolefin resin, has a transmittance of visible light at a wavelength of 500 to 800 nm of 35% or more, and an ultraviolet transmittance of a wavelength of 200 to 400 nm of 1% or less.
  • the outer layers 1 made of ultrahigh molecular weight high density polyethylene resin are respectively shown. Each of the layers has excellent transparency. 7 shows the ultra-high purity chemical as the contents.
  • the outer layer 1 contains 25 to 65% by mass of a maleic anhydride-modified polyolefin resin, the outer layer 1 has excellent adhesion between the outer layer 1 and the barrier layer 4, and has no problems such as drawdown, moldability and mechanical properties. Excellent strength.
  • the maleic anhydride-modified polyolefin resin is less than 25% by mass, the adhesion between the outer layer 1 and the barrier layer 4 may be insufficient, and if the maleic anhydride-modified polyolefin resin exceeds 65% by mass, the drawdown may occur. Such problems may occur.
  • the fluororesin used for the inner layer 2 is not particularly limited. Specifically, for example, tetrafluoroethylene / hexafluoropropylene / monomer ( ⁇ ) copolymer, tetrafluoroethylene / perfluoro ( Alkyl vinyl ether) / monomer ( ⁇ ) copolymer, ethylene / tetrafluoroethylene / monomer ( ⁇ ) copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene / monomer ( ⁇ ) copolymer, Chlorotrifluoroethylene / monomer ( ⁇ ) copolymer, chlorotrifluoroethylene / tetrafluoroethylene / monomer ( ⁇ ) copolymer, and ethylene / chlorotrifluoroethylene / monomer ( ⁇ ) copolymer
  • the fluororesin is at least one selected from the group consisting of a coalescence and copolymerized with the monomer ( ⁇
  • the fluororesin used for the inner layer 1 in the present invention is a fluororesin that does not copolymerize the monomer ( ⁇ ) having an adhesive functional group and does not have the adhesive functional group, and is free of additives. It is preferable to use an additive grade fluororesin.
  • the fluororesin used for the inner layer 1 in the present invention has a heat loss measured by the following (heating loss measurement method) of 0.20% by mass or less, preferably 0.15 or less, and the fluororesin used for the inner layer 2 is It is necessary that the loss on heating measured by the same measurement method is 0.40% by mass or less, preferably 0.30 or less. If it is within this range, it is possible to achieve 5 or less after storage at 23 ° C. for 30 days and 10 or less after storage at 40 ° C. for 30 days. is there.
  • MFR (265 ° C., 5 kg load g / 10 min) (measuring method: 265 ° C., ASTM D1238) is preferably 10 to 40, more preferably 20 to 30. If it is less than 10, the melt viscosity is high, and the blow melt moldability is high. There is a possibility that the drive energy will be worsened, and if it exceeds 40, the melt tension is low and problems such as draw-down may occur during blow molding.
  • the specific gravity (measurement method: ASTM D-792) may be a commercially available specific gravity of 1.7 to 1.9, more preferably 1.72 to 1.76.
  • the melting point (° C.) (measurement method: ASTM D792) varies depending on the amount and type of the monomer ( ⁇ ) to be copolymerized, but may be a melting point of 150 to 200 ° C. of a commercially available product. Preferably it is 190-200. If the melting point is less than 150 ° C., a difference in melting point from other resins may occur, which may cause problems of adhesive strength and moldability. If the melting point exceeds 200 ° C., it may be difficult to laminate with other resins. .
  • the monomer ( ⁇ ) to be copolymerized is not particularly limited as long as it has an adhesive functional group and can be copolymerized, but the amount and type are controlled in consideration of melt molding. It is preferable that the fluororesin of the inner layer 2 is in the melting point (° C.) range and has excellent adhesiveness with the fluororesin of the inner layer 1 and the barrier / adhesive resin layer (polyamide resin).
  • the adhesive functional group include an epoxy group, a hydroxyl group, a carboxylic anhydride residue, a carboxylic acid group, an acrylate group, a carbonate group, and an amino group.
  • this copolymer include the ethylene-tetrafluoroethylene-hexafluoropropylene-ethylene carbonate copolymer EFEP used in Example 1 (for example, RP5000 manufactured by Daikin Industries, Ltd.).
  • MFR (297 ° C., 5 kg load g / 10 min) (measuring method: 265 ° C., ASTM D1238) is preferably 9 to 35, more preferably 15 to 25. If it is less than 9, the melt viscosity is high and the blow melt moldability is high. There is a possibility that the drive energy will be worsened, and if it exceeds 35, the melt tension is low, and there is a risk that problems such as draw-down may occur during blow molding.
  • the specific gravity (measurement method: ASTM D-792) may be a commercially available specific gravity of 1.7 to 1.9, more preferably 1.83 to 1.89.
  • the melting point (° C.) (measurement method: ASTM D792) may be a commercially available melting point of 200 to 240 ° C., more preferably 208 to 228 ° C. If the melting point is less than 200 ° C., a difference in melting point from other resins may occur, which may cause problems in adhesive strength and moldability. If the melting point exceeds 240, it may be difficult to laminate with other resins.
  • the polyamide resin of the barrier and adhesive resin layer used in the present invention is an additive-free grade polyamide resin that does not contain additives that are usually intentionally added and additives, and has the following characteristics. Specifically, for example, Daicel Evonik Co., Ltd. Z4887 can be mentioned. Among them, the polyamide obtained by ring-opening polycondensation of caprolactam is at least one polyamide selected from nylon 6, nylon 11, nylon 12, nylon 66 and the like, and a polyamide that does not contain additives and additives including a lubricant is It can be preferably used.
  • the maleic anhydride-modified polyolefin resin of the adhesive layer used in the present invention has excellent adhesion to the barrier / adhesive resin layer (polyamide resin) and the barrier layer (ethylene vinyl alcohol copolymer resin).
  • the maleic anhydride-modified polyolefin resin of the adhesive layer has excellent adhesion to the barrier layer (ethylene vinyl alcohol copolymer resin) and the outer layer (ultra high molecular weight high density polyethylene resin).
  • the two are bonded to form an adhesive layer, and may be melt-molded, and commercially available products that are usually commercially available can be used.
  • the inner layers 1 and 2 fluororesin
  • the barrier / adhesive resin layer the polyamide resin
  • Adhesive layer maleic anhydride modified polyolefin resin
  • barrier layer ethylene vinyl alcohol copolymer resin
  • adhesive layer maleic anhydride modified polyolefin resin
  • outer layer ultra high molecular weight high density polyethylene resin
  • the maleic anhydride-modified polyolefin resin having excellent adhesion to the outer layer may be the same or different, and is preferably determined by testing in advance.
  • the barrier layer ethylene vinyl alcohol copolymer resin (ethylene 24-44 mol% copolymer) used in the present invention is a resin obtained by hydrolyzing ethylene vinyl alcohol copolymer and almost completely saponified, and has an aroma retaining property. It has excellent gas barrier properties and is widely used in containers and packaging materials for chemicals, cosmetics, etc., and has high resistance to oils and organic solvents. By using a polymerized resin, oxygen barrier properties can be secured, and since MFR, melting point, etc. are close to ultra high molecular weight high density polyethylene resin and excellent in stable moldability, it can be preferably used.
  • ethylene vinyl alcohol copolymer resin for the barrier layer examples include, for example, F171B (ethylene 32 mol% copolymerization, melting point 183 ° C., saponification rate 99.99%) manufactured by Kuraray Co., Ltd. be able to.
  • MFR (Characteristic) MFR (210 ° C., 2.16 kg load g / 10 min): 2 to 5 Density (Kg / m3): (ISO 1183 compliant) 1.1 to 1.3 Melting point (° C): (ISO 1346 compliant): 170-200
  • the MFR is preferably 2 to 5, more preferably 3 to 5, the density is preferably 1.1 to 1.3, more preferably 1.2 to 1.3, and the melting point (° C.). Is preferably 170 to 200, more preferably 190 to 200.
  • gas barrier properties, strength, stable moldability and the like are all excellent, but at least one of these characteristics may be impaired outside the above ranges.
  • the ultrahigh molecular weight high-density polyethylene resin of the outer layers 1 and 2 used in the present invention preferably has a density (measurement method: JIS K7112 compliant), preferably 940 to 962 Kg / m3, more preferably 944 to 946 Kg / m3.
  • the weight average molecular weight is preferably 2260 to 260,000, more preferably 240 to 260,000, and the molecular weight distribution (Mw / Mn) (measurement method: described later) is preferably 12 or less, more preferably 11 or less, melt tension (measurement method: Japanese polyethylene method, 210 ° C.
  • Ren resin is preferable, the ultra high molecular weight high density polyethylene resin such as moldability and mechanical strength by using the outer layer 1 is improved, there is no problems such as drawdown is also improved such as yield.
  • (Mw / Mn) of the ultra-high molecular weight high-density polyethylene resin forming the outer layers 1 and 2 is preferably 12 or less, more preferably 11 or less. When (Mw / Mn) exceeds 12, melt processing and rapid cooling are performed.
  • the outer layer of blow-molded laminated containers that have been molded in multiple layers under normal molding process conditions may not be composed of dense small crystal aggregates due to large or varying crystals, which may lead to insufficient transparency and mechanical strength. There is.
  • the mechanical strength may be insufficient.
  • the weight average molecular weight exceeds 260,000, the melt viscosity of the resin Since it is high, moldability deteriorates, and there is a risk of molecular breakage due to shear stress.
  • the density and melt tension of the ultra-high molecular weight high-density polyethylene resin forming the outer layers 1 and 2 are less than the lower limit values, it may be difficult to draw down and control the wall thickness. In addition, there is a possibility that a problem of melt fracture (rough skin) may occur.
  • the ultra-high molecular weight high-density polyethylene resin used for the outer layers 1 and 2 is a single weight containing at least one selected from ethylene, propylene, butene-1,4-methyl-pentene-1, hexene-1 and octene-1.
  • a commercially available product that is a coalescence or copolymer and has the above-mentioned characteristics can be used.
  • ethylene homopolymers and copolymers of ethylene and ⁇ -olefins such as propylene, butene-1,4-methyl-pentene-1, hexene-1 and octene-1 are preferably used.
  • the content of ⁇ -olefin in the copolymer is preferably 15% by mass or less.
  • the molecular structure of the copolymer is atactic, isotactic, syndiotactic or a mixture thereof.
  • the low pressure method or the intermediate pressure method may be used.
  • At least one light-shielding pigment selected from organic light-shielding pigments and / or inorganic light-shielding pigments has a visible light transmittance of 35 to 500 nm. It is preferable to add a predetermined amount so that the ultraviolet transmittance at a wavelength of 200 to 400 nm is 1% or less (according to the measurement method described later).
  • the visible light transmittance at a wavelength of 500 to 800 nm is 35% or more, and the ultraviolet light transmittance at a wavelength of 200 to 400 nm is achieved. It can be 1% or less, and is not particularly limited as long as other characteristics of the outer layer are not impaired.
  • organic light-shielding pigments such as quinacridone, phthalocyanine, anthraquinone, and monoazo
  • inorganic light-shielding properties such as carbon black, iron oxide, zinc oxide, ultramarine, chromium oxide, titanium oxide, and silicon dioxide
  • At least one light-shielding pigment selected from pigments can be used preferably in the present invention because the object can be achieved by a relatively small amount of the pigment.
  • quinacridone-based light-shielding pigment examples include TET48183 and TET78310 (manufactured by Toyocolor Co., Ltd.).
  • phthalocyanine-based light-shielding pigment examples include 7F2852 (manufactured by Dainichi Seika Kogyo Co., Ltd.), TET58335 (manufactured by Toyocolor Co., Ltd.) and EPH-525328 (manufactured by Polycol Kogyo Co., Ltd.). Can do.
  • monoazo light-shielding pigment examples include TET38013 (manufactured by Toyocolor Co., Ltd.) and ECE-6293 (manufactured by Polycol Kogyo Co., Ltd.).
  • carbon black light-shielding pigment examples include TET01337 (manufactured by Toyocolor Co., Ltd.) and EPH-K-51680 (manufactured by Polycol Kogyo Co., Ltd.).
  • iron oxide-based light-shielding pigment examples include EPH-C-1045 (manufactured by Polycol Kogyo Co., Ltd.) and TET68473 (manufactured by Toyocolor Co., Ltd.).
  • ultramarine light-shielding pigment examples include EPH-B-46662 (manufactured by Polycol Kogyo Co., Ltd.) and TET26146 (manufactured by Toyocolor Co., Ltd.).
  • titanium oxide-based light-shielding pigment examples include EB-1427 (manufactured by DIC Corporation), EPH-H-2481 (manufactured by Polycol Kogyo Co., Ltd.), and TET28318 (manufactured by Toyocolor Co., Ltd.). Can be mentioned.
  • the blending amount of the light-shielding pigment is usually preferably in the range of 0.01 to 0.04% by mass, more preferably in the range of 0.025 to 0.035% by mass, as described above, and 0.029 to 0.031. A mass% range is particularly preferred. If it is less than 0.01% by mass, the ultraviolet blocking property may be insufficient, and if it exceeds 0.04% by mass, the transparency may be impaired. A master batch containing a light-shielding pigment can also be used.
  • Example 1 For example, in Example 1, a master batch (TET-38013 manufactured by Toyocolor Co., Ltd.) containing 3% by mass of a monoazo-based light-shielding pigment was added to an ultrahigh molecular weight high-density polyethylene resin (HB111R manufactured by Nippon Polyethylene Co., Ltd.). Mass% is blended. Therefore, in this example, the blending amount of the monoazo light-shielding pigment with respect to the ultrahigh molecular weight high-density polyethylene resin is 0.030% by mass. In using these light-shielding pigments, it is preferable to avoid pigments with poor dispersibility and pigments that promote oxidative deterioration of containers.
  • the blending amount of the light-shielding pigment is tested in advance, and a visible wavelength of 500 to 800 nm is observed. It is preferable to determine the light transmittance to be 35% or more and the ultraviolet transmittance at a wavelength of 200 to 400 nm to be 1% or less.
  • the transmittance of visible light with a wavelength of 500 to 800 nm is 35% or more and the transmittance of ultraviolet light with a wavelength of 200 to 400 nm is 1% or less, the contents are highly visible and the contained liquid content can be prevented from being altered.
  • It can be used as an ultra-high-purity chemical container such as a chemical or a fragrance that can be imparted with ultraviolet blocking properties, such as a photoresist solution, which is denatured and cured by ultraviolet rays.
  • the outer layers 1 and 2 used in the present invention contain a predetermined amount (0.05 to 0.30% by mass) of at least one antioxidant selected from the group consisting of phenolic, phosphorus and sulfur antioxidants. It is preferable to prevent the resin from being burnt and to prevent the appearance from being deteriorated due to the burnt resin.
