WO2017208526A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2017208526A1
WO2017208526A1 PCT/JP2017/006805 JP2017006805W WO2017208526A1 WO 2017208526 A1 WO2017208526 A1 WO 2017208526A1 JP 2017006805 W JP2017006805 W JP 2017006805W WO 2017208526 A1 WO2017208526 A1 WO 2017208526A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
optical modulator
shunt
connection point
Prior art date
Application number
PCT/JP2017/006805
Other languages
English (en)
French (fr)
Inventor
田中 俊行
浩一 秋山
柳生 栄治
清智 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780031577.0A priority Critical patent/CN109154728B/zh
Priority to DE112017002791.8T priority patent/DE112017002791T5/de
Priority to JP2018520362A priority patent/JP6703102B2/ja
Priority to US16/092,357 priority patent/US10534239B2/en
Publication of WO2017208526A1 publication Critical patent/WO2017208526A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present invention relates to an optical modulator.
  • phase modulation laser a semiconductor Mach-Zehnder type optical modulator (Mach-Zehnder Modulator, hereinafter referred to as “MZM”) is widely used.
  • the phase modulation MZM is a device that converts an electrical digital signal into an optical digital signal.
  • the refractive index in the semiconductor quantum well (Multi-Quantum Well, hereinafter referred to as “MQW”) structure constituting two optical waveguides is obtained by using the output of continuous light (CW light) from the semiconductor laser as an electrical signal.
  • Phase modulation is performed by changing.
  • MZM using a bias tee composed of an inductor and a capacitor is widely used to input a high-frequency signal and a DC voltage to the optical waveguide.
  • resistance values of several hundred ⁇ to several k ⁇ are applied to the terminal resistor portions of the signal electrodes provided on the two optical waveguides, respectively.
  • a bias resistor is disposed, and a DC voltage is applied to the two optical waveguides via the bias resistor.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical modulator having a small circuit configuration and a small amount of voltage drop due to a termination resistor.
  • An optical modulator includes first and second optical waveguides for propagating branched light, a first signal electrode for inputting a first high-frequency signal to the first optical waveguide, and a second optical waveguide.
  • a second signal electrode for inputting a second high-frequency signal having a phase opposite to that of the first high-frequency signal to the waveguide; a first termination resistor connected to the terminal end side of the first signal electrode; A second termination resistor connected to the terminal end side of the signal electrode, a connection point connecting the first and second signal electrodes via the first and second termination resistors, and a direct current connected to the connection point
  • a resistance value of the first termination resistor is equal to the characteristic impedance of the first signal electrode
  • a resistance value of the second termination resistor is equal to the characteristic impedance of the second signal electrode.
  • FIG. 1 is a diagram illustrating a configuration of an optical modulator according to a first embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA of the optical modulator according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the optical modulator according to Embodiment 1 taken along line BB.
  • 6 is a diagram illustrating a configuration of an optical modulator according to a second embodiment.
  • FIG. 10 is a diagram illustrating a modification of the optical modulator according to the second embodiment.
  • 6 is a diagram illustrating a configuration of an optical modulator according to Embodiment 3.
  • FIG. FIG. 10 is a diagram illustrating a modification of the optical modulator according to the third embodiment. It is a figure which shows the structure of the optical modulator which concerns on the 1st premise technique of this invention. It is a figure which shows the structure of the optical modulator which concerns on the 2nd premise technique of this invention.
  • FIG. 8 is a diagram showing a configuration of the optical modulator 1 in the first premise technique of the present invention.
  • the optical modulator 1 is a semiconductor Mach-Zehnder optical modulator (MZM).
  • MZM semiconductor Mach-Zehnder optical modulator
  • the optical modulator 1 includes first and second optical waveguides 10 and 20, first and second signal electrodes 30 and 40, termination resistors 140 and 150, and a DC voltage source 7.
  • high frequency signals are input to the first and second signal electrodes 30 and 40.
  • the first signal electrode 30 inputs a first high-frequency signal to the first optical waveguide 10.
  • the second signal electrode 40 inputs a second high-frequency signal having a phase opposite to that of the first high-frequency signal to the second optical waveguide 20.
  • Ground electrodes 31 and 41 are arranged along the first and second signal electrodes 30 and 40.
  • the optical modulator 1 includes bias tees 180 and 190 on the terminal end 9 side.
  • the bias tee 180 is connected to the terminal end 9 of the first signal electrode 30.
  • the bias tee 190 is connected to the terminal portion 9 of the second signal electrode 40.
  • the impedance of the bias tees 180 and 190 is opened to high frequency signals by the inductors 181 and 191. Therefore, it is possible to apply a DC voltage to the first and second signal electrodes 30 and 40 without affecting the high frequency signal by the impedance on the DC voltage source 170 side.
  • FIG. 9 is a diagram showing a configuration of the optical modulator 2 in the second premise technique of the present invention.
