WO2017213158A1 - リボソームディスプレイ複合体およびその製造方法 - Google Patents

リボソームディスプレイ複合体およびその製造方法 Download PDF

Info

Publication number
WO2017213158A1
WO2017213158A1 PCT/JP2017/021038 JP2017021038W WO2017213158A1 WO 2017213158 A1 WO2017213158 A1 WO 2017213158A1 JP 2017021038 W JP2017021038 W JP 2017021038W WO 2017213158 A1 WO2017213158 A1 WO 2017213158A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ribosome
residue
ribosome display
polypeptide chain
Prior art date
Application number
PCT/JP2017/021038
Other languages
English (en)
French (fr)
Inventor
寛士 北
敏裕 鹿倉
博文 前田
慶士 高津
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201780035798.5A priority Critical patent/CN109312324B/zh
Priority to DK17810332.1T priority patent/DK3467107T3/da
Priority to EP17810332.1A priority patent/EP3467107B1/en
Priority to JP2018521744A priority patent/JP7093300B2/ja
Publication of WO2017213158A1 publication Critical patent/WO2017213158A1/ja
Priority to US16/213,454 priority patent/US11248226B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1041Ribosome/Polysome display, e.g. SPERT, ARM
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • the present invention relates to a novel ribosome display complex and a method for producing the same.
  • Non-Patent Documents 1 to 3 Non-Patent Documents 1 to 3).
  • Non-Patent Documents 4 and 5 describe examples in which antibody drug conjugates (ADC) are applied to anticancer agents.
  • ADC antibody drug conjugates
  • Such compounds in which a polypeptide and a functional molecule are linked are attracting attention in the field of drug discovery as molecules in which the characteristics of the polypeptide and the function of the functional molecule are hybridized to make use of their respective characteristics or compensate for their respective defects.
  • a polypeptide since a polypeptide has high specificity for a target molecule, it is considered that side effects and the like are low as compared with a low-molecular drug.
  • polypeptides are unstable because they are degraded in vivo by proteases, peptidases and the like. Therefore, in vivo stability may be improved by introducing an unnatural amino acid or cyclization using a modifying reagent.
  • the affinity and selectivity to the target compound since the structure is stabilized by cyclization, the affinity and selectivity to the target compound may be improved, and resistance to degrading enzymes and cell membrane permeability may be expressed (Non-Patent Documents 6 to 10).
  • a technique for producing a polypeptide library in which functional molecules such as a modification reagent for cyclization and an anticancer agent are linked to a polypeptide.
  • Non-Patent Document 1 As a technique for preparing a library of compounds in which such functional molecules and polypeptides are linked, a complex in which the presented polypeptide (phenotype) and the gene encoding it (genotype) are associated one-to-one. There is a body (Non-Patent Document 1).
  • the phage display method is often used as this method.
  • a technique for producing a library by displaying a polypeptide on a bacteriophage and modifying the polypeptide is also known.
  • This library by the phage display method can be manufactured at a low cost with relatively simple equipment.
  • the generated library can be used for screening to isolate useful polypeptides.
  • the operation of specifically linking the polypeptide displayed on the phage and the functional molecule is difficult, and the process is complicated and complicated, and only a few examples have been reported (Non-Patent Documents 6, 7, and 10).
  • Non-Patent Documents 8 and 9 As a polypeptide library to which functional molecules are bound, a special amino acid is incorporated into the position of the characteristic of the polypeptide chain by an in vitro translation system, and the amino acid residue constituting the peptide reacts with a reactive functional group. A cyclized product is known (Non-Patent Documents 8 and 9). In addition, in the mRNA display method, a method of directly reacting a modifying reagent with an mRNA-peptide complex to cyclize has been reported (Non-patent Document 9).
  • the library production method using this in vitro translation system is very excellent in terms of diversity as compared with the phage display method.
  • the in vitro translation system include a ribosome display method (RD method), an mRNA display method, and a cDNA display method.
  • RD method ribosome display method
  • the ribosome display method (RD method) is excellent in that it can produce 10 12 or more kinds of polypeptide libraries in a few minutes only by mixing them with an in vitro translation system and mRNA.
  • the mRNA display method and the cDNA display method involve many steps for library preparation, such as an annealing step for mRNA and puromycin DNA, and are complicated.
  • the phenotype-genotype complex used in the RD method is that a nucleic acid containing a peptide to be presented and a gene is formed by non-covalent bonding via a ribosome, or a functional molecule of the ribosome itself. Vulnerability to ligation reactions. That is, 1) the complex is unstable compared to the mRNA display method that forms a genotype-phenotype complex by covalent bond, and 2) is reactive to cysteine, lysine, etc.
  • cysteine plays an especially important role in terms of structure and function as one of the residues of a polypeptide.
  • the SH group of the cysteine residue forms a disulfide bond with the SH group of the cysteine residue in the same polypeptide and in different polypeptides. This disulfide bond often contributes to the conformation of the polypeptide. Since the SH group can serve as a substrate for various reactions in addition to disulfide bond formation, it is a good candidate for a modification site when artificially modifying a polypeptide chain. On the other hand, due to its high reactivity, when it is desired to specifically modify a specific cysteine residue, a reaction at another unintended position may occur. This often impairs the higher order structure of the polypeptide.
  • an object of the present invention is to provide a ribosome complex that can be prepared without going through a complicated reaction procedure, and in which the displayed polypeptide is modified without impairing the function of the ribosome (particularly the function for preparing a polypeptide library). And a method for preparing the ribosome complex.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the ribosome contains many amino acid residues with reactive side chain functional groups such as cysteine in the ribosomal protein, so it is modified with an artifact.
  • the timing of modification by the artifact is appropriate, the original function of the adhesion function of ribosome that binds RNA and the polypeptide translated from it is changed.
  • the present invention was completed by finding that it can be maintained without loss and that the polypeptide can be modified easily and easily in the ribosome display complex.
  • the present invention will be described.
  • a method for producing a ribosome display complex comprising a polypeptide chain, an mRNA molecule and a ribosome
  • the polypeptide chain includes one or more reactive amino acid residues selected from the group consisting of cysteine residue, lysine residue, histidine residue, and tryptophan residue, and side chain reaction of the reactive amino acid residue
  • the functional group is modified
  • the mRNA molecule includes a base sequence encoding the amino acid sequence of the polypeptide chain, Translating the mRNA molecule using a cell-free peptide synthesis system utilizing the ribosome to obtain an unmodified polypeptide chain, the mRNA molecule and a ribosome complex containing the ribosome; and A method comprising the step of modifying the unmodified polypeptide chain by reacting the side chain reactive functional group contained in the unmodified polypeptide chain with a modifying reagent.
  • A represents a group capable of reacting with a side chain of a cysteine residue, lysine residue, histidine residue, or tryptophan residue to form a bond
  • B represents a linking group or a single bond
  • the A is a halogenated alkyl group, an activated carbonyl group, an unsaturated hydrocarbon group, an epoxy group, a sulfonyl-containing group, an isocyanate group, a thioisocyanate group, a carbene generating group, a carbene-containing group, a disulfide bond-containing group, Or the manufacturing method of the ribosome display complex as described in said [2] which is a thiol group.
  • the linking group B is a heteroatom-containing polar group, a chain- or cyclic aliphatic hydrocarbon group in which a heteroatom-containing polar group may be inserted between carbon atoms and may have a substituent. And a group having one or more selected from aromatic rings optionally having a substituent, alone or in combination,
  • the heteroatom-containing polar group is —O—, —S—, —NR 1 — (wherein R 1 represents a hydrogen atom, a hydrocarbon group, or a bond at the terminal of the linking group), —CO—, — COO—, —CONR 2 — (wherein R 2 represents a hydrogen atom, a hydrocarbon group, or a bond at the terminal of the linking group), —N ⁇ N—, or —SO 2 —,
  • the substituent of the aliphatic hydrocarbon group is a halogeno group, an aryl group, a carboxy group, an alkoxycarbonyl group, or a hydroxy group;
  • the linking group B has a -B1- unit, a -B2- unit, a -B2-B1- unit, or a -B2-B1-B3- unit
  • B1 may be a chain- or cyclic aliphatic hydrocarbon group that may have a substituent with a heteroatom-containing polar group inserted between carbon atoms, and an aromatic that may have a substituent A group having one or more selected from a ring alone or in combination
  • B2 and B3 are each independently a heteroatom-containing polar group, B1 or B2 is bonded to A,
  • the modifying reagent is represented by the following formula:
  • N represents an integer of 1 or more. At least one of B1, B2, and B3 is bonded to one or more of C. Also good)
  • the manufacturing method of the ribosome display complex as described in said [5] represented by either.
  • the carbon atom to which the halogeno group is bonded is the ⁇ -position carbon atom of the carbonyl group or the carbon atom directly bonded to the aromatic ring.
  • the manufacturing method of the ribosome display complex in any one of.
  • the polypeptide chain includes two or more reactive amino acid residues selected from the group consisting of cysteine residues, lysine residues, histidine residues, or tryptophan residues, A is 2 or more in the modifying reagent of the formula (1), In any of the above [2] to [7], a ring is formed between the polypeptide chain and the modifying reagent in the step of reacting the side chain reactive functional group contained in the unmodified polypeptide chain with the modifying reagent.
  • polypeptide chain comprising a polypeptide chain, an mRNA molecule and a ribosome;
  • the polypeptide chain includes one or more reactive amino acid residues selected from the group consisting of a cysteine residue, a lysine residue, a histidine residue, and a tryptophan residue, and the reactive amino acid residue side.
  • the chain reactive functional group is modified,
  • the ribosome display complex wherein the mRNA molecule comprises a base sequence encoding the amino acid sequence of the polypeptide chain.
  • Ax represents a linking group formed by reaction with a side chain of a cysteine residue, lysine residue, histidine residue or tryptophan residue
  • B represents a linking group or a single bond
  • C represents a function.
  • A represents an integer of 1 or more
  • c represents 0 or an integer of 1 or more
  • a represents an integer of 2 or more
  • a plurality of Ax may be the same or different from each other.
  • the Ax is a halogenated alkyl group, an activated carbonyl group, an unsaturated hydrocarbon group, an epoxy group, a sulfonyl-containing group, an isocyanate group, a thioisocyanate group, a carbene generating group, a carbene-containing group, a disulfide bond-containing group,
  • the ribosome display complex according to the above [14] which is a chemical bond formed between a thiol group and a side chain of a cysteine residue, a lysine residue, a histidine residue or a tryptophan residue.
  • the linking group B is a heteroatom-containing polar group, a chain or cyclic aliphatic hydrocarbon group in which a heteroatom-containing polar group may be inserted between carbon atoms and may have a substituent. And a group having one or more selected from aromatic rings optionally having a substituent, alone or in combination,
  • the heteroatom-containing polar group is —O—, —S—, —NR 1 — (wherein R 1 represents a hydrogen atom, a hydrocarbon group, or a bond at the terminal of the linking group), —CO—, — COO—, —CONR 2 — (wherein R 2 represents a hydrogen atom, a hydrocarbon group, or a bond at the terminal of the linking group), —N ⁇ N—, or —SO 2 —,
  • the substituent of the aliphatic hydrocarbon group is a halogeno group, an aryl group, a carboxy group, an alkoxycarbonyl group, or a hydroxy group;
  • the linking group B has a -B1- unit, a -B2- unit, a -B2-B1- unit, or a -B2-B1-B3- unit
  • B1 may be a chain- or cyclic aliphatic hydrocarbon group that may have a substituent with a heteroatom-containing polar group inserted between carbon atoms, and an aromatic that may have a substituent A group having one or more selected from a ring alone or in combination
  • B2 and B3 are each independently a heteroatom-containing polar group, B1 or B2 is bonded to Ax,
  • the ribosome display complex according to the above [16], wherein the heteroatom-containing polar group and substituent have the same meaning as described above.
  • N represents an integer of 1 or more. At least one of B1, B2, and B3 is bonded to one or more of C. Also good)
  • the carbon atom to which the halogeno group is bonded is The ribosome display complex according to any one of the above [14] to [18], which is a carbon atom at the ⁇ -position of a carbonyl group or a carbon atom directly bonded to an aromatic ring.
  • the polypeptide chain includes two or more reactive amino acid residues selected from the group consisting of cysteine residues, lysine residues, histidine residues, and tryptophan residues, A is 2 or more in the modified structure of the formula (2),
  • the ribosome display complex according to any one of the above [14] to [19], wherein a ring is formed by the polypeptide chain and the modified structure of the formula (2).
  • a ribosome complex obtained by modifying a cysteine residue, lysine residue, histidine residue or tryptophan residue of a display polypeptide with a functional molecule can be provided by a very simple process.
  • the ribosome complex is very surprising considering that its constituent ribosomal protein has a much larger number of amino acid residues having reactive side chain functional groups such as cysteine residues than the displayed polypeptide. It should be an effect.
  • the ribosome is composed of 55 ribosomal proteins and 3 RNAs, and a certain ribosome includes a total of 36 cysteines, 686 lysines, and 151 histidines.
  • the effect of the present invention that the presented polypeptide can be chemically modified in a very simple process without inhibiting the adhesion function between the polypeptide and mRNA (ie, while maintaining the RD complex) is unexpected. Yes and extremely useful.
  • FIG. 1 is a schematic diagram of the structure of a template DNA used to produce a ribosome display complex according to the present invention.
  • FIG. 2 is a graph showing the results of measuring the amount of ribosome display complex bound to magnetic particles not bound to magnetic particles bound to HSP90.
  • FIG. 3 is a graph showing the results of measuring the affinity of HSP90 for a ribosome display complex with a modified polypeptide chain and an unmodified ribosome display complex.
  • FIG. 4 is a mass spectrum chart of each ribosome display complex reacted with each modifying reagent.
  • FIG. 5 is a mass spectrum chart of the reaction of each modifying reagent with the ribosome display complex.
  • FIG. 6 is a mass spectrum chart when the ribosome display complex is subjected to a cyclization reaction at pH 7.4.
  • FIG. 7 is a mass spectrum chart when the ribosome display complex is subjected to a cyclization reaction at pH 7.7.
  • FIG. 8 is a mass spectrum chart when the ribosome display complex is subjected to a cyclization reaction at pH 8.0.
  • FIG. 9 is a mass spectrum chart when a ribosome display complex having the amino acid sequence of SEQ ID NO: 12 is cyclized with disuccinimidyl suberate.
  • FIG. 10 is a mass spectrum chart when the ribosome display complex having the amino acid sequence of SEQ ID NO: 13 is cyclized with disuccinimidyl suberate.
  • FIG. 11 is a mass spectrum chart when the ribosome display complex having the amino acid sequence of SEQ ID NO: 14 is cyclized with disuccinimidyl suberate.
  • FIG. 12 is a mass spectrum chart when a ribosome display complex having the amino acid sequence of SEQ ID NO: 13 is modified with EZ-Link NHS-PEG4-Biotin.
  • FIG. 13 is a graph representing the relative affinity of HSP90 for an unmodified ribosome display complex or a ribosome display complex modified with 1,3-dibromo-2-propanone or EZ-Link NHS-PEG4-Biotin. is there.
  • FIG. 14 is a graph for comparing the amounts of ribosome display complexes produced by changing the timing of addition of the modifying reagent.
  • the cell-free peptide synthesis system using ribosome synthesizes a polypeptide from mRNA in vitro using a compound required for polypeptide synthesis based on RNA information performed in a cell.
  • mRNA molecules are added to a reaction system including proteins, ribosomes, tRNAs, amino acids, NTPs, buffers, etc. required for translation and energy regeneration of mRNA, such as initiation factors, elongation factors, and aminoacyl tRNA synthetases.
  • a polypeptide corresponding to the added mRNA is synthesized. Since kits for cell-free peptide synthesis are commercially available, commercially available kits other than mRNA molecules may be used.
  • the ribosome display complex prepared in this step includes mRNA, a polypeptide chain that is a translation product thereof, and ribosome.
  • ribosome display may be abbreviated as “RD”.
  • the polypeptide chain contained in the RD complex according to the present invention has at least one reactivity selected from the group consisting of a cysteine residue, a lysine residue, a histidine residue, and a tryptophan residue used for modification in the next step.
  • a cysteine residue a lysine residue
  • a histidine residue a tryptophan residue used for modification in the next step.
  • the number of reactive amino acid residues is preferably 2 or more because stability and the like may be further improved by cyclizing the polypeptide chain.
  • the number of reactive sites is large, the number and position of the modifying reagents that bind to the RD complex are not stable, and it may be difficult to compare the characteristics of the polypeptide chain derived from the amino acid sequence.
  • the number is preferably 10 or less.
  • the reactive amino acid residue is preferably a cysteine residue and / or a lysine residue.
  • cysteine residue when the cysteine residue is involved in the stabilization of the higher order structure of the polypeptide by disulfide bond, it is preferable to introduce the reactive amino acid residue separately.
  • the position of the reactive amino acid residue may be appropriately selected.
  • the reactive amino acid residue is a portion that exits from the exit tunnel of the ribosome, specifically, the second position from the N-terminal to the 30th position from the C-terminal.
  • the position (including the second position from the N-terminal and the 30th position from the C-terminal) is used.
  • the polypeptide chain is modified in the state of the RD complex, if the reactive amino acid residue is at the above position, the modification reaction may be difficult to be sterically inhibited by the ribosome.
  • the position from the C-terminal is preferably 50th, and more preferably 100th.
  • the position of the reactive amino acid residue when counted from the N-terminal side, the position can be appropriately set according to the chain length of the polypeptide, for example, the 2nd to 1000th positions from the N-terminal, preferably It is the 2nd to 100th position from the N-terminal, and more preferably the 2nd to 50th position from the N-terminal.
  • the polypeptide chain preferably contains a random sequence at a specific position. From such a random sequence, a useful amino acid sequence according to a predetermined purpose can be specified.
  • the position of the random sequence may be appropriately selected. For example, in the same manner as the position of the reactive amino acid residue, the second position from the N-terminal to the 30th position from the C-terminal (the second position from the N-terminal and the C-terminal position). (Including the 30th position). That is, the reactive amino acid residue is preferably included in the random sequence. Accordingly, the preferred position of the random sequence can be set from the same range as the preferred position of the reactive amino acid residue.
  • the number of amino acids in the random sequence may be adjusted as appropriate, and may be, for example, 1 or more and 30 or less.
  • the upper limit of the number of random sequences is not particularly limited, but is preferably 10 or less.
  • such random sequence may be one in the polypeptide chain or two or more. As one random sequence becomes longer and the number of random sequences increases, the diversity of the polypeptide library can be increased.
  • polypeptide chain may have an amino acid sequence according to the purpose.
  • examples thereof include a sequence for purifying a polypeptide chain such as a FLAG (registered trademark) sequence and a poly-His sequence, a sequence selectively cleaved by a protease, a spacer sequence, and the like.
  • MRNA contains at least a base sequence encoding the polypeptide chain. In addition, it may have a sequence necessary for translation. Since the mRNA encodes a polypeptide in the same RD complex, when a specific RD complex is selected from the library, a useful polymorph is analyzed by analyzing the base sequence of the mRNA. It becomes possible to indirectly specify the amino acid sequence of the peptide.
  • the number of amino acid residues in the polypeptide chain is not particularly limited, but can be, for example, 100 or more and 5000 or less.
  • the number of amino acid residues is preferably 150 or more, more preferably 200 or more, more preferably 800 or less or 600 or less, and even more preferably 500 or less.
  • Ribosomes purified from living organisms can be used.
  • Ribosomes derived from E. coli may be used.
  • the dissociation factor binds to the stop codon of the mRNA, the polypeptide chain is released, and the mRNA is also dissociated from the ribosome.
  • this step since the purpose of this step is to prepare an RD complex containing a polypeptide chain, mRNA and ribosome, it is necessary to treat the polypeptide chain not to be released. As this treatment, a known one can be used.
  • the termination codon may be removed from the mRNA, a translation extension termination sequence called an arrest sequence may be placed at the 3 'end of the mRNA, or a dissociation factor or ribosome regeneration factor may not be added to the cell-free peptide synthesis system.
  • a conventional method may be used as a method for purifying the RD complex.
  • a FLAG (registered trademark) sequence or a poly-His sequence is present in the polypeptide chain, a known purification method according to these sequences can be applied.
  • ribosome is a macromolecule that is a complex of rRNA and protein, it contains a larger number of reactive amino acid residues than the display polypeptide contained in the RD complex.
  • a modifying reagent is allowed to act after producing the RD complex, the presenting polypeptide chain contained in the RD complex can be modified, and the RD complex can also be maintained.
  • a modifying reagent used for modifying an unmodified polypeptide chain for example, a compound represented by the following formula (1) can be used.