  • the phenolic antioxidant, phosphorus antioxidant, and sulfur antioxidant are not particularly limited as long as they have a high antioxidant action and do not impair the other characteristics of the outer layers 1 and 2.
  • phenolic antioxidants include ADEKA STAB AO60 manufactured by ADEKA Corporation.
  • phosphorus-based antioxidant include ADK STAB 2112 manufactured by ADEKA Corporation.
  • sulfur-based antioxidant include DSTP manufactured by Yoshitomi Mitsubishi Chemical Corporation.
  • antioxidants are preferably added in an amount of 0.05 to 0.30% by mass, and 0.10 to 0.25% by mass, based on the ultrahigh molecular weight high density polyethylene resin forming the outer layers 1 and 2. More preferably. If it is less than 0.05 mass, the antioxidant performance may be inferior, and if it exceeds 0.30 mass%, the additive may bleed out on the surface of the container.
  • the outer layers 1 and 2 used in the present invention are blended with light-shielding pigments and antioxidants that can become impure fine particles, but the outer layers 1 and 2 are separated from the inner layers 1 and 2 that are in contact with the liquid. Since the barrier / adhesive resin layer 2, the adhesive layers 3, 5, and the barrier layer 4 prevent the impure fine particles due to the light-shielding pigment, antioxidant, etc. from leaching into the content liquid, they are stored in a container. Do not leach into chemicals.
  • a light-resistant stabilizer such as a benzotriazole-based light-resistant stabilizer and a triazine-based light-resistant stabilizer can be appropriately used for the outer layers 1 and 2 as necessary, together with the light-shielding pigment.
  • a benzotriazole light stabilizer or a triazine light stabilizer can block UV-B (200 to 320 nm) and UV-A (320 to 400 nm), respectively.
  • the ultraviolet blocking property can be remarkably improved without deteriorating.
  • Examples of the light-resistant stabilizer include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2 -Hydroxy-5-methylphenylbenzotriazole), 2- (5-chloro-2-benzotriazole) -6-t-butyl-cresol, 2- (3,5-di-t-amino-2-hydroxyphenyl) Benzotriazole light stabilizers such as bendtriazole and 2- (2H-benzotriazol-2-yl) -p-cresol, 2- [4,6-di (2,4xylyl) -1,3,5-triazine -2-yl] -5,2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine, 2- (4,6-diphe 1,3,5-triazin-2-yl) -5- [2-
  • the content of the additive contained in the resin is a value obtained by separating and quantifying the extracted solution extracted with a Soxhlet extractor using tetrahydrofuran (THF) for 8 hours by liquid chromatography.
  • the measurement conditions are as follows: GULIVER (manufactured by JASCO Corporation), column is Finepak® GEL-101 (manufactured by JASCO Corporation), solvent is THF, detector is UV-970 (manufactured by JASCO Corporation) and 830-RI. (Manufactured by JASCO Corporation).
  • the resin composition cut out from the container is dissolved in a solvent (orthodichlorobenzene) to form a sample solution, and the molecular weight and molecular weight distribution are measured by GPC.
  • the weight average molecular weight and the number average molecular weight are calculated by the following equations.
  • Weight average molecular weight Mw ⁇ (M ⁇ w) / ⁇ w (2)
  • Number average molecular weight Mn ⁇ w / ⁇ (w / M) (3)
  • Molecular weight distribution weight average molecular weight / number average molecular weight (Mw / Mn)
  • M is molecular weight and w is a weight fraction.
  • GPC measurement conditions were 150 CV (manufactured by Waters) for the apparatus, TSKgel GMH-HT (manufactured by Tosoh Corporation) for the column, orthodichlorobenzene for the solvent, temperature of 138 ° C., and a detector for the differential refractometer. .
  • the raw material resin In order to control the molecular weight distribution of the container within the above range, the raw material resin must also have a certain range of molecular weight distribution.
  • the molding method is not particularly limited as long as it can form the chemical-resistant blow molded laminate container excellent in transparency of the present invention by the blow molding method. It can also be used by selecting from a molding machine.
  • Example 1 The inner layer 1 is MFR 25 g / 10 min, the specific gravity is 1.86, the melting point is 223 ° C., and the additive-free fluororesin (EP-610 manufactured by Daikin Industries, Ltd.) having a loss on heating of 0.16% by mass is used.
  • the inner layer 2 is MFR 25 g.
  • additive-free fluororesin (RP-5000 manufactured by Daikin Industries, Ltd.) having a loss on heating of 0.35% by mass is used as a barrier and adhesive resin layer
  • Additive-free polyamide resin (Z4887, manufactured by Daicel Evonik Co., Ltd.) having a function of adhering to the fluororesin of the inner layer 2 and containing no additive that is intentionally added or a lubricant. 87), and maleic anhydride-modified polyolefin resin (Nippon Polyethylene Co., Ltd.) as an adhesive layer having an adhesive function between the polyamide resin and the barrier layer.
  • T71A and a barrier resin (ethylene-vinyl alcohol copolymer resin F171B: manufactured by Kuraray Co., Ltd., saponification rate 99.99%) as the barrier layer, and ultrahigh molecular weight high-density polyethylene as the outer layer 1
  • Maleic anhydride-modified polyolefin resin for resin (HB111R manufactured by Nippon Polyethylene Co., Ltd.) (HL-MFR (measurement method: JIS K7112) 6 g / 10 min, density 946 Kg / m3, weight average molecular weight 250,000, melt tension 25 g) Masterbatch containing 30% by mass (Nippon Polyethylene Co., Ltd.
  • FT71A a light-shielding pigment for improving visibility and UV-blocking properties
  • TET-38013 manufactured by Toyocolor Co., Ltd., 3% by mass of monoazo-based light-shielding pigment
  • antioxidant phenol
  • This system consists of 6 layers using the ultra-high molecular weight high-density polyethylene resin containing 0.2% by mass of the antioxidant, ADEKA Corporation's Adeka Stub AO60), with no problems such as drawdown under the following molding conditions.
  • Chemically resistant blow molded laminated container with excellent transparency (total mass 400 g, inner layer 1 50 ⁇ m, inner layer 2 100 ⁇ m, barrier / adhesive resin layer 50 ⁇ m, adhesive layer 50 ⁇ m, barrier layer 50 ⁇ m, outer layer 1 1500 ⁇ m , Average total wall thickness 1.8mm, capacity 3750ML).
  • the fluororesin of inner layer 1 (EP-610 manufactured by Daikin Industries, Ltd.) and the fluororesin of inner layer 2 of the chemical-resistant blow molded laminate container excellent in transparency of the present invention obtained by molding in Example 1 ( Infrared spectroscopic analysis was performed under the following measurement conditions using RP-5000 manufactured by Daikin Industries, Ltd.
  • IR Affinity-1 manufactured by Shimadzu Corporation
  • Measurement sample A 50 ⁇ m-thick film sheet of inner layers 1 and 2 was prepared using a 240 ° C. press.
  • Measurement wavelength 600 to 4000 cm-1
  • FIG. 3 shows the result of infrared spectroscopic analysis of the inner layer 1, wherein the vertical axis represents absorbance (%) and the horizontal axis represents wavelength (cm-1).
  • FIG. 4 shows the result of infrared spectroscopic analysis of the inner layer 2, wherein the vertical axis represents absorbance (%) and the horizontal axis represents wavelength (cm-1).
  • a large sharp absorption (indicated by an arrow) at a wavelength of 1800 (cm-1) in FIG. 4 is an absorption peak of a carbonate group, and it can be seen that the fluororesin of the inner layer 2 has an adhesive functional group (carbonate group).
  • the fluororesin of the inner layer 2 is produced by copolymerizing the monomer ( ⁇ ) having an adhesive functional group as described above, and the fluororesin of the inner layer 2 depends on the copolymerization amount of the monomer ( ⁇ ).
  • the amount of the adhesive functional group can be controlled, thereby controlling the adhesiveness and melting point of the fluororesin of the inner layer 2 so that the inner layer 2 has good adhesion to the fluororesin of the inner layer 1 and the barrier / adhesive resin layer.
  • the melting point and the like can be controlled to be in the above range.
  • the large sharp absorption peak is not observed at a wavelength of 1800 (cm-1) in FIG. 3, indicating that the fluororesin of the inner layer 1 does not have an adhesive functional group (carbonate group).
  • the inner layer 1 has good adhesion to the fluororesin of the inner layer 2 but does not have adhesion to other layers.
  • the large and sharp absorption peak of wavelength 3000 (cm-1) in FIGS. 3 and 4 is an absorption peak derived from copolymerized ethylene.
  • Test method Measurement method of impure particles
  • the following measurements are performed in a clean room (Class 100).
  • Measuring apparatus A particle counter “KL-26” RION KL-26 manufactured by Rion Co., Ltd. is used.
  • Sample to be measured The container is filled with ultrapure water and stored at 23 ° C immediately after extraction and for 30 days. After extraction or at 40 ° C and stored for 30 days immediately after extraction, in an upright state. A sample obtained by collecting a measurement sample from a container that has been allowed to stand for 20 minutes is taken as a measurement sample.
  • the particle counter Prior to measurement, the particle counter is purged with ultrapure water, and then the measuring device is washed twice with 25 ml of ultrapure water. 4).
  • Oxygen permeability [cm3 / (pg.24h.atm)]: Using a 3.75L container (wall thickness at the center of the bottle: 1.8 mm), using the measuring device (OX-TRAN2 / 21) (manufactured by MOCON) in accordance with JIS K7126-2, from the outside of the container The oxygen transmission to the inside was measured. Temperature and humidity: 1 atm outside, 23 ° C., 50% RH oxygen. Inside 1 atm, 23 ° C., dry nitrogen.
  • UV transmittance Using JASCO Corporation V-670, the transmittance in the ultraviolet region of 200 to 400 nm is obtained.
  • fragrances include limonene (trade name: orange oil, purity 96.4%, manufactured by Hasegawa Fragrance Co., Ltd.), citrus fruits (trade name: lemon essence, manufactured by Hasegawa Fragrance Co., Ltd.), crab oil (15%) Dimethyl sulfide, propylene glycol solution, manufactured by Hasegawa Fragrance Co., Ltd.), rice salad (trade name: rice oil, manufactured by Hasegawa Fragrance Co., Ltd.), ethyl butyrate (trade name: esters, purity 100%, Hasegawa Fragrance Co., Ltd.) ), Trans-2-hexenal (trade name: aldehydes, purity 99.7%, manufactured by Hasegawa Fragrance Co., Ltd.), filled with 1 kg of each fragrance, sealed, sealed at room temperature and pressure for 1 month and Left for 3 months.
  • crab oil (15% dimethyl sulfide, propylene glycol solution) was refrigerated at room temperature and pressure for 1 month and 3 months. After standing for 3 months, measure the container mass for each sample and check if the contents are dissipated, conduct a sensory test with 10 panel members to check whether it has been altered, and determine the specific gravity and refractive index. It was measured to check whether it was fluctuating, and for a sample that could be analyzed, the components were checked by a gas chromatograph and evaluated according to the following evaluation criteria.
  • Evaluation criteria There is no dissipation, alteration, fluctuation, etc., storage stability is high, and there is marketability.
  • Slightly inferior to ⁇ , but practically free from dissipation, alteration, fluctuation, etc., and has high storage stability and marketability.
  • X There are dissipation, alteration, fluctuation, etc., storage stability is low, and there is no marketability.
  • the particle value is 5 pieces / ml or less after storage at 23 ° C. for 30 days, and 10 or less after storage at 40 ° C. for 30 days, Oxygen permeability is 0.003 [cm3 / (pg.24 h.atm)] or less, UV transmittance is 1% or less, Visible light transmittance is 35% or more, Visibility is ⁇ , Drop strength: fragrance suitable without breaking Metal elution is 10 (ng / L) or less. In this case, the overall judgment is set to ⁇ . When any of these is inferior to the above, it is set as x.
  • Example 1 In place of the additive-free polyamide resin used in Example 1 (Z4887 manufactured by Daicel Evonik Co., Ltd.) (barrier and adhesive resin, relative viscosity 1.87), an antioxidant (hindered phenol-based antioxidant, 2000 ppm) A blow molded laminated container for comparison was made and evaluated in the same manner as in Example 1 except that the same polyamide resin (with a relative viscosity of 1.87) was used. The results are shown in Tables 1 and 2.
  • a blow molded laminated container for comparison was made and evaluated in the same manner as in Example 1 except that a wetted layer using 0.2% by mass of high density polyethylene (9D01A manufactured by Tosoh Corporation) was used. . The results are shown in Tables 1 and 2.
  • Example 3 (Comparative Example 3) In the same manner as in Example 1, except that the inner layer 1 used in Example 1 was not used and the inner layer 2 having a heat loss of 0.35% by mass used in Example 1 was used as the wetted layer, A blow molded laminated container was made and evaluated. The results are shown in Tables 1 and 2.
  • Comparative Example 4 The fluororesin of the wetted layer used in Comparative Example 3 was heated at an electric furnace temperature of 260 ° C. ⁇ 1 ° C. for 120 minutes to reduce the loss on heating (heating loss of 0.31% by mass). In the same manner as in Comparative Example 3, a blow molded laminated container for comparison was made and evaluated. The results are shown in Tables 1 and 2.
  • the chemical-resistant blow-molded laminated container of Example 1 has a particle value, oxygen transmittance, ultraviolet transmittance, visible light transmittance, visibility, drop strength, perfume suitability, metal elution It can be seen that the container for comparison in Comparative Examples 1 to 6 is inferior in any one of them, while being excellent in all of the economy and the overall judgment is “good”.
  • the chemical-resistant blow-molded laminated container of the present invention does not have an adhesive functional group as the inner layer 1 and has adhesiveness to the fluororesin of the inner layer 2 but not to other layers.
  • the inner layer 2 has an adhesive functional group, and is adhesive to the fluororesin of the inner layer 1 and the barrier / adhesive resin layer.
  • the additive-free heating loss with a specific fluororesin is 0.40% by mass or less, and does not contain additives intentionally added to the barrier-cum-adhesive resin layer or additives including lubricants
  • the cleanliness is 5 or less after storage at 23 ° C.
  • the oxygen barrier properties are improved, and the outer layer has a high UV-blocking property with a high melt tension.
  • Use of ultra-high molecular weight high-density polyethylene resin with excellent transparency and mechanical strength improves moldability and UV blocking properties, so there are many expensive and highly dangerous chemical substances such as fragrances and photoresist solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、容器の内側から外側に順に、内層1(接着性官能基を有さず、加熱減量0.20質量%以下のフッ素樹脂)、内層2(接着性官能基を有し、加熱減量0.40質量%以下のフッ素樹脂)、バリアー兼接着樹脂層(添加物を含有しないポリアミド)、接着性層(無水マレイン酸変性ポリオレフィン樹脂)、バリアー層(エチレンビニルアルコール共重合樹脂)および外層1(無水マレイン酸変性ポリオレフィン樹脂を含み、紫外線透過率1%以下の超高分子量高密度ポリエチレン樹脂)を積層し、前記各層が透明であり、23℃および40℃での30日貯蔵後の不純微粒子溶出量(個数/ml)がそれぞれ5以下および10以下の耐薬品性吹込み成形積層容器であり、紫外線遮断性、酸素バリアー性などに優れ、不純微粒子の溶出が少なく、透明硝子瓶並みの視認性を有する。