  • bias resistors 183 and 193 having high resistance are arranged instead of the inductors 181 and 191 of the optical modulator 1.
  • the high resistance is several hundred ⁇ to several k ⁇ . Since the bias resistors 183 and 193 are set to a high value of several hundred ⁇ to several k ⁇ , the impedance of the bias resistors 183 and 193 can be regarded as open to the high frequency signal.
  • a maximum direct current of 1 mA is generated in accordance with the change in the refractive index of the semiconductor MQW structure constituting the first and second optical waveguides 10 and 20. Since this DC current flows through the bias resistors 183 and 193, a large DC voltage drop occurs in the bias resistors 183 and 193.
  • the resistance values of the bias resistors 183 and 193 are set from several hundred ⁇ to several k ⁇ so that the high-frequency signal is not affected by the DC voltage source 170 side. Therefore, it is necessary to make the set value of the DC voltage source 170 larger than the DC voltage value applied to the first and second signal electrodes 30 and 40 by the voltage drop. As a result, there is a problem that power consumption increases.
  • the embodiments of the present invention described below solve the above-described problems.
  • FIG. 1 is a diagram illustrating a configuration of an optical modulator 100 according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • the first signal electrode 30 inputs the first high-frequency signal to the first optical waveguide 10.
  • the second signal electrode 40 inputs a second high-frequency signal having a phase opposite to that of the first high-frequency signal to the second optical waveguide 20.
  • Ground electrodes 31 and 41 are arranged along the first and second signal electrodes 30 and 40.
  • the first termination resistor 50 is connected to the termination portion 9 side of the first signal electrode 30.
  • the second termination resistor 60 is connected to the termination portion 9 side of the second signal electrode 40.
  • the connection point 6 connects the first and second signal electrodes 30 and 40 via the first and second termination resistors 50 and 60.
  • the DC voltage source 7 is connected to the connection point 6.
  • the optical modulator 100 performs phase modulation on the continuous light incident from the semiconductor laser by changing the refractive index of the semiconductor MQW structure constituting the first and second optical waveguides 10 and 20 by an electric signal. .
  • the continuous light incident from the semiconductor laser is demultiplexed into two lights having the same phase by the light demultiplexing unit and propagates through the first and second optical waveguides 10 and 20, respectively.
  • an n-type semiconductor layer 13, active layers 12 and 22, and p-type semiconductor layers 11 and 21 are sequentially stacked on a semi-insulating substrate 15, and an insulating film 14 is formed so as to cover them.
  • the first optical waveguide 10 has a three-layer structure of a p-type semiconductor layer 11, an active layer 12 and an n-type semiconductor layer 13.
  • the second optical waveguide 20 has a three-layer structure of a p-type semiconductor layer 21, an active layer 22, and an n-type semiconductor layer 13. Light propagating through the first and second optical waveguides 10 and 20 propagates through the active layers 12 and 22, respectively.
  • the optical modulator 100 is controlled so that the phase of the light propagating through the first and second optical waveguides 10 and 20 is in phase at the position C in FIG. 1 and the phase of the light is in reverse phase at the position D.
  • the At the position D the phase of light propagating through the first optical waveguide 10 is (0, ⁇ ), and the phase of light propagating through the second optical waveguide 20 is ( ⁇ , 0).
  • the drive voltage consists of a high-frequency signal and a DC voltage that determines the operating point of the drive voltage. Therefore, it is necessary to apply a DC voltage that determines the operating point to the first and second signal electrodes 30 and 40 by the DC voltage source 7 separately from the high-frequency signal.
  • the configuration in which a DC voltage is applied to the first and second signal electrodes 30 and 40 by the DC voltage source 7 needs to be a configuration in which the high-frequency signal is not affected by the impedance on the DC voltage source 7 side. That is, it is necessary to match the internal impedance of the signal source of the high-frequency signal, the characteristic impedance of the first and second signal electrodes 30 and 40, and the impedance on the terminal end side. For example, when the impedance on the terminal end side is smaller, reflection of high-frequency signals on the terminal end side increases due to impedance mismatch.
  • the optical modulator 100 according to the first embodiment has a configuration in which a DC voltage is applied to the first and second signal electrodes 30 and 40 without providing a bias tee on the terminal end 9 side. There is an advantage that the size can be reduced.
  • the resistance values of the first and second termination resistors 50 and 60 are equal to the characteristic impedances of the first and second signal electrodes 30 and 40 in order to suppress reflection. Value.
  • the characteristic impedances of the first and second signal electrodes 30 and 40 are equal to the internal impedance of the signal source of the high frequency signal.
  • the optical modulator 100 includes first and second optical waveguides 10 and 20 for propagating branched light, and a first signal for inputting a first high-frequency signal to the first optical waveguide 10.
  • the second signal electrode 40 Connected to the electrode 30, the second signal electrode 40 for inputting a second high-frequency signal having a phase opposite to the first high-frequency signal to the second optical waveguide 20, and the terminal 9 side of the first signal electrode 30.