  • A represents a group capable of reacting with a side chain of a cysteine residue, lysine residue, histidine residue, or tryptophan residue to form a bond. That is, a bond can be formed by reacting with the thiol group of a cysteine residue, the side chain amino group of a lysine residue (-NH 2 ), or the side chain amino group of a histidine residue and a lyptophan residue (> NH). Represents a group.
  • halogenated alkyl group activated carbonyl group, unsaturated hydrocarbon group, epoxy group, sulfonyl-containing group, isocyanate group, thioisocyanate group, carbene generating group, carbene-containing group, disulfide bond-containing A group or a thiol group.
  • halogeno group in the halogenated alkyl group examples include a chloro group, a bromo group, and an iodo group.
  • the alkylene group in the halogenated alkyl group may be a linear alkylene group or a branched alkylene group, and examples thereof include a C 1-20 alkylene group, and a C 1-10 alkylene group is preferable, A C 1-6 alkylene group or a C 1-4 alkylene group is more preferred, and a C 1-2 alkylene group is still more preferred.
  • the halogenated alkyl group is preferably one in which the carbon atom to which the halogeno group is bonded is directly connected to the carbonyl group or aromatic ring contained in B.
  • the halogenated alkyl group can be bonded to a thiol group and can also be bonded to an amino group.
  • the activated carbonyl group includes an activated ester group, a formyl group, and the like.
  • the activated ester group include an imide ester group such as a succinimide group, a 4-nitrophenol ester group, a HOBt ester group, a HOAt ester group, and an Oxyma ester group.
  • the activated carbonyl group can bind to, for example, a side chain thiol of a cysteine residue, and can also bind to an amino group.
  • the formyl group can be bonded to the side chain amino group of lysine by a reductive amination reaction, for example.
  • the unsaturated hydrocarbon group refers to an unsaturated hydrocarbon group having at least one carbon-carbon double bond or carbon-carbon triple bond, and includes a vinyl group, a propargyl group, etc., a vinylcarbonyl group, a propargylcarbonyl group, A vinylsulfonyl group and the like are preferable.
  • the unsaturated hydrocarbon group can be bonded to an amino group or a thiol group by, for example, Michael addition or nucleophilic substitution reaction.
  • Examples of the sulfonyl-containing group include an alkylsulfonyl group, an arylsulfonyl group, a sulfonic acid ester group (for example, an alkylsulfonyloxy group, an arylsulfonyloxy group, etc.), and so-called leaving groups such as thiol groups and amino groups. Can react with groups.
  • Examples of the alkylsulfonyl group include a methanesulfonyl group, a chloromethanesulfonyl group, and a trifluoromethanesulfonyl group.
  • Examples of the arylsulfonyl group include a benzenesulfonyl group and a toluenesulfonyl group.
  • Examples of the sulfonic acid ester group include a methanesulfonyloxy group, a chloromethanesulfonyloxy group, a trifluoromethanesulfonyloxy group, a benzenesulfonyloxy group, and a toluenesulfonyloxy group.
  • Examples of the carbene generating group include a diazo-containing group, a diazirine structure-containing group, and the like, and preferably a group in which a diazo group is bonded to a carbon atom adjacent to a carbonyl. When the diazo group is eliminated, carbene is generated and can be bonded to thiol.
  • Examples of the carbene-containing group include groups after carbene is generated from various carbene generating groups.
  • the disulfide bond-containing group and the thiol group can form a disulfide bond with the side chain thiol group of the cysteine residue.
  • Epoxy groups, isocyanate groups and thioisocyanate groups can react with both thiol groups and amino groups.
  • the number of A, that is, a is preferably an integer of 2 or more. If A is 2 or more and the side chain reactive functional group is 2 or more, the polypeptide chain can be cyclized. The cyclized polypeptide chain may be further improved in stability and the like.
  • B represents a linking group or a single bond.
  • B that is a linking group include a heteroatom-containing polar group, an aliphatic hydrocarbon group, and an aromatic ring.
  • the heteroatom-containing polar group includes —O—, —S—, —NR 1 — (wherein R 1 is a hydrogen atom, a hydrocarbon group (preferably a C 1-6 alkyl group), or a bond at the end of a linking group.
  • R is a bond
  • the aliphatic hydrocarbon group may be any of a straight chain alkylene group, a branched chain alkylene group and a cyclic chain alkylene group, and examples thereof include a C 1-20 alkylene group, and a C 1-10 alkylene group Are preferable, a C 1-6 alkylene group or a C 1-4 alkylene group is more preferable, and a C 2-4 alkylene group is still more preferable.
  • the hetero atom-containing polar group may be inserted between carbon atoms or at the terminal of the aliphatic hydrocarbon group, or may have a substituent.
  • substituents examples include a halogeno group, an aryl group, a carboxy group, an alkoxycarbonyl group, and a hydroxy group.
  • aryl group a C 6-10 aryl group is preferable, a phenyl group or a naphthyl group is more preferable, and a phenyl group is preferable.
  • the number of substituents is not particularly limited as long as they can be substituted, but can be, for example, 1 or more and 4 or less, preferably 3 or less, or 2 or less, and preferably 1. When the number of substituents is 2 or more, these substituents may be the same as or different from each other.
  • a C 6-10 aryl group such as a phenyl group, an indenyl group, a naphthyl group, or a biphenyl group is preferable, a phenyl group or a naphthyl group is more preferable, and a phenyl group is preferable.
  • the aromatic ring group may have a substituent, and examples of the substituent include a halogeno group, an alkyl group, preferably a C 1-6 alkyl group, an aralkyl group, preferably a benzyl group, a carboxy group, an alkoxycarbonyl group, Preferred examples include (C 1-6 alkoxy) carbonyl group, hydroxyalkyl group, preferably hydroxy-C 1-6 alkyl group, or carboxyalkyl group, preferably carboxy-C 1-6 alkyl group.
  • the number of substituents is not particularly limited as long as they can be substituted, but can be, for example, 1 or more and 4 or less, preferably 3 or less, or 2 or less, and preferably 1. When the number of substituents is 2 or more, these substituents may be the same as or different from each other.
  • the linking group B preferably has a -B1- unit, a -B2- unit, a -B2-B1- unit, or a -B2-B1-B3- unit.
  • B1 is a chain-like or cyclic aliphatic hydrocarbon group which may have a substituent in which a heteroatom-containing polar group may be inserted between carbon atoms, and an aromatic which may have a substituent. It is a group having one or more selected from group rings alone or in combination, B2 and B3 are each independently a heteroatom-containing polar group, and B1 or B2 is bonded to A.
  • the hetero atom-containing polar group and the substituent have the same meaning as described above.
  • the heteroatom-containing group includes —O—, —S—, —NR 3 — (wherein R 3 is a hydrogen atom, a hydrocarbon group (preferably a C 1-6 alkyl group), or a bond at the terminal of the linking group.
  • R 3 is a hydrogen atom, a hydrocarbon group (preferably a C 1-6 alkyl group), or a bond at the terminal of the linking group.
  • the valence of the linking group is 3 (hereinafter the same), —CO—, —COO—, —CONR 4 — (wherein R 4 is a hydrogen atom, carbonized And a hydrogen group (preferably a C 1-6 alkyl group) or a bond at the terminal of the linking group), —N ⁇ N—, and —SO 2 —.
  • C represents a functional group for adding some function to the polypeptide.
  • the functional group may be appropriately selected depending on the purpose of use, and is not particularly limited.
  • a luminescent substance such as a fluorescent substance, a dye, a radioactive substance, a drug
  • examples include toxins, nucleic acids, amino acids, peptides, saccharides, lipids, various polymers, and combinations thereof.
  • the fluorescent substance include fluorescent dyes such as fluoresceins, rhodamines, coumarins, pyrenes, and cyanines.
  • modifying reagent examples include any one represented by the following formula.
  • N represents an integer of 1 or more. At least one of B1, B2, and B3 is bonded to one or more of C. Also good)
  • the compounds represented by the formulas (1a) to (1f) have a functional group C (a group containing either a fluorescent dye or a label unit), and the functional group C is represented by B1, B2, or B3. Is bound to either.
  • a water-soluble substituent such as a sulfonate group (—SO 2 —OH) or a sulfonate group (—SO 2 —O ⁇ M + ) may be included.
  • M + include alkali metal ions such as sodium ions and potassium ions.
  • formula (1a) examples include, for example, A is a halogenated alkyl group, an activated carbonyl group (particularly an activated ester group), or an epoxy group, and B1 is an aliphatic hydrocarbon group or an aromatic ring.
  • A is a halogenated alkyl group, an activated carbonyl group (particularly an activated ester group), or an epoxy group
  • B1 is an aliphatic hydrocarbon group or an aromatic ring.
  • n is 2 or 3
  • a compound represented by the following formula is included.
  • A is a halogenated alkyl group
  • B2 is an oxygen atom-containing polar group (especially —CO—), or a nitrogen atom-containing polar group (particularly —C ( ⁇ N—R 5 )).
  • R 5 is a linear or cyclic aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent or a heteroatom-containing group, and A group containing at least one or more selected from the group consisting of a functional group for adding some function, a hydrogen atom, or a bond at the terminal of a linking group), and a compound wherein n is 2.
  • a compound represented by the following formula is included.
  • A is a halogenated alkyl group or an activated carbonyl group (particularly an activated ester group)
  • B1 is an aliphatic hydrocarbon group
  • an oxygen atom is inserted between carbon atoms.
  • B2 is a polar group containing oxygen atom, nitrogen atom, etc. (especially —COO—, —CONH—)
  • n is 1, 2 or 3
  • compounds represented by the following formula are included.
  • A is a halogenated alkyl group
  • B1 is an aliphatic hydrocarbon group
  • B2 is a polar group containing oxygen and nitrogen atoms (particularly —CONH—)
  • a compound in which n is 3 is included, and particularly a compound represented by the following formula is included.
  • A is a halogenated alkyl group
  • B1 is an aromatic ring
  • the conditions for modifying the polypeptide chain in the RD complex can be appropriately set according to the type of the side chain reactive functional group to be modified and the modifying reagent to be used.
  • the modifying reagent may be reacted after the disulfide bond is cleaved with a reducing agent to form a thiol group.
  • the reducing agent include tris (2-carboxyethyl) phosphine sodium salt, dithiothreitol, ⁇ -mercaptoethanol and the like.
  • a base when a side chain amino group is reacted with a halogenated alkyl group or an epoxy group of a modifying reagent, a base may be added.
  • the base include bicarbonates such as sodium bicarbonate; carbonates such as sodium carbonate; metal hydroxides such as sodium hydroxide; organic bases such as pyridine and triethylamine.
  • reaction solvent for reacting the modifying reagent water is usually used.
  • the reaction temperature is, for example, about 0 to 30 ° C., preferably about 1 to 20 ° C., more preferably about 1 to 10 ° C.
  • the pH during the reaction of the modifying reagent is not particularly limited as long as it is appropriately adjusted according to the modifying reagent to be used.
  • it can be selected from the range of about 4.0 to 10.0, preferably 5.0 to 9 About 0.0, more preferably about 6.0 to 8.0.
  • the more preferable range varies depending on the modifying reagent, but the pH may be adjusted to 7.0 to 7.5 from the viewpoint of suppressing the introduction of the modifying reagent per polypeptide chain from 2 or more.
  • the amount of the modifying reagent can be appropriately set according to the type of the reagent. For example, it is 1,000 moles or more, preferably 10,000 moles or more with respect to 1 mole of the ribosome complex containing the unmodified polypeptide chain. Yes, more preferably 60,000 mol or more, and still more preferably 100,000 mol or more. Although the upper limit is not particularly limited, for example, 100,000,000 mol or less, preferably 50,000,000 mol or less, more preferably 20,000,000 mol or less, and still more preferably 10,000,000 mol or less. It is.
  • the RD complex After modifying the polypeptide chain, the RD complex can be purified by a conventional method. For example, when a tag sequence such as a FLAG (registered trademark) sequence or a polyHis sequence exists in the polypeptide chain, a known purification method corresponding to these sequences can be applied. Note that the carrier and the RD complex to which an antibody specific to the tag sequence is bound may be affinity-bound before reacting the modifying reagent. This affinity bond is not cleaved during the reaction of the modifier agent, and after the reaction of the modifying reagent, the RD complex may be purified using this affinity bond.
  • a tag sequence such as a FLAG (registered trademark) sequence or a polyHis sequence exists in the polypeptide chain
  • a known purification method corresponding to these sequences can be applied.
  • the carrier and the RD complex to which an antibody specific to the tag sequence is bound may be affinity-bound before reacting the modifying reagent. This affinity bond is not cleaved during
  • the RD complex produced by the method of the present invention includes a polypeptide chain, an mRNA molecule, and a ribosome, and includes a cysteine residue, a lysine residue, a histidine residue, and a tryptophan residue in the polypeptide chain.
  • One or more selected reactive amino acid residues are modified with a modifying reagent used, and the mRNA molecule contains a base sequence encoding the amino acid sequence of the polypeptide chain.
  • This RD complex is a group Ax in which the group A is the reaction result in the formulas (1), (1a) to (1e) (Ax is a cysteine residue, lysine residue, histidine residue, or tryptophan residue). It is distinguished from an unmodified RD complex in that it has a structure in which a bonding group formed by reaction with a side chain of the group is replaced.
  • Example 1 Preparation of RNA Library
  • NNK method is used, and (NNK) 10 [wherein, N represents A, U, G or C, K represents G or U, and NNK represents all A method for preparing an RNA library containing 10 12 or more RNAs having a sequence comprising the sequence of [corresponding to the codons of] will be described.
  • RNA library For the preparation of this RNA library, a template DNA having the structure of FIG. 1 (base sequence: SEQ ID NO: 1, amino acid sequence: SEQ ID NO: 2) was used. Specifically, using a reaction solution having the composition shown in Table 1, a 5 'fragment was prepared using the plasmid as template DNA in the PCR cycle shown in Table 2.
  • 5FFnew — 130816 is a forward primer
  • Ma3flag_R0502 is a reverse primer.
  • RNA library containing 10 12 or more mRNA having the base sequence of SEQ ID NO: 3 was obtained. Obtained. As shown in FIG. 1, the mRNA contained in this library has a FLAG (registered trademark) site, a His6 site, a random sequence, a TEV protease site, and a spacer sequence in this order from the 5 ′ side, and has no stop codon. .
  • ribosome display (RD) complex was prepared from the RNA library using a reconstituted cell-free protein synthesis kit (“PURE flex (registered trademark)” manufactured by Gene Frontier). Separately, 5 ⁇ L of streptavidin-magnetic particles (“NanoLink TM Streptavidin Magnetic Beads”, Solulin) was diluted to 150 ⁇ L. The above RD complex reaction solution and anti-FLAG® M2 antibody-conjugated agarose beads (Sigma-Aldrich, 20 ⁇ L) were mixed and stirred at 4 ° C. for 60 minutes. Anti-FLAG M2 antibody-bound agarose beads in which an RD complex having a FLAG sequence was selectively bound to the peptide portion were collected.
  • PURE flex registered trademark
  • streptavidin-magnetic particles (“NanoLink TM Streptavidin Magnetic Beads”, Solulin) was diluted to 150 ⁇ L.
  • anti-FLAG® M2 antibody-conjugated agarose beads
  • HSP90 affinity peptide Separately, the above-mentioned streptavidin-magnetic particle diluent (5 ⁇ L) was mixed with HSP90, which is a heat shock protein, and biotin bound so that the molar ratio was 1: 1. By stirring at 4 ° C., HSP90 was bound to the magnetic particles. For comparison, a magnetic particle suspension was prepared in the same manner except that HSP90 was not bound.
  • RNA concentration / purification kit (“RNeasy MinElute Cleanup Kit” manufactured by QIAGEN). Next, after reacting at 65 ° C. for 5 minutes with the composition shown in Table 8, the reaction mixture was reverse-transcribed by reacting at 50 ° C. for 1 hour and further at 70 ° C. for 15 minutes with the composition shown in Table 9. .
  • the cDNA obtained by the reverse transcription reaction was subjected to RT-PCR to amplify a sequence including a random sequence. Specifically, PCR was performed in the PCR cycle shown in Table 11 using the reaction solution having the composition shown in Table 10.
  • a 5 ′ fragment (SEQ ID NO: 6) was prepared in the same manner except that the heating time at 68 ° C. was changed to 15 seconds during the PCR cycle, and 3flagF — 140407 was used as the forward primer and PCR
  • a 3 ′ fragment (SEQ ID NO: 7) was prepared in the same manner except that the heating time at 68 ° C. was changed to 25 seconds during the cycle.
  • each fragment was subjected to overwrapping PCR in the same manner except that the cDNA solution containing the random sequence described above was used in addition to the obtained 5 ′ fragment and 3 ′ fragment, and the amount of polymerase used was changed to 0.6 ⁇ L. Ligation and amplification of the resulting DNA was performed.
  • mRNA is transcribed in the same manner as in (1) above, and the process returns to the step of (2) “Preparation of ribosome display complex library”.
  • the RD complex was recovered. The above operation was repeated until it was confirmed that the amount of mRNA contained in the RD complex bound to HSP90 was not increased. Hereinafter, one repetition is referred to as “round”.
  • FIG. 2 A result is shown in FIG. 2 with the amount of mRNA before making it contact with HSP90, and the amount of mRNA when not using HSP90.
  • the RD complex that binds to HSP90 was increased compared to round 1 compared to round 2, but no increase was observed after round 2 and has an affinity for HSP90. Concentration of the RD complex was considered complete.
  • RNA SEQ ID NO: 8
  • anti-FLAG® M2 antibody binding to the reaction solution Agarose beads (Sigma-Aldrich, 2 ⁇ L) were added to bind the RD complex.
  • the beads were separated and removed from the reaction solution, and phosphate buffered saline (pH 7.5, 100 ⁇ L) not containing Mg 2+ was added to dissociate the complex, and then the peptide chain was purified with His-tag beads. After the purified polypeptide was cleaved with TEV protease, the molecular weight of the fragment peptide (SEQ ID NO: 9) containing the cyclization site and N-terminally formylated was measured by MALDI-TOFMS. The chemical structure of the modifying reagent and the resulting mass spectrum chart are shown in FIG. In FIG.
  • Example 4 Cyclization reaction of peptide Using RNA having the nucleotide sequence of SEQ ID NO: 11, using disuccinimidyl suberate as a modifying reagent, the pH of the reaction solution was 7.4, 7.7 or 8.0. The cyclization reaction was carried out in the same manner as in Example 2 except that the change was made.
  • FIG. 6 shows the result when the pH of the reaction solution is 7.4,
  • FIG. 7 shows the result when the pH is 7.7, and
  • FIG. 8 shows the result when the pH is 8.0.
  • the reaction proceeded at any pH.
  • the higher the pH the stronger the peak intensity of the compound with one more modifying reagent added (two in total), suggesting that the modifying reagent is also added to basic amino acids such as histidine and tryptophan. It was done.
  • Example 5 Cyclization reaction of peptide A cyclization reaction was performed in the same manner as in Example 2 except that RNA encoding the amino acid sequences of SEQ ID NOS: 12 to 14 and disuccinimidyl suberate were used as the modifying reagent. It was.
  • the result of the amino acid sequence of SEQ ID NO: 12 is shown in FIG. 9, the result of the amino acid sequence of SEQ ID NO: 13 is shown in FIG. 10, and the result of the amino acid sequence of SEQ ID NO: 14 is shown in FIG.
  • a disuccinimidyl compound having two active carboxy groups is suggested to react with two lysine side chain amino groups to cyclize the peptide, and further to the second histidine side chain. It was suggested that it also reacted with the primary amino group.
  • the main peak of the RD complex after the reaction is that one molecule or two molecules of the modifying reagent are bound, and therefore one molecule or two molecules of the modifying reagent are bound to the polypeptide chain. it is conceivable that.
  • Example 6 Biotinylation of peptide Similar to Example 2 except that RNA encoding the peptide sequence of SEQ ID NO: 13 was used and EZ-Link NHS-PEG4-Biotin (manufactured by Thermo Fisher) was used as a modifying reagent. In this way, the peptide was modified. As shown in FIG. 12, a signal suggesting biotinylation was obtained. Since this peptide sequence contains two lysines, in addition to one biotinylated peptide (black arrow), two peptides into which biotin was introduced could also be detected (hatched arrow). Thus, also in this experiment, it is considered that one molecule or two molecules of the modifying reagent are bound to the polypeptide chain.
  • Example 7 Peptide Cyclization Reaction and Biotinylation Reaction Using RNA encoding the peptide sequence of SEQ ID NO: 12, 1,3-dibromo-2-propanone or EZ-Link NHS-PEG4-Biotin (Thermo Fisher) as a modification reagent A biotin-modified RD complex was prepared in the same manner as in Example 2 except that was used. The above streptavidin-magnetic particle diluted solution (5 ⁇ L) was added to the biotinylated complex, and the magnetic particles were collected using a magnetic stand. By adding 0.05 M EDTA to the collected magnetic particles, RNA was dissociated from the RD complex bound to HSP90 on the magnetic particles.
  • RNA was purified with an RNA concentration / purification kit (“RNeasy MinElute Cleanup Kit” manufactured by QIAGEN).
  • the amount of RNA recovered when modified with each modifying reagent was measured by quantitative RT-PCR, and the amount recovered under the condition without the modifying reagent was compared as a background.
  • the results are shown in FIG.
  • the RD complex was biotinylated with NHS-PEG4-Biotin and obtained results suggesting that RNA could be recovered.
  • Example 8 Comparison of modification conditions (1) Condition 1 Using a reconstituted cell-free protein synthesis kit (“PURE flex (registered trademark)” manufactured by Gene Frontier), tris (2-carboxyethyl) sodium salt (pH 7, final) was added to the ribosome contained in 50 ⁇ L of the reaction solution. And 1,3-dibromo-2-propanone as a modifying reagent was added at a final concentration of 2 mM and reacted at 4 ° C. for 3 hours.
  • PURE flex registered trademark
  • 1,3-dibromo-2-propanone as a modifying reagent was added at a final concentration of 2 mM and reacted at 4 ° C. for 3 hours.
  • Condition 2 In Condition 2, as in the above example, the modifying reagent was allowed to act after the RD complex was prepared. Specifically, using the above reconstituted cell-free protein synthesis kit, ribosomes contained in 50 ⁇ L of the reaction solution were incubated at 4 ° C. for 3 hours without adding a modifying reagent. Next, an RD complex was prepared in the same manner as in Condition 1, and anti-FLAG® M2 antibody-conjugated agarose beads (Sigma-Aldrich, 2 ⁇ L) were added to the reaction solution to bind the RD complex. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の課題は、複雑な反応手順を経ることなく調製可能であり、且つ、リボソームの機能(特にポリペプチドライブラリ作製の為の機能)を損なうことなく提示ポリペプチドが修飾されたリボソーム複合体、および当該リボソーム複合体の調製方法を提供することである。本発明に係るリボソームディスプレイ複合体の製造方法は、リボソームを利用した無細胞ペプチド合成系を用いてmRNA分子を翻訳し、未修飾ポリペプチド鎖、当該mRNA分子および当該リボソームを含むリボソーム複合体を得る工程、および、上記未修飾ポリペプチド鎖に含まれる上記側鎖反応性官能基と修飾試薬とを反応させることにより、上記未修飾ポリペプチド鎖を修飾する工程を含むことを特徴とする。