Description

透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器
 本発明は、透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器に関するものであり、さらに詳しくは、耐薬品性や機械的強度などに優れ、例えば40℃で30日貯蔵している薬品や香料などの中への不純微粒子の溶出量(個数/ml)が10以下と非常に少なく、すなわちクリーン度が良好な吹込み成形(ブロー成形)積層容器であって、収容した内容液を外部から目視確認できるという、透明硝子瓶に匹敵する視認性を有するとともに、紫外線遮断性、酸素バリアー性にも優れている、超高純度薬品容器としても使用可能な透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器に関するものである。
 一般に、薬品や香料などを保存する容器としてガラス容器やシーラボトル(市販の香料容器)などの耐薬品性プラスチック製の容器や金属容器の内面をコーティング処理した容器が用いられている。
 半導体分野では、貯蔵している高純度薬品類を高純度のまま保存できることが必要である。ガラス容器は容器自体が重いため取り扱いが不便であり、落下などにより割れてしまうこともある。
 一方、ポリエチレン系樹脂からなる成形容器は取り扱い時に割れにくく、軽量であるという長所がある。しかしながら、半導体製造においてエッチングや洗浄に使用される高純度薬品、例えば硫酸、硝酸、過酸化水素水など、および半導体プロセス用、液晶ディスプレイ用などに使用される高純度な溶剤系レジストや希釈溶剤、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、イソブチルアルコール、エチレングリコール、アセトン、酢酸エチル、トルエン、ジメチルホルムアミド、エチレングリコールアセテート、メトキシプロピルアセテート、ブチルセロソルブなど、および殺菌、消毒、製剤原料などの医薬用に使用される高純度な溶剤、例えばメチルアルコール、エチルアルコール、イソプロピルアルコールなどは保管貯蔵している間に、容器を形成している樹脂組成物や添加剤から貯蔵している薬品中へ不純微粒子が浸出し、薬品の純度が損なわれてしまう問題があり、このために半導体、液晶の品質および歩留りに著しい悪影響を及ぼしたり、薬品の保存期間を短くするという問題がある。
 薬品を容器中に長期間貯蔵している間に、容器を形成している樹脂組成物から内容物である薬品中に不純微粒子が浸出し、この不純微粒子が内容物を不純化する度合いを示す指数としてクリーン度というものがある。
 クリーン度はいったん検査容器を成形し、その検査容器に一定期間(23℃で30日)超純水を貯蔵した後、樹脂製の容器が貯蔵していた水1ml中に粒径0.2μm以上の微粒子がいくつ存在するかを算定して求める。
(従来の不純微粒子(パーティクル)の測定法)
1. 測定装置:(株)リオン製パーティクルカウンター「KL-26」RION KL-26を使用する。
2. 測定検体:成形された容器に超純水を満水に充填して23℃で30日貯蔵後、直立の状態で20分間静置した容器から測定試料を採取したものを測定検体とする。
3. 測定前に超純水でパーティクルカウンターをパージ後、超純水25mlで2回、測定装置を洗浄する。
4. 洗浄後、超純水を10mlパーティクルカウンターに注入して、パーティクル数を測定する。この操作を2回して、0.2μm以上のパーティクル数がゼロ(A)であることを確認する。
5. 25mlの測定検体で2回、測定装置を洗浄する。
6. 洗浄後、測定検体の超純水を満水にした容器(ボトル)から10mlをパーティクルカウンターに注入して、パーティクル数を測定する。この操作を2回して、0.2μm以上のパーティクル数の平均値(B)を求める。
7. 測定値から1ml中のパーティクル値を次式で計算して求める。
(B(個))÷10ml=個/ml
 従来は、クリーン度が500個/ml未満であると、半導体、液晶の品質および歩留りを向上することができるとされていた。現在はさらに厳しくなり、5個/ml以下が要求される場合が多くなっている。
 しかし、最近は、クリーン度の要求が更に高くなり、検査容器を成形し、その検査容器に超純水を満水に充填して23℃で30日貯蔵後の超純水1ml中に粒径0.2μm以上の不純微粒子の溶出量(個数/ml)が5以下であり、かつ40℃で30日貯蔵後の超純水1ml中に粒径0.2μm以上の不純微粒子の溶出量(個数/ml)が10以下であることが求められるようになった。
 香料分野に用いられる容器として、金属缶内面にフッ素コーティングした缶やシーラボトルが市場で使われているが、金属缶の場合、凹みや錆びの問題があり、シーラボトルでは香料成分が変質し、香料としての品質劣化の問題が度々発生している。
 そこで、ポリエチレンあるいはエチレン-α-オレフィン共重合体からなる原料樹脂の重量平均分子量が一定の範囲にあり、樹脂組成物中の遮光性顔料と分散剤の含有量が一定の範囲にあり、樹脂組成物中の低分子量の重合体、添加剤の含有量を一定重量未満にしたポリエチレンあるいはエチレン-α-オレフィン共重合体からなる樹脂組成物より成形された容器が、機械的強度に優れ、取り扱いが容易で、保管貯蔵している薬品中への不純微粒子の浸出が極めて少ない、遮光性を有した高純度薬品用遮光容器(特許文献1参照)として提案されている。
 しかし、この容器は、従来の測定法でクリーン度500個/ml未満を満足するが、クリーン度5個/ml以下とならない上、収容した内容液の変質を防止するための酸素バリアー性などを有していないなどの問題があった。
 また、メチルアルコール、エチルアルコール、イソプロピルアルコール、イソブチルアルコール、エチレングリコール、アセトン、酢酸エチル、トルエン、ジメチルホルムアミド、エチレングリコールアセテート、メトキシプロピルアセテートまたはブチルセロソルブの高純度溶剤を収容する容器であって、前記容器の少なくとも内側表面が密度940~970Kg/m3のポリエチレンまたはエチレン-α-オレフィン共重合体の樹脂からなり、液体クロマトグラフィーにより定量される該樹脂中の中和剤、酸化防止剤および耐光安定剤の含有量が該樹脂の全重量に対して、夫々0.01重量%以下であり、ゲル・パーミエーション・クロマトグラフィーにより測定される該樹脂の重量平均分子量が12万~26万であり、前記樹脂中の分子量1,000以下の重合体が前記樹脂の全重量に対して2.5重量%未満である高純度溶剤用容器(特許文献2参照)が提案されている。
 しかし、特許文献2の高純度溶剤用容器は、従来の測定法でクリーン度500個/ml未満を満足するが、クリーン度が5個/ml以下とならない上、収容した内容液の変質を防止できる紫外線遮断性などにも劣るという問題がある。
 また、密度940~970Kg/m3のポリエチレンまたはエチレン-α-オレフィン共重合体の樹脂に、少なくとも酸化チタンやカーボンブラックなどの遮光性顔料0.01重量%~5重量%および液体また気体バリアー性樹脂の4重量%~25重量%が添加された樹脂組成物からなる高純度薬品用容器であって、ゲル・パーミエーション・クロマトグラフィーにより測定される該樹脂の重量平均分子量が12万~26万、重量平均分子量1,000以下の重合体が該樹脂の5重量%未満、該α-オレフィンが、プロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、オクテン-1の中から選ばれる少なくとも一種類である高純度薬品用容器(特許文献3参照)が提案されている。
 しかし、特許文献3の高純度薬品用容器は、やはり従来の測定法でクリーン度500個/ml未満を満足するものであり、クリーン度が5個/ml以下とならないという問題がある。
 また、エチレン、プロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、またはオクテン-1のオレフィンの重合体、およびエチレンとそれ以外のオレフィンの共重合体の中から選ばれる少なくとも1種類を含み、中和剤、酸化防止剤及び耐光安定剤の夫々の含有量を最大でも0.01重量%とする高純度樹脂からなる内層と、ポリ(エチレン-コ-ビニルアルコール)を含む溶剤バリアー性樹脂の中間層と、遮光性物質を含む樹脂組成物からなる外層とがブロー成形された容器であり、分光光度計により測定される容器の全層の波長400nm以下における最低吸光度が2.0以上で、かつ容器の全層の吸光度を該全層の厚みで除した波長400nmにおける吸光係数が1.5mm-1以上、同じく波長600nmにおける吸光係数が1.5mm-1以下であることを特徴とする高純度薬品液用容器(特許文献4参照)が提案されている。
 しかし、特許文献4の高純度薬品液用容器は、従来の測定法でクリーン度100個/ml未満を満足するものであり、クリーン度が5個/ml以下とならないという問題がある。
 本出願人は先に、容器の内側から外側に順に、下記の内層、バリアー兼接着樹脂層、接着層、バリアー層、接着層および外層を積層してなる耐薬品性吹込み成形積層容器であって、前記各層が透明性を有する透明性に優れた耐薬品性吹込み成形積層容器を提案した(特許文献5参照)。
内層:フッ素樹脂
バリアー兼接着樹脂層:ポリアミド樹脂
接着層:無水マレイン酸変性ポリオレフィン樹脂
バリアー層:エチレンビニルアルコール共重合樹脂
接着層:無水マレイン酸変性ポリオレフィン樹脂
外層:超高分子量高密度ポリエチレン樹脂
特許文献1: 特許第2805723号公報
特許文献2: 特許第2749513号公報
特許文献3: 特許第2805188号公報
特許文献4:許第4167745号公報
特許文献5:特許第5706512号公報
 前記のように、最近は、クリーン度の要求が更に高くなり、検査容器を成形し、その検査容器に超純水を満水に充填して23℃で30日貯蔵後の超純水1ml中に粒径0.2μm以上の不純微粒子の溶出量(個数/ml)が5以下であり、かつ40℃で30日貯蔵後の超純水1ml中に粒径0.2μm以上の不純微粒子の溶出量(個数/ml)が10以下であることが求められるようになった。
 本出願人が先に提案した透明性に優れた耐薬品性吹込み成形積層容器(特許文献5参照)は、耐薬品性や機械的強度などに優れ、保管貯蔵している薬品や香料などの中への不純粒子の浸出が少なく、23℃で30日貯蔵後の超純水1ml中に粒径0.2μm以上の不純微粒子溶出量(以下、クリーン度と称す場合がある)(個数/ml)が5以下であり、収容した内容液を外部から目視確認できるという、透明硝子瓶に匹敵する視認性を有するとともに、紫外線遮断性、酸素バリアー性にも優れているものであるが、40℃で30日貯蔵後の超純水1ml中に粒径0.2μm以上の不純微粒子の溶出量(個数/ml)が10を超える問題がある他に、外層の超高分子量高密度ポリエチレン樹脂に波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下の特性を付与するために高価な造核剤や耐光安定剤を添加する必要があるので、コストアップになるという問題があった。
 本発明の目的は、耐薬品性や機械的強度などに優れ、保管貯蔵している超高純度薬品などの中へ容器側から浸出する不純微粒子の個数を示す指数としてのクリーン度が、23℃で30日貯蔵後で5以下であり、かつ40℃で30日貯蔵後で10以下であり、収容した内容液を外部から目視確認できるという、透明硝子瓶に匹敵する視認性を有するとともに、紫外線遮断性、酸素バリアー性にも優れているものであるとともに、外層の超高分子量高密度ポリエチレン樹脂に波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下の特性を付与するために高価な造核剤や耐光安定剤を添加することがなく、前記従来品より低コストで経済性に優れた、香料やフォトレジスト液などの超高純度薬品容器としても使用可能な透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器を提供することである。
 本発明者らは、従来の問題を解決するために、鋭意研究の結果、例えば、容器の内側から外側に順に、内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層および外層を積層してなる各層が透明性を有し、透明硝子瓶に匹敵する視認性を有する耐薬品性吹込み成形積層容器であって、前記内層1として、接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない添加剤フリーの加熱減量が0.20質量%以下である特定のフッ素樹脂を用い、前記内層2として、接着性官能基を有し、内層1のフッ素樹脂およびバリアー兼接着樹脂層に接着性を有する添加剤フリーの加熱減量が0.40質量%以下である特定のフッ素樹脂を用い、バリアー兼接着樹脂層として、意図的に添加される添加剤や潤滑剤を含む添加物を含有しないポリアミド樹脂を使用することにより、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であるというクリーン度を達成でき、バリアー層としてエチレンビニルアルコール共重合樹脂を使用することにより、ガスバリアー性を向上でき、外層に高価な造核剤や耐光安定剤を添加しない、紫外線遮断性と透明性などに優れ、溶融張力が大きい超高分子量高密度ポリエチレン樹脂を用いることによってドローダウンなどが発生せず、成形性や機械的強度などが改善されるので、香料やフォトレジスト液などの高価で危険性の高い化学物質も多い超高純度薬品の容器としても対応可能な不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器が得られることを見いだし、本発明を成すに到った。
 前記課題を解決するための本発明の請求項1の発明は、容器の内側から外側に順に、下記の内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層および外層1を積層してなる、前記各層が透明性を有する耐薬品性吹込み成形積層容器であって、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であることを特徴とする透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器である。
内層1:接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない、添加剤フリーのフッ素樹脂であって、加熱減量が0.20質量%以下である。
内層2:接着性官能基を有し、内層1のフッ素樹脂およびバリアー兼接着樹脂層に接着性を有する、添加剤フリーのフッ素樹脂であって、加熱減量が0.40質量%以下である。
バリアー兼接着樹脂層:意図的に添加される添加剤や潤滑剤を含む添加物を含有しない、カプロラクタムの開環重縮合により得られるポリアミドからなる群より選択される少なくとも1種のポリアミドである。
接着性層:無水マレイン酸変性ポリオレフィン樹脂である。
バリアー層:エチレンビニルアルコール共重合樹脂である。
外層1:無水マレイン酸変性ポリオレフィン樹脂を含み、前記バリアー層との接着性に優れると共に、波長200~400nmの紫外線透過率が1%以下である超高分子量高密度ポリエチレン樹脂である。
 本発明の請求項2の発明は、容器の内側から外側に順に、下記の内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層、接着性層および外層2を積層してなる、前記各層が透明性を有する耐薬品性吹込み成形積層容器であって、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であることを特徴とする透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器である。
内層1:接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない、添加剤フリーのフッ素樹脂であって、加熱減量が0.20質量%以下である。
内層2:接着性官能基を有し、内層1のフッ素樹脂およびバリアー兼接着樹脂層に接着性を有する、添加剤フリーのフッ素樹脂であって、加熱減量が0.40質量%以下である。
バリアー兼接着樹脂層:意図的に添加される添加剤や潤滑剤を含む添加物を含有しない、カプロラクタムの開環重縮合により得られるポリアミドからなる群より選択される少なくとも1種のポリアミドである。
接着性層:無水マレイン酸変性ポリオレフィン樹脂である。
バリアー層:エチレンビニルアルコール共重合樹脂である。
接着性層:無水マレイン酸変性ポリオレフィン樹脂である。
外層2:波長200~400nmの紫外線透過率が1%以下である超高分子量高密度ポリエチレン樹脂である。
 本発明の請求項3の発明は、請求項1あるいは請求項2記載の耐薬品性吹込み成形積層容器において、前記内層2に使用するフッ素樹脂が、テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/単量体(α)共重合体、エチレン/テトラフルオロエチレン/単量体(α)共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、クロロトリフルオロエチレン/単量体(α)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/単量体(α)共重合体、及びエチレン/クロロトリフルオロエチレン/単量体(α)共重合体からなる群より選択された少なくとも1種であり、前記単量体(α)は接着性官能基を有する単量体であることを示し、そして下記特性を有するフッ素樹脂であることを特徴とする。
(特性)
MFR(265℃、5Kg荷重 g/10min):10~40
比重:1.7~1.9
融点(℃):150~220