  • FIG. 4 is a diagram illustrating a configuration of the optical modulator 200 according to the second embodiment.
  • a capacitor 220 is connected to the first shunt 70.
  • a capacitor 230 is connected to the second shunt 80.
  • the capacitors 220 and 230 are connected to ground. It is assumed that the impedance of the capacitors 220 and 230 with respect to the high frequency signal is sufficiently low.
  • the first and second signal electrodes 30 and 40 are connected at the connection point 160 via the first and second termination resistors 50 and 60. I was connected.
  • the optical modulator there may be a case where a differential imbalance of the high-frequency signal input to the first and second signal electrodes 30 and 40 occurs.
  • the electrical length of the electrical signals propagating through the first and second signal electrodes 30 and 40 may be unbalanced due to the influence of manufacturing variations.
  • the potential at the connection point 6 may deviate from zero with respect to the high-frequency signal input to the first and second signal electrodes 30 and 40.
  • the high-frequency signal is affected by the impedance on the DC voltage source 7 side, and reflection increases.
  • the capacitor is connected to the first shunt 70 that branches from the main path connecting the first termination resistor 50 and the connection point 6. 220 is provided. Further, a capacitor 230 is provided in the second shunt 80 that branches off from the main path connecting the second termination resistor 60 and the connection point 6.
  • the capacitors 220 and 230 compensate the potential so that the potential of 6 becomes zero. Therefore, it is possible to suppress the high frequency signal from being influenced by the impedance on the DC voltage source 7 side. That is, a DC voltage can be applied to the first and second signal electrodes 30 and 40 without affecting the high-frequency signal by the impedance on the DC voltage source 7 side.
  • FIG. 5 is a diagram showing an optical modulator 200A as a modification of the optical modulator 200 in the second embodiment.
  • the optical modulator 200 (FIG. 4) one each of the first shunt 70 and the second shunt 80 are provided.
  • the optical modulator 200A a plurality of first shunts 71, 72, 73 and a plurality of second shunts 81, 82, 83 are provided.
  • the optical modulator 200 ⁇ / b> A includes three first shunts 71, 72, and 73 that branch from the main path that connects the first termination resistor 50 and the connection point 6.
  • the optical modulator 200 ⁇ / b> A includes three second shunts 81, 82, and 83 that branch from the main path that connects the second termination resistor 60 and the connection point 6.
  • capacitors 231, 232, and 233 are connected in each of the second shunts 81, 82, and 83.
  • the capacitors 231, 232, and 233 are connected to ground.
  • the capacitance values of the capacitors 231, 232, and 233 are different from each other.
  • the capacitance value of the capacitor 231 is a value at which the impedance is sufficiently low with respect to a high frequency
  • the capacitance value of the capacitor 232 is a value at which the impedance is sufficiently low at a frequency lower than that of the capacitor 231, and the capacitor 233. Is a value at which the impedance is sufficiently low for a frequency lower than that of the capacitor 232.
  • capacitors and capacitors manufactured by a semiconductor process include not only a capacitive component but also a parasitic inductive component, and this inductive component increases as the frequency increases.
  • the differential imbalance of the high-frequency signal input to the first and second signal electrodes 30 and 40, and the unbalance of the electrical length of the electrical signal propagating through the first and second signal electrodes 30 and 40 due to manufacturing variations Can occur over a wide range of frequencies.
  • the first termination is performed to compensate so that the potential at the connection point 6 becomes zero.
  • a plurality of capacitors 221, 222, and 223 having different capacities are provided in a plurality of first shunts 71, 72, and 73 that branch from the main path that connects the resistor 50 and the connection point 6.
  • a plurality of capacitors 231, 232, and 233 having different capacitance values are provided in a plurality of second shunts 81, 82, and 83 that branch from the main path that connects the second termination resistor 60 and the connection point 6.
  • the optical modulator 200 is connected to at least one first shunt 70 that branches from the main path that connects the first termination resistor 50 and the connection point 6, and the second termination resistor 60. And at least one second shunt 80 that branches off from the main path connecting the point 6, the capacitor 220 is connected to the first shunt 70, and the second shunt 80 includes A capacitor 230 is connected.
  • the capacitor 220 provided in the first shunt 70 and the second shunt 80 are provided even when a differential imbalance of the high-frequency signal occurs.
  • the capacitor 230 compensated for the potential at the node 6 to zero with respect to the high-frequency signal. Therefore, a direct current voltage can be applied to the first and second signal electrodes 30 and 40 without affecting the high frequency signal by the impedance on the direct current voltage source 7 side.
  • At least one first shunt 70 is plural and connected to each of the plurality of first shunts 71, 72, 73.
  • Capacitance values of the capacitors 221, 222, 232 are different from each other, and at least one second shunt 80 is plural, and the capacitors 231, 232 connected to the plurality of second shunts 81, 82, 83, respectively.
  • , 233 have different capacitance values.