Description

リボソームディスプレイ複合体およびその製造方法
 本発明は、新規なリボソームディスプレイ複合体とその製造方法に関するものである。
 近年、様々なアミノ酸配列のポリペプチドライブラリの中から、特定の疾患に対する治療薬や、標的分子に親和性の高い分子などを選択することが行われるようになっている。その理由としては、ポリペプチドは特異性や選択性が高いので、低分子化合物に比べて副作用などが少ないと考えられることによる。また、ランダムプライマーを用いたPCR技術により、特定部分のアミノ酸配列をランダム化したポリペプチドをコードするDNAが容易に得られるため、低分子化合物のライブラリに比べ、多くのポリペプチドを含むライブラリを容易に調製できるという利点もある(非特許文献1~3)。
 一方で、抗体などのポリペプチドを機能性分子で化学的に修飾してその機能を拡張した医薬品の開発に注目が集まっている。例えば、非特許文献4と5には、抗体薬物複合体(ADC)が抗がん剤に応用された例が記載されている。ポリペプチドと機能性分子が連結したこのような化合物は、ポリペプチドの特性と機能性分子の機能がハイブリッドし、それぞれの特徴を生かしたりそれぞれの欠点を補う分子として、創薬分野において注目される(非特許文献6~10)。
 例えば、ポリペプチドは標的分子への特異性が高いので、低分子医薬品と比較して副作用などが低いと考えられる。一方で、ポリペプチドは生体内でプロテアーゼやペプチダーゼ等により分解されるので不安定である。そこで、非天然アミノ酸を導入したり、修飾試薬を使って環状化することにより、生体内での安定性が向上することがある。さらに、環状化により構造が安定化するため、標的化合物への親和性や選択性が向上したり、分解酵素に対する耐性や細胞膜透過性が発現することもある(非特許文献6~10)。
 このように、ポリペプチドに、環状化のための修飾試薬や抗がん剤といった機能性分子が連結したポリペプチドライブラリを作製する技術が注目される。
 このような機能性分子とポリペプチドが連結した化合物のライブラリを作製する技術としては、提示するポリペプチド(表現型)とそれをコードする遺伝子(遺伝型)が1対1で対応付けされた複合体がある(非特許文献1)。
 この方法としてファージディスプレイ法がしばしば用いられる。ファージディスプレイ法において、バクテリオファージ上にポリペプチドを提示させ、そのポリペプチドに対して修飾を施すことによりライブラリを作製する手法も知られている。このファージディスプレイ法によるライブラリは、比較的簡単な設備で安価に製造できる。作製されたライブラリは、有用なポリペプチドを単離するためのスクリーニングに用いることができる。しかし、ファージに提示したポリペプチドと機能性分子を特異的に連結する操作は難しく、また工程が多くて煩雑であるため数例しか報告がない(非特許文献6,7,10)。
 一方で、機能性分子が結合したポリペプチドライブラリとしては、in vitro翻訳系により特殊アミノ酸をポリペプチド鎖の特性の位置に取り込ませ、当該ペプチドを構成するアミノ酸残基と反応性官能基とを反応させて環化したものが知られている(非特許文献8,9)。また、mRNAディスプレイ法において、mRNA-ペプチド複合体に修飾試薬を直接反応させ環状化する方法が報告されている(非特許文献9)。
 このin virto翻訳系を用いたライブラリ作製方法は、ファージディスプレイ法と比較して多様性の観点で非常に優れている。このin vitro翻訳系の方法としては、例えばリボソームディスプレイ法(RD法)、mRNAディスプレイ法、cDNAディスプレイ法などがある。このうち、リボソームディスプレイ法(RD法)は、in vitro翻訳系とmRNAさえあれば、それらを混合するだけで、1012種類以上のポリペプチドライブラリが数分で作製できる点で優れている。一方、mRNAディスプレイ法とcDNAディスプレイ法は、mRNAとピューロマイシンDNAのアニール工程など、ライブラリ作製のための工程が多く煩雑である。
 しかしRD法において、ポリペプチドに機能性分子を連結させる方法の報告はない。その原因としては、RD法で用いられる表現型-遺伝型の複合体は、提示するペプチドと遺伝子を含む核酸がリボソームを介した非共有結合により形成されていることや、リボソーム自体の機能性分子連結反応に対する脆弱性が挙げられる。即ち、1)共有結合で遺伝型-表現型複合体をつくるmRNAディスプレイ法に比べて複合体が不安定であり、2)リボソームを形成するリボソーマルタンパク質に含まれるシステインやリジンなどに反応性があるために、機能性分子を連結させるとリボソーム自体の機能や複合体の機能が低下しやすくなることなどがRD法で機能性分子を連結させた報告がない理由である。実際、例えば大腸菌の55種類のリボソーマルタンパク質には合計で36個のシステインと686個のリジンが存在する。
 例えば、システインは、ポリペプチドの残基の1つとして、構造的・機能的に特に重要な役割を果たす。システイン残基のSH基は、同ポリペプチド内および異なるポリペプチドのシステイン残基のSH基とジスルフィド結合を形成する。このジスルフィド結合は、しばしばポリペプチドの高次構造形成に貢献する。SH基はジスルフィド結合形成のほかにも多様な反応の基質となりえるので、ポリペプチド鎖を人為的に修飾するにあたり、修飾部位としてよい候補となる。その反面、その反応性が高いがゆえに、特定のシステイン残基に対して特異的に修飾したい場合に、別の意図しない位置での反応が起こる可能性がある。これによりポリペプチドの高次構造が損なわれたりすることがしばしばある。リジン、ヒスチジンやトリプトファンも同様である。従って、システイン、リジン、ヒスチジン、トリプトファンが複数含まれるポリペプチド、リボソーム又はそれらを含むRD複合体において、それらの機能を損なうことなく、目的のシステインを修飾する方法をデザインすることは容易なことではない。具体的には、遺伝子工学により意図しないシステインをリボソーマルタンパク質から除去する方法や、意図しないシステインが反応しないような予備的反応を含む複雑な反応工程手順が必要になる。このような工程をライブラリ作製工程に組み込むと、RD法の特徴である工程が少なくライブラリが作製できるというメリットが失われることになる。
H.Leemhuis,外3名,「New genotype-phenotype linkages for directed evolution of functional proteins」,Current Opinion in Structural Biology 2005,15:472-478 D.Lipovsek,外1名,「In-vitro protein evolution by ribosome display and mRNA display」,Journal of immunological methods,290(2004),51-67 H.M.E.Azzazy,外1名,「Phage display technology: clinical applications and recent innovations」,Clinical Biochemistry,35(2002),425-445 H.L.Perez,外6名,「Antibody-drug conjugates: current status and future directions」,Drug Discovery Today,Volume 19,Number 7,July 2014 S.C.Alley,外2名,「Antibody-drug conjugates: targeted drug delivery for cancer」,Current Opinion in Chemical Biology,2010,14:529-537 C.Heinis,外3名,「Phage-encoded combinatorial chemical libraries based on bicyclic peptides」,Nature Chemical Biology,5,502-507(2009) I.R.Rebollo,外1名,「Phage selection of bicyclic peptides」,Methods 60(2013),46-54 T.Kawakami,外2名,「Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides」,Chemistry & Biology,vol.15(1),p.32-42,January 2008 K.Josephson,外2名,「mRNA display: from basic principles to macrocycle drug discovery」,Drug Discovery Today,volume 19,Number 4,April2014,pp.388-399 K.Fukunaga,外4名,「Construction of a crown ether-like supramolecular library by conjugation of genetically-encoded peptide linkers displayed on bacteriophage T7」,Chemical Communications,2014,50,3921-3923
 実際、本発明者らは、修飾試薬としての環化試薬(1,3-ジブロモ-2-プロパノン;DBP)をリボソームに作用させた後に、RD複合体形成工程を行った場合、RD複合体の形成ができなくなることを実験的に確認している。
 従って本発明の課題は、複雑な反応手順を経ることなく調製可能であり、且つ、リボソームの機能(特にポリペプチドライブラリ作製の為の機能)を損なうことなく提示ポリペプチドが修飾されたリボソーム複合体、および当該リボソーム複合体の調製方法を提供することである。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、リボソームディスプレイ法により修飾されたポリペプチドライブラリを作製するに当たり、リボソームにはそのリボソーマルタンパク質内にシステインなど反応性側鎖官能基を有するアミノ酸残基を多数含むため、人工物で修飾する際にその機能を失うリスクが存在していたが、人工物による修飾のタイミングを適切にすれば、RNAとそこから翻訳されたポリペプチドとを結合するリボソームの接着機能については本来の機能を失うことなく維持することができ、リボソームディスプレイ複合体においてポリペプチドを簡便、容易に修飾できることを見出して、本発明を完成した。
 以下、本発明を示す。
 [1] ポリペプチド鎖、mRNA分子およびリボソームを含むリボソームディスプレイ複合体を製造するための方法であって、
 上記ポリペプチド鎖は、システイン残基、リジン残基、ヒスチジン残基、及びトリプトファン残基からなる群より選択される1以上の反応性アミノ酸残基を含み、当該反応性アミノ酸残基の側鎖反応性官能基が修飾されているものであり、
 上記mRNA分子は、上記ポリペプチド鎖のアミノ酸配列をコードする塩基配列を含み、
 上記リボソームを利用した無細胞ペプチド合成系を用いて上記mRNA分子を翻訳し、未修飾ポリペプチド鎖、上記mRNA分子および上記リボソームを含むリボソーム複合体を得る工程、および、
 上記未修飾ポリペプチド鎖に含まれる上記側鎖反応性官能基と修飾試薬とを反応させることにより、上記未修飾ポリペプチド鎖を修飾する工程を含むことを特徴とする方法。
 [2] 前記修飾試薬が、下記式(1)で表される化合物である上記[1]に記載のリボソームディスプレイ複合体の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、Aは、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基の側鎖と反応して結合を形成可能な基を表し、Bは連結基又は単結合を表し、Cは機能性基を表す。aは1以上の整数を表し、cは0又は1以上の整数を表し、aが2以上の整数を表す場合、複数のAは互いに同一であっても異なっていてもよい)
 [3] 前記Aが、ハロゲン化アルキル基、活性化カルボニル基、不飽和炭化水素基、エポキシ基、スルホニル含有基、イソシアネート基、チオイソシアネート基、カルベン発生基、カルベン含有基、ジスルフィド結合含有基、或いはチオール基である上記[2]に記載のリボソームディスプレイ複合体の製造方法。
 [4] 前記連結基Bが、ヘテロ原子含有極性基、炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
 前記ヘテロ原子含有極性基が、-O-、-S-、-NR1-(式中、R1は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-CO-、-COO-、-CONR2-(式中、R2は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-N=N-、又は-SO2-であり、
 前記脂肪族炭化水素基の置換基が、ハロゲノ基、アリール基、カルボキシ基、アルコキシカルボニル基、又はヒドロキシ基であり、
 前記芳香族環の置換基がハロゲノ基、アルキル基、アラルキル基、カルボキシ基、アルコキシカルボニル基、ヒドロキシアルキル基、又はカルボキシアルキル基である上記[2]または[3]に記載のリボソームディスプレイ複合体の製造方法。
 [5] 前記連結基Bが、-B1-単位、-B2-単位、-B2-B1-単位、又は-B2-B1-B3-単位を有し、
 B1が炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
 B2及びB3がそれぞれ独立してヘテロ原子含有極性基であり、
 B1又はB2が前記Aと結合しており、
 ヘテロ原子含有極性基及び置換基が前記と同じ意味である上記[4]に記載のリボソームディスプレイ複合体の製造方法。
 [6] 前記修飾試薬が、下記式
Figure JPOXMLDOC01-appb-C000006
(式中、A、B1、B2、B3は前記に同じ。nは1以上の整数を表す。B1、B2、B3のいずれか一つ以上には、前記Cの1つ以上が結合していてもよい)
のいずれかで表される上記[5]に記載のリボソームディスプレイ複合体の製造方法。
 [7] 前記Aがハロゲン化アルキルであるとき、このハロゲノ基が結合する炭素原子が、カルボニル基のα位の炭素原子、又は芳香族環に直結する炭素原子である上記[2]~[6]のいずれかに記載のリボソームディスプレイ複合体の製造方法。
 [8] 前記ポリペプチド鎖が、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基からなる群より選択される2以上の反応性アミノ酸残基を含み、
 前記式(1)の修飾試薬でaが2以上であり、
 未修飾ポリペプチド鎖に含まれる側鎖反応性官能基と修飾試薬とを反応させる前記工程で、ポリペプチド鎖と修飾試薬の間に環を形成する上記[2]~[7]のいずれかに記載のリボソームディスプレイ複合体の製造方法。
 [9] 前記ポリペプチド鎖が100~5000アミノ酸残基からなる上記[1]~[8]のいずれかに記載のリボソームディスプレイ複合体の製造方法。
 [10] 前記反応性アミノ酸残基を、前記ポリペプチド鎖のN末端から2番目~C末端から30番目の位置に有する上記[1]~[9]のいずれかに記載のリボソームディスプレイ複合体の製造方法。
 [11] 前記ポリペプチド鎖がN末端から2番目~C末端から30番目の位置に1~30アミノ酸残基のランダム配列を含む上記[1]~[10]のいずれかに記載のリボソームディスプレイ複合体の製造方法。
 [12] 前記リボソームが、大腸菌由来のリボソームである上記[1]~[11]のいずれかに記載のリボソームディスプレイ複合体の製造方法。
 [13] ポリペプチド鎖、mRNA分子およびリボソームを含み、
 上記ポリペプチド鎖は、システイン残基、リジン残基、ヒスチジン残基、及びトリプトファン残基からなる群より選択される1以上の反応性アミノ酸残基を含み、且つ、当該反応性アミノ酸残基の側鎖反応性官能基が修飾されているものであり、