 本発明の請求項4の発明は、請求項1から3のいずれか1項に記載の耐薬品性吹込み成形積層容器において、前記内層1に使用するフッ素樹脂は、前記接着性官能基を有さず、下記特性を有するフッ素樹脂であることを特徴とする。
(特性)
MFR(297℃、5Kg荷重 g/10min):9~35
比重:1.7~2.0
融点(℃):200~240
 本発明の請求項5の発明は、請求項1から4のいずれか1項に記載の耐薬品性吹込み成形積層容器において、前記ポリアミド樹脂が、下記特性を有することを特徴とする。
(特性)
融点(℃):170~250
密度(Kg/m3):1.0~1.2
 本発明の請求項6の発明は、請求項1から5のいずれか1項に記載の耐薬品性吹込み成形積層容器において、前記バリアー層は、下記の特性を有する酸素バリアー性に優れたエチレンビニルアルコール共重合樹脂であることを特徴とする。
(特性)
MFR(210℃、2.16Kg荷重 g/10min):2~5
密度(Kg/m3):1.1~1.3
融点(℃):170~200
 本発明の請求項7の発明は、請求項1記載の耐薬品性吹込み成形積層容器において、前記外層1が、下記特性を有するポリエチレンあるいはエチレン-α-オレフィン共重合体からなる超高分子量高密度ポリエチレン樹脂と、紫外線遮断性および透明性を付与するためのキナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料からなる群から選択される少なくとも1種の遮光性顔料を0.01~0.04質量%、酸化防止剤を0.05~0.30質量%、無水マレイン酸変性ポリオレフィン樹脂を25~65質量%含み、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である組成物1から構成されることを特徴とする。
(特性)
密度:940~962Kg/m3
重量平均分子量:220,000~260,000
分子量分布(Mw/Mn):12以下
溶融張力:18~30g
 本発明の請求項8の発明は、請求項2記載の耐薬品性吹込み成形積層容器において、前記外層2が、下記特性を有するポリエチレンあるいはエチレン-α-オレフィン共重合体からなる超高分子量高密度ポリエチレン樹脂と、紫外線遮断性および透明性を付与するためのキナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料からなる群から選択される少なくとも1種の遮光性顔料を0.01~0.04質量%、酸化防止剤を0.05~0.30質量%、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である組成物2から構成されることを特徴とする。
(特性)
密度:940~962Kg/m3
重量平均分子量:220,000~260,000
分子量分布(Mw/Mn):12以下
溶融張力:18~30g
 本発明の請求項1の発明は、容器の内側から外側に順に、前記の内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層および外層1を積層してなる、前記各層が透明性を有する耐薬品性吹込み成形積層容器であって、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であることを特徴とする透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器であり、
 前記内層1として、接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない添加剤フリーの加熱減量が0.20質量%以下である特定のフッ素樹脂を用い、前記内層2として、接着性官能基を有し、内層1のフッ素樹脂およびバリアー兼接着樹脂層に接着性を有する添加剤フリーの加熱減量が0.40質量%以下である特定のフッ素樹脂を用い、バリアー兼接着樹脂層に、意図的に添加される添加剤や潤滑剤を含む添加物を含有しないポリアミド樹脂を使用することにより、クリーン度が、23℃で30日貯蔵後で5以下であり、かつ40℃で30日貯蔵後で10以下という、硝子瓶相当のクリ-ン度が得られ、耐薬品性を向上できるとともに、匂い成分の変質を極力低減できる、という顕著な効果を奏する。
 また、酸素バリアー性に優れたエチレンビニルアルコール共重合樹脂からなるバリアー層を設けることによって酸素バリアー性が改善され、一方、フッ素樹脂やポリアミド樹脂や接着性樹脂は溶融後、溶融張力が一気に低下するので、吹込み成形においてドローダウンなどの問題が発生し、例えば均一肉厚の容器を成形できないとか、不良品が発生し歩留が悪化するなどという問題があったが、外層1に溶融張力が大きい紫外線遮断性と透明性や機械的強度などに優れた超高分子量高密度ポリエチレン樹脂を用いることによって成形性や紫外線遮断性が改善されるので、香料やフォトレジスト液などの高価で危険性の高い化学物質も多い超高純度薬品の容器としても対応可能な透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器を提供できる、という顕著な効果を奏する。
 また、本発明の耐薬品性吹込み成形積層容器は、外層1として無水マレイン酸変性ポリオレフィン樹脂を含み、前記バリアー層との接着性に優れる外層を用いたので、外層1と前記バリアー層との間に接着性層(無水マレイン酸変性ポリオレフィン樹脂)を設ける必要がなくなり、作業性および経済性が一層よくなる、という顕著な効果を奏する。
 また、本発明の耐薬品性吹込み成形積層容器は、重く、破損し易く、安全性に欠ける硝子瓶と対比して、破損し難く、優れた機械的強度を有し、バリアー層を設けることによって酸素バリアー性が改善されるので、香料ボトルなどとしても使用できる性能を有し、その他種々の内容物に対しても使用できる万能なプラスチック容器として、味覚や臭覚などに関して安全・安心に使用できる、という顕著な効果を奏する。
 本発明の耐薬品性吹込み成形積層容器は、前記のような特性を有するので、環境や健康に易しく、環境問題や健康問題に貢献するものであり、また経費削減にもなるので経済的である、という顕著な効果を奏する。
 本発明の請求項2の発明は、容器の内側から外側に順に、前記の内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層、接着性層および外層2を積層してなる、前記各層が透明性を有する耐薬品性吹込み成形積層容器であって、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であることを特徴とする透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器であり、
 本発明の請求項2の耐薬品性吹込み成形積層容器は、外層2と前記バリア層との間に接着性層(無水マレイン酸変性ポリオレフィン樹脂)を設けたことにより、経済性は許容範囲内でやや低下するが両者の接着性が確実になるので、用途や目的によって使用されるものであり、この点以外は本発明の請求項1の耐薬品性吹込み成形積層容器と同じ構成を有しており、作用・効果も本発明の請求項1の耐薬品性吹込み成形積層容器と同じである、という顕著な効果を奏する。
 本発明の請求項3の発明は、請求項1あるいは請求項2記載の耐薬品性吹込み成形積層容器において、前記内層2に使用するフッ素樹脂が、テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/単量体(α)共重合体、エチレン/テトラフルオロエチレン/単量体(α)共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、クロロトリフルオロエチレン/単量体(α)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/単量体(α)共重合体、及びエチレン/クロロトリフルオロエチレン/単量体(α)共重合体からなる群より選択された少なくとも1種であり、前記単量体(α)は接着性官能基を有する単量体であることを示し、そして前記特性を有するフッ素樹脂であることを特徴とするものであり、
 接着性官能基を有する単量体(α)を共重合したフッ素樹脂を前記内層2に使用することにより、内層1のフッ素樹脂およびバリアー兼接着樹脂層(ポリアミド樹脂)に優れた接着性を有するとともに、ポリオレフィン並みの成形温度で共押し出し成形が可能になる、というさらなる顕著な効果を奏する。
 本発明の請求項4の発明は、請求項1から3のいずれか1項に記載の耐薬品性吹込み成形積層容器において、前記内層1に使用するフッ素樹脂は、前記接着性官能基を有さず、前記特性を有するフッ素樹脂であることを特徴とするものであり、内層2のフッ素樹脂に優れた接着性を有するとともに、ポリオレフィン並みの成形温度で共押し出し成形が可能になる、というさらなる顕著な効果を奏する。
 本発明の請求項5の発明は、請求項1から請求項4のいずれか1項に記載の耐薬品性吹込み成形積層容器において、前記ポリアミド樹脂が、前記特性を有することを特徴とするものであり、
 内層2のフッ素樹脂との接着性が向上し、そして添加剤や潤滑剤フリーとしたことにより、前記添加物に起因する不純パーティクル溶出量を大きく低減でき、硝子瓶相当のクリーン度が得られる、というさらなる顕著な効果を奏する。
 本発明の請求項6の発明は、請求項1から請求項5のいずれか1項に記載の耐薬品性吹込み成形積層容器において、前記バリアー層は、前記の特性を有する酸素バリアー性に優れたエチレンビニルアルコール共重合樹脂であることを特徴とするものであり、
 酸素バリアー性が確実にさらに改善される、というさらなる顕著な効果を奏する。
 本発明の請求項7の発明は、請求項1記載の耐薬品性吹込み成形積層容器において、
 前記外層1が、前記特性を有するポリエチレンあるいはエチレン-α-オレフィン共重合体からなる超高分子量高密度ポリエチレン樹脂と、紫外線遮断性および透明性を付与するためのキナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料からなる群から選択される少なくとも1種の遮光性顔料を0.01~0.04質量%、酸化防止剤を0.05~0.30質量%、無水マレイン酸変性ポリオレフィン樹脂を25~65質量%含み、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である組成物1から構成されることを特徴とするものであり、
 フッ素樹脂やポリアミド樹脂や接着性樹脂は溶融後、溶融張力が一気に低下するので、吹込み成形においてドローダウンなどの問題が発生し、例えば均一肉厚の容器を成形できないとか、不良品が発生し歩留が悪化するなどという問題があったが、外層1に重量平均分子量および溶融張力が大きい超高分子量高密度ポリエチレン樹脂を用いることによってドローダウンなどの問題がなくなり成形性や機械的強度などが改善され、
 遮光性顔料を前記範囲で用いることにより透明性および紫外線遮断性が確実に改善され、確実に波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下を達成できるので、香料やフォトレジスト液などの高価で危険性の高い化学物質も多い超高純度薬品の容器としても対応可能な透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器をより確実に提供でき、酸化防止剤を前記範囲で用いることにより樹脂の焼けを防止し、焼け樹脂に起因する物性低下や外観の悪化などを防止できる、というさらなる顕著な効果を奏する。
 また、本発明の耐薬品性吹込み成形積層容器は、外層1として無水マレイン酸変性ポリオレフィン樹脂を含み、前記バリアー層との接着性に優れる外層を用いたので、外層1と前記バリアー層との間に接着性層(無水マレイン酸変性ポリオレフィン樹脂)を設ける必要がなくなり、作業性および経済性が一層よくなる、というさらなる顕著な効果を奏する。
 また、本発明の耐薬品性吹込み成形積層容器は、重く、破損し易く、安全性に欠ける硝子瓶と対比して、破損し難く、優れた機械的強度を有し、バリアー層を設けることによって酸素バリアー性が改善されるので、香料ボトルなどとしても使用できる性能を有し、その他種々の内容物に対しても使用できる万能なプラスチック容器として、味覚や臭覚などに関して安全・安心に使用できる、というさらなる顕著な効果を奏する。
 本発明の請求項8の発明は、請求項2記載の耐薬品性吹込み成形積層容器において、
 前記外層2が、前記特性を有するポリエチレンあるいはエチレン-α-オレフィン共重合体からなる超高分子量高密度ポリエチレン樹脂と、紫外線遮断性および透明性を付与するためのキナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料からなる群から選択される少なくとも1種の遮光性顔料を0.01~0.04質量%、酸化防止剤を0.05~0.30質量%、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である組成物2から構成されることを特徴とするものであり、
 フッ素樹脂やポリアミド樹脂や接着樹脂は溶融後、溶融張力が一気に低下するので、吹込み成形においてドローダウンなどの問題が発生し、例えば均一肉厚の容器を成形できないとか、不良品が発生し歩留が悪化するなどという問題があったが、外層2に重量平均分子量および溶融張力が大きい超高分子量高密度ポリエチレン樹脂を用いることによってドローダウンなどの問題がなくなり成形性や機械的強度などが改善され、遮光性顔料を前記範囲で用いることにより透明性および紫外線遮断性が確実に改善され、確実に波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下を達成できるので、香料やフォトレジスト液などの高価で危険性の高い化学物質も多い超高純度薬品の容器としても対応可能な透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器をより確実に提供でき、酸化防止剤を前記範囲で用いることにより樹脂の焼けを防止し、焼け樹脂に起因する物性低下や外観の悪化などを防止できる、というさらなる顕著な効果を奏する。
 外層2と前記バリアー層との間に接着性層(無水マレイン酸変性ポリオレフィン樹脂)を設けたことにより、経済性は許容範囲内でやや低下するが両者の接着性が確実になるので、用途や目的によって使用されるものであり、この点以外は外層1と同じ構成を有しており、作用・効果も外層1を使用した本発明の耐薬品性吹込み成形積層容器と同じである、というさらなる顕著な効果を奏する。
 すなわち、本発明の耐薬品性吹込み成形積層容器は、重く、破損し易く、安全性に欠ける硝子瓶と対比して、破損し難く、優れた機械的強度を有し、バリアー層を設けることによって酸素バリアー性が改善されるので、香料ボトルなどとしても使用できる性能を有し、その他種々の内容物に対しても使用できる万能なプラスチック容器として、味覚や臭覚などに関して安全・安心に使用できる、というさらなる顕著な効果を奏する。
本発明の耐薬品性吹込み成形積層容器の1例の壁断面を模式的に説明する説明図である。 本発明の耐薬品性吹込み成形積層容器の他の例の壁断面を模式的に説明する説明図である。 本発明の耐薬品性吹込み成形積層容器の内層1の赤外分光分析の結果を示すグラフである。 本発明の耐薬品性吹込み成形積層容器の内層2の赤外分光分析の結果を示すグラフである。
 以下、図面を用いて本発明を詳細に説明する。
 図1は、本発明の耐薬品性吹込み成形積層容器の1例の断面を説明する説明図である。
 図1において、本発明の耐薬品性吹込み成形積層容器8Aの1Aは、接着性官能基を有さない前記フッ素樹脂からなる内層1、1Bは、接着性官能基を有する前記フッ素樹脂からなる内層2、そして2は、前記ポリアミド樹脂からなるバリアー兼接着樹脂層、3は、無水マレイン酸変性ポリオレフィン樹脂からなる接着性層、4は、エチレンビニルアルコール共重合樹脂からなるバリアー層、5は、無水マレイン酸変性ポリオレフィン樹脂からなる接着性層、6Aは、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である超高分子量高密度ポリエチレン樹脂からなる外層2をそれぞれ示す。前記各層はそれぞれ優れた透明性を有する。7は、内容物である超高純度薬品を示す。
 図2は、本発明の耐薬品性吹込み成形積層容器の他の例の断面を説明する説明図である。
 図2において、本発明の耐薬品性吹込み成形積層容器8Bの1Aは、接着性官能基を有さない前記フッ素樹脂からなる内層1、1Bは、接着性官能基を有さない前記フッ素樹脂からなる内層2、そして2は、前記ポリアミド樹脂からなるバリアー兼接着樹脂層、3は、無水マレイン酸変性ポリオレフィン樹脂からなる接着性層、4は、エチレンビニルアルコール共重合樹脂からなるバリアー層、6Bは、無水マレイン酸変性ポリオレフィン樹脂を含む前記バリアー層4との接着性に優れる、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である超高分子量高密度ポリエチレン樹脂からなる外層1をそれぞれ示す。前記各層はそれぞれ優れた透明性を有する。7は、内容物である超高純度薬品を示す。
 前記外層1は、無水マレイン酸変性ポリオレフィン樹脂が25~65質量%含まれているので、前記外層1とバリアー層4との接着性に優れるとともに、ドローダウンなどの問題がなく、成形性や機械的強度などに優れる。しかし、無水マレイン酸変性ポリオレフィン樹脂が25質量%未満では、前記外層1とバリアー層4との接着性が不十分となる恐れがあり、無水マレイン酸変性ポリオレフィン樹脂が65質量%を超えるとドローダウンなどの問題が発生する恐れがある。
