WO2017210891A1 - 取力器控制系统和工程车辆 - Google Patents

取力器控制系统和工程车辆 Download PDF

Info

Publication number
WO2017210891A1
WO2017210891A1 PCT/CN2016/085260 CN2016085260W WO2017210891A1 WO 2017210891 A1 WO2017210891 A1 WO 2017210891A1 CN 2016085260 W CN2016085260 W CN 2016085260W WO 2017210891 A1 WO2017210891 A1 WO 2017210891A1
Authority
WO
WIPO (PCT)
Prior art keywords
power take
valve
brake
force
power
Prior art date
Application number
PCT/CN2016/085260
Other languages
English (en)
French (fr)
Inventor
单增海
丁宏刚
毛琦
曹光光
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to PCT/CN2016/085260 priority Critical patent/WO2017210891A1/zh
Publication of WO2017210891A1 publication Critical patent/WO2017210891A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives

Definitions

  • the invention relates to the field of engineering machinery, in particular to a power take-off control system and an engineering vehicle.
  • Engineering vehicles such as fire engines and truck cranes usually include two major parts: the driving system and the operating system.
  • the driving system and the operating system share a set of power systems installed on the chassis.
  • the engine drives the gearbox to drive the drive shaft to provide driving power.
  • the hydraulic oil pump provides the working power for the working system, that is, the power system needs to be taken. Powering the powertrain's power-driven hydraulic oil pump to operate the operating system is called hang-up force.
  • Engineering vehicles are generally provided with a power take-off control system for controlling the power take-off from the power system or controlling the power take-off to achieve a force-disconnect.
  • the air control force taking mode is a commonly used power taking mode of the engineering vehicle, that is, the power taking action is realized by the pneumatic component, and in the pneumatic control force mode, the pneumatic component of the power take-off is generally controlled by force. valve.
  • FIG. 1 is a schematic diagram of the principle of a power take-off control system of a pneumatic control method according to the prior art.
  • the power take-off control system includes a power take-off source 1, a power take-off control valve 2, and a power take-off cylinder 3.
  • the force control valve 2 is disposed between the power take-off source 1 and the power take-off cylinder 3 to control whether or not the two are in communication. If the force control valve 2 is opened, the force source 1 and the power take-off cylinder 3 are connected, and the power take-off force is taken from the power system. If the force control valve 2 is disconnected, the force source 1 and the power take-off cylinder 3 are taken. Disconnected, the power take-off force is disconnected.
  • the hanging force is controlled by the force control valve 2, even in the When the construction vehicle is running, as long as the power control valve 2 is opened, the force can be hanged, so there is a safety hazard.
  • the object of the present invention is to provide a power take-off control system and an engineering vehicle, which can not improve the power of the hanging force during the running process of the engineering vehicle through the operation of the power control valve. Sex.
  • a first aspect of the present invention provides a power take-off control system including a power take-off source, a power take-off cylinder, and a power take-off control valve connected between the power take-off source and the power take-off cylinder.
  • the control system further includes a brake valve, the brake valve includes a force-collecting intake port and a force-collecting air outlet port, and the brake valve is coupled to the intake port and the force-collecting air outlet port by the force thereof
  • the power control valve is connected in series between the power source and the power take-off cylinder.
  • the brake valve When the brake valve is in the parking brake state, the power is connected to the air inlet and the power outlet.
  • the force-collecting intake port is disconnected from the force-collecting air outlet.
  • the brake valve has a first working position and a second working position, in the first working position of the brake valve, in the parking brake state, in the second working of the brake valve It is in the parking brake release state.
  • the brake valve further includes a parking brake air outlet and a parking brake exhaust port, and the parking brake air outlet and the parking brake exhaust air in the first working position of the brake valve
  • the port is connected, and the parking brake air outlet of the brake valve is in communication with the brake air source in the second working position of the brake valve, and the force-collecting air outlet and the parking brake exhaust port are both cut off.
  • the brake valve includes one or more of the parking brake air outlets.
  • the brake valve further includes a parking brake intake port, wherein the parking brake intake port is closed at a first working position of the brake valve, and the second working position of the brake valve
  • the parking brake intake port is in communication with the parking brake air outlet.
  • the brake air source is the power take-off source, and the power-collecting intake port of the brake valve is in communication with the power take-off source.
  • the brake valve includes one or more of the second force extraction linkages.
  • the power take-off control system further includes a pneumatic check valve, the pneumatic check valve and the power take-off control valve and the brake valve are connected in series to the power take-off source and the Between the power control valves, the air inlet of the air passage check valve is connected to the power supply air source, and the air outlet of the air passage check valve is connected to the power take-off cylinder.
  • the brake valve is located between the power take-off source and the power take-off control valve; or the brake valve is located between the power take-off control valve and the power take-off cylinder.
  • the power take-off control valve comprises a power supply air source interface, a cylinder interface and a power take-off exhaust port, the power take-off air source interface is connected to the power take-off air source, and the cylinder interface is connected to the power take-off cylinder
  • the force control valve has a first working position and a second working position. In the first working position of the power take-off control valve, the force air source interface communicates with the cylinder interface and the power exhaust port is cut off. The second working position of the force control valve is that the air source interface is cut off and the cylinder interface is connected to the power exhaust port.
  • a second aspect of the present invention provides an engineering vehicle comprising a power take-off control system, wherein the power take-off control system is the power take-off control system according to any one of the first aspects of the present invention.
  • the power take-off control system includes a brake valve, and the brake valve is connected in series with the power take-off control valve through the force-joining intake port and the force-action linkage Between the power source and the power take-off cylinder, when the brake valve is in the parking brake state, the force-collecting intake port communicates with the force-action linkage air outlet, and when the brake valve is in the parking brake release state The force-collecting intake port is disconnected from the force-collecting air outlet. Therefore, as long as the brake valve is in the parking brake release state, the air passage from the power source to the power take-off cylinder is cut off by the brake valve.
  • the force take-up force is used to hang the force of the power control valve during the running of the engineering vehicle. Only when the brake valve is in the parking brake state can the operation of the power control valve be hanged Force, therefore, can improve the safety of the hang-up force.
  • the power take-off control system only makes the power take-off control and the parking brake control well coupled through the setting of the brake valve, and the force control and the parking brake control can achieve precise linkage, not only control the gas path Simple, easy to implement, and control results are reliable.
  • FIG. 1 is a schematic diagram of a principle of a power take-off control system of a pneumatic control force take-off method in the prior art.
  • FIG. 2 is a schematic diagram showing the principle of a power take-off control system according to a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the principle of a power take-off control system according to a second embodiment of the present invention.
  • FIGS. 2 and 3 illustrate a power take-off control system in accordance with various embodiments of the present invention.