 上記mRNA分子は、上記ポリペプチド鎖のアミノ酸配列をコードする塩基配列を含むものであることを特徴とするリボソームディスプレイ複合体。
 [14] 前記側鎖反応性官能基の修飾構造が、下記式(2)で表される化学構造である上記[13]に記載のリボソームディスプレイ複合体。
Figure JPOXMLDOC01-appb-C000007
(式中、Axは、システイン残基、リジン残基、ヒスチジン残基又はトリプトファン残基の側鎖と反応して形成される結合基を表し、Bは連結基又は単結合を表し、Cは機能性基を表す。aは1以上の整数を表し、cは0又は1以上の整数を表し、aが2以上の整数を表す場合、複数のAxは互いに同一であっても異なっていてもよい)
 [15] 前記Axが、ハロゲン化アルキル基、活性化カルボニル基、不飽和炭化水素基、エポキシ基、スルホニル含有基、イソシアネート基、チオイソシアネート基、カルベン発生基、カルベン含有基、ジスルフィド結合含有基、或いはチオール基と、システイン残基、リジン残基、ヒスチジン残基又はトリプトファン残基の側鎖とが形成する化学結合である上記[14]に記載のリボソームディスプレイ複合体。
 [16] 前記連結基Bが、ヘテロ原子含有極性基、炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
 前記ヘテロ原子含有極性基が、-O-、-S-、-NR1-(式中、R1は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-CO-、-COO-、-CONR2-(式中、R2は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-N=N-、又は-SO2-であり、
 前記脂肪族炭化水素基の置換基が、ハロゲノ基、アリール基、カルボキシ基、アルコキシカルボニル基、又はヒドロキシ基であり、
 前記芳香族環の置換基がハロゲノ基、アルキル基、アラルキル基、カルボキシ基、アルコキシカルボニル基、ヒドロキシアルキル基、又はカルボキシアルキル基である上記[15]に記載のリボソームディスプレイ複合体。
 [17] 前記連結基Bが、-B1-単位、-B2-単位、-B2-B1-単位、又は-B2-B1-B3-単位を有し、
 B1が炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
 B2及びB3がそれぞれ独立してヘテロ原子含有極性基であり、
 B1又はB2が前記Axと結合しており、
 ヘテロ原子含有極性基及び置換基が前記と同じ意味である上記[16]に記載のリボソームディスプレイ複合体。
 [18] 前記修飾構造が、下記式
Figure JPOXMLDOC01-appb-C000008
(式中、Ax、B1、B2、B3は前記に同じ。nは1以上の整数を表す。B1、B2、B3のいずれか一つ以上には、前記Cの1つ以上が結合していてもよい)
で表される上記[17]に記載のリボソームディスプレイ複合体。
 [19] 前記Axがハロゲン化アルキルと、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基の側鎖とが形成する化学結合であるとき、このハロゲノ基が結合する炭素原子が、カルボニル基のα位の炭素原子、又は芳香族環に直結する炭素原子である上記[14]~[18]のいずれかに記載のリボソームディスプレイ複合体。
 [20] 前記ポリペプチド鎖が、システイン残基、リジン残基、ヒスチジン残基、およびトリプトファン残基からなる群より選択される2以上の反応性アミノ酸残基を含み、
 前記式(2)の修飾構造でaが2以上であり、
 ポリペプチド鎖と式(2)の修飾構造とで環が形成されている上記[14]~[19]のいずれかに記載のリボソームディスプレイ複合体。
 [21] 前記ポリペプチド鎖が100~5000アミノ酸残基からなる上記[13]~[20]のいずれかに記載のリボソームディスプレイ複合体。
 [22] 前記反応性アミノ酸残基を、前記ポリペプチド鎖のN末端から2番目~C末端から30番目の位置に有する上記[13]~[21]のいずれかに記載のリボソームディスプレイ複合体。
 [23] 前記ポリペプチド鎖がN末端から2番目~C末端から30番目の位置に1~30アミノ酸残基のランダム配列を含む上記[13]~[22]のいずれかに記載のリボソームディスプレイ複合体。
 [24] 前記リボソームが、大腸菌由来のリボソームである上記[13]~[23]のいずれかに記載のリボソームディスプレイ複合体。
 本発明によれば、提示ポリペプチドのシステイン残基、リジン残基、ヒスチジン残基またはトリプトファン残基を機能性分子により修飾したリボソーム複合体を極めて簡便な工程により提供することができる。リボソーム複合体はその構成因子であるリボソーマルタンパク質中にシステイン残基など反応性側鎖官能基を有するアミノ酸残基を、提示ポリペプチドに比べてはるかに多数有することを考えると、非常に驚くべき効果である。つまり、リボソームは55個のリボソーマルタンパク質と3本のRNAにより構成されており、あるリボソームには、合計で36個のシステイン、686個のリジン、151個のヒスチジンが含まれる。それにも関わらず、ポリペプチドとmRNAの接着機能を阻害することなく(すなわちRD複合体を維持したまま)、極めて簡便な工程で提示ポリペプチドを化学修飾できるという本発明の効果は、予想外であり且つ極めて有用である。
図1は、本発明に係るリボソームディスプレイ複合体を作製するために用いた鋳型DNAの構造の模式図である。 図2は、HSP90を結合させた磁性粒子と結合させていない磁性粒子に対するリボソームディスプレイ複合体の結合量を測定した結果を示すグラフである。 図3は、ポリペプチド鎖を修飾したリボソームディスプレイ複合体と、修飾していないリボソームディスプレイ複合体の、HSP90に対する親和性を測定した結果を示すグラフである。 図4は、リボソームディスプレイ複合体に各修飾試薬を反応させたもののマススペクトルチャートである。 図5は、リボソームディスプレイ複合体に各修飾試薬を反応させたもののマススペクトルチャートである。 図6は、pH7.4でリボソームディスプレイ複合体を環化反応に付した場合のマススペクトルチャートである。 図7は、pH7.7でリボソームディスプレイ複合体を環化反応に付した場合のマススペクトルチャートである。 図8は、pH8.0でリボソームディスプレイ複合体を環化反応に付した場合のマススペクトルチャートである。 図9は、配列番号12のアミノ酸配列を有するリボソームディスプレイ複合体をスベリン酸ジサクシンイミジルで環化した場合のマススペクトルチャートである。 図10は、配列番号13のアミノ酸配列を有するリボソームディスプレイ複合体をスベリン酸ジサクシンイミジルで環化した場合のマススペクトルチャートである。 図11は、配列番号14のアミノ酸配列を有するリボソームディスプレイ複合体をスベリン酸ジサクシンイミジルで環化した場合のマススペクトルチャートである。 図12は、配列番号13のアミノ酸配列を有するリボソームディスプレイ複合体をEZ-Link NHS-PEG4-Biotinで修飾した場合のマススペクトルチャートである。 図13は、未修飾リボソームディスプレイ複合体、または1,3-ジブロモ-2-プロパノンもしくはEZ-Link NHS-PEG4-Biotinで修飾したリボソームディスプレイ複合体の、HSP90に対する親和性を相対的に表すグラフである。 図14は、修飾試薬の添加の時期を変更して作製されたリボソームディスプレイ複合体の量を比較するためのグラフである。
 以下、先ず、本発明に係るリボソームディスプレイ複合体の製造方法につき説明する。
 (1) リボソームディスプレイ複合体の調製工程
 本工程では、リボソームを利用した無細胞ペプチド合成系を用いてmRNA分子を翻訳し、未修飾ポリペプチド鎖、mRNA分子およびリボソームを含むリボソーム複合体を得る。
 リボソームを利用した無細胞ペプチドの合成系は、細胞内で行われるRNA情報に基づくポリペプチドの合成に必要な化合物を用い、in vitroでmRNAからポリペプチドを合成するものである。具体的には、開始因子、伸張因子、アミノアシルtRNA合成酵素など、mRNAの翻訳やエネルギー再生などに必要なタンパク質、リボソーム、tRNA、アミノ酸、NTP、緩衝液などを含む反応系にmRNA分子を添加し、添加したmRNAに応じたポリペプチドを合成させる。無細胞ペプチド合成のためのキットは市販されているため、mRNA分子以外は市販キットを利用すればよい。
 本工程で調製するリボソームディスプレイ複合体は、mRNA、その翻訳物であるポリペプチド鎖、およびリボソームを含む。以下、リボソームディスプレイを「RD」と略記する場合がある。
 本発明に係るRD複合体に含まれるポリペプチド鎖は、次工程で修飾に利用するシステイン残基、リジン残基、ヒスチジン残基、およびトリプトファン残基からなる群より選択される1以上の反応性アミノ酸残基を含む。反応性アミノ酸残基の数としては、ポリペプチド鎖を環状化することにより安定性などがより一層向上することがあるため、2以上が好ましい。一方、反応点が多いとRD複合体に結合する修飾試薬の数や位置が安定せず、アミノ酸配列に由来するポリペプチド鎖の特性が比較し難くなる場合があるので、上記反応性アミノ酸残基の数としては10以下が好ましい。
 上記反応性アミノ酸残基としては、システイン残基および/またはリジン残基が好ましい。また、例えばシステイン残基がジスルフィド結合によりポリペプチドの高次構造の安定化に関与しているような場合には、別途、上記反応性アミノ酸残基を導入することが好ましい。
 反応性アミノ酸残基の位置は適宜選択すればよく、例えば、リボソームの出口トンネル(exit tunnel)から外に出ている部分であり、具体的にはN末端から2番目~C末端から30番目の位置(N末端から2番目の位置およびC末端から30番目の位置を含む)とすることが好ましい。本発明ではRD複合体の状態でポリペプチド鎖を修飾するので、反応性アミノ酸残基が上記位置にあれば、修飾反応がリボソームにより立体的に阻害され難くなり得る。上記のC末端からの位置としては、50番目が好ましく、100番目がより好ましい。また反応性アミノ酸残基の位置をN末端側から数えた場合、その位置は、ポリペプチドの鎖長に応じて適宜設定できるが、例えば、N末端から2~1000番目の位置であり、好ましくはN末端から2~100番目の位置であり、より好ましくはN末端から2~50番目の位置である。
 また、ポリペプチドライブラリとして有用であるように、ポリペプチド鎖は、特定位置にランダム配列を含むものが好ましい。かかるランダム配列の中から、所定の目的に応じた有用なアミノ酸配列を特定し得る。ランダム配列の位置も適宜選択すればよいが、例えば、反応性アミノ酸残基の位置と同様に、N末端から2番目~C末端から30番目の位置(N末端から2番目の位置およびC末端から30番目の位置を含む)とすることが好ましい。即ち、反応性アミノ酸残基は、ランダム配列内に含まれることが好ましい。従ってランダム配列の好ましい位置は、反応性アミノ酸残基の好ましい位置と同じ範囲から設定できる。ランダム配列のアミノ酸数も適宜調整すればよいが、例えば、1以上、30以下とすることができる。ランダム配列数の上限は特に制限されないが、10以下が好ましい。また、このようなランダム配列は、ポリペプチド鎖中、1つであってもよく、2つ以上であってもよい。1つのランダム配列が長くなるほど、またランダム配列の数が多くなるほど、ポリペプチドライブラリの多様性を高めることができる。
 その他、ポリペプチド鎖は、目的に応じたアミノ酸配列を有していてもよい。例えば、FLAG(登録商標)配列やポリHis配列など、ポリペプチド鎖の精製のための配列や、プロテアーゼなどにより選択的に切断される配列、スペーサー配列などを挙げることができる。
 mRNAは、少なくとも上記ポリペプチド鎖をコードする塩基配列を含む。その他、翻訳などに必要な配列を有していてもよい。当該mRNAは、同じRD複合体中のポリペプチドをコードするものであることから、ライブラリの中から特定のRD複合体が選択された場合、当該mRNAの塩基配列を解析することにより、有用なポリペプチドのアミノ酸配列を間接的に特定することが可能になる。
 ポリペプチド鎖のアミノ酸残基数は特に制限されないが、例えば、100以上、5000以下とすることができる。当該アミノ酸残基数としては、150以上がより好ましく、200以上がよりさらに好ましく、また、800以下または600以下がより好ましく、500以下がよりさらに好ましい。
 リボソームは、生体から精製されたものを用いることができる。例えば、大腸菌由来のリボソームを用いればよい。
 細胞内におけるポリペプチド合成では、ポリペプチドが合成されると解離因子がmRNAの終止コドンに結合し、ポリペプチド鎖が遊離し、mRNAもリボソームから解離する。しかし、本工程ではポリペプチド鎖、mRNAおよびリボソームを含むRD複合体を調製することを目的とするので、ポリペプチド鎖が遊離しない処置をする必要がある。かかる処置としては、公知のものを用いることができる。例えば、mRNAから終止コドンを除いたり、mRNAの3’末端にアレスト配列と呼ばれる翻訳伸張停止配列を配置したり、無細胞ペプチド合成系に解離因子やリボソーム再生因子を添加しないことが挙げられる。
 RD複合体の合成後、RD複合体の精製方法としては常法を用いればよい。例えば、ポリペプチド鎖にFLAG(登録商標)配列やポリHis配列が存在する場合には、これら配列に応じた公知の精製方法を適用することができる。
 (2) ポリペプチド鎖の修飾工程
 以上の様にして未修飾ポリペプチド鎖、mRNA分子およびリボソームを含むリボソーム複合体を製造した後、本工程では、その未修飾ポリペプチド鎖に含まれる側鎖反応性官能基と修飾試薬とを反応させることにより、未修飾ポリペプチド鎖を修飾する。未修飾ポリペプチド鎖を含むリボソーム複合体を製造してから修飾試薬と反応させると、RD複合体が維持されたまま(すなわちリボソームにおけるポリペプチドとmRNAの接着機能を阻害することなく)、極めて簡便な工程でポリペプチド鎖を化学修飾できる。
 なお、リボソームはrRNAとタンパク質との複合体である巨大分子であるため、RD複合体に含まれる提示ポリペプチドに比べて多数の反応性アミノ酸残基を含む。しかし、RD複合体を作製した後に修飾試薬を作用させた場合でも、RD複合体に含まれる提示ポリペプチド鎖を修飾することが可能であり、かつRD複合体もその維持が可能である。
 未修飾ポリペプチド鎖の修飾に用いられる修飾試薬としては、例えば、下記式(1)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000009
 上記式中、Aは、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基の側鎖と反応して結合を形成可能な基を表す。即ち、システイン残基のチオール基、リジン残基の側鎖アミノ基(-NH2)、又はヒスチジン残基およびリプトファン残基の側鎖アミノ基(>NH)と反応して結合を形成可能な基を表す。
 具体的には、Aとしては、ハロゲン化アルキル基、活性化カルボニル基、不飽和炭化水素基、エポキシ基、スルホニル含有基、イソシアネート基、チオイソシアネート基、カルベン発生基、カルベン含有基、ジスルフィド結合含有基、或いはチオール基を挙げることができる。
 ハロゲン化アルキル基におけるハロゲノ基としては、クロロ基、ブロモ基またはヨード基を挙げることができる。また、ハロゲン化アルキル基におけるアルキレン基としては、直鎖アルキレン基でも分岐鎖アルキレン基であってもよく、例えば、C1-20アルキレン基を挙げることができ、C1-10アルキレン基が好ましく、C1-6アルキレン基またはC1-4アルキレン基がより好ましく、C1-2アルキレン基がよりさらに好ましい。また、ハロゲン化アルキル基としては、ハロゲノ基が結合している炭素原子が、Bに含まれるカルボニル基または芳香族環に直結しているものが好ましい。ハロゲン化アルキル基は、チオール基と結合可能である他、アミノ基とも結合し得る。