  • the optical modulator 200A even when a differential imbalance of a high-frequency signal occurs in a wide range of frequencies, the optical modulator 200A is provided in the plurality of first shunts 71, 72, and 73.
  • the capacitors 221, 222, and 223 having different capacitance values and the capacitors 231, 232, and 233 having different capacitance values provided in the plurality of second shunts 81, 82, and 83 use the potential at the connection point 6 as a high frequency signal. Compensate for zero. Therefore, a direct current voltage can be applied to the first and second signal electrodes 30 and 40 without affecting the high frequency signal by the impedance on the direct current voltage source 7 side.
  • FIG. 6 is a diagram illustrating a configuration of the optical modulator 300 according to the third embodiment.
  • components common to the optical modulator 100 (FIG. 1) in the first embodiment or the optical modulator 200 (FIG. 4) in the second embodiment are denoted by the same reference numerals and description thereof is omitted. .
  • the optical modulator 200 further includes a shunt 90 with respect to the optical modulator 100 (FIG. 1) according to the first embodiment.
  • the shunt 90 branches off from the main path connecting the connection point 6 and the DC voltage source 7.
  • a capacitor 240 is connected to the shunt 90.
  • the capacitor 240 is connected to ground. It is assumed that the impedance of the capacitor 240 with respect to the high frequency signal is sufficiently low.
  • FIG. 7 is a diagram illustrating an optical modulator 300A as a modification of the optical modulator 300 in the third embodiment.
  • the optical modulator 300 (FIG. 6) one shunt 90 is provided.
  • the optical modulator 300A is provided with a plurality of shunts 91, 92, 93.
  • the optical modulator 300 ⁇ / b> A includes three shunts 91, 92, and 93 that branch from the main path that connects the connection point 6 and the DC voltage source 7.
  • capacitors 241, 242, and 243 are connected in each of the shunts 91, 92, and 93.
  • the capacitors 241, 242, and 243 are connected to ground.
  • the capacitance values of the capacitors 241, 242, and 243 are different from each other.
  • the capacitance value of the capacitor 241 is a value at which the impedance is sufficiently low with respect to a high frequency
  • the capacitance value of the capacitor 242 is a value at which the impedance is sufficiently low at a frequency lower than that of the capacitor 241. Is a value at which the impedance is sufficiently low for a frequency lower than that of the capacitor 242.
  • the number of shunts 91, 92, 93 is three, but the number of shunts is not limited to this as long as there are a plurality of shunts.