  • the power take-off control system of the present invention includes a force source 1. Force control valve 2, power take-off cylinder 3 and brake valve.
  • the force control valve 2 is connected between the power take-off source 1 and the power take-off cylinder 3.
  • the brake valve includes a force-collecting intake port and a force-collecting air outlet port.
  • the brake valve is coupled to the power take-off source 1 and the power take-off control valve 2 in series by the force-collecting intake port and the force-collecting air outlet port. Between the cylinders 3 of the force.
  • the force-collecting intake port is connected with the force-action linkage air outlet, and when the brake valve is in the parking brake release state, the force-action linkage linkage and the force-collecting linkage are The port is disconnected.
  • the force control valve 2 also does not allow the power take-off force to hang, so that the driving force of the power take-off control valve 2 cannot be hoisted during the running of the construction vehicle, only when the brake valve is in the parking brake state.
  • the power take-off control system is configured such that the power take-off control and the parking brake control are well coupled through the setting of the brake valve, and the force control and the parking brake control can achieve precise linkage, not only
  • the control gas path is simple, easy to implement, and the control results are also very reliable.
  • the brake valve has a first working position and a second working position, in the first working position of the brake valve, it is in the parking brake state, and in the second working position of the brake valve, it is in the parking brake release status.
  • the brake valve is set as a reversing valve, which is simple in structure, easy to implement, and easy to operate.
  • the brake valve may be located between the power take-off source 1 and the power take-off control valve 2; or between the power take-off control valve 2 and the power take-off cylinder 3.
  • the brake valve is located between the power take-off source 1 and the power take-off control valve 2, it is advantageous to realize that the force-off is controlled only by the power control valve 2 without being controlled by the brake valve.
  • the power take-off control system may further include a pneumatic check valve, and the pneumatic check valve is connected in series with the power take-off control valve 2 and the brake valve to the power take-off source 1 and the power take-off control valve. Between 2.
  • the air inlet of the air passage check valve is connected to the power supply air source 1, and the air outlet of the air passage check valve is connected with the power take-off cylinder 3. .
  • the air passage check valve may be located between the power supply source 1 and the brake valve, or may be located at the brake valve and the power take-off control valve.
  • the air passage check valve is located between the power take-off source 1 and the power take-off control valve 2.
  • the setting of the pneumatic check valve ensures that the compressed gas of the power take-off control system flows in one direction.
  • the brake valve may also include one or more parking brake air outlets, and may also include one or more force-action linkage air outlets.
  • the power take-off control system includes a power take-off source 1, a force take-off control valve 2, a power take-off cylinder 3, and a brake valve 4.
  • the force source 1 is specifically a gas reservoir.
  • the power source 1 provides a source of energy for controlling the action of the power take-off cylinder 3.
  • the power take-off cylinder 3 is used to perform an action of a hanging force or an action of breaking a force.
  • the piston rod of the power take-off cylinder 3 is extended, the power take-off force is pulled, and the power take-off cylinder 3 is disconnected from the power source 1 and the compressed gas therein is
  • discharging the piston rod of the power take-off cylinder 3 is retracted, and the power take-off force is disconnected.
  • the power take-off control valve 2 is connected between the power take-off source 1 and the power take-off cylinder 3, and the power take-off control valve 2 receives the operator's willingness to control whether the power source 1 and the power take-off cylinder 3 can communicate with each other. Thereby controlling the power take-off force or the force is disconnected.
  • the power take-off control valve 2 includes a power supply air source interface 21, a cylinder interface 22, and a power take-off port 23, and the power supply air source interface 21 is connected to the power supply source 1 through the brake valve 4.
  • the cylinder interface 22 is connected to the power take-off cylinder 3.
  • the force control valve 2 has a first working position and a second working position. In the first working position of the power take-off control valve 2, the power supply air source interface 21 and the cylinder interface 22 are connected to each other, and the power exhaust port 23 is cut off.
  • the second working position of the control valve 2 is such that the pneumatic source interface 21 is closed and the cylinder interface 22 is in communication with the forced exhaust port 23. Therefore, the force control valve 2 opens in its first working position and opens in its second working position.
  • the power exhaust port is connected to the atmosphere for discharging the compressed gas in the power take-off cylinder 3.
  • the brake valve 4 is used to control the parking brake of the vehicle in which it is located, the brake valve 4 is in the parking brake state, the vehicle is in the parking brake state, and the brake valve 4 is in the parking brake release state. Then the vehicle is in the parking brake release state.
  • the brake valve 4 is a manual brake valve to make the operation of the brake valve 4 reliable.
  • the brake valve 4 of the first embodiment includes a force-collecting intake port 41, a force-collecting air outlet 42, a parking brake intake port 43, a parking brake air outlet 44, and a parking vehicle.
  • Brake exhaust port 45 As shown in FIG. 2, the brake valve 4 of the first embodiment includes a force-collecting intake port 41, a force-collecting air outlet 42, a parking brake intake port 43, a parking brake air outlet 44, and a parking vehicle.
  • the brake valve 4 is connected between the power take-off source 1 and the power take-off cylinder 3 in series by the force-collecting intake port 41 and the force-collecting air outlet 42 and the power take-off control valve 2 in series.
  • the brake valve 4 is located between the power take-off source 1 and the power take-off control valve 2 , and the force-collecting intake port 41 is connected with the power take-off source 1 , and the force is linked to the air outlet 42 and
  • the power supply interface 21 of the power take-off control valve 2 is connected, and the power supply air source interface 21 is connected to the power take-off source 1 through the brake valve 4, and the cylinder interface 22 of the power take-off control valve 2 is connected to the power take-off cylinder 3.
  • the parking brake intake port 43 is coupled to a brake air supply (not shown) for supplying compressed gas to the brake chamber.
  • the brake air source may be shared with the power take-off source 1 or may be a brake air source independent of the power take-off source 1 .
  • the parking brake air outlet 44 is connected to the brake air chamber for charging the brake air chamber with compressed gas or for discharging the compressed gas in the brake air chamber.
  • the parking brake exhaust port 45 is connected to the atmosphere for discharging compressed gas in the brake chamber.
  • the brake valve 4 has a first working position (upper position in FIG. 2) and a second working position (lower position in FIG. 2).
  • the force-collecting intake port 41 communicates with the force-collecting air outlet port 42, and the parking brake air inlet port 43 is closed and the parking brake air outlet port 44 is stationed.
  • the brake exhaust port 45 is connected. Therefore, the compressed gas in the brake chamber is discharged through the parking brake air outlet 44 and the parking brake exhaust port 45, and the brake spring is reset to generate a braking force, that is, a brake valve. 4 is in the parking brake state.
  • the brake valve 4 since the brake valve causes the air passage of the power supply source 1 to the power take-off control valve 2 to be turned on, the brake valve 4 has substantially no influence on the control of the power take-off control valve 2 on the power take-off cylinder 3, and the power take-off Both the hang-up force and the power-off can be performed normally.
  • the force-collecting intake port 41 is disconnected from the force-collecting air outlet port 42, and the parking brake air inlet port 43 is in communication with the parking brake air outlet port 44.