 内層2に使用するフッ素樹脂は、特に限定されるものではないが、具体的には、例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/単量体(α)共重合体、エチレン/テトラフルオロエチレン/単量体(α)共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、クロロトリフルオロエチレン/単量体(α)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/単量体(α)共重合体、及びエチレン/クロロトリフルオロエチレン/単量体(α)共重合体からなる群より選択された少なくとも1種であり、前記特性を有する接着性官能基を有する単量体(α)を共重合したフッ素樹脂であると、内層1のフッ素樹脂およびバリアー兼接着樹脂層(前記ポリアミド樹脂)に優れた接着性を有し、ポリオレフィン並みの成形温度で共押し出し成形が可能になるので、好ましく使用できる。
 本発明で内層2に使用するフッ素樹脂は、添加剤フリーの無添加グレードのフッ素樹脂を用いることが好ましい。
 本発明で内層1に使用するフッ素樹脂は、接着性官能基を有する前記単量体(α)を共重合せず、前記接着性官能基を有さないフッ素樹脂であり、添加剤フリーの無添加グレードのフッ素樹脂を用いることが好ましい。
 そして、本発明で内層1に使用するフッ素樹脂は下記(加熱減量測定法)で測定した加熱減量が0.20質量%以下、好ましくは0.15以下であり、内層2に使用するフッ素樹脂は同測定法で測定した加熱減量が0.40質量%以下、好ましくは0.30以下であることが必要である。それぞれこの範囲内にあるとクリーン度23℃で30日貯蔵後で5以下、かつ40℃で30日貯蔵後で10以下を達成できるが、前記範囲外にあるとこのクリーン度を達成できない恐れがある。
(加熱減量測定法)
アルミカップを天秤で質量を0.1mgまで精秤する(W0)。
試料5.00±0.01gをアルミカップに入れ、合計の質量を0.1mgまで精秤する(W)。
電気炉の温度を260℃±1℃に調整後、試料を240分加熱する。
加熱後、試料を取り出しデシケーター内で冷却し、試料を0.1mgまで精秤する(W1)。
 そして、次式により加熱減量を算出する。
加熱減量(質量%)=[(W-W1)/(W-W0)]×100
(内層2の好ましい特性について)
 MFR(265℃、5Kg荷重 g/10min)(測定法:265℃、ASTM D1238)は好ましくは10~40、さらに好ましくは20~30であり、10未満では溶融粘性が高く、吹き込み溶融成形性が悪化し駆動エネルギーも増大する恐れがあり、40を超えると溶融張力が低く吹き込み成形時にドローダウンなどの問題が生じる恐れがある。
 比重(測定法:ASTM D-792)は、通常市販されている市販品の比重1.7~1.9であってよく、さらに好ましくは1.72~1.76である。比重1.7未満では接着性が低下する問題が生じる恐れがあり、1.9を超えると容器の強度不足が生じる恐れがある。
 融点(℃)(測定法:ASTM D792)は、共重合する単量体(α)の量や種類によって変化するが、通常市販されている市販品の融点150~200℃であってよく、さらに好ましくは190~200である。融点が150℃未満では他の樹脂との融点差が生じ、接着強度や成形性の問題が生じる恐れがあり、融点が200℃を超えると他の樹脂と積層するのが困難となる恐れがある。
 共重合する単量体(α)は、接着性官能基を有し共重合できる単量体であればよく特に限定されるものではないが、溶融成形を考慮して量や種類を制御して内層2のフッ素樹脂が、前記融点(℃)範囲になるとともに、内層1のフッ素樹脂およびバリアー兼接着樹脂層(ポリアミド樹脂)により優れた接着性を有するものがよい。
 接着性官能基の具体例としては、例えば、エポキシ基、水酸基、カルボン酸無水物残基、カルボン酸基、アクリレート基、カーボネート基、アミノ基などを挙げることができる。この共重合体の具体例としては、実施例1に用いたエチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン-エチレンカーボネート共重合体EFEP(例えば、ダイキン工業(株)製RP5000)を挙げることができる。
(内層1の好ましい特性について)
 MFR(297℃、5Kg荷重 g/10min)(測定法:265℃、ASTM D1238)は好ましくは9~35、さらに好ましくは15~25であり、9未満では溶融粘性が高く、吹き込み溶融成形性が悪化し駆動エネルギーも増大する恐れがあり、35を超えると溶融張力が低く吹き込み成形時にドローダウンなどの問題が生じる恐れがある。
 比重(測定法:ASTM D-792)は、通常市販されている市販品の比重1.7~1.9であってよく、さらに好ましくは1.83~1.89である。比重1.7未満では接着性が低下する問題が生じる恐れがあり、1.9を超えると容器の強度不足が生じる恐れがある。
 融点(℃)(測定法:ASTM D792)は、通常市販されている市販品の融点200~240℃であってよく、さらに好ましくは208~228℃である。融点が200℃未満では他の樹脂との融点差が生じ、接着強度や成形性の問題が生じる恐れがあり、融点が240を超えると他の樹脂と積層するのが困難となる恐れがある。
 本発明で使用するバリアー兼接着樹脂層の前記ポリアミド樹脂とは、通常意図的に添加される添加剤や潤滑剤を含む添加物を含有しない、無添加グレードのポリアミド樹脂であって下記特性を有するものであり、具体的には、例えば、ダイセルエボニック(株)製Z4887を挙げることができる。
 中でも、カプロラクタムの開環重縮合により得られる、ナイロン6、ナイロン11、ナイロン12、ナイロン66などから選択される少なくとも1種のポリアミドであり、添加剤や潤滑剤を含む添加物を含有しないポリアミドは好ましく使用できる。
(特性)
融点(℃)(ISO11357準拠):170~250が好ましく、
密度(Kg/m3)(ASTM D1250-80準拠):1.0~1.2が好ましい。
 融点(℃)は更に好ましくは175~190、密度(Kg/m3)は更に好ましくは1.00~1.03である。
 融点が下限値未満では、接着性が不足する恐れがあり、上限値を超えると成形性が悪化する恐れがある。
 密度が下限値未満では、接着性が不足する恐れがあり、上限値を超えると成形性が悪化する恐れがある。
 本発明で使用する接着性層の無水マレイン酸変性ポリオレフィン樹脂は、バリア-兼接着樹脂層(前記ポリアミド樹脂)とバリアー層(エチレンビニルアルコール共重合樹脂)とに対して優れた接着性を有しており、さらに接着性層の無水マレイン酸変性ポリオレフィン樹脂は、バリアー層(エチレンビニルアルコール共重合樹脂)と外層(超高分子量高密度ポリエチレン樹脂)とに対して優れた接着性を有しており、両者を接着して接着性層を形成するものであり、溶融成形可能であればよく、通常市販されている市販品を用いることができる。
 前記バリアー層と外層とを接着する前記接着性層の無水マレイン酸変性ポリオレフィン樹脂には、その接着性を損なわない範囲において、内層1、2(フッ素樹脂)、バリアー兼接着樹脂層(前記ポリアミド樹脂)、接着性層(無水マレイン酸変性ポリオレフィン樹脂)、バリアー層(エチレンビニルアルコール共重合樹脂)、接着性層(無水マレイン酸変性ポリオレフィン樹脂)および外層(超高分子量高密度ポリエチレン樹脂)を含む回収物を配合することができる。
 前記接着性層の前記回収物を配合した無水マレイン酸変性ポリオレフィン樹脂は、接液面となる内層1のフッ素樹脂から離れているので、実用的にはクリーン度が損なわれる恐れがないからである。
 バリアー兼接着樹脂層(前記ポリアミド樹脂)とバリアー層(エチレンビニルアルコール共重合樹脂)とに対して優れた接着性を有する無水マレイン酸変性ポリオレフィン樹脂と、バリアー層(エチレンビニルアルコール共重合樹脂)と外層(超高分子量高密度ポリエチレン樹脂)とに対して優れた接着性を有する無水マレイン酸変性ポリオレフィン樹脂とは同じでもよく、あるいは異なるものでもよく、予め試験することによって決めることが好ましい。
 本発明で使用するバリアー層のエチレンビニルアルコール共重合樹脂(エチレン24~44モル%共重合)とは、エチレンビニルアルコール共重合を加水分解してほぼ完全にケン化した樹脂であり、保香性に優れるなど、優れたガスバリアー性を有するので薬品、化粧品などの容器包装材に広く用いられており、油類、有機溶剤などへの抵抗性が高く、特に下記の特性を有するエチレンビニルアルコール共重合樹脂を用いることにより酸素バリアー性を確保できとともに、MFR、融点などが超高分子量高密度ポリエチレン樹脂と近く安定成形性に優れるので好ましく使用できる。バリアー層のエチレンビニルアルコール共重合樹脂の例としては、具体的には、例えば、(株)クラレ製のF171B(エチレン32モル%共重合、融点183℃、ケン化率99.99%)を挙げることができる。
(特性)
MFR(210℃、2.16Kg荷重 g/10min):2~5
密度(Kg/m3):(ISO1183準拠)1.1~1.3
融点(℃):(ISO1346準拠):170~200
 MFRは好ましくは2~5であり、さらに好ましくは3~5であり、密度は好ましくは1.1~1.3であり、さらに好ましくは1.2~1.3であり、融点(℃)は好ましくは170~200であり、さらに好ましくは190~200である。MFR、密度、融点が前記範囲内にあるとガスバリアー性、強度、安定成形性などいずれも優れるが、前記範囲外ではこれらの特性の少なくとも1つが損なわれる恐れがある。
 本発明で使用する外層1、2の超高分子量高密度ポリエチレン樹脂としては、前記のように密度(測定法:JIS K7112準拠)が好ましくは940~962Kg/m3、さらに好ましくは944~946Kg/m3、重量平均分子量(測定法:後述する)が好ましくは22~26万、さらに好ましくは24~26万、分子量分布(Mw/Mn)(測定法:後述する)が好ましくは12以下、さらに好ましくは11以下、溶融張力(測定方法:日本ポリエチレン法、東洋精機製作所製キャピログラフを用い210℃、オリフィスはL:8mm、D:2.095mm、ピストン降下速度10mm/min、巻き取り速度3.9mm/minで測定)が好ましくは18~30g、さらに好ましくは22~26gである超高分子量高密度ポリエチレン樹脂が好ましく、この超高分子量高密度ポリエチレン樹脂を外層1、2に用いることによって成形性や機械的強度などが改善され、ドローダウンなどの問題がなくなり、歩留まりなども向上する。
 外層1、2を形成する超高分子量高密度ポリエチレン樹脂の分子量分布(Mw/Mn)が12以下と狭いために、溶融加工・急冷却するという通常の成形加工条件で多層成形された吹込み成形積層容器の外層1、2は緻密な小結晶集合体から構成されるので、透明性や機械的強度が向上する。
 外層1、2を形成する超高分子量高密度ポリエチレン樹脂の(Mw/Mn)は12以下が好ましく、さらに好ましくは11以下であり、(Mw/Mn)が12を超えると溶融加工・急冷却するという通常の成形加工条件で多層成形された吹込み成形積層容器の外層の結晶が大きくなったり、ばらついたりして緻密な小結晶集合体から構成されず、透明性や機械的強度が不足する恐れがある。
 外層1、2を形成する超高分子量高密度ポリエチレン樹脂の重量平均分子量が22万未満の場合、機械的強度が不足する恐れがあり、重量平均分子量が26万を越える場合、樹脂の溶融粘度が高いため成形性が悪化し、シェアストレスによる分子切断なども起こる恐れがある。
 外層1、2を形成する超高分子量高密度ポリエチレン樹脂の密度および溶融張力が下限値未満では、ドローダウンして肉厚コントロールが困難となる恐れがあり、一方、上限値を越えると、ボトル表面にメルトフラクチャー(肌荒れ)の問題が発生する恐れがある。
 外層1、2に使用する超高分子量高密度ポリエチレン樹脂は、エチレン、プロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、オクテン-1から選択される少なくとも1種類を含む単独重合体あるいは共重合体であり、前記特性を備えている市販品を用いることができる。中でも、エチレン単独重合体、エチレンとプロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、オクテン-1などのα-オレフィンとの共重合体は好ましく使用される。共重合体中のα-オレフィンの含有量は15質量%以下が好ましい。重合法は、密度が940~962Kg/m3であるなど前記特性を備えた重合体あるいは共重合体が得られれば、共重合体の分子構造はアタクチック、アイソタクチックあるいはシンジオタクチックあるいはこれらの混合物のいずれでもよく、特に限定されるものではなく、例えば低圧法あるいは中圧法のいずれによってもよい。
 本発明で使用する外層1、2には有機系遮光性顔料および/または無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料を、波長500~800nmの可視光の透過率が35%以上(後述する測定法による)であり、波長200~400nmの紫外線透過率が1%以下(後述する測定法による)となるように所定量配合することが好ましい。
 有機系遮光性顔料および無機系の遮光性顔料としては、外層に所定量配合することにより、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下とすることができ、外層の他の特性を損なわないものであれば特に限定されるものではない。
 しかし、キナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料は、比較的に少量の配合により目的を達成できるので、本発明において好ましく使用することができる。
 キナクリドン系遮光性顔料としては、具体的には、例えばTET48183およびTET78310(トーヨーカラー(株)製)を挙げることができる。
 フタロシアニン系遮光性顔料としては、具体的には、例えば7F2852(大日精化工業(株)製)、TET58335(トーヨーカラー(株)製)およびEPH-525328(ポリコール興業(株)製)を挙げることができる。
 モノアゾ系遮光性顔料としては、具体的には、例えばTET38013(トーヨーカラー(株)製)およびECE-6293(ポリコール興業(株)製)を挙げることができる。
 カーボンブラック系遮光性顔料としては、具体的には、例えばTET01337(トーヨーカラー(株)製)およびEPH-K-51680(ポリコール興業(株)製)を挙げることができる。
 酸化鉄系遮光性顔料としては、具体的には、例えばEPH-C-1045(ポリコール興業(株)製)およびTET68473(トーヨーカラー(株)製)を挙げることができる。
 群青系遮光性顔料としては、具体的には、例えばEPH-B-46662(ポリコール興業(株)製)およびTET26146(トーヨーカラー(株)製)を挙げることができる。
 酸化チタン系遮光性顔料としては、具体的には、例えばEB-1427(DIC(株)製)、EPH-H-2481(ポリコール興業(株)製)およびTET28318(トーヨーカラー(株)製)を挙げることができる。
 遮光性顔料の配合量は、通常、前記のように0.01~0.04質量%の範囲が好ましく、0.025~0.035質量%の範囲がより好ましく、0.029~0.031質量%の範囲が特に好ましい。
 0.01質量%未満では紫外線遮断性が不十分となる恐れがあり、0.04質量%を超えると透明性が損なわれる恐れがある。遮光性顔料を配合したマスターバッチを使用することもできる。例えば、実施例1では、モノアゾ系遮光性顔料を3質量%配合したマスターバッチ(トーヨーカラー(株)製TET-38013)を超高分子量高密度ポリエチレン樹脂(日本ポリエチレン(株)製HB111R)に1質量%配合している。従ってこの例では、超高分子量高密度ポリエチレン樹脂に対するモノアゾ系遮光性顔料の配合量は0.030質量%となる。
 これらの遮光性顔料の使用に当たっては、分散性の悪い顔料や容器の酸化劣化を促進するような顔料は避けることが好ましい。
 本発明においては、外層1、2を形成する超高分子量高密度ポリエチレン樹脂および遮光性顔料の種類などを決めた後、遮光性顔料の配合量は、予め試験して、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下となるように決めることが好ましい。
 波長500~800nmの可視光の透過率が35%以上、波長200~400nmの紫外線透過率が1%以下を達成できると、内容物の視認性に優れ、かつ収容した内容液の変質を防止できる紫外線遮断性を付与でき、例えばフォトレジスト液などのように紫外線によって変質して硬化するような薬品や香料などの超高純度薬品容器としても使用可能となる。
 本発明で使用する外層1、2にはフェノール系、リン系、サルファー系酸化防止剤からなる群から選択される少なくとも1種の酸化防止剤を所定量配合(0.05~0.30質量%)することが好ましく、樹脂の焼けを防止し、焼け樹脂に起因する外観の悪化などを防止できる。
 フェノール系酸化防止剤、リン系酸化防止剤、サルファー系酸化防止剤としては、酸化防止作用が高く、外層1、2の他の特性を損なわないものであれば特に限定されるものではない。
 フェノール系酸化防止剤としては、具体的には、例えば、ADEKA(株)製アデカスタブAO60を挙げることができる。
 リン系酸化防止剤としては、具体的には、例えば、ADEKA(株)製アデカスタブ2112を挙げることができる。
 サルファー系酸化防止剤としては、具体的には、例えば、ヨシトミ三菱化学(株)製DSTPを挙げることができる。
 外層1、2を形成する超高分子量高密度ポリエチレン樹脂に対して、これらの酸化防止剤は、0.05~0.30質量%配合することが好ましく、0.10~0.25質量%配合することがより好ましい。0.05質量未満では酸化防止性能が劣る恐れがあり、0.30質量%を超えると容器表面に添加剤がブリードアウトする恐れがある。