 活性化カルボニル基には、活性化エステル基、ホルミル基などが含まれる。活性化エステル基としては、例えば、スクシンイミド基などのイミドエステル基、4-ニトロフェノールエステル基、HOBtエステル基、HOAtエステル基、Oxymaエステル基などを挙げることができる。活性化カルボニル基は、例えばシステイン残基の側鎖チオールと結合可能である他、アミノ基とも結合し得る。またホルミル基は、例えばリジンの側鎖アミノ基に還元的アミノ化反応により結合可能である。
 不飽和炭化水素基は、少なくとも1つの炭素-炭素二重結合または炭素-炭素三重結合を有する不飽和炭化水素基をいい、ビニル基、プロパルギル基などが含まれ、ビニルカルボニル基、プロパルギルカルボニル基、ビニルスルホニル基などが好ましい。不飽和炭化水素基は、例えば、マイケル付加や求核置換反応によりアミノ基やチオール基と結合させることができる。
 スルホニル含有基としては、例えば、アルキルスルホニル基、アリールスルホニル基、スルホン酸エステル基(例えば、アルキルスルホニルオキシ基、アリールスルホニルオキシ基など)などを挙げることができ、いわゆる脱離基としてチオール基やアミノ基と反応可能である。アルキルスルホニル基としては、メタンスルホニル基、クロロメタンスルホニル基、トリフルオロメタンスルホニル基などを挙げることができ、アリールスルホニル基としては、例えば、ベンゼンスルホニル基、トルエンスルホニル基などを挙げることができる。また、スルホン酸エステル基としては、例えば、メタンスルホニルオキシ基、クロロメタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基を挙げることができる。
 カルベン発生基としては、例えば、ジアゾ含有基、ジアジリン構造含有基などが挙げられ、好ましくはカルボニルに隣接する炭素原子にジアゾ基が結合している基が挙げられる。ジアゾ基が脱離することで、カルベンが発生し、チオールと結合することができる。またカルベン含有基としては、種々のカルベン発生基からカルベンが生じた後の基が挙げられる。
 ジスルフィド結合含有基とチオール基は、システイン残基の側鎖チオール基とジスルフィド結合を形成することができる。
 エポキシ基、イソシアネート基およびチオイソシアネート基は、チオール基とアミノ基の両方と反応可能である。
 Aの数、即ちaとしては2以上の整数が好ましい。Aが2以上であり且つ側鎖反応性官能基が2以上あれば、ポリペプチド鎖を環化することが可能になる。環化されたポリペプチド鎖は、安定性などがより一層向上する可能性がある。
 上記式中、Bは連結基又は単結合を表す。連結基であるBとしては、ヘテロ原子含有極性基、脂肪族炭化水素基および芳香族環を挙げることができる。
 ヘテロ原子含有極性基としては、-O-、-S-、-NR1-(式中、R1は水素原子、炭化水素基(好ましくはC1-6アルキル基)、又は連結基末端の結合手を表す。なおRが結合手の場合、連結基の価数は3になる(以下、同様))、-CO-、-COO-、-CONR2-(式中、R2は水素原子、炭化水素基(好ましくはC1-6アルキル基)、又は連結基末端の結合手を表す)、-C(=N-R3)-(式中、R3は、置換基を有していてもよい鎖状または環状の脂肪族炭化水素基、置換基を有していてもよい芳香族環基またはヘテロ原子含有基、および、何らかの機能を付加するための機能性基からなる群から選ばれる少なくとも1種以上を含む基、水素原子、または連結基末端の結合手を表す)、-N=N-、および-SO2-を挙げることができる。
 脂肪族炭化水素基としては、直鎖アルキレン基、分岐鎖アルキレン基および環状鎖アルキレン基のいずれであってもよく、例えば、C1-20アルキレン基を挙げることができ、C1-10アルキレン基が好ましく、C1-6アルキレン基またはC1-4アルキレン基がより好ましく、C2-4アルキレン基がよりさらに好ましい。当該脂肪族炭化水素基の炭素原子間または末端には、上記ヘテロ原子含有極性基が挿入されていてもよく、また、置換基を有していてもよい。置換基としては、ハロゲノ基、アリール基、カルボキシ基、アルコキシカルボニル基、又はヒドロキシ基を挙げることができる。アリール基としては、C6-10アリール基が好ましく、フェニル基またはナフチル基がより好ましく、フェニル基が好ましい。置換基数は、置換可能である限り特に制限されないが、例えば1以上、4以下とすることができ、3以下または2以下が好ましく、1が好ましい。置換基数が2以上である場合、それら置換基は互いに同一であっても異なっていてもよい。
 芳香族環基としては、フェニル基、インデニル基、ナフチル基、ビフェニル基などのC6-10アリール基が好ましく、フェニル基またはナフチル基がより好ましく、フェニル基が好ましい。芳香族環基は置換基を有していてもよく、置換基としては、ハロゲノ基、アルキル基、好ましくはC1-6アルキル基、アラルキル基、好ましくはベンジル基、カルボキシ基、アルコキシカルボニル基、好ましくは(C1-6アルコキシ)カルボニル基、ヒドロキシアルキル基、好ましくはヒドロキシ-C1-6アルキル基、又はカルボキシアルキル基、好ましくはカルボキシ-C1-6アルキル基を挙げることができる。置換基数は、置換可能である限り特に制限されないが、例えば1以上、4以下とすることができ、3以下または2以下が好ましく、1が好ましい。置換基数が2以上である場合、それら置換基は互いに同一であっても異なっていてもよい。
 前記連結基Bは、好ましくは-B1-単位、-B2-単位、-B2-B1-単位、又は-B2-B1-B3-単位を有する。B1は、炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、B2及びB3は、それぞれ独立してヘテロ原子含有極性基であり、B1又はB2は前記Aと結合するものである。ここで、ヘテロ原子含有極性基及び置換基は、前記と同じ意味を有する。
 ヘテロ原子含有基としては、-O-、-S-、-NR3-(式中、R3は水素原子、炭化水素基(好ましくはC1-6アルキル基)、又は連結基末端の結合手を表す。なおRが結合手の場合、連結基の価数は3になる(以下、同様))、-CO-、-COO-、-CONR4-(式中、R4は水素原子、炭化水素基(好ましくはC1-6アルキル基)、又は連結基末端の結合手を表す)、-N=N-、および-SO2-を挙げることができる。
 上記式中、Cは、ポリペプチドに何らかの機能を付加するための機能性基を表す。当該機能性基は、使用目的などに応じて適宜選択すればよく、特に制限されないが、例えば、ポリペプチドを環状化するリンカー化合物の他、蛍光物質などの発光物質、色素、放射性物質、薬剤、毒素、核酸、アミノ酸、ペプチド、糖類、脂質、および各種ポリマー等、並びにこれらの組合せが挙げられる。蛍光物質としては、例えば、フルオレセイン類、ローダミン類、クマリン類、ピレン類、およびシアニン類の蛍光色素を挙げることができる。
 具体的な修飾試薬としては、例えば、下記式で表されるいずれかのものを挙げることができる。
Figure JPOXMLDOC01-appb-C000010
(式中、A、B1、B2、B3は前記に同じ。nは1以上の整数を表す。B1、B2、B3のいずれか一つ以上には、前記Cの1つ以上が結合していてもよい)
 なお前記式(1a)~(1f)で表される化合物は、機能性基C(蛍光色素、標識単位のいずれかを含む基)を有し、機能性基Cは、B1、B2、B3のいずれかに結合している。また、水溶性向上のため、スルホン酸基(-SO2-OH)やスルホン酸塩基(-SO2-O-+)などの水溶性置換基を有していてもよい。M+としては、ナトリウムイオンやカリウムイオンなどのアルカリ金属イオンを挙げることができる。
 式(1a)の具体例には、例えば、Aがハロゲン化アルキル基、活性化カルボニル基(特に活性化エステル基)、又はエポキシ基であり、B1が脂肪族炭化水素基、又は芳香族環であり、nが2又は3である化合物が含まれ、特に下記式で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000011
 式(1b)の具体例には、Aがハロゲン化アルキル基であり、B2が酸素原子含有極性基(特に-CO-)、又は窒素原子含有極性基(特に-C(=N-R5)-(式中、R5は、置換基を有していてもよい鎖状または環状の脂肪族炭化水素基、置換基を有していてもよい芳香族環基またはヘテロ原子含有基、および、何らかの機能を付加するための機能性基からなる群から選ばれる少なくとも1種以上を含む基、水素原子、または連結基末端の結合手を表す)であり、nが2である化合物が含まれ、特に下記式で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000012
 式(1c)の具体例には、Aがハロゲン化アルキル基、又は活性化カルボニル基(特に活性化エステル基)であり、B1が脂肪族炭化水素基、炭素原子間に酸素原子が挿入されている脂肪族炭化水素基、又は芳香族環であり、B2が酸素原子、窒素原子などを含有する極性基(特に-COO-、-CONH-)であり、nが1、2又は3である化合物が含まれ、特に下記式で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000013
 式(1d)の具体例には、Aがハロゲン化アルキル基であり、B1が脂肪族炭化水素基であり、B2が酸素原子及び窒素原子を含有する極性基(特に-CONH-)であり、nが3である化合物が含まれ、特に下記式で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000014
 式(1e)の具体例には、Aがハロゲン化アルキル基であり、B1が芳香族環であり、B2、B3が酸素原子、窒素原子などを含有する極性基(特に-COO-、-N=N-など)であり、nが2である化合物が含まれ、特に下記式であらわされる化合物が含まれる。
Figure JPOXMLDOC01-appb-C000015
 RD複合体中のポリペプチド鎖を修飾するための条件は、修飾すべき側鎖反応性官能基の種類と使用する修飾試薬に応じて適宜設定することができる。例えば、システイン残基の側鎖チオール基を修飾すべき場合には、還元剤によりジスルフィド結合を切断してチオール基とした上で、修飾試薬を反応させればよい。還元剤としては、例えば、トリス(2-カルボキシエチル)ホスフィンナトリウム塩、ジチオトレイトール、β-メルカプトエタノールなどが挙げられる。
 また、側鎖アミノ基に修飾試薬のハロゲン化アルキル基やエポキシ基などを反応させる場合には、塩基を添加してもよい。塩基としては、例えば、炭酸水素ナトリウムなどの炭酸水素塩;炭酸ナトリウムなどの炭酸塩;水酸化ナトリウムなどの金属水酸化物;ピリジンやトリエチルアミンなどの有機塩基などが例示できる。
 修飾試薬を反応させる時の反応溶媒としては、通常、水が使用される。また反応温度は、例えば、0~30℃程度、好ましくは1~20℃程度、より好ましくは1~10℃程度である。
 修飾試薬の反応時のpHは、使用する修飾試薬などに応じて適宜調整すればよく特に制限されないが、例えば、4.0~10.0程度の範囲から選択でき、好ましくは5.0~9.0程度、より好ましくは6.0~8.0程度である。より好ましい範囲は修飾試薬に応じて異なるが、ポリペプチド鎖当たりの修飾試薬導入数が2以上になる事を抑制する観点から、pHを7.0~7.5に調整してもよい。
 修飾試薬の量は、試薬の種類に応じて適宜設定でき、例えば、未修飾ポリペプチド鎖を含むリボソーム複合体1モルに対して、例えば、1,000モル以上、好ましくは10,000モル以上であり、より好ましくは60,000モル以上であり、よりさらに好ましくは100,000モル以上である。その上限は特に限定されないが、例えば、100,000,000モル以下、好ましくは50,000,000モル以下、より好ましくは20,000,000モル以下、よりさらに好ましくは10,000,000モル以下である。
 ポリペプチド鎖を修飾した後、RD複合体は常法により精製することができる。例えば、ポリペプチド鎖にFLAG(登録商標)配列やポリHis配列などのタグ配列が存在する場合には、これら配列に応じた公知の精製方法を適用することができる。なお、タグ配列に特異的な抗体を結合させた担体とRD複合体とは、修飾試薬を反応させる前からアフィニティ結合させていてもよい。このアフィニティ結合は、修飾子薬の反応の間に切断されず、修飾試薬の反応後、このアフィニティ結合を利用してRD複合体を精製してもよい。
 上記本発明方法で製造されるRD複合体は、ポリペプチド鎖、mRNA分子およびリボソームを含み、当該ポリペプチド鎖中のシステイン残基、リジン残基、ヒスチジン残基、及びトリプトファン残基からなる群より選択される1以上の反応性アミノ酸残基が使用した修飾試薬により修飾されており、当該mRNA分子は、上記ポリペプチド鎖のアミノ酸配列をコードする塩基配列を含むものである。このRD複合体は、前記式(1)、(1a)~(1e)において、基Aがその反応結果である基Ax(Axは、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基の側鎖と反応して形成される結合基)に置き換わった構造を有している点で、非修飾のRD複合体と区別される。
 本願は、2016年6月7日に出願された日本国特許出願第2016-113935号に基づく優先権の利益を主張するものである。2016年6月7日に出願された日本国特許出願第2016-113935号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 (1)RNAライブラリの作製
 本(1)項では、NNK法を用い、(NNK)10[式中、NはA、U、GまたはCを示し、KはGまたはUを示し、NNKはすべてのコドンに対応する]の配列を含む配列を有するRNAを1012以上含むRNAライブラリを作製する方法について説明する。
 このRNAライブラリ作製の為に、図1の構造を有する鋳型DNA(塩基配列:配列番号1,アミノ酸配列:配列番号2)を用いた。具体的には、表1に示す組成を有する反応液を用い、表2のPCRサイクルでプラスミドを鋳型DNAとして5’フラグメントを調製した。表1中、5FFnew_130816はフォワードプライマーであり、Ma3frag_R0502はリバースプライマーである。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 次に、表3に示す組成を有する反応液を用い、表4のPCRサイクルで鋳型DNAの3’フラグメントを調製した。表3中、Ma10NNK_F0502はフォワードプライマーであり、3F-Rはリバースプライマーである。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 次に、表5に示す組成を有する反応液を用い、表6のPCRサイクルでoverlapping PCRを行い、上記5’フラグメントと3’フラグメントを連結し、全長を増幅して鋳型DNAを得た。なお、表5中、X~Zは、1×1012の5’フラグメントと3’フラグメントを用い、反応液にH2Oを加えて総量を60μLに調整したことを示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 得られた上記鋳型DNAを鋳型とし、表7に示す組成を有する反応液を用い、37℃で5時間反応させることにより、配列番号3の塩基配列を有する1012以上のmRNAを含むRNAライブラリを得た。このライブラリに含まれるmRNAは、図1に示す様に5’側から順にFLAG(登録商標)サイト、His6サイト、ランダム配列、TEVプロテアーゼサイト、スペーサー配列を有しており、終止コドンを有さない。
Figure JPOXMLDOC01-appb-T000022
 (2)リボソームディスプレイ複合体ライブラリの作製