  • the parking brake exhaust port 45 is closed. Therefore, the compressed gas from the brake air supply enters the brake chamber through the parking brake intake port 43 and the parking brake air outlet 44, and the brake spring is compressed. Further, with the braking force, the brake valve 4 is in the parking brake release state. At this time, the air path from the power supply source 1 to the power take-off cylinder 3 is cut off by the brake valve 4, and the force control valve 2 cannot extend the piston rod of the power take-off cylinder 3, and the power take-off cannot be taken. force.
  • the first embodiment increases the brake valve 4 in the parking brake state as a premise of the hang-up force, and can improve the safety of the hang-up force.
  • the force-collecting intake port 41 communicates with the force-collecting air outlet port 42, and the compressed gas of the force source 1 is supplied to the power take-off control valve 2, if the force control valve 2 is taken Open, the power take-off cylinder 3 works, and the power take-off force is hanged.
  • the first power take-off port 41 is disconnected from the force-collecting air outlet port 42, and the compressed gas in the power source 1 cannot be supplied to the power take-off control valve 2 even if When the force control valve 2 is opened, the power take-off cylinder 3 cannot perform the force taking action. Therefore, the first embodiment can improve the safety of the hanging force.
  • the power take-off control system is configured such that the force control is well coupled to the parking brake control by the setting of the brake valve 4, without adding additional air passages or electrical detection and control components,
  • the direct control of the dynamic valve 4 can realize the precise linkage between the power take-off control and the parking brake control.
  • the control air passage is simple and easy to implement, and the control result is also very reliable.
  • the first embodiment further It is facilitated that the force-off is controlled only by the control of the force control valve 2 without being controlled by the brake valve 4.
  • the force-collecting intake port 41 of the brake valve 4 is disconnected from the force-collecting air outlet port 42, but as long as The force control valve 2 is not disconnected, and the power take-off cylinder 3 maintains the original air pressure because the compressed gas therein cannot be discharged, and the piston rod of the power take-off cylinder 3 is still in the extended state, and the power take-off still works. Only when the force control valve 2 is opened, the compressed gas is discharged from the power take-off port 23, and the piston rod of the power take-off cylinder 3 can be returned, and the force of the power take-off is broken.
  • the power take-off control system includes a power take-off source 1, a force take-off control valve 2, a power take-off cylinder 3, and a brake valve 5.
  • the power take-off control valve 2 includes a power supply air source interface 21, a cylinder interface 22 and a power take-off port 23, and the power supply air source interface 21 is connected to the power take-off source 1 through the brake valve 5, and the cylinder interface 22 is connected to the power take-off cylinder 3 .
  • the second embodiment is different from the first embodiment in that the brake valve 5 is different from the specific structure of the brake valve 4.
  • the brake valve 5 includes a force-collecting intake port 51, a force-collecting air outlet port 52, a parking brake air outlet port 53, and a parking brake exhaust port 54.
  • the brake valve 5 is connected between the power take-off source 1 and the power take-off cylinder 3 in series by the force-collecting intake port 51 and the force-collecting air outlet 52 and the power take-off control valve 2 in series.
  • the brake valve 5 is located between the power take-off source 1 and the power take-off control valve 2, and the force-collecting intake port 51 is connected to the power take-off source 1 , and the force is coupled to the air outlet 52 and the power take-off control valve 2
  • the power supply air source interface 21 is connected, and the power supply air source interface 21 is connected to the power take-off source 1 through the brake valve 5, and the cylinder interface 22 of the power take-off control valve 2 is connected to the power take-off cylinder 3.
  • the power take-off source 1 doubles as the brake air source, and the force-collecting intake port 51 is simultaneously used as the parking brake intake port.
  • the brake valve 5 has a first working position (upper position in FIG. 3) and a second working position (lower position in FIG. 3).
  • the force-collecting intake port 51 communicates with the force-collecting air outlet 52
  • the parking brake air outlet 53 communicates with the parking brake exhaust port 54.
  • the compressed gas in the brake chamber is discharged through the parking brake air outlet 53 and the parking brake exhaust port 54, the brake spring is reset to generate a braking force, and the brake valve 5 is in the parking brake release state.
  • the brake valve 5 has substantially no influence on the power take-off control valve 2 to control the hanging force or the power-off.
  • the force-collecting intake port 51 is disconnected from the force-collecting air outlet 52, and the force-collecting intake port 51 communicates with the parking brake air outlet 53 to take
  • the force linkage air outlet 52 and the parking brake exhaust port 54 are both closed. Therefore, the compressed gas of the power supply source 1 is charged into the brake chamber through the force-collecting intake port 51 and the parking brake air outlet 53.
  • the moving spring is compressed without generating a braking force, and the brake valve 5 is in a parking brake release state.
  • the brake valve 5 is added to the parking brake state as a premise of the hang-up force, and the safety of the hang-up force can be improved.
  • the force-collecting intake port 51 of the brake valve 5 is in communication with the force-collecting air outlet port 52, and the compressed gas of the force source 1 is supplied to the power take-off control valve 2 if The force control valve 2 is opened, and the piston rod of the power take-off cylinder 3 is extended, and the power take-off force is taken up.
  • the force of the brake valve 5 is interlocked with the intake air outlet 52, and the compressed gas in the power source 1 cannot be supplied to the power control.
  • the valve 2 cannot extend the piston rod of the power take-off cylinder 3 even if the force control valve 2 is opened, and the power take-off cannot hang the force, thereby improving the safety of the hanging force.
  • the power take-off control system is configured such that the force control is well coupled to the parking brake control by the setting of the brake valve 5, without adding additional air passages or electrical detection and control components,
  • the direct control of the moving valve 5 can realize the precise linkage between the power take-off control and the parking brake control.
  • the control air passage is simple and easy to implement, and the control result is also very reliable.
  • the brake valve 5 is disposed at a position between the power take-off source 1 and the power take-off control valve 2 and the structure of the power take-off control valve 2 with the power take-off port 23, the second embodiment is
  • the first embodiment is similarly advantageous in that the force-off is controlled only by the control of the force control valve 2 without being controlled by the brake valve 5. The specific reasons will not be described again.
  • the other descriptions of the first embodiment may be referred to the related description of the first embodiment.
  • the present invention also provides an engineering vehicle comprising the aforementioned power take-off control system.
  • the engineering vehicle of the present invention has the advantages of the aforementioned power take-off control system, and will not be described herein.
  • the parking brake intake and exhaust of the brake valve is logically non-reactive with the intake and output.
  • the two are connected at different times, that is, the parking brake is added as the premise of the hang-up force.
  • the sufficient condition for the power take-off force is
  • the dynamic valve is in the parking brake state and the power control valve is opened, which improves the safety of the hanging force.
  • a sufficient condition for the force take-off of the power take-off is that the force control valve is disconnected, and the switching of the working position of the brake valve after the plunging force does not cause the force to be disconnected.
  • the parking brake control and the power take-off control are precisely linked, and the control gas path is simple, the components are few, the fault points are small, the implementation is easy, and the control result is reliable.