 本発明で使用する外層1、2には、不純微粒子となり得る遮光性顔料、酸化防止剤などを配合するが、外層1、2は接液面となる内層1、2から離れているので、これらの遮光性顔料、酸化防止剤などに起因する不純微粒子が内容液へ浸出するのをバリアー兼接着樹脂層2、接着性層3、5、バリアー層4などが防止するので、容器中に保管貯蔵している薬品などの中へ浸出しない。
 本発明においては、外層1、2には、遮光性顔料とともにベンゾトリアゾール系耐光安定剤やトリアジン系耐光安定剤などの耐光安定剤を必要に応じて適宜使用することもできる。
 ベンゾトリアゾール系耐光安定剤やトリアジン系耐光安定剤を使用すると、UV-B(200~320nm)とUV-A(320~400nm)をそれぞれ遮断でき、両者を特定量併用することにより他の特性を損なわずに紫外線遮断性を著しく改善することができる。
 耐光安定剤としては、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニルベンゾトリアゾール)、2-(5-クロロ-2-ベンゾトリアゾール)-6-t-ブチル-クレゾール、2-(3,5-ジ-t-アミノ-2-ヒドロキシフェニル)ベンドトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾールなどのベンゾトリアゾール系耐光安定剤、2-[4,6-ジ(2,4キシリル)-1,3,5-トリアジン-2-イル]-5、2、4,6-トリス(2-ヒドロキシ-4-ヘキシロキシ-3-メチルフェニル)-1,3,5-トリアジン、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノールなどのトリアジン系耐光安定剤、ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕のヒンダードアミン系耐光安定剤が挙げられる。
 樹脂に含まれる添加剤の含有量は、テトラヒドロフラン(THF)を用いて、ソックスレー抽出器で8時間抽出した抽出液を液体クロマトグラフィーで分離、定量した値である。その測定条件は、装置がGULLIVER(日本分光株式会社製)、カラムがFinepak GEL 101(日本分光株式会社製)、溶媒がTHF、検出器がUV-970(日本分光株式会社製)と830-RI(日本分光株式会社製)である。
 容器の樹脂の分子量の測定方法は、容器より切り取った樹脂組成物を溶媒(オルトジクロルベンゼン)に溶かして試料溶液とし、GPCで分子量および分子量分布を測定する。重量平均分子量および数平均分子量は次式により算出される。
重量平均分子量Mw=Σ(M×w)/Σw ・・・(2) 
数平均分子量Mn=Σw/Σ(w/M) ・・・(3)
分子量分布=重量平均分子量/数平均分子量(Mw/Mn)
 ただし、Mは分子量、wは重量分率である。
 尚、GPCの測定条件は、装置が150CV(Waters社製)、カラムがTSKgel GMH-HT(東ソー株式会社製)、溶媒がオルトジクロルベンゼン、温度が138℃、検出器は示差屈折計である。容器の分子量分布を前記範囲に制御するためには、原料樹脂も一定範囲の分子量分布を持つものでなければならない。
 成形方法は吹込み成形方法により、本発明の透明性に優れた耐薬品性吹込み成形積層容器を成形できるものであれば特に限定されるものではなく、市販されている吹込み成形積層容器の成形機から選択して使用することもできる。
 なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
 次に実施例により本発明を詳しく説明するが、本発明の主旨を逸脱しない限りこれらの実施例に限定されるものではない。
(実施例1)
 内層1としてMFR25g/10min、比重1.86、融点223℃、加熱減量が0.16質量%の添加剤フリーのフッ素樹脂(ダイキン工業(株)製EP-610)を使用し、内層2としてMFR25g/10min、比重1.74、融点195℃、加熱減量が0.35質量%の添加剤フリーのフッ素樹脂(ダイキン工業(株)製RP-5000)を使用し、そして、バリアー兼接着樹脂層として内層2のフッ素樹脂との接着機能を有した、意図的に添加される添加剤や潤滑剤を含む添加物を含有しない、添加剤フリーのポリアミド樹脂(ダイセルエボニック(株)製Z4887、相対粘度1.87)を用い、前記ポリアミド樹脂とバリアー層との接着機能を有する接着性層として無水マレイン酸変性ポリオレフィン樹脂(日本ポリエチレン(株)FT71A)を用い、そしてバリアー層としてバリアー樹脂(エチレン-ビニルアルコール共重合体樹脂F171B:(株)クラレ製、ケン化率99.99%)を用い、そして外層1として、超高分子量高密度ポリエチレン樹脂(日本ポリエチレン(株)製HB111R)(HL-MFR(測定法:JIS K7112)6g/10min、密度946Kg/m3、重量平均分子量25万、溶融張力25g)に対して、無水マレイン酸変性ポリオレフィン樹脂(日本ポリエチレン(株)FT71A)を30質量%、視認性と紫外線遮断性向上のための遮光性顔料(トーヨーカラー(株)製TET-38013、モノアゾ系遮光性顔料を3質量%配合したマスターバッチ)1質量%(モノアゾ系遮光性顔料の配合量としては0.030質量%)、酸化防止剤(フェノール系酸化防止剤、ADEKA(株)製アデカスタブAO60)0.2質量%を配合した超高分子量高密度ポリエチレン樹脂を用いて、下記の成形条件でドローダウンなどの問題がなく、6層からなる本発明の透明性に優れた耐薬品性吹込み成形積層容器(全質量400g、内層1が50μm、内層2が100μm、バリアー兼接着樹脂層50μm、接着性層50μm、バリアー層50μm、外層1が1500μm、平均全肉厚1.8mm、容量3750ML)を成形した。
(成形条件)
 ブロー成形機((株)ブレンズ製6種6層)(6種の押出機を用い1個のダイヘッドで6層に積層するタイプ)を使用した。
内層1のフッ素樹脂:スクリュウ径40mmΦ 設定温度:260℃
内層2のフッ素樹脂:スクリュウ径20mmΦ 設定温度:240℃
ポリアミド樹脂層:スクリュウ径20mmΦ 設定温度:200℃
無水マレイン酸変性ポリオレフィン樹脂層:スクリュウ径20mmΦ 設定温度:220℃
エチレン-ビニルアルコール共重合体樹脂層:スクリュウ径40mmΦ
 設定温度:230℃
外層1の超高分子量高密度ポリエチレン樹脂:スクリュウ径50mmΦ
 設定温度:220℃
ダイヘッド温度:設定温度:235℃
 なお、吸湿性のある前記ポリアミド樹脂とバリアー樹脂は乾燥機を用いて80℃で乾燥して水分除去したものを使用した。
 そして、23℃で抽出直後と30日貯蔵して抽出後の不純微粒子溶出量(個数/ml)および40℃で抽出直後と30日貯蔵して抽出後の不純微粒子溶出量(個数/ml)を下記の試験法で試料ボトルを用いて測定し、下記の試験法で酸素透過性および視認性を評価し、ボトル胴部壁から4cm×4cm×1.8mmの試料を切り抜き、それを用いて下記の試験法で紫外線透過率、可視光透過率を評価し、そして容器に純水を充填して下記の試験法で金属溶出を評価し、下記の試験法で落下強度および香料適正を評価し、前記の試験法で内層1、2および接液面となる層の加熱減量を評価し、経済性については、高価な材料を使用せず、経済的に容器を提供できる場合は市場性が高く○、また高価な材料を使用するので、用途によっては市場性があるが、経済性は×とする評価を行い、そしてこれらをまとめて総合判定を行なった。結果を表1~表2に示す。表1に記載の加熱減量は、内層1あるいは接液面となる層の加熱減量である。
 実施例1で成形して得られた本発明の透明性に優れた耐薬品性吹込み成形積層容器の内層1のフッ素樹脂(ダイキン工業(株)製EP-610)および内層2のフッ素樹脂(ダイキン工業(株)製RP-5000)を用いて、下記の測定条件で赤外分光分析を行った。
(赤外分光分析測定条件)
測定装置:島津製作所(株)製 IR Affinity-1
 測定試料:240℃プレス機を用いて内層1、2の50μm厚のフィルムシートを作成して使用した。
測定波長:600~4000cm-1
 図3は、内層1の赤外分光分析の結果を示すものであり、縦軸が吸光度(%)、横軸が波長(cm-1)である。
 図4は、内層2の赤外分光分析の結果を示すものであり、縦軸が吸光度(%)、横軸が波長(cm-1)を示す。
 図3と図4を重ね合わせると、図4の波長1800(cm-1)におけるシャープな吸収を除くと、両者はほぼ同じ波形であることが判る。
 図4の波長1800(cm-1)における大きいシャープな吸収(矢印で示す)は、カーボネート基の吸収ピークであり、内層2のフッ素樹脂は接着性官能性基(カーボネート基)を有することが判る。
 内層2のフッ素樹脂は、前記のように接着性官能基を有する単量体(α)を共重合して製造されており、単量体(α)の共重合量によって内層2のフッ素樹脂の接着性官能基の量を制御することができ、それによって、内層2のフッ素樹脂の接着性や融点などを制御して、内層2が内層1のフッ素樹脂およびバリアー兼接着樹脂層に良好な接着性を有するとともに融点などが前記範囲となるように制御することができる。
 図3の波長1800(cm-1)には前記大きいシャープな吸収ピークは見られず、内層1のフッ素樹脂は接着性官能性基(カーボネート基)を有さないことを示している。内層1は、内層2のフッ素樹脂には良好な接着性を有するが他の層には接着性を有さない。
 図3、4の波長3000(cm-1)の大きいシャープな吸収ピークは、共重合したエチレン由来の吸収ピークである。
(試験法)
(不純微粒子(パーティクル)の測定法)
 下記の測定はクリーンルーム内(クラス100)で行う。
1. 測定装置:(株)リオン製パーティクルカウンター「KL-26」RION KL-26を使用する。
2. 測定検体:成形された容器に超純水を満水に充填して、23℃で抽出直後と30日貯蔵して抽出後あるいは40℃で抽出直後と30日貯蔵して抽出後、直立の状態で20分間静置した容器から測定試料を採取したものを測定検体とする。
3. 測定前に超純水でパーティクルカウンターをパージ後、超純水25mlで2回、測定装置を洗浄する。
4. 洗浄後、超純水を10mlパーティクルカウンターに注入して、パーティクル数を測定する。この操作を2回して、0.2以上μmのパーティクル数がゼロ(A)であることを確認する。
5. 25mlの測定検体で2回、測定装置を洗浄する。
6. 洗浄後、測定検体の超純水を満水にした容器(ボトル)から10mlをパーティクルカウンターに注入して、パーティクル数を測定する。この操作を2回して、0.2μm以上のパーティクル数の平均値(B)を求める。
7. 測定値から1ml中のパーティクル値を次式で計算して求める。
(B(個))÷10ml=個/ml
酸素透過率[cm3/(pkg.24h.atm)]:
 3.75Lの容器(ボトル中央部の肉厚:1.8mm)を使用し、JIS K7126-2に準拠し、(OX-TRAN2/21)(MOCON社製)測定装置を用いて、容器外側から内側への酸素透過を測定した。温湿度:外側1気圧、23℃、50%RH酸素。内側1気圧、23℃、ドライ窒素。
(紫外線透過率)
 日本分光(株)V-670を使用し、200~400nmの紫外線領域の透過率を求める。
(可視光透過率)
 日本分光(株)V-670を使用し、400~800nmの可視光線領域の透過率を求める。
(視認性)
 750ルックスの室内で、容器に水道水を入れて、3人で容器外側から肉眼で水道水を観察する。そして下記の4段階の評価を行う。
評価:
◎:水道水をよく確認できる。
○:水道水を確認できる。
△:水道水をよく見ると確認できる。
×:水道水を確認できない。
(落下強度)
 容器に水を容量の80%充填し、高さ1.2mからコンクリート面に容器底部を下にして5回落下させ、容器側部を下にして1回落下させ、割れや漏れを目視で判定する。
(香料適正)
 代表的な香料の例として、リモネン(商品名:オレンジオイル、純度96.4%、長谷川香料(株)製)、柑橘類(商品名:レモンエッセンス、長谷川香料(株)製)、カニオイル(15%ジメチルサルファイド、プロピレングリコール溶液、長谷川香料(株)製)、コメサラダ(商品名:コメ油、長谷川香料(株)製)、エチルブチレート(商品名:エステル類、純度100%、長谷川香料(株)製)、トランス-2-ヘキセナール(商品名:アルデヒド類、純度99.7%、長谷川香料(株)製)を使用し、各香料1kgをそれぞれ充填、密封し、常温、常圧で1ケ月および3ケ月放置した。ただし、カニオイル(15%ジメチルサルファイド、プロピレングリコール溶液)だけは、常温、常圧で1ケ月および3ケ月、冷蔵保存した。
 3ケ月放置後、各試料について、容器質量を測定し内容物が散逸していないかをチェックし、パネルメンバー10人で官能試験を行って変質していないかをチェックし、比重・屈折率を測定して変動していないかをチェックし、分析可能な試料についてはガスクロマトグラフにより成分をチェックして下記の評価基準により評価した。
評価基準:
○:散逸、変質、変動などがなく貯蔵安定性が高く市場性がある。
△:○よりやや劣るが、散逸、変質、変動などが実質的になく実用的に貯蔵安定性が高く市場性がある。
×:散逸、変質、変動などがあり貯蔵安定性が低く市場性がない。
(金属溶出)
 試料容器に純水を満水に充填し、23℃および40℃で加温した状態で30日間放置し、この純水を検体としてICP-MASS(アジレントテクノロジー(株)製8800を使用しppbレベルまで測定する。10ng/L以下であれば合格。測定はクリーンルーム内(クラス1000)で行う。測定した元素Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、Pbの23元素を測定する。
(総合判定)
パ-ティクル値が、23℃で30日貯蔵後で5個/ml以下、かつ40℃で30日貯蔵後で10以下、
酸素透過率が0.003[cm3/(pkg.24h.atm)]以下、
紫外線透過率が1%以下、
可視光透過率が35%以上、
視認性が○、
落下強度:破壊なし
香料適正が○~△
金属溶出が10(ng/L)以下
経済性が○。
 この場合に総合判定を○とする。これらのいずれかが前記より劣る場合は×とする。
(比較例1)
 実施例1において使用した添加剤フリーのポリアミド樹脂(ダイセルエボニック(株)製Z4887)(バリアー兼接着樹脂、相対粘度1.87)の替わりに、酸化防止剤(ヒンダードフェノール系酸化防止剤、2000ppm)入り同ポリアミド樹脂(相対粘度1.87)を用いた以外は、実施例1と同様にして比較のための吹込み成形積層容器を作り評価した。結果を表1~表2に示す。
(比較例2)
 実施例1において使用した内層1、2の替りに、密度956Kg/m3、HL-MFR(測定法:JIS K7112、荷重21.6Kg)8g/10min、Mw/Mn=11、分子量1000以下の成分が0.2質量%の高密度ポリエチレン(東ソー(株)製9D01A)を使用した接液層を用いた以外は、実施例1と同様にして、比較のための吹込み成形積層容器を作り評価した。結果を表1~表2に示す。
(比較例3)
 実施例1において使用した内層1を使用せず、実施例1において使用した加熱減量が0.35質量%の内層2を接液層として使用した以外は、実施例1と同様にして、比較のための吹込み成形積層容器を作り評価した。結果を表1~表2に示す。
(比較例4)
 比較例3において使用した接液層のフッ素樹脂を、電気炉の温度260℃±1℃で120分加熱して、加熱減量を低減(加熱減量0.31質量%)したフッ素樹脂を使用した以外は、比較例3と同様にして、比較のための吹込み成形積層容器を作り評価した。結果を表1~表2に示す。
(比較例5)
 比較のために、硝子瓶(富士フィルムエレクトロニクスマテリアルズ(容量2500ML)を使用した以外は、実施例1と同様にして、評価した。結果を表1~表2に示す。
(比較例7)
 比較のために、市販のプラスチック製のシーラーボトル(市販の香料容器、北酸(株)製、1L)を使用した以外は、実施例1と同様にして、評価した。結果を表1~表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~表2から、実施例1の耐薬品性吹込み成形積層容器は、パ-ティクル値、酸素透過率、紫外線透過率、可視光透過率、視認性、落下強度、香料適正、金属溶出および経済性の全てに優れており総合判定が○であるのに対し、比較例1~6の比較のための容器は、これらの何れか1つが劣っていることが判る。
 本発明の耐薬品性吹込み成形積層容器は、前記内層1として、接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない添加剤フリーの加熱減量が0.20質量%以下である特定のフッ素樹脂を用い、前記内層2として、接着性官能基を有し、内層1のフッ素樹脂およびバリア-兼接着樹脂層に接着性を有する添加剤フリーの加熱減量が0.40質量%以下である特定のフッ素樹脂を用い、バリアー兼接着樹脂層に、意図的に添加される添加剤や潤滑剤を含む添加物を含有しない前記ポリアミド樹脂を使用することにより、クリーン度が、23℃で30日貯蔵後で5以下であり、かつ40℃で30日貯蔵後で10以下という、硝子瓶相当のクリーン度が得られ、耐薬品性を向上できるとともに、匂い成分の変質を極力低減できるという顕著な効果を奏し、酸素バリアー性に優れたエチレンビニルアルコール共重合樹脂からなるバリアー層を設けることによって酸素バリアー性が改善され、外層に溶融張力が大きい紫外線遮断性と透明性や機械的強度などに優れた超高分子量高密度ポリエチレン樹脂を用いることによって成形性や紫外線遮断性が改善されるので、香料やフォトレジスト液などの高価で危険性の高い化学物質も多い超高純度薬品の容器としても対応可能な透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器を提供できるという顕著な効果を奏するので、産業上の利用価値が高い。
1A 内層1
1B 内層2
2 バリアー兼接着樹脂層
3 接着性層
4 バリアー層
5 接着性層
6A 外層2
6B 外層1
7 超高純度薬品
8A、8B 耐薬品性吹込み成形積層容器