 再構成型無細胞タンパク質合成キット(ジーンフロンティア社製「PURE frex(登録商標)」)を用い、上記RNAライブラリからリボソームディスプレイ(RD)複合体を調製した。別途、ストレプトアビジン-磁性粒子(「NanoLinkTM Streptavidin Magnetic Beads」Solulink社製)5μLを、150μLに希釈した。上記RD複合体反応液と、抗FLAG(登録商標) M2抗体結合アガロースビーズ(Sigma-Aldrich社製,20μL)を混合し、4℃で60分間攪拌した。ペプチド部分にFLAG配列を有するRD複合体が選択的に結合した抗FLAG M2抗体結合アガロースビーズを回収した。
 (3)ペプチドの環化反応
 上記で回収したアガロースビーズを80μLに希釈した後、還元剤として10mMトリス(2-カルボキシエチル)ホスフィン塩酸塩(4μL)(終濃度0.5mM)と、修飾試薬として40mM 1,3-ジブロモ-2-プロパノン(4μL)(終濃度2mM)を添加し、4℃で3時間環化反応させた。なお、このとき還元剤の添加は必須ではない。環化反応後、FLAGペプチドを添加することにより、RD複合体をアガロースビーズから分離した。
 (4)HSP90親和性ペプチドの選択
 別途、上記ストレプトアビジン-磁性粒子希釈液(5μL)に、ヒートショックタンパク質であるHSP90にビオチンを結合させたものをモル比が1:1となるように混合し、4℃で攪拌することで、磁性粒子にHSP90を結合させた。また、比較のために、HSP90を結合させない以外は同様にして磁性粒子懸濁液を調製した。
 上記(3)で得たペプチド環化RD複合体溶液と磁性粒子懸濁液を混合し、4℃で1時間攪拌した。磁気スタンドを用いて磁性粒子を回収し、0.05MのEDTAを加えることにより磁性粒子上のHSP90に結合しているRD複合体からRNAを解離させた。磁気スタンドを用いて磁性粒子を除去した後、RNA濃縮・精製キット(QIAGEN社製「RNeasy MinElute Cleanup Kit」)を用いてRNAを精製した。次いで、表8に示す組成で65℃にて5分間反応させた後、当該反応液につき、表9に示す組成で50℃にて1時間、さらに70℃で15分間反応させることにより逆転写した。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 上記逆転写反応で得られたcDNAをRT-PCRに付して、ランダム配列を含む配列を増幅した。具体的には、表10に示す組成の反応液を用い、表11のPCRサイクルでPCRを行った。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 別途、上記(1)において、PCRサイクル中68℃での加熱時間を15秒間に変更した以外は同様にして5’フラグメント(配列番号6)を調製し、また、フォワードプライマーとして3fragF_140407を用い且つPCRサイクル中68℃での加熱時間を25秒間に変更した以外は同様にして3’フラグメント(配列番号7)を調製した。次いで、得られた5’フラグメントと3’フラグメントに加えて上記のランダム配列を含むcDNA溶液を用い、且つポリメラーゼの使用量を0.6μLに変更した以外は同様にして、overlapping PCRにより各フラグメントを連結し、得られたDNAを増幅させた。
 得られたDNAを用い、前記(1)と同様にしてmRNAを転写し、前記(2)「リボソームディスプレイ複合体ライブラリの作製」工程に戻し、以下、上記と同様にしてHSP90に親和性を有するRD複合体を回収した。HSP90に結合するRD複合体に含まれるmRNA量が増加しなくなることを確認できるまで、以上の操作を繰り返した。以下、1回の繰り返しを「ラウンド」と称する。ラウンド1~3では、RD複合体と使用するHSP90のモル比をRD複合体:HSP90=3:1に調整し、ラウンド4~5では当該モル比を10:1に調整した。結果を、HSP90と接触させる前のmRNA量とHSP90を用いない場合のmRNA量と共に図2に示す。図2に示す結果のとおり、HSP90に結合するRD複合体はラウンド1に比べてラウンド2に比べて増加していたが、ラウンド2以降は増加が認められなくなっており、HSP90に対する親和性を有するRD複合体の濃縮は完了したと考えられた。
 (5)HSP90親和性ペプチドの同定
 配列の濃縮が確認されたラウンドの全長鎖DNAを鋳型として、Taq polymeraseを用いてPCRを行うことで、末端にAを付加した。この突出末端とクローニングキット(Promega社製「pGEM T Easy Cloning Kit」)を用いて、付属のプラスミドDNAにライゲーションした。得られたプラスミドを用いて、JM109 competent cellを形質転換し、培養した。培養により形成されたコロニーから抽出した各クローンのプラスミドを用いて、上記全長鎖DNAのアミノ酸配列を解析した。得られたアミノ酸配列のうち、ランダム部分(NNK部分)の配列を表12に示す。
Figure JPOXMLDOC01-appb-T000027
 表12のとおり、本発明に係るスクリーニング方法により1012以上のmRNAを含むライブラリからHSP90に親和性を有するペプチドをコードするものを16種類まで選択することができ、また、選択されたペプチドはアミノ酸配列が類似していることが明らかとなった。
 (6)獲得した配列の結合能確認
 上記(5)にて獲得した各クローンのHSP90に対する親和性の確認を行った。具体的には、上記(5)で合成した各クローンの全長DNAを鋳型とし、上記(1)と同様にしてRNAを合成し、上記(2)と同様にリボソームディスプレイ複合体を作製した。また、その一部のポリペプチドを、上記(3)と同様にして環化した。得られた各リボソームディスプレイ複合体のHSP90に対する親和性を、上記(4)と同様にして調べた。回収した複合体の量を定量することで、各クローンのHSP90に対する親和性を求めた。結果を図3に示す。図3中のアルファベットは、上記表12中の配列記号に相当する。
 図3に示す結果のとおり、HSP90に対する親和性を調べたリボソームディスプレイ複合体の内3種のポリペプチドがHSP90に親和性を示し、そのうち2種類については、修飾試薬が連結された環状態において10倍以上強く結合することが示唆された。これらの結果から、RD複合体の機能を維持したまま、RD複合体に提示されたポリペプチドに修飾試薬を連結することができたことを示していると考えている。また、修飾試薬の有無により親和性が6倍程度のクローンが取得できた。即ち、ポリペプチドを環化することによりHSP90に対する親和性が増したことが示唆されており、修飾試薬を連結することの有用性を示している。
 実施例2:ペプチドの環化反応
 再構成型無細胞タンパク質合成キット(ジーンフロンティア社製「PURE frex(登録商標)」)を用い、反応液50μLに、FLAG配列、His6配列およびTEVプロテアーゼサイトをコードする塩基配列を有するRNA(配列番号8)2.5×1013分子を混合し、37℃で35分間反応させることによりRD複合体を作製し、反応液に抗FLAG(登録商標) M2抗体結合アガロースビーズ(Sigma-Aldrich社製,2μL)を加えてRD複合体を結合させた。さらに、還元剤としてトリス(2-カルボキシエチル)ナトリウム塩(pH7,終濃度0.5mM)と、図4に示す各修飾試薬を終濃度2mMで加え、4℃で3時間攪拌することによりビーズ上でRD複合体中のペプチドを環化した。反応後、FLAGペプチド(配列:DYKDDDDK,5mg)を加えることによりRD複合体をビーズから遊離させた。反応液からビーズを分離除去し、Mg2+を含まないリン酸緩衝生理食塩水(pH7.5,100μL)を加えて複合体を解離させた後、His-tagビーズでペプチド鎖を精製した。精製したポリペプチドをTEVプロテアーゼで切断した後、環状化部位を含みN末端がホルミル化されている断片ペプチド(配列番号9)の分子量をMALDI-TOFMSで測定した。修飾試薬の化学構造と得られたマススペクトルチャートを図4に示す。図4中、(a)は修飾試薬を添加しない反応液のマススペクトルチャートであり、(e)はRNAを用いない以外は同様に反応させた反応液のマススペクトルチャートでありバックグラウンドのシグナルを示すものである。また、白矢印は未環化ペプチド鎖のピークを示し、黒矢印は環化ペプチド鎖のピークを示す。
 図4に示す結果のとおり、修飾試薬として1,3-ジブロモ-2-プロパノンを用いた場合(b)と1,3-ビス(ブロモメチル)ベンゼンを用いた場合(c)では、環化反応が進行していることが分かった。修飾試薬として1,5-ヘキサジン ジエポキシドを用いた場合(d)、反応効率は比較的低いものの環状化合物の確認はできることから、エポキシドも環化試薬として使用できると考えられる。
 なお、各マススペクトルチャートでは、使用した修飾試薬1分子分の分子量が増加したピークが明確に認められている一方で、2以上の分子分の分子量が増加したピークは明確に認められない。かかる結果より、修飾試薬は1分子のみがポリペプチド鎖に結合したものと考えられる。
 実施例3:ペプチドの環化反応
 RNAとして配列番号10の塩基配列を有するものを用い、修飾試薬として図5に示すものを用いた以外は上記実施例2と同様にして、環化反応を行った。結果を図5に示す。
 図5のとおり、マレイミド型修飾試薬(図5(b))とハロアセチルアミノ型修飾試薬化合物(図5(c)、(d))ともに、環化試薬として使用できることが明らかとなった。
 本実験でも、各マススペクトルチャートでは、使用した修飾試薬1分子分の分子量が増加したピークが明確に認められている。それに加えて、その他のピークも認められるが、2以上の修飾試薬が結合したRD複合体の計算上の分子量とは異なっていることから、プロテアーゼ処理で除去しきれなかったリボソーマルタンパク質に由来するものであると考えられる。かかる結果より、修飾試薬は1分子のみがポリペプチド鎖に結合したものと考えられる。
 実施例4:ペプチドの環化反応
 RNAとして配列番号11塩基配列を有するものを用い、修飾試薬としてスベリン酸ジサクシンイミジルを用い、反応液のpHを7.4、7.7または8.0に変更した以外は上記実施例2と同様にして、環化反応を行った。反応液のpHが7.4の場合の結果を図6に、pHが7.7の場合の結果を図7に、pHが8.0の場合の結果を図8に示す。
 図6~8のとおり、いずれのpHでも反応が進行していた。また、pHが高いほど修飾試薬がさらに1分子(合計で2分子)付加した化合物のピークの強度が強くなることから、修飾試薬がヒスチジンやトリプトファンといった塩基性アミノ酸にも付加していることが示唆された。
 但し、3分子以上の修飾試薬が結合したRD複合体のピークは明確に認められないことから、本実験でも、1分子または2分子の修飾試薬がポリペプチド鎖に結合していると考えられる。
 実施例5:ペプチドの環化反応
 配列番号12~14のアミノ酸配列をコードするRNAと修飾試薬としてスベリン酸ジサクシンイミジルを用いた以外は上記実施例2と同様にして、環化反応を行った。配列番号12のアミノ酸配列の結果を図9に、配列番号13のアミノ酸配列の結果を図10に、配列番号14のアミノ酸配列の結果を図11に示す。
 図9~11のとおり、2つの活性カルボキシ基を有するジスクシンイミジル化合物は、2つのリジン側鎖アミノ基と反応してペプチドを環化することが示唆され、さらに、ヒスチジン側鎖の第二級アミノ基とも反応していることが示唆された。
 また、本実験でも反応後のRD複合体の主なピークは1分子または2分子の修飾試薬が結合したものであることから、1分子または2分子の修飾試薬がポリペプチド鎖に結合していると考えられる。
 実施例6:ペプチドのビオチン化反応
 配列番号13のペプチド配列をコードするRNAを用い、修飾試薬としてEZ-Link NHS-PEG4-Biotin(Thermo Fisher社製)を用いた以外は上記実施例2と同様にして、ペプチドへの修飾を行った。図12に示すとおり、ビオチン化されたことを示唆するシグナルを得た。このペプチド配列は2つのリジンを含むため、1つビオチン化されたペプチドに加え(黒矢印)、2つビオチンが導入されたペプチドも検出できた(斜線矢印)。このように、本実験でも、1分子または2分子の修飾試薬がポリペプチド鎖に結合していると考えられる。
 実施例7:ペプチドの環化反応およびビオチン化反応
 配列番号12のペプチド配列をコードするRNAを用い、修飾試薬として1,3-ジブロモ-2-プロパノンまたはEZ-Link NHS-PEG4-Biotin(Thermo Fisher社製)を用いた以外は上記実施例2と同様にして、ビオチン修飾されたRD複合体を作製した。ビオチン化された複合体に上記ストレプトアビジン-磁性粒子希釈液(5μL)を加え、磁気スタンドを用いて磁性粒子を回収した。回収した磁性粒子に0.05MのEDTAを加えることにより、磁性粒子上のHSP90に結合しているRD複合体からRNAを解離させた。磁気スタンドを用いて磁性粒子を除去した後、RNA濃縮・精製キット(QIAGEN社製「RNeasy MinElute Cleanup Kit」)によりRNAを精製した。各修飾試薬で修飾した場合のRNA回収量を定量RT-PCRで測定し、修飾試薬なしで行った条件での回収量をバックグラウンドとして、相対的に比較した。結果を図13に示す。図13に示す結果の通り、RD複合体に対してNHS-PEG4-Biotinでのビオチン化が進行し、RNAが回収できたことを示唆する結果を得た。
 実施例8:修飾条件の比較
 (1)条件1
 再構成型無細胞タンパク質合成キット(ジーンフロンティア社製「PURE frex(登録商標)」)を用い、反応液50μLに含まれるリボソームに、還元剤としてトリス(2-カルボキシエチル)ナトリウム塩(pH7,終濃度0.5mM)と、修飾試薬として1,3-ジブロモ-2-プロパノンを終濃度2mMで加え、4℃で3時間反応した。次いで、上記再構成型無細胞タンパク質合成キットのリボソーム以外の因子(反応液50μLに必要量)と、RNA(配列番号8)2.5×1012分子を加えて混合し、37℃で35分間反応させることによりRD複合体の調製を行った。この反応液に抗FLAG(登録商標) M2抗体結合アガロースビーズ(Sigma-Aldrich社製,2μL)を加えて、RD複合体を結合させた。ここでは何も加えずに、4℃で3時間攪拌した。攪拌後、FLAGペプチド(配列:DYKDDDDK,5mg)を加えることによりRD複合体をビーズから遊離させた。得られたRD複合体の量を、定量RT-PCRで求めた。結果を図14に示す。
 (2)条件2
 条件2では、上記実施例と同様に、RD複合体を作製した後に修飾試薬を作用させた。具体的には、上記再構成型無細胞タンパク質合成キットを用い、反応液50μLに含まれるリボソームに対して、修飾試薬を加えずに4℃で3時間インキュベーションした。次いで、条件1と同様の操作によりRD複合体を調製し、この反応液に抗FLAG(登録商標) M2抗体結合アガロースビーズ(Sigma-Aldrich社製,2μL)を加えてRD複合体を結合させた。さらに、還元剤としてトリス(2-カルボキシエチル)ナトリウム塩(pH7,終濃度0.5mM)と、修飾試薬として1,3-ジブロモ-2-プロパノンを終濃度2mMで加え、4℃で3時間攪拌することによりビーズ上でRD複合体の修飾を行った。なお、添加した修飾試薬(1,3-ジブロモ-2-プロパノン)の量は、RD複合体1モルに対して1,000,000倍モルとなる。反応後、FLAGペプチド(配列:DYKDDDDK,5mg)を加えることによりRD複合体をビーズから遊離させた。得られたRD複合体の量を、定量RT-PCRで求めた。結果を図14に示す。
 図14に示す結果のとおり、リボソームに修飾試薬を作用させてからRD複合体を作製しようとしても、RD複合体は得られなかった。それに対して、RD複合体に対して修飾試薬を作用させても、得られたRD複合体は分解などをおこさないことが明らかとなった。また、上記実施例の結果より、修飾試薬は少なくともRD複合体中のペプチドに反応していると考えられる。