Abstract

一种取力器控制系统和工程车辆,取力器控制系统包括取力气源(1)、取力器气缸(3)和连接于取力气源(1)与取力器气缸(3)之间的取力控制阀(2),取力器控制系统还包括制动阀(4,5),制动阀(4,5)包括取力联动进气口(41,51)和取力联动出气口(42,52),制动阀(4,5)通过其取力联动进气口(41,51)和取力联动出气口(42,52)与取力控制阀(2)串联地连接于取力气源(1)与取力器气缸(3)之间,在制动阀(4,5)处于驻车制动状态时其取力联动进气口(41,51)与取力联动出气口(42,52)连通,在制动阀(4,5)处于驻车制动解除状态时其取力联动进气口(41,51)与取力联动出气口(42,52)断开。该取力器控制系统只有在制动阀(4,5)处于驻车制动状态时才能通过取力控制阀(2)的操作挂取力,能提高挂取力的安全性。

Description

取力器控制系统和工程车辆 技术领域
本发明涉及工程机械领域,特别涉及一种取力器控制系统和工程车辆。
背景技术
消防车、汽车起重机等工程车辆通常包括行驶系统和作业系统两大主要部分,行驶系统和作业系统共用一套安装在底盘上的动力系统。工程车辆行驶时,发动机带动变速箱进而带动传动轴等提供行驶动力。工程车辆作业时,则需要将发动机的动力传递给液压油泵,由液压油泵为作业系统提供作业动力,即需要从动力系统取力。使动力系统的动力驱动液压油泵为作业系统作业提供动力称为挂取力。工程车辆一般都设置有一套取力器控制系统用于控制取力器从动力系统取力或控制取力器实现取力断开。
工程车辆在挂取力时,如果不能保证车辆处于停止状态,会存在安全隐患,因此其动力系统至行驶系统的动力输出和动力系统至作业系统的动力输出一般不同时进行。
现有技术中,气控取力方式为工程车辆常用的取力方式,即通过气路元件实现取力动作,在气控取力方式下,控制取力器的气路元件一般为取力控制阀。
图1为现有技术的气控取力方式的取力器控制系统的原理示意图。如图1所示,该取力器控制系统包括取力气源1、取力控制阀2和取力器气缸3。取力控制阀2设置于取力气源1和取力器气缸3之间以控制二者是否连通。如果取力控制阀2打开,则取力气源1和取力器气缸3连通,取力器从动力系统取力,如果取力控制阀2断开,则取力气源1和取力器气缸3断开,取力器取力断开。
在实现本发明的过程中,技术人员发现,以上现有技术的取力器控制系统具有如下不足之处:挂取力受取力控制阀2的控制,即使在 工程车辆行驶过程中,只要打开取力控制阀2,就能挂取力,因此存在安全隐患。
发明内容
本发明的目的在于提供一种取力器控制系统和工程车辆,该取力器控制系统在工程车辆行驶过程中,不能通过对取力控制阀的操作挂取力,从而提高挂取力的安全性。
本发明第一方面提供一种取力器控制系统,包括取力气源、取力器气缸和连接于所述取力气源与所述取力器气缸之间的取力控制阀,所述取力器控制系统还包括制动阀,所述制动阀包括取力联动进气口和取力联动出气口,所述制动阀通过其取力联动进气口和取力联动出气口与所述取力控制阀串联地连接于所述取力气源与所述取力器气缸之间,在所述制动阀处于驻车制动状态时其取力联动进气口与取力联动出气口连通,在所述制动阀处于驻车制动解除状态时其取力联动进气口与取力联动出气口断开。
优选地,所述制动阀具有第一工作位和第二工作位,在所述制动阀的第一工作位其处于所述驻车制动状态,在所述制动阀的第二工作位其处于所述驻车制动解除状态。
优选地,所述制动阀还包括驻车制动出气口和驻车制动排气口,在所述制动阀的第一工作位其驻车制动出气口与驻车制动排气口连通,在所述制动阀的第二工作位其驻车制动出气口与制动气源连通而其取力联动出气口和驻车制动排气口均截止。
优选地,所述制动阀包括一个或两个以上所述驻车制动出气口。
优选地,所述制动阀还包括驻车制动进气口,在所述制动阀的第一工作位其驻车制动进气口截止,在所述制动阀的第二工作位其驻车制动进气口与驻车制动出气口连通。
优选地,所述制动气源为所述取力气源,所述制动阀的取力联动进气口与所述取力气源连通。
优选地,所述制动阀包括一个或两个以上所述第二取力联动口。
优选地,所述取力器控制系统还包括气路单向阀,所述气路单向阀与所述取力控制阀和所述制动阀串联地连接于所述取力气源与所述取力控制阀之间,所述气路单向阀的进气口与所述取力气源连接,所述气路单向阀的出气口与所述取力器气缸连接。
优选地,所述制动阀位于所述取力气源与所述取力控制阀之间;或者,所述制动阀位于所述取力控制阀与所述取力器气缸之间。
优选地,所述取力控制阀包括取力气源接口、气缸接口和取力排气口,所述取力气源接口与所述取力气源连接,所述气缸接口与所述取力器气缸连接,所述取力控制阀具有第一工作位和第二工作位,在所述取力控制阀的第一工作位其取力气源接口与气缸接口连通而取力排气口截止,在所述取力控制阀的第二工作位其取力气源接口截止而气缸接口与取力排气口连通。
本发明第二方面提供一种工程车辆,包括取力器控制系统,其中,所述取力器控制系统为本发明第一方面中任一项所述的取力器控制系统。
基于本发明提供的取力器控制系统和工程车辆,取力器控制系统包括制动阀,制动阀通过其取力联动进气口和取力联动出气口与取力控制阀串联地连接于取力气源与取力器气缸之间,在制动阀处于驻车制动状态时其取力联动进气口与取力联动出气口连通,在制动阀处于驻车制动解除状态时其取力联动进气口与取力联动出气口断开。因此,只要制动阀处于驻车制动解除状态,从取力气源到取力器气缸之间的气路即被制动阀切断,在这种情况下,即使打开取力控制阀也不能使取力器挂取力,从而在工程车辆行驶过程中,不能通过对取力控制阀的操作挂取力,只有在制动阀处于驻车制动状态时才能通过取力控制阀的操作挂取力,因此,能提高挂取力的安全性。