  • the optical modulator 300 further includes at least one shunt 90 that branches from the main path connecting the connection point 6 and the DC voltage source 7, and a capacitor 240 is connected to the shunt 90. Yes.
  • the same effect as the optical modulator 200 according to the second embodiment can be obtained, and the number of capacitors can be reduced as compared with the optical modulator 200. It is. Therefore, there is an advantage that an increase in the size of the optical modulator 300 can be suppressed.
  • the optical modulator 300A there are a plurality of at least one shunt 90, and the capacitors 241, 242, and 243 connected to the shunts 91, 92, and 93, respectively.
  • the capacitance values are different from each other.
  • the capacitors provided in the plurality of shunts 91, 92, 93 are mutually connected.
  • the capacitors 241, 242, and 243 having different values compensate the potential at the connection point 6 to zero with respect to the high-frequency signal. Therefore, a direct current voltage can be applied to the first and second signal electrodes 30 and 40 without affecting the high frequency signal by the impedance on the direct current voltage source 7 side.
  • the number of capacitors can be reduced as compared with the optical modulator 200A in the modification of the second embodiment. Therefore, there is an advantage that an increase in the size of the optical modulator 300A can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本発明は小型の回路構成で、かつ終端抵抗による電圧降下量がより小さい光変調器の提供を目的とする。光変調器100は、第1、第2の光導波路10,20と、第1の光導波路10に第1の高周波信号を入力する第1の信号電極30と、第2の光導波路20に、第1の高周波信号と逆相の第2の高周波信号を入力する第2の信号電極40と、第1の信号電極30の終端部9側に接続された第1の終端抵抗50と、第2の信号電極40の終端部9側に接続された第2の終端抵抗60と、第1、第2の終端抵抗50,60を介して第1、第2の信号電極30,40を接続する接続点6と、接続点6に接続された直流電圧源7と、を備え、第1の終端抵抗50の抵抗値は、第1の信号電極30の特性インピーダンスと等しく、第2の終端抵抗60の抵抗値は、第2の信号電極40の特性インピーダンスと等しい。

Description

光変調器
 本発明は光変調器に関する。
 近年、データ通信量の急激な増大に対応して、光通信システムの大容量化が進められている。光通信システムのキーデバイスとして、半導体レーザが広く利用されており、光信号の伝送距離に応じて強度変調または位相変調を行っている。メトロネットワーク(都市内通信)またはFTTH(Fiber To The Home)ネットワークなどの100km以下の中・短距離光伝送システムでは、小型なデバイスが求められており、強度変調レーザが広く利用されている。一方、コアネットワーク(都市間通信)などの100km以上の長距離光伝送システムでは、高速動作と長距離伝送を両立する位相変調レーザの利用が始まっている。
 位相変調レーザとして、半導体マッハツェンダー型光変調器(Mach-Zehnder Modulator、以下「MZM」と称す)が広く利用されている。位相変調MZMは、電気のデジタル信号を光のデジタル信号に変換するデバイスである。位相変調MZMにおいて、半導体レーザからの連続光(CW光)の出力を電気信号により、2つの光導波路を構成する半導体量子井戸(Multi-Quantum Well、以下「MQW」と称す)構造における屈折率を変化させることで位相変調を行っている。
 このMZMにおいて良好な光特性を得るには、最適な駆動電圧を2つの光導波路に入力する必要がある。この駆動電圧は、入力する電気のデジタル信号(高周波信号)と、駆動電圧の動作点を決定する直流の電圧から成り立つ。したがって、2本の光導波路には、高周波信号とは別に、動作点を決める直流の電圧を外部の電圧源から印加する必要がある。
 高周波信号と直流電圧を光導波路に入力するために、インダクタとキャパシタから構成されるバイアスティーを用いたMZMが広く利用されている。
 しかしながら、バイアスティーに内蔵されたインダクタのサイズが大きいため、MZMの小型化が困難であり、市場の要求を満足出来ない課題があった。