Claims (8)

  1.  容器の内側から外側に順に、下記の内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層および外層1を積層してなる、前記各層が透明性を有する耐薬品性吹込み成形積層容器であって、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であることを特徴とする透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器。
    内層1:接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない、添加剤フリーのフッ素樹脂であって、加熱減量が0.20質量%以下である。
    内層2:接着性官能基を有し、内層1のフッ素樹脂およびバリアー兼接着樹脂層に接着性を有する、添加剤フリーのフッ素樹脂であって、加熱減量が0.40質量%以下である。
    バリアー兼接着樹脂層:意図的に添加される添加剤や潤滑剤を含む添加物を含有しない、カプロラクタムの開環重縮合により得られるポリアミドからなる群より選択される少なくとも1種のポリアミドである。
    接着性層:無水マレイン酸変性ポリオレフィン樹脂である。
    バリアー層:エチレンビニルアルコール共重合樹脂である。
    外層1:無水マレイン酸変性ポリオレフィン樹脂を含み、前記バリアー層との接着性に優れると共に、波長200~400nmの紫外線透過率が1%以下である超高分子量高密度ポリエチレン樹脂である。
  2.  容器の内側から外側に順に、下記の内層1、内層2、バリアー兼接着樹脂層、接着性層、バリアー層、接着性層および外層2を積層してなる、前記各層が透明性を有する耐薬品性吹込み成形積層容器であって、23℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が5以下、かつ40℃で30日貯蔵後の不純微粒子溶出量(個数/ml)が10以下であることを特徴とする透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器。
    内層1:接着性官能基を有さず、内層2のフッ素樹脂には接着性を有するが他の層には接着性を有さない、添加剤フリーのフッ素樹脂であって、加熱減量が0.20質量%以下である。
    内層2:接着性官能基を有し、内層1のフッ素樹脂およびバリアー兼接着樹脂層に接着性を有する、添加剤フリーのフッ素樹脂であって、加熱減量が0.40質量%以下である。
    バリアー兼接着樹脂層:意図的に添加される添加剤や潤滑剤を含む添加物を含有しない、カプロラクタムの開環重縮合により得られるポリアミドからなる群より選択される少なくとも1種のポリアミドである。
    接着性層:無水マレイン酸変性ポリオレフィン樹脂である。
    バリアー層:エチレンビニルアルコール共重合樹脂である。
    接着性層:無水マレイン酸変性ポリオレフィン樹脂である。
    外層2:波長200~400nmの紫外線透過率が1%以下である超高分子量高密度ポリエチレン樹脂である。
  3.  前記内層2に使用するフッ素樹脂が、テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/単量体(α)共重合体、エチレン/テトラフルオロエチレン/単量体(α)共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/単量体(α)共重合体、クロロトリフルオロエチレン/単量体(α)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/単量体(α)共重合体、及びエチレン/クロロトリフルオロエチレン/単量体(α)共重合体からなる群より選択された少なくとも1種であり、前記単量体(α)は接着性官能基を有する単量体であることを示し、そして下記特性を有するフッ素樹脂であることを特徴とする請求項1あるいは請求項2記載の耐薬品性吹込み成形積層容器。
    (特性)
    MFR(265℃、5Kg荷重 g/10min):10~40
    比重:1.7~1.9
    融点(℃):150~220
  4.  前記内層1に使用するフッ素樹脂は、前記接着性官能基を有さず、下記特性を有するフッ素樹脂であることを特徴とする請求項1から3のいずれか1項に記載の耐薬品性吹込み成形積層容器。
    (特性)
    MFR(297℃、5Kg荷重 g/10min):9~35
    比重:1.7~2.0
    融点(℃):200~240
  5.  前記ポリアミド樹脂が、下記特性を有することを特徴とする請求項1から請求項4のいずれか1項に記載の耐薬品性吹込み成形積層容器。
    (特性)
    融点(℃):170~250
    密度(Kg/m):1.0~1.2
  6.  前記バリアー層は、下記の特性を有する酸素バリアー性に優れたエチレンビニルアルコール共重合樹脂であることを特徴とする請求項1から請求項5のいずれか1項に記載の耐薬品性吹込み成形積層容器。
    (特性)
    MFR(210℃、2.16Kg荷重 g/10min):2~5
    密度(Kg/m):1.1~1.3
    融点(℃):170~200
  7.  前記外層1が、下記特性を有するポリエチレンあるいはエチレン-α-オレフィン共重合体からなる超高分子量高密度ポリエチレン樹脂と、紫外線遮断性および透明性を付与するためのキナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料からなる群から選択される少なくとも1種の遮光性顔料を0.01~0.04質量%、酸化防止剤を0.05~0.30質量%、無水マレイン酸変性ポリオレフィン樹脂を25~65質量%含み、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である組成物1から構成されることを特徴とする請求項1記載の耐薬品性吹込み成形積層容器。
    (特性)
    密度:940~962Kg/m
    重量平均分子量:220,000~260,000
    分子量分布(Mw/Mn):12以下
    溶融張力:18~30g
  8.  前記外層2が、下記特性を有するポリエチレンあるいはエチレン-α-オレフィン共重合体からなる超高分子量高密度ポリエチレン樹脂と、紫外線遮断性および透明性を付与するためのキナクリドン系、フタロシアニン系、アンスラキノン系、モノアゾ系などの有機系の遮光性顔料や、カーボンブラック、酸化鉄、酸化亜鉛、群青、酸化クロム、酸化チタン、二酸化珪素などの無機系の遮光性顔料から選択される少なくとも1種の遮光性顔料からなる群から選択される少なくとも1種の遮光性顔料を0.01~0.04質量%、酸化防止剤を0.05~0.30質量%、波長500~800nmの可視光の透過率が35%以上であり、波長200~400nmの紫外線透過率が1%以下である組成物2から構成されることを特徴とする請求項2記載の耐薬品性吹込み成形積層容器。
    (特性)
    密度:940~962Kg/m
    重量平均分子量:220,000~260,000
    分子量分布(Mw/Mn):12以下
    溶融張力:18~30g
PCT/JP2016/002927 2016-06-17 2016-06-17 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器 WO2017216826A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/002927 WO2017216826A1 (ja) 2016-06-17 2016-06-17 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器
KR1020197001661A KR102191634B1 (ko) 2016-06-17 2016-06-17 투명성이 우수하고 불순 미립자 용출량이 적은 내약품성 취입 성형 적층 용기
JP2018522900A JP6518839B2 (ja) 2016-06-17 2016-06-17 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器
CN201680086859.6A CN109328167B (zh) 2016-06-17 2016-06-17 透明性优异且杂质微粒溶出量少的耐化学药品性吹塑成型层叠容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/002927 WO2017216826A1 (ja) 2016-06-17 2016-06-17 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器