该取力器控制系统仅通过制动阀的设置使得取力控制与驻车制动控制很好地耦合在一起,取力控制与驻车制动控制二者能实现精确联动,不但控制气路简单、易于实现,控制结果也很可靠。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明 的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术的气控取力方式的取力器控制系统原理示意图。
图2为本发明第一实施例的取力器控制系统原理示意图。
图3为本发明第二实施例的取力器控制系统原理示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图2和图3示出了本发明不同实施例的取力器控制系统。
如图2和图3所示,本发明的取力器控制系统包括取力气源1、 取力控制阀2、取力器气缸3和制动阀。取力控制阀2连接于取力气源1与取力器气缸3之间。制动阀包括取力联动进气口和取力联动出气口,制动阀通过其取力联动进气口和取力联动出气口与取力控制阀2串联地连接于取力气源1与取力器气缸3之间。其中,制动阀处于驻车制动状态时其取力联动进气口与取力联动出气口连通,制动阀处于驻车制动解除状态时其取力联动进气口与取力联动出气口断开。
该取力器控制系统中,只要制动阀处于行车制动解除状态,从取力气源1到取力器气缸3之间的气路即被制动阀切断,在这种情况下,即使打开取力控制阀2也不能使取力器挂取力,从而在工程车辆行驶过程中,不能通过对取力控制阀2的操作挂取力,只有在制动阀处于驻车制动状态时才能通过取力控制阀2的操作挂取力,因此,能提高挂取力的安全性。
进一步地,该取力器控制系统通过制动阀的设置即使得取力控制与驻车制动控制很好地耦合在一起,取力控制与驻车制动控制二者能实现精确联动,不但控制气路简单、易于实现,控制结果也很可靠。
优选地,制动阀具有第一工作位和第二工作位,在制动阀的第一工作位其处于驻车制动状态,在制动阀的第二工作位其处于驻车制动解除状态。使制动阀设置为换向阀的方式,结构简单,易于实现,易于操作。
其中,制动阀可以位于取力气源1与取力控制阀2之间;也可以位于取力控制阀2与取力器气缸3之间。在制动阀位于取力气源1与取力控制阀2之间时,有利于实现取力断开仅受取力控制阀2的控制而不受制动阀的控制。
在一个优选地实施方式中,取力器控制系统还可以包括气路单向阀,气路单向阀与取力控制阀2和制动阀串联地连接于取力气源1与取力控制阀2之间。气路单向阀的进气口与取力气源1连接,气路单向阀的出气口与取力器气缸3连接。。例如,在制动阀位于取力气源1与取力控制阀2之间时,气路单向阀可以位于取力气源1与制动阀之间,也可以位于制动阀与取力控制阀2之间,而在制动阀位于取力 控制阀2与取力器气缸3之间时,气路单向阀位于取力气源1与取力控制阀2之间。气路单向阀的设置可以保证取力器控制系统的压缩气体单向流动。
另外,制动阀也可以包括一个或两个以上驻车制动出气口,也可以包括一个或两个以上取力联动出气口。
以下将结合图2和图3分别对本发明实施例进行说明。
第一实施例
如图2所示,第一实施例中,取力器控制系统包括取力气源1、取力控制阀2、取力器气缸3和制动阀4。
取力气源1具体地为贮气筒。取力气源1为控制取力器气缸3动作提供能量来源。
取力器气缸3用于执行挂取力的动作或取力断开的动作。取力器气缸3与取力气源1接通时,取力器气缸3的活塞杆伸出,取力器挂取力,取力器气缸3与取力气源1断开且其内的压缩气体排出时,取力器气缸3的活塞杆缩回,取力器取力断开。
取力控制阀2连接于取力气源1与取力器气缸3之间,取力控制阀2接收操作人员的取力意愿以控制取力气源1与取力器气缸3二者是否能够连通,从而控制取力器挂取力或取力断开。
如图2所示,第一实施例中取力控制阀2包括取力气源接口21、气缸接口22和取力排气口23,取力气源接口21通过制动阀4与取力气源1连接,气缸接口22与取力器气缸3连接。
取力控制阀2具有第一工作位和第二工作位,在取力控制阀2的第一工作位其取力气源接口21和气缸接口22连通而取力排气口23截止,在取力控制阀2的第二工作位其取力气源接口21截止而气缸接口22和取力排气口23连通。因此,取力控制阀2在其第一工作位时打开,在其第二工作位时断开。其中取力排气口与大气接通,用于排放取力器气缸3内的压缩气体。
制动阀4用于控制其所在的车辆驻车制动,制动阀4处于驻车制动状态,则车辆处于驻车制动状态,制动阀4处于驻车制动解除状态, 则车辆处于驻车制动解除状态。第一实施例中,制动阀4为手动制动阀以使制动阀4的操作可靠。
如图2所示,第一实施例的制动阀4包括取力联动进气口41、取力联动出气口42、驻车制动进气口43、驻车制动出气口44和驻车制动排气口45。
制动阀4通过其取力联动进气口41和取力联动出气口42与取力控制阀2串联地连接于取力气源1与取力器气缸3之间。如图2所示,具体地,制动阀4位于取力气源1与取力控制阀2之间,其取力联动进气口41与取力气源1连接,其取力联动出气口42与取力控制阀2的取力气源接口21连接,实现取力气源接口21通过制动阀4与取力气源1连接,取力控制阀2的气缸接口22与取力器气缸3连接。驻车制动进气口43与制动气源连接(图中未示出),用于向制动器室提供压缩气体。制动气源可以是与取力气源1共用,也可以是独立于取力气源1的制动气源。驻车制动出气口44与制动气室连接,用于向制动气室充入压缩气体或者将制动气室内的压缩气体排出。驻车制动排气口45与大气接通,用于排出制动气室内的压缩气体。
其中,制动阀4具有第一工作位(图2中的上位)和第二工作位(图2中的下位)。
在制动阀4的第一工作位,其取力联动进气口41与取力联动出气口42连通,并且,其驻车制动进气口43截止而驻车制动出气口44与驻车制动排气口45连通,因此,制动气室中的压缩气体经驻车制动出气口44与驻车制动排气口45排出,制动弹簧复位产生制动力,即制动阀4处于驻车制动状态。此时,由于制动阀使取力气源1至取力控制阀2的气路接通,因此制动阀4对取力控制阀2对取力器气缸3的控制基本没有影响,取力器挂取力和取力断开都可以正常进行。