 そこで、MZMの小型化を図るために、例えば特許文献1に記述の技術では、2本の光導波路上のそれぞれに設けられた信号電極の終端抵抗部に数百Ωから数kΩの抵抗値を有するバイアス抵抗を配置し、このバイアス抵抗を介して、直流の電圧を2本の光導波路に印加している。
特開2015-55840号公報
 特許文献1におけるMZMの構成では、光導波路の屈折率の変化に伴って発生する直流の光変調電流が高い抵抗値を有するバイアス抵抗に流れるため、バイアス抵抗において大きな直流の電圧降下が生じていた。
 さらに、半導体レーザの光の強度と波長が変化することにより、発生する光変調電流の大きさが変化するため、光導波路に印加する直流電圧の制御が困難になる問題があった。
 本発明は以上のような課題を解決するためになされたものであり、小型の回路構成で、かつ終端抵抗による電圧降下量がより小さい光変調器の提供を目的とする。
 本発明に係る光変調器は、分岐した光を伝搬させる第1、第2の光導波路と、第1の光導波路に第1の高周波信号を入力する第1の信号電極と、第2の光導波路に、第1の高周波信号と逆相の第2の高周波信号を入力する第2の信号電極と、第1の信号電極の終端部側に接続された第1の終端抵抗と、第2の信号電極の終端部側に接続された第2の終端抵抗と、第1、第2の終端抵抗を介して第1、第2の信号電極を接続する接続点と、接続点に接続された直流電圧源と、を備え、第1の終端抵抗の抵抗値は、第1の信号電極の特性インピーダンスと等しく、第2の終端抵抗の抵抗値は、第2の信号電極の特性インピーダンスと等しい。
 本発明に係る光変調器においては、終端部側においてバイアスティーを設けずに第1、第2の信号電極に直流電圧を印加する構成のため、光変調器の小型化が図れるという利点がある。さらに、本発明に係る光変調器においては、第1、第2の終端抵抗の値を、第1、第2の信号電極の特性インピーダンスと等しくなるように設定するため、第1、第2の終端抵抗における電圧降下量を小さくできる。従って、消費電力の増大を抑制できるとともに、第1、第2の信号電極に印加する直流電圧の制御を容易にできるという利点がある。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによってより明白となる。
実施の形態1に係る光変調器の構成を示す図である。 実施の形態1に係る光変調器の線分A-Aにおける断面図である。 実施の形態1に係る光変調器の線分B-Bにおける断面図である。 実施の形態2に係る光変調器の構成を示す図である。 実施の形態2に係る光変調器の変形例を示す図である。 実施の形態3に係る光変調器の構成を示す図である。 実施の形態3に係る光変調器の変形例を示す図である。 本発明の第1の前提技術に係る光変調器の構成を示す図である。 本発明の第2の前提技術に係る光変調器の構成を示す図である。
 <前提技術>
 本発明の実施形態を説明する前に、本発明の前提となる技術を説明する。図8は、本発明の第1の前提技術における光変調器1の構成を示す図である。光変調器1は、半導体マッハツェンダー型光変調器(MZM)である。光変調器1は、第1、第2の光導波路10,20と、第1、第2の信号電極30,40と、終端抵抗140,150と、直流電圧源7とを備えている。
 図示しない半導体レーザからの連続光は、光分波部3に入射する。光分波部3で分波された光は、第1、第2の光導波路10,20のそれぞれを伝搬する。第1の光導波路10の出射側には、光位相πシフタ5が接続される。光位相πシフタ5によって光の位相がπ反転する。第1、第2の光導波路10,20から出射する光は光合波部4で合波される。光合波部4から位相変調された連続光が出射される。なお、光位相πシフタ5は、第1の光導波路10の出射側に配置する代わりに、第2の光導波路20の出射側に配置しても良い。
 信号入力部8側において、第1、第2の信号電極30,40には高周波信号が入力される。第1の信号電極30は、第1の光導波路10に第1の高周波信号を入力する。また、第2の信号電極40は、第2の光導波路20に第1の高周波信号と逆相の第2の高周波信号を入力する。第1、第2の信号電極30,40に沿ってグランド電極31,41が配置されている。
 図8に示すように、第1の前提技術における光変調器1は終端部9側にバイアスティー(Bias Tees)180,190を備える。バイアスティー180は、第1の信号電極30の終端部9に接続される。また、バイアスティー190は、第2の信号電極40の終端部9に接続される。
 バイアスティー180は、インダクタ181とキャパシタ182を備える。同様に、バイアスティー190は、インダクタ191とキャパシタ192を備える。
 バイアスティー180,190の高周波側の端子は第1、第2の信号電極30,40の終端部9に接続される。バイアスティー180,190のバイアス側の端子は接続点6に接続される。接続点6には、直流電圧源7が接続される。
 バイアスティー180,190のインピーダンスは、インダクタ181,191により高周波信号に対して開放となる。従って、高周波信号に直流電圧源170側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することができる。
 しかしながら、第1の前提技術においては、バイアスティー180,190に備わるインダクタ181,191のサイズが大きいため、光変調器1の小型化が困難であり、市場の要求を満足出来ない課題があった。
 図9は、本発明の第2の前提技術における光変調器2の構成を示す図である。光変調器2においては、光変調器1のインダクタ181,191に代えて、高抵抗を有するバイアス抵抗183,193を配置する。ここで、高抵抗とは、数百Ωから数kΩである。バイアス抵抗183,193が数百Ωから数kΩと高い値に設定されるため、バイアス抵抗183,193のインピーダンスは高周波信号に対して開放と見なすことができる。
 従って、高周波信号に直流電圧源170側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することが出来る。
 光変調器2においては、第1、第2の光導波路10,20を構成する半導体MQW構造の屈折率の変化に伴って、最大で1mAの直流電流が生じる。この直流電流がバイアス抵抗183,193に流れるため、バイアス抵抗183,193において大きな直流の電圧降下が生じる。