Publications (1)

Publication Number Publication Date
WO2017216826A1 true WO2017216826A1 (ja) 2017-12-21

Family

ID=60663013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002927 WO2017216826A1 (ja) 2016-06-17 2016-06-17 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器

Country Status (4)

Country Link
JP (1) JP6518839B2 (ja)
KR (1) KR102191634B1 (ja)
CN (1) CN109328167B (ja)
WO (1) WO2017216826A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767013A (zh) * 2019-05-02 2021-12-07 霍尼韦尔国际公司 用于储存产品的多层制品
CN117962443A (zh) * 2024-03-28 2024-05-03 保视丽(上海)新材料科技有限公司 一种低颗粒污染的高密度聚乙烯超净桶及其制备工艺
CN117962443B (zh) * 2024-03-28 2024-06-04 保视丽(上海)新材料科技有限公司 一种低颗粒污染的高密度聚乙烯超净桶及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058686A1 (fr) * 2000-02-10 2001-08-16 Daikin Industries, Ltd. Resine stratifiee
JP2010042824A (ja) * 2008-08-11 2010-02-25 Aicello Chemical Co Ltd 収容薬品視認性紫外線遮断多層容器
JP2015123351A (ja) * 2013-12-27 2015-07-06 コダマ樹脂工業株式会社 耐薬品性吹込み成形積層容器
JP2015123744A (ja) * 2013-12-27 2015-07-06 コダマ樹脂工業株式会社 透明性に優れた耐薬品性吹込み成形積層容器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440210A (en) 1977-09-06 1979-03-29 Shin Etsu Chem Co Ltd Manufacture of metallic magnesium
JP2749513B2 (ja) 1994-03-24 1998-05-13 アイセロ化学株式会社 高純度溶剤用容器
JP2805723B2 (ja) * 1994-06-09 1998-09-30 アイセロ化学株式会社 高純度薬品用遮光容器
US5985772A (en) * 1994-06-23 1999-11-16 Cellresin Technologies, Llc Packaging system comprising cellulosic web with a permeant barrier or contaminant trap
JP2805188B2 (ja) 1994-10-19 1998-09-30 アイセロ化学株式会社 高純度薬品用容器
JP4167745B2 (ja) 1998-04-08 2008-10-22 アイセロ化学株式会社 高純度薬品液用容器および高純度薬品液の排出方法
US6485794B1 (en) * 1999-07-09 2002-11-26 Ecolab Inc. Beverage container and beverage conveyor lubricated with a coating that is thermally or radiation cured
JP2013508235A (ja) 2009-11-05 2013-03-07 ザ プロクター アンド ギャンブル カンパニー 感光性液体組成物を保護するための包装製品
US9862524B2 (en) 2012-02-22 2018-01-09 Kyoraku Co., Ltd. Light-shielding container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058686A1 (fr) * 2000-02-10 2001-08-16 Daikin Industries, Ltd. Resine stratifiee
JP2010042824A (ja) * 2008-08-11 2010-02-25 Aicello Chemical Co Ltd 収容薬品視認性紫外線遮断多層容器
JP2015123351A (ja) * 2013-12-27 2015-07-06 コダマ樹脂工業株式会社 耐薬品性吹込み成形積層容器
JP2015123744A (ja) * 2013-12-27 2015-07-06 コダマ樹脂工業株式会社 透明性に優れた耐薬品性吹込み成形積層容器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767013A (zh) * 2019-05-02 2021-12-07 霍尼韦尔国际公司 用于储存产品的多层制品
CN117962443A (zh) * 2024-03-28 2024-05-03 保视丽(上海)新材料科技有限公司 一种低颗粒污染的高密度聚乙烯超净桶及其制备工艺
CN117962443B (zh) * 2024-03-28 2024-06-04 保视丽(上海)新材料科技有限公司 一种低颗粒污染的高密度聚乙烯超净桶及其制备工艺

Also Published As

Publication number Publication date
JPWO2017216826A1 (ja) 2019-02-21
KR102191634B1 (ko) 2020-12-17
KR20190020077A (ko) 2019-02-27
JP6518839B2 (ja) 2019-05-22
CN109328167B (zh) 2020-09-25
CN109328167A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
JP5898172B2 (ja) 耐薬品性吹込み成形積層容器
JP6073980B2 (ja) 内容物の視認性に優れた超高純度薬品用吹込み成形積層容器
WO2017216827A1 (ja) 不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器
JP5706512B1 (ja) 透明性に優れた耐薬品性吹込み成形積層容器
JP5753746B2 (ja) ポリエチレン系多層フィルム
WO2012036237A1 (ja) プロピレン系樹脂シートおよびそれを用いた加熱処理用包装体
JP6005580B2 (ja) ポリエチレン系多層フィルム
US20150290077A1 (en) Medical container
WO2017216826A1 (ja) 透明性に優れ不純微粒子溶出量の少ない耐薬品性吹込み成形積層容器
EP2683772B1 (en) Sealable, antifog composition for heat sealable films and easy-open packages obtained therefrom
JP6839489B2 (ja) 内容物の視認性がない超高純度薬品用吹込み成形積層容器
WO2020090242A1 (ja) スクイズ容器
KR102092982B1 (ko) 투명성이 우수한 내약품성 취입 성형 적층 용기
TWI613124B (zh) 透明性優良耐化學藥品性吹塑積層容器
WO2005110743A1 (en) High barrier packaging film with controlled extractables
CA2342050A1 (en) A transparent, deep-drawable and quick-sealing film with ultraviolet-blocking properties
WO2022118680A1 (ja) 二軸配向ポリプロピレン系樹脂フィルム及びそれを用いた包装体
KR102590937B1 (ko) 열접착성과 내충격성이 우수한 폴리프로필렌 블록 공중합체 수지
WO2016069075A1 (en) Blow molded multilayer containers having reduced product retention
JP5165277B2 (ja) 多層ボトル
JP6855725B2 (ja) 直線易カット性フィルムの製造方法及び直線易カット性フィルム
JP2007152729A (ja) ポリプロピレン系樹脂積層フィルム
KR20160082565A (ko) 방담필름 및 제조방법
KR20020082242A (ko) 고순도 약품보존용 차광성 플라스틱 용기
KR20020049130A (ko) 고순도 폴리에틸렌계 수지조성물 및 그 수지조성물의중공성형체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001661

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16905381

Country of ref document: EP

Kind code of ref document: A1