在制动阀4的第二工作位,其取力联动进气口41与取力联动出气口42断开,并且,其驻车制动进气口43与驻车制动出气口44连通而驻车制动排气口45截止,因此,来自制动气源的压缩气体经驻车制动进气口43和驻车制动出气口44进入制动气室中,制动弹簧被压缩不 再具有制动力,制动阀4处于驻车制动解除状态。此时,从取力气源1到取力器气缸3之间的气路被制动阀4切断,取力控制阀2不能使取力器气缸3的活塞杆伸出,取力器不能挂取力。
第一实施例增加制动阀4处于驻车制动状态作为挂取力的前提,能提高挂取力的安全性。当制动阀4处于驻车制动状态时,取力联动进气口41与取力联动出气口42连通,取力气源1的压缩气体供应至取力控制阀2,如果取力控制阀2打开,取力器气缸3工作,取力器挂取力。当制动阀4处于驻车制动解除状态时,第一取力取动口41与取力联动出气口42断开,取力气源1内的压缩气体无法供应至取力控制阀2,即使取力控制阀2打开也无法使取力器气缸3执行取力动作。因此,第一实施例能提高挂取力的安全性。
进一步地,该取力器控制系统通过制动阀4的设置使得取力控制与驻车制动控制很好地耦合在一起,不需要增加额外的气路或电气的检测及控制元件,对制动阀4直接控制即能实现取力控制与驻车制动控制二者精确联动,不但控制气路简单、易于实现,控制结果也很可靠。
更进一步地,结合制动阀4设置于取力气源1和取力控制阀2之间这一设置位置及取力控制阀2的带有取力排气口23的结构,第一实施例还有助于实现取力断开仅受取力控制阀2的控制而不受制动阀4的控制。挂取力后,如果操作人员误操作制动阀4,使其处于驻车制动解除状态时,制动阀4的取力联动进气口41与取力联动出气口42断开,但是只要取力控制阀2不断开,取力器气缸3因其内的压缩气体不能排出而仍然维持原气压,取力器气缸3的活塞杆仍然处于伸出状态,取力器仍然工作。只有当取力控制阀2断开时,压缩气体才会从取力排气口23排出,取力器气缸3的活塞杆才能回位,取力器的取力断开。
第二实施例
如图3所示,第二实施例中,取力器控制系统包括取力气源1、取力控制阀2、取力器气缸3和制动阀5。
取力控制阀2包括取力气源接口21、气缸接口22和取力排气口23,取力气源接口21通过制动阀5与取力气源1连接,气缸接口22与取力器气缸3连接。
第二实施例与第一实施例不同的是,制动阀5与制动阀4的具体结构不同。
如图3所示,制动阀5包括取力联动进气口51、取力联动出气口52、驻车制动出气口53和驻车制动排气口54。
制动阀5通过其取力联动进气口51和取力联动出气口52与取力控制阀2串联地连接于取力气源1与取力器气缸3之间。具体地,制动阀5位于取力气源1与取力控制阀2之间,其取力联动进气口51与取力气源1连接,其取力联动出气口52与取力控制阀2的取力气源接口21连接,实现了取力气源接口21通过制动阀5与取力气源1连接,取力控制阀2的气缸接口22与取力器气缸3连接。
在第二实施例中,取力气源1兼作制动气源,而取力联动进气口51同时作为驻车制动进气口使用。
其中,制动阀5具有第一工作位(图3中的上位)和第二工作位(图3中的下位)。
在制动阀5的第一工作位,其取力联动进气口51与取力联动出气口52连通,并且,其驻车制动出气口53与驻车制动排气口54连通,因此,制动气室中的压缩气体经驻车制动出气口53和驻车制动排气口54排出,制动弹簧复位而产生制动力,制动阀5处于驻车制动解除状态。此时,制动阀5对取力控制阀2控制挂取力或取力断开基本没有影响。
在制动阀5的第二工作位,其取力联动进气口51与取力联动出气口52断开,并且,其取力联动进气口51与驻车制动出气口53连通,取力联动出气口52和驻车制动排气口54均截止,因此,取力气源1的压缩气体经取力联动进气口51和驻车制动出气口53充入制动气室,制动弹簧被压缩而不产生制动力,制动阀5处于驻车制动解除状态。此时,从取力气源1到取力器气缸3之间的气路被制动阀5切断,取 力控制阀2不能使取力器气缸3的活塞杆伸出,取力器不能挂取力,提高了挂取力的安全性。
第二实施例中增加制动阀5处于驻车制动状态作为挂取力的前提,能提高挂取力的安全性。当制动阀5处于驻车制动状态时,制动阀5的取力联动进气口51与取力联动出气口52连通,取力气源1的压缩气体供应至取力控制阀2,如果取力控制阀2打开,取力器气缸3的活塞杆伸出,取力器挂取力。当制动阀5处于驻车制动解除状态时,制动阀5的取力联动进气口51与取力联动出气口52断开,取力气源1内的压缩气体无法供应至取力控制阀2,即使取力控制阀2打开也无法使取力器气缸3的活塞杆伸出,取力器不能挂取力,提高了挂取力的安全性。
进一步地,该取力器控制系统通过制动阀5的设置使得取力控制与驻车制动控制很好地耦合在一起,不需要增加额外的气路或电气的检测及控制元件,对制动阀5直接控制即能实现取力控制与驻车制动控制二者精确联动,不但控制气路简单、易于实现,控制结果也很可靠。
更进一步地,结合制动阀5设置于取力气源1和取力控制阀2之间这一设置位置及取力控制阀2的带有取力排气口23的结构,第二实施例与第一实施例类似地,有利于实现取力断开仅受取力控制阀2的控制而不受制动阀5的控制。具体理由不再赘述。
第二实施例中其它未描述之处可以参考第一实施例的相关描述。
本发明还提供一种工程车辆,包括前述的取力器控制系统。本发明的工程车辆具有前述取力器控制系统的优点,在此不再赘述。
根据以上描述可知,本发明以上实施例至少能实现以下技术效果之一:
制动阀的驻车制动进出气与取力进出气是逻辑非关系,二者不同时连通,即增加驻车制动作为挂取力的前提,取力器挂取力的充分条件是制动阀处于驻车制动状态和取力控制阀打开,提高了挂取力的安全性。
取力器取力断开的充分条件是取力控制阀断开,挂取力后制动阀的工作位切换不会导致取力断开。
驻车制动控制与取力控制精确联动,控制气路简单、元件少、故障点少、易于实现,控制结果可靠。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (11)