 高周波信号が直流電圧源170側の影響を受けないように、バイアス抵抗183,193の抵抗値は数百Ωから数kΩに設定されている。そのため、第1、第2の信号電極30,40に印加する直流の電圧値よりも直流電圧源170の設定値を、電圧降下分だけ大きくする必要がある。その結果、消費電力が増大する問題があった。以下で説明する本発明の実施形態は、上述の課題を解決するものである。
 <実施の形態1>
 図1は、本実施の形態1における光変調器100の構成を示す図である。また、図2は、図1中の線分A-Aに沿った断面図である。図3は、図1中の線分B-Bに沿った断面図である。
 図1に示すように、光変調器100は、半導体マッハツェンダー型光変調器(MZM)である。光変調器100は、分岐した光を伝搬させる第1、第2の光導波路10,20と、第1、第2の信号電極30,40と、第1、第2の終端抵抗50,60と、接続点6と、直流電圧源7とを備えている。
 第1の信号電極30は、第1の光導波路10に第1の高周波信号を入力する。第2の信号電極40は、第2の光導波路20に、第1の高周波信号と逆相の第2の高周波信号を入力する。第1、第2の信号電極30,40に沿ってグランド電極31,41が配置されている。
 第1の終端抵抗50は、第1の信号電極30の終端部9側に接続される。第2の終端抵抗60は、第2の信号電極40の終端部9側に接続される。接続点6は、第1、第2の終端抵抗50,60を介して第1、第2の信号電極30,40を接続する。直流電圧源7は接続点6に接続される。
 図示しない半導体レーザからの連続光は、図示しない光分波部で2つに分波され、第1、第2の光導波路10,20のそれぞれを伝搬する。第1の光導波路10の出射側には、図示しない光位相πシフタが接続される。光位相πシフタによって光の位相がπ反転する。第1、第2の光導波路10,20から出射する光は、図示しない光合波部で合波される。光合波部から位相変調された連続光が出射される。なお、光位相πシフタは、第1の光導波路10の出射側に配置する代わりに、第2の光導波路20の出射側に配置しても良い。
 終端部9側において、第1の終端抵抗50は、第1の信号電極30を終端する。また、第2の終端抵抗60は、第2の信号電極40を終端する。第1、第2の終端抵抗50,60の第1、第2の信号電極30,40とは反対側の端部は接続点6に接続される。接続点6には、直流電圧源7が接続される。
 次に、光変調器100の動作について説明する。光変調器100は、半導体レーザから入射された連続光に対して、電気信号により第1、第2の光導波路10,20を構成する半導体MQW構造の屈折率を変化させることで位相変調を行う。
 半導体レーザから入射された連続光は、光分波部により同相の2つの光に分波され、第1、第2の光導波路10,20をそれぞれ伝搬する。図2に示すように、半絶縁基板15上にn型半導体層13、活性層12,22、p型半導体層11,21が順に積層され、これらを覆うように絶縁膜14が形成されている。第1の光導波路10は、p型半導体層11、活性層12およびn型半導体層13の3層構造である。同様に、第2の光導波路20は、p型半導体層21、活性層22およびn型半導体層13の3層構造である。第1、第2の光導波路10,20を伝搬する光は、活性層12,22中をそれぞれ伝搬する。
 第1、第2の信号電極30,40の入力部8側には、位相が互いに逆の高周波信号、即ち差動の高周波信号が入力される。反射を抑圧するために、第1、第2の終端抵抗50,60の抵抗値は、第1、第2の信号電極30,40の特性インピーダンスと等しく設定される。第1、第2の終端抵抗50,60の抵抗値は例えば50Ωである。また、第1、第2の信号電極30,40の特性インピーダンスは、高周波信号の信号源の内部抵抗と等しく設定される。
 第1、第2の光導波路10,20を伝搬する光は、図1中の位置Cから位置Dまでの間において、第1、第2の信号電極30,40に入力される高周波信号に基づいて変調される。図3に示すように、そして、入力される高周波信号(即ち、高周波電圧)と直流電圧源170から印加される直流電圧値に基づいて、活性層12,22内に形成したMQW構造の屈折率を変化させることで、第1、第2の光導波路10,20を伝搬する光の位相を変化させる。なお、位置Cから位置Dまでの断面構造は、図3に示した断面構造と同じである。
 光変調器100は、図1中の位置Cにおいて第1、第2の光導波路10,20を伝搬する光の位相は同相であり、位置Dにおいて光の位相が逆相となるように制御される。位置Dにおいて、第1の光導波路10を伝搬する光の位相は(0、π)、第2の光導波路20を伝搬する光の位相は(π、0)となる。
 さらに、第1の光導波路10の出射側に設けた光位相πシフタ(図示せず)により、第1の光導波路10を伝搬する光の位相がπ反転する。その後、光合波部(図示せず)において、第1、第2の光導波路10,20を伝搬する光を同相で合波することで、位相が(0、π)に変調された連続光が出射される。このようにして、電気信号により光の変調が行われる。
 光変調器100において良好な光特性を得るには、最適な駆動電圧を第1、第2の光導波路10,20に入力する必要がある。駆動電圧は、高周波信号と、駆動電圧の動作点を決める直流電圧から成り立つ。従って、第1、第2の信号電極30,40には、高周波信号とは別に、動作点を決める直流電圧を直流電圧源7により印加する必要がある。
 第1、第2の信号電極30,40に直流電圧源7により直流電圧を印加する構成は、高周波信号が直流電圧源7側のインピーダンスの影響を受けない構成とする必要がある。つまり、高周波信号の信号源の内部インピーダンス、第1、第2の信号電極30,40の特性インピーダンスおよび終端部側のインピーダンスを相互に整合させる必要がある。例えば、終端部側のインピーダンスがより小さい場合、インピーダンスの不整合により、終端部側において高周波信号の反射が増大してしまう。
 そこで、実施の形態1における光変調器100は、図1に示したように、第1、第2の信号電極30,40を第1、第2の終端抵抗50,60を介して接続点6で接続する。そして、その接続点6に直流電圧源7を接続する。
 第1、第2の信号電極30,40に差動の高周波信号を入力した場合、第1、第2の信号電極30,40を伝搬する高周波は、振幅が等しく、位相が互いに逆相となる。第1、第2の信号電極30,40は、伝搬する高周波の電気長が等しくなるように設計されている。