Claims (24)

  1.  ポリペプチド鎖、mRNA分子およびリボソームを含むリボソームディスプレイ複合体を製造するための方法であって、
     上記ポリペプチド鎖は、システイン残基、リジン残基、ヒスチジン残基、及びトリプトファン残基からなる群より選択される1以上の反応性アミノ酸残基を含み、当該反応性アミノ酸残基の側鎖反応性官能基が修飾されているものであり、
     上記mRNA分子は、上記ポリペプチド鎖のアミノ酸配列をコードする塩基配列を含み、
     上記リボソームを利用した無細胞ペプチド合成系を用いて上記mRNA分子を翻訳し、未修飾ポリペプチド鎖、上記mRNA分子および上記リボソームを含むリボソーム複合体を得る工程、および、
     上記未修飾ポリペプチド鎖に含まれる上記側鎖反応性官能基と修飾試薬とを反応させることにより、上記未修飾ポリペプチド鎖を修飾する工程を含むことを特徴とする方法。
  2.  前記修飾試薬が、下記式(1)で表される化合物である請求項1に記載のリボソームディスプレイ複合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Aは、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基の側鎖と反応して結合を形成可能な基を表し、Bは連結基又は単結合を表し、Cは機能性基を表す。aは1以上の整数を表し、cは0又は1以上の整数を表し、aが2以上の整数を表す場合、複数のAは互いに同一であっても異なっていてもよい)
  3.  前記Aが、ハロゲン化アルキル基、活性化カルボニル基、不飽和炭化水素基、エポキシ基、スルホニル含有基、イソシアネート基、チオイソシアネート基、カルベン発生基、カルベン含有基、ジスルフィド結合含有基、或いはチオール基である請求項2に記載のリボソームディスプレイ複合体の製造方法。
  4.  前記連結基Bが、ヘテロ原子含有極性基、炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
     前記ヘテロ原子含有極性基が、-O-、-S-、-NR1-(式中、R1は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-CO-、-COO-、-CONR2-(式中、R2は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-N=N-、又は-SO2-であり、
     前記脂肪族炭化水素基の置換基が、ハロゲノ基、アリール基、カルボキシ基、アルコキシカルボニル基、又はヒドロキシ基であり、
     前記芳香族環の置換基がハロゲノ基、アルキル基、アラルキル基、カルボキシ基、アルコキシカルボニル基、ヒドロキシアルキル基、又はカルボキシアルキル基である請求項2または3に記載のリボソームディスプレイ複合体の製造方法。
  5.  前記連結基Bが、-B1-単位、-B2-単位、-B2-B1-単位、又は-B2-B1-B3-単位を有し、
     B1が炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
     B2及びB3がそれぞれ独立してヘテロ原子含有極性基であり、
     B1又はB2が前記Aと結合しており、
     ヘテロ原子含有極性基及び置換基が前記と同じ意味である請求項4に記載のリボソームディスプレイ複合体の製造方法。
  6.  前記修飾試薬が、下記式
    Figure JPOXMLDOC01-appb-C000002