  1. 一种取力器控制系统,包括取力气源(1)、取力器气缸(3)和连接于所述取力气源(1)与所述取力器气缸(3)之间的取力控制阀(2),其特征在于,所述取力器控制系统还包括制动阀(4,5),所述制动阀(4,5)包括取力联动进气口(41,51)和取力联动出气口(42,52),所述制动阀(4,5)通过其取力联动进气口(41,51)和取力联动出气口(42,52)与所述取力控制阀(2)串联地连接于所述取力气源(1)与所述取力器气缸(3)之间,在所述制动阀(4,5)处于驻车制动状态时其取力联动进气口(41,51)与取力联动出气口(42,52)连通,在所述制动阀(4,5)处于驻车制动解除状态时其取力联动进气口(41,51)与取力联动出气口(42,52)断开。
  2. 根据权利要求1所述的取力器控制系统,其特征在于,所述制动阀(4,5)具有第一工作位和第二工作位,在所述制动阀(4,5)的第一工作位其处于所述驻车制动状态,在所述制动阀(4,5)的第二工作位其处于所述驻车制动解除状态。
  3. 根据权利要求2所述的取力器控制系统,其特征在于,所述制动阀(4,5)还包括驻车制动出气口(44,53)和驻车制动排气口(45,54),在所述制动阀(4,5)的第一工作位其驻车制动出气口(44,53)与驻车制动排气口(45,54)连通,在所述制动阀(4,5)的第二工作位其驻车制动出气口(44)与制动气源连通而其取力联动出气口(42,52)和驻车制动排气口(45,54)均截止。
  4. 根据权利要求3所述的取力器控制系统,其特征在于,所述制动阀包括一个或两个以上所述驻车制动出气口。
  5. 根据权利要求3所述的取力器控制系统,其特征在于,所述制动阀(4)还包括驻车制动进气口(43),在所述制动阀(4)的第一工作位其驻车制动进气口(43)截止,在所述制动阀(4)的第二工作位其驻车制动进气口(43)与驻车制动出气口(44)连通。
  6. 根据权利要求3所述的取力器控制系统,其特征在于,所述制 动气源为所述取力气源(1),所述制动阀(5)的取力联动进气口(51)与所述取力气源(1)连通。
  7. 根据权利要求1所述的取力器控制系统,其特征在于,所述制动阀包括一个或两个以上所述第二取力联动口。
  8. 根据权利要求1所述的取力器控制系统,其特征在于,所述取力器控制系统还包括气路单向阀,所述气路单向阀与所述取力控制阀(2)和所述制动阀(4,5)串联地连接于所述取力气源(1)与所述取力控制阀(2)之间,所述气路单向阀的进气口与所述取力气源(1)连接,所述气路单向阀的出气口与所述取力器气缸(3)连接。
  9. 根据权利要求1所述的取力器控制系统,其特征在于,所述制动阀(4,5)位于所述取力气源(1)与所述取力控制阀(2)之间;或者,所述制动阀(4,5)位于所述取力控制阀(2)与所述取力器气缸(3)之间。
  10. 根据权利要求1所述的取力器控制系统,其特征在于,所述取力控制阀(2)包括取力气源接口(21)、气缸接口(22)和取力排气口(23),所述取力气源接口(21)与所述取力气源(1)连接,所述气缸接口(22)与所述取力器气缸(3)连接,所述取力控制阀(2)具有第一工作位和第二工作位,在所述取力控制阀(2)的第一工作位其取力气源接口(21)与气缸接口(22)连通而取力排气口(23)截止,在所述取力控制阀(2)的第二工作位其取力气源接口(21)截止而气缸接口(22)与取力排气口(23)连通。
  11. 一种工程车辆,包括取力器控制系统,其特征在于,所述取力器控制系统为根据权利要求1所述的取力器控制系统。
PCT/CN2016/085260 2016-06-08 2016-06-08 取力器控制系统和工程车辆 WO2017210891A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085260 WO2017210891A1 (zh) 2016-06-08 2016-06-08 取力器控制系统和工程车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085260 WO2017210891A1 (zh) 2016-06-08 2016-06-08 取力器控制系统和工程车辆

Publications (1)

Publication Number Publication Date
WO2017210891A1 true WO2017210891A1 (zh) 2017-12-14

Family

ID=60578339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085260 WO2017210891A1 (zh) 2016-06-08 2016-06-08 取力器控制系统和工程车辆

Country Status (1)

Country Link
WO (1) WO2017210891A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985072A (zh) * 2017-12-28 2018-05-04 东风商用车有限公司 一种混动环卫车amt变速箱取力器装置及其控制方法
CN111361493A (zh) * 2020-03-27 2020-07-03 荆门宏图特种飞行器制造有限公司 用于罐车的紧急切断气动控制系统
CN112277800A (zh) * 2020-11-05 2021-01-29 徐州海伦哲特种车辆有限公司 一种气刹底盘行车与取力互锁的系统
CN114162066A (zh) * 2021-11-30 2022-03-11 东风越野车有限公司 车用取力器退出取力控制方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276828A (ja) * 1990-03-27 1991-12-09 Aisin Seiki Co Ltd 車両用自動変速機のpto制御装置
CN200995681Y (zh) * 2006-12-06 2007-12-26 包头北方奔驰重型汽车有限责任公司 车辆行车与取力互锁装置
CN201753026U (zh) * 2010-08-04 2011-03-02 北汽福田汽车股份有限公司 用于分动箱取力器的控制装置
CN201890147U (zh) * 2010-09-26 2011-07-06 北汽福田汽车股份有限公司 用于取力器的控制系统
CN103303140A (zh) * 2013-06-06 2013-09-18 东风汽车公司 可行车取力的双h操纵的取力器电控系统及其使用方法
CN103342124A (zh) * 2013-07-25 2013-10-09 潍柴动力股份有限公司 一种取力器取力的控制方法及装置
CN105946568A (zh) * 2016-06-08 2016-09-21 徐州重型机械有限公司 取力器控制系统和工程车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276828A (ja) * 1990-03-27 1991-12-09 Aisin Seiki Co Ltd 車両用自動変速機のpto制御装置
CN200995681Y (zh) * 2006-12-06 2007-12-26 包头北方奔驰重型汽车有限责任公司 车辆行车与取力互锁装置
CN201753026U (zh) * 2010-08-04 2011-03-02 北汽福田汽车股份有限公司 用于分动箱取力器的控制装置
CN201890147U (zh) * 2010-09-26 2011-07-06 北汽福田汽车股份有限公司 用于取力器的控制系统
CN103303140A (zh) * 2013-06-06 2013-09-18 东风汽车公司 可行车取力的双h操纵的取力器电控系统及其使用方法
CN103342124A (zh) * 2013-07-25 2013-10-09 潍柴动力股份有限公司 一种取力器取力的控制方法及装置
CN105946568A (zh) * 2016-06-08 2016-09-21 徐州重型机械有限公司 取力器控制系统和工程车辆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985072A (zh) * 2017-12-28 2018-05-04 东风商用车有限公司 一种混动环卫车amt变速箱取力器装置及其控制方法
CN111361493A (zh) * 2020-03-27 2020-07-03 荆门宏图特种飞行器制造有限公司 用于罐车的紧急切断气动控制系统
CN111361493B (zh) * 2020-03-27 2024-01-23 荆门宏图特种飞行器制造有限公司 用于罐车的紧急切断气动控制系统
CN112277800A (zh) * 2020-11-05 2021-01-29 徐州海伦哲特种车辆有限公司 一种气刹底盘行车与取力互锁的系统
CN114162066A (zh) * 2021-11-30 2022-03-11 东风越野车有限公司 车用取力器退出取力控制方法及设备
CN114162066B (zh) * 2021-11-30 2023-12-19 东风越野车有限公司 车用取力器退出取力控制方法及设备

Similar Documents

Publication Publication Date Title
WO2017210891A1 (zh) 取力器控制系统和工程车辆
CN106004840B (zh) 车辆的停车制动控制系统
CN108290563A (zh) 具有附加控制回路的车辆电子气动式驻车制动装置
CN105263734B (zh) 液压传动设备
CN106882173B (zh) 自卸车的停车制动系统的制动方法
CN102514567B (zh) 汽车气压制动系统
CN205604945U (zh) 一种应急自动开门的客车气动乘客门控制系统
CN104528555B (zh) 一种起重机的主臂变幅控制系统及起重机
CN107143541A (zh) 车辆的选挡自动行车系统
CN106051145A (zh) 车辆开门禁止行走系统
CN106740767A (zh) 自卸车的停车制动系统
CN103879394A (zh) 煤矿井下用拖挂车的停车制动系统
CN105774775A (zh) 车辆开门停车制动控制装置
WO2021097970A1 (zh) 紧急制动的控制装置、紧急制动系统及轨道车辆
CN105346537A (zh) 车辆启动、熄火、手刹联合控制系统
CN106194442B (zh) 一种车辆的油门、挡位、排气制动联合控制方法
CN102343902A (zh) 气压制动单元及采用该制动单元的多轴汽车底盘
CN108556830B (zh) 一种电控气压汽车制动系统的控制方法
CN105916792B (zh) 用于释放液压电梯制动器的方法和机构
CN103527535A (zh) 旋挖钻机及其加压油缸的控制方法和控制装置
CN102171080A (zh) 用于机动车的辅助驱动装置的中央压力供给装置
CN103223953A (zh) 一种列车断钩保护系统
CN107792038A (zh) 一种基于汽车真空系统的汽车驻车制动装置及其制动方法
CN105946568A (zh) 取力器控制系统和工程车辆
CN210033063U (zh) 车门的气动控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904344

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16904344

Country of ref document: EP

Kind code of ref document: A1