    (式中、A、B1、B2、B3は前記に同じ。nは1以上の整数を表す。B1、B2、B3のいずれか一つ以上には、前記Cの1つ以上が結合していてもよい)
    のいずれかで表される請求項5に記載のリボソームディスプレイ複合体の製造方法。
  7.  前記Aがハロゲン化アルキルであるとき、このハロゲノ基が結合する炭素原子が、カルボニル基のα位の炭素原子、又は芳香族環に直結する炭素原子である請求項2~6のいずれかに記載のリボソームディスプレイ複合体の製造方法。
  8.  前記ポリペプチド鎖が、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基からなる群より選択される2以上の反応性アミノ酸残基を含み、
     前記式(1)の修飾試薬でaが2以上であり、
     未修飾ポリペプチド鎖に含まれる側鎖反応性官能基と修飾試薬とを反応させる前記工程で、ポリペプチド鎖と修飾試薬の間に環を形成する請求項2~7のいずれかに記載のリボソームディスプレイ複合体の製造方法。
  9.  前記ポリペプチド鎖が100~5000アミノ酸残基からなる請求項1~8のいずれかに記載のリボソームディスプレイ複合体の製造方法。
  10.  前記反応性アミノ酸残基を、前記ポリペプチド鎖のN末端から2番目~C末端から30番目の位置に有する請求項1~9のいずれかに記載のリボソームディスプレイ複合体の製造方法。
  11.  前記ポリペプチド鎖がN末端から2番目~C末端から30番目の位置に1~30アミノ酸残基のランダム配列を含む請求項1~10のいずれかに記載のリボソームディスプレイ複合体の製造方法。
  12.  前記リボソームが、大腸菌由来のリボソームである請求項1~11のいずれかに記載のリボソームディスプレイ複合体の製造方法。
  13.  ポリペプチド鎖、mRNA分子およびリボソームを含み、
     上記ポリペプチド鎖は、システイン残基、リジン残基、ヒスチジン残基、及びトリプトファン残基からなる群より選択される1以上の反応性アミノ酸残基を含み、且つ、当該反応性アミノ酸残基の側鎖反応性官能基が修飾されているものであり、
     上記mRNA分子は、上記ポリペプチド鎖のアミノ酸配列をコードする塩基配列を含むものであることを特徴とするリボソームディスプレイ複合体。
  14.  前記側鎖反応性官能基の修飾構造が、下記式(2)で表される化学構造である請求項13に記載のリボソームディスプレイ複合体。
    Figure JPOXMLDOC01-appb-C000003

    (式中、Axは、システイン残基、リジン残基、ヒスチジン残基又はトリプトファン残基の側鎖と反応して形成される結合基を表し、Bは連結基又は単結合を表し、Cは機能性基を表す。aは1以上の整数を表し、cは0又は1以上の整数を表し、aが2以上の整数を表す場合、複数のAxは互いに同一であっても異なっていてもよい)
  15.  前記Axが、ハロゲン化アルキル基、活性化カルボニル基、不飽和炭化水素基、エポキシ基、スルホニル含有基、イソシアネート基、チオイソシアネート基、カルベン発生基、カルベン含有基、ジスルフィド結合含有基、或いはチオール基と、システイン残基、リジン残基、ヒスチジン残基又はトリプトファン残基の側鎖とが形成する化学結合である請求項14に記載のリボソームディスプレイ複合体。
  16.  前記連結基Bが、ヘテロ原子含有極性基、炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
     前記ヘテロ原子含有極性基が、-O-、-S-、-NR1-(式中、R1は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-CO-、-COO-、-CONR2-(式中、R2は水素原子、炭化水素基、又は連結基末端の結合手を表す)、-N=N-、又は-SO2-であり、
     前記脂肪族炭化水素基の置換基が、ハロゲノ基、アリール基、カルボキシ基、アルコキシカルボニル基、又はヒドロキシ基であり、
     前記芳香族環の置換基がハロゲノ基、アルキル基、アラルキル基、カルボキシ基、アルコキシカルボニル基、ヒドロキシアルキル基、又はカルボキシアルキル基である請求項15に記載のリボソームディスプレイ複合体。
  17.  前記連結基Bが、-B1-単位、-B2-単位、-B2-B1-単位、又は-B2-B1-B3-単位を有し、
     B1が炭素原子間にヘテロ原子含有極性基が挿入されていてもよく置換基を有していてもよい鎖状又は環状の脂肪族炭化水素基、及び置換基を有していてもよい芳香族環から選ばれる1種以上を単独で又は組み合わせて有する基であり、
     B2及びB3がそれぞれ独立してヘテロ原子含有極性基であり、
     B1又はB2が前記Axと結合しており、 ヘテロ原子含有極性基及び置換基が前記と同じ意味である請求項16に記載のリボソームディスプレイ複合体。
  18.  前記修飾構造が、下記式
    Figure JPOXMLDOC01-appb-C000004

    (式中、Ax、B1、B2、B3は前記に同じ。nは1以上の整数を表す。B1、B2、B3のいずれか一つ以上には、前記Cの1つ以上が結合していてもよい)
    で表される請求項17に記載のリボソームディスプレイ複合体。
  19.  前記Axがハロゲン化アルキルと、システイン残基、リジン残基、ヒスチジン残基、又はトリプトファン残基の側鎖とが形成する化学結合であるとき、このハロゲノ基が結合する炭素原子が、カルボニル基のα位の炭素原子、又は芳香族環に直結する炭素原子である請求項14~18のいずれかに記載のリボソームディスプレイ複合体。
  20.  前記ポリペプチド鎖が、システイン残基、リジン残基、ヒスチジン残基、およびトリプトファン残基からなる群より選択される2以上の反応性アミノ酸残基を含み、
     前記式(2)の修飾構造でaが2以上であり、
     ポリペプチド鎖と式(2)の修飾構造とで環が形成されている請求項14~19のいずれかに記載のリボソームディスプレイ複合体。
  21.  前記ポリペプチド鎖が100~5000アミノ酸残基からなる請求項13~20のいずれかに記載のリボソームディスプレイ複合体。
  22.  前記反応性アミノ酸残基を、前記ポリペプチド鎖のN末端から2番目~C末端から30番目の位置に有する請求項13~21のいずれかに記載のリボソームディスプレイ複合体。
  23.  前記ポリペプチド鎖がN末端から2番目~C末端から30番目の位置に1~30アミノ酸残基のランダム配列を含む請求項13~22のいずれかに記載のリボソームディスプレイ複合体。
  24.  前記リボソームが、大腸菌由来のリボソームである請求項13~23のいずれかに記載のリボソームディスプレイ複合体。
PCT/JP2017/021038 2016-06-07 2017-06-06 リボソームディスプレイ複合体およびその製造方法 WO2017213158A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780035798.5A CN109312324B (zh) 2016-06-07 2017-06-06 核糖体展示复合体及其制造方法
DK17810332.1T DK3467107T3 (da) 2016-06-07 2017-06-06 Ribosomdisplaykompleks og fremstillingsfremgangsmåde dertil
EP17810332.1A EP3467107B1 (en) 2016-06-07 2017-06-06 Ribosome display complex and production method therefor
JP2018521744A JP7093300B2 (ja) 2016-06-07 2017-06-06 リボソームディスプレイ複合体およびその製造方法
US16/213,454 US11248226B2 (en) 2016-06-07 2018-12-07 Ribosome display complex and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-113935 2016-06-07
JP2016113935 2016-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/213,454 Continuation US11248226B2 (en) 2016-06-07 2018-12-07 Ribosome display complex and production method therefor

Publications (1)

Publication Number Publication Date
WO2017213158A1 true WO2017213158A1 (ja) 2017-12-14

Family

ID=60578693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021038 WO2017213158A1 (ja) 2016-06-07 2017-06-06 リボソームディスプレイ複合体およびその製造方法

Country Status (6)

Country Link
US (1) US11248226B2 (ja)
EP (1) EP3467107B1 (ja)
JP (1) JP7093300B2 (ja)
CN (1) CN109312324B (ja)
DK (1) DK3467107T3 (ja)
WO (1) WO2017213158A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195303A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ ペプチド複合体及びその製造方法、並びに前記ペプチド複合体の利用
WO2021070696A1 (ja) * 2019-10-08 2021-04-15 ジーンフロンティア株式会社 Ctla-4阻害活性を有する環状ペプチド、及びその用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514803A (ja) * 2008-02-05 2011-05-12 メディカル リサーチ カウンシル 方法及び組成物
JP2012058092A (ja) * 2010-09-09 2012-03-22 Univ Of Tokyo N−メチルアミノ酸およびその他の特殊アミノ酸を含む特殊ペプチド化合物ライブラリーの翻訳構築と活性種探索法
JP2013518558A (ja) * 2010-02-04 2013-05-23 メディカル リサーチ カウンシル 構造化されたペプチドプロセシング
JP2013526830A (ja) * 2009-08-12 2013-06-27 メディカル リサーチ カウンシル ペプチドライブラリ
JP2013540429A (ja) * 2010-08-13 2013-11-07 グントラム・クリスチャンセン 修飾ペプチドディスプレイ
JP2016113935A (ja) 2014-12-12 2016-06-23 株式会社オティックス 内燃機関用の過給装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137690A (ja) 2005-11-15 2007-06-07 High Energy Accelerator Research Organization 炭素フォイルのビルドアップ抑制方法、炭素フォイル及び炭素フォイルのビルドアップ抑制装置
GB0913775D0 (en) 2009-08-06 2009-09-16 Medical Res Council Multispecific peptides
WO2014176439A1 (en) 2013-04-25 2014-10-30 Sutro Biopharma, Inc. The use of lambda-gam protein in ribosomal display technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514803A (ja) * 2008-02-05 2011-05-12 メディカル リサーチ カウンシル 方法及び組成物
JP2013526830A (ja) * 2009-08-12 2013-06-27 メディカル リサーチ カウンシル ペプチドライブラリ
JP2013518558A (ja) * 2010-02-04 2013-05-23 メディカル リサーチ カウンシル 構造化されたペプチドプロセシング
JP2013540429A (ja) * 2010-08-13 2013-11-07 グントラム・クリスチャンセン 修飾ペプチドディスプレイ
JP2012058092A (ja) * 2010-09-09 2012-03-22 Univ Of Tokyo N−メチルアミノ酸およびその他の特殊アミノ酸を含む特殊ペプチド化合物ライブラリーの翻訳構築と活性種探索法
JP2016113935A (ja) 2014-12-12 2016-06-23 株式会社オティックス 内燃機関用の過給装置

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
C. HEINIS: "Phage-encoded combinatorial chemical libraries based on bicyclic peptides", NATURE CHEMICAL BIOLOGY, vol. 5, 2009, pages 502 - 507
D. LIPOVSEK: "In-vitro protein evolution by ribosome display and mRNA display", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 290, 2004, pages 51 - 67, XP004521980, DOI: doi:10.1016/j.jim.2004.04.008
H. L. PEREZ: "Antibody-drug conjugates: current status and future directions", DRUG DISCOVERY TODAY, vol. 19, no. 7, July 2014 (2014-07-01), XP055184320, DOI: doi:10.1016/j.drudis.2013.11.004
H. LEEMHUIS: "New genotype-phenotype linkages for directed evolution of functional proteins", CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 15, 2005, pages 472 - 478, XP004998077, DOI: doi:10.1016/j.sbi.2005.07.006
H. M. E. AZZAZY: "Phage display technology: clinical applications and recent innovations", CLINICAL BIOCHEMISTRY, vol. 35, 2002, pages 425 - 445, XP002903273, DOI: doi:10.1016/S0009-9120(02)00343-0
I. R. REBOLLO: "Phage selection of bicyclic peptides", METHODS, vol. 60, 2013, pages 46 - 54, XP055439871, DOI: doi:10.1016/j.ymeth.2012.12.008
K. FUKUNAGA: "Construction of a crown ether-like supramolecular library by conjugation of genetically-encoded peptide linkers displayed on bacteriophage T7", CHEMICAL COMMUNICATIONS, vol. 50, 2014, pages 3921 - 3923
K. JOSEPHSON: "mRNA display: from basic principles to macrocycle drug discovery", DRUG DISCOVERY TODAY, vol. 19, no. 4, April 2014 (2014-04-01), pages 388 - 399, XP055333289, DOI: doi:10.1016/j.drudis.2013.10.011
PASSIOURA TOBY ET AL.: "Selection-Based Discovery of Druglike Macrocyclic Peptides", ANNU.REV. BIOCHEM., vol. 83, no. 1, 2014, pages 727 - 752, XP055561850 *
S. C. ALLEY: "Antibody-drug conjugates: targeted drug delivery for cancer", CURRENT OPINION IN CHEMICAL BIOLOGY, vol. 14, 2010, pages 529 - 537, XP055042125, DOI: doi:10.1016/j.cbpa.2010.06.170
See also references of EP3467107A4
T. KAWAKAMI: "Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides", CHEMISTRY BIOLOGY, vol. 15, no. 1, January 2008 (2008-01-01), pages 32 - 42, XP022428215, DOI: doi:10.1016/j.chembiol.2007.12.008

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195303A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ ペプチド複合体及びその製造方法、並びに前記ペプチド複合体の利用
JPWO2020195303A1 (ja) * 2019-03-28 2020-10-01
JP7529217B2 (ja) 2019-03-28 2024-08-06 株式会社カネカ ペプチド複合体及びその製造方法、並びに前記ペプチド複合体の利用
WO2021070696A1 (ja) * 2019-10-08 2021-04-15 ジーンフロンティア株式会社 Ctla-4阻害活性を有する環状ペプチド、及びその用途
JPWO2021070696A1 (ja) * 2019-10-08 2021-04-15
JP7477182B2 (ja) 2019-10-08 2024-05-01 ジーンフロンティア株式会社 Ctla-4阻害活性を有する環状ペプチド、及びその用途

Also Published As

Publication number Publication date
JPWO2017213158A1 (ja) 2019-05-09
EP3467107B1 (en) 2022-06-01
US20190169600A1 (en) 2019-06-06
CN109312324A (zh) 2019-02-05
CN109312324B (zh) 2022-08-16
EP3467107A1 (en) 2019-04-10
US11248226B2 (en) 2022-02-15
JP7093300B2 (ja) 2022-06-29
EP3467107A4 (en) 2020-01-01
DK3467107T3 (da) 2022-06-27

Similar Documents

Publication Publication Date Title
Frost et al. Macrocyclization of Organo‐Peptide Hybrids through a Dual Bio‐orthogonal Ligation: Insights from Structure–Reactivity Studies
EP2665744B1 (en) Macrocyclic compounds with a hybrid peptidic/non-peptidic backbone and methods for their preparation
EP3274459A1 (en) Platform for non-natural amino acid incorporation into proteins
WO2014119600A1 (ja) Flexible Display法
JP7079018B2 (ja) D-アミノ酸及びβ-アミノ酸の取り込みを増強するtRNAのD及びTアームの改変
WO2017213158A1 (ja) リボソームディスプレイ複合体およびその製造方法
Dachwitz et al. Enzymatic halogenation: enzyme mining, mechanisms, and implementation in reaction cascades
EP3024823B1 (en) Intercalating amino acids
WO2023122698A1 (en) Methods for balancing encoding signals of analytes
JP7461652B2 (ja) 化合物ライブラリー及び化合物ライブラリーの製造方法
JP2019073511A (ja) アゾリン化合物及びアゾール化合物のライブラリー、並びにその製造方法
WO2015115661A1 (ja) アゾール誘導体骨格を有するペプチドの製造方法
WO2019112567A1 (en) Methods and compositions related to selecting variant proteases
WO2022173627A2 (en) Ribosome-mediated polymerization of novel chemistries
JP6057297B2 (ja) 核酸構築物、核酸−蛋白質複合体、及びその利用
Murakami et al. High-affinity mirror-image monobody targeting MCP-1 generated via TRAP display and chemical protein synthesis
Stone et al. Discovery and Application of a Lysine 5-Hydroxylase for Bioorthogonal Chemistry
JP4897265B2 (ja) 新規な非天然アミノ酸のタンパク質への導入法
CN116376851A (zh) 氨酰tRNA合酶突变体及其应用
JP2022552137A (ja) 非天然アミノ酸組み込み増強のためのキメラ耐熱性アミノアシルtRNAシンテターゼ
JP2021078428A (ja) N−メチルアミノ酸の取り込みを増強するtRNAのTステムの改変
Volpato et al. Increasing MTX-resistance by combination of active-site mutations in human dihydrofolate reductase
Feinberg Interactions between the acceptor arm of tRNA and the large subunit of the bacterial ribosome important for translocation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018521744

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017810332

Country of ref document: EP

Effective date: 20190107