 従って、接続点6においては、第1、第2の信号電極30,40を伝搬した高周波が互いに逆相で合波される。その結果、接続点6では第1、第2の信号電極30,40に入力される高周波信号に対して電位がゼロとなる。つまり、接続点6は、第1、第2の信号電極30,40に入力される高周波信号に対してショート点となる。
 以上から、高周波信号に直流電圧源7側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することができる。
 本実施の形態1における光変調器100においては、終端部9側においてバイアスティーを設けずに第1、第2の信号電極30,40に直流電圧を印加する構成のため、光変調器100の小型化が図れるという利点がある。
 本実施の形態1における光変調器100において、第1、第2の終端抵抗50,60の抵抗値は、反射を抑圧するために第1、第2の信号電極30,40の特性インピーダンスと等しい値である。第1、第2の信号電極30,40の特性インピーダンスは、高周波信号の信号源の内部インピーダンスと等しい値である。
 光変調器100においては、第1、第2の光導波路10,20を構成する半導体MQW構造の屈折率の変化に伴って、最大で1mAの直流電流が生じる。この直流電流が第1、第2の終端抵抗50,60に流れる。
 本実施の形態1では、第1、第2の終端抵抗50,60は例えば50Ωと低い値に設定されるため、第1、第2の終端抵抗50,60で生じる電圧降下量は前提技術(図9)と比較して十分に小さい。例えば、50Ωの終端抵抗に1mAの直流の光変調電流が流れた場合、電圧降下量は0.05Vと十分に小さい。従って、消費電力の増大を抑制出来るという利点がある。
 さらに、光源となる半導体レーザの光の強度と波長の変動に伴って光変調電流が変化した場合でも、第1、第2の終端抵抗50,60における電圧降下量は十分に小さい。そのため、第1、第2の信号電極30,40に印加する直流電圧の制御を容易に出来るという利点がある。
 <効果>
 本実施の形態1における光変調器100は、分岐した光を伝搬させる第1、第2の光導波路10,20と、第1の光導波路10に第1の高周波信号を入力する第1の信号電極30と、第2の光導波路20に、第1の高周波信号と逆相の第2の高周波信号を入力する第2の信号電極40と、第1の信号電極30の終端部9側に接続された第1の終端抵抗50と、第2の信号電極40の終端部9側に接続された第2の終端抵抗60と、第1、第2の終端抵抗50,60を介して第1、第2の信号電極30,40を接続する接続点6と、接続点6に接続された直流電圧源7と、を備え、第1の終端抵抗50の抵抗値は、第1の信号電極30の特性インピーダンスと等しく、第2の終端抵抗60の抵抗値は、第2の信号電極40の特性インピーダンスと等しい。
 従って、本実施の形態1における光変調器100においては、終端部9側においてバイアスティーを設けずに第1、第2の信号電極30,40に直流電圧を印加する構成のため、光変調器100の小型化が図れるという利点がある。さらに、本実施の形態1では、第1、第2の終端抵抗50,60の値を、第1、第2の信号電極30,40の特性インピーダンスと等しくなるように設定するため、第1、第2の終端抵抗50,60における電圧降下量を小さくできる。従って、消費電力の増大を抑制できるとともに、第1、第2の信号電極30,40に印加する直流電圧の制御を容易にできるという利点がある。
 <実施の形態2>
 図4は、本実施の形態2における光変調器200の構成を示す図である。図4において、図1に示した実施の形態1における光変調器100と共通する構成要素に関しては、同一の符号を付して説明を省略する。
 図4に示すように、本実施の形態2における光変調器200は、実施の形態1における光変調器100(図1)に対して、第1の分路70と、第2の分路80をさらに備える。第1の分路70は、第1の終端抵抗50と接続点6とを接続する主路から分岐する。第2の分路80は、第2の終端抵抗60と接続点6とを接続する主路から分岐する。
 第1の分路70にはキャパシタ220が接続されている。また、第2の分路80にはキャパシタ230が接続されている。キャパシタ220,230は対接地接続されている。キャパシタ220,230の高周波信号に対するインピーダンスは十分に低いものとする。
 実施の形態1における光変調器100においては、図1に示したように、第1、第2の終端抵抗50,60を介して第1、第2の信号電極30,40を接続点160で接続していた。
 光変調器において、第1、第2の信号電極30,40に入力される高周波信号の差動のアンバランスが生じる場合がある。また、製造におけるばらつきの影響により第1、第2の信号電極30,40を伝搬する電気信号の電気長のアンバランスが生じる場合がある。上記場合において、第1、第2の信号電極30,40に入力される高周波信号に対して接続点6における電位がゼロからずれてしまう可能性がある。接続点6における電位がゼロからずれることにより、高周波信号は直流電圧源7側のインピーダンスの影響を受け、反射が増大する。
 そこで、本実施の形態2に係る光変調器200では、図4に示したように、第1の終端抵抗50と接続点6とを接続する主路から分岐する第1の分路70にキャパシタ220を設ける。また、第2の終端抵抗60と接続点6とを接続する主路から分岐する第2の分路80にキャパシタ230を設ける。
 これにより、高周波信号の差動のアンバランス、第1、第2の信号電極30,40の電気長のアンバランスが生じた場合であっても、アンバランスが生じた高周波信号に対して接続点6の電位がゼロとなるようにキャパシタ220,230が電位を補償する。よって、高周波信号が直流電圧源7側のインピーダンスの影響を受けることを抑制可能である。つまり、高周波信号に直流電圧源7側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することができる。
 <変形例>
 図5は、実施の形態2における光変調器200の変形例としての光変調器200Aを示す図である。光変調器200(図4)においては、第1の分路70および第2の分路80を各1個ずつ設けた。一方、光変調器200Aにおいては、複数の第1の分路71,72,73および複数の第2の分路81,82,83を設ける。
 図5に示すように、本変形例において光変調器200Aは、第1の終端抵抗50と接続点6とを接続する主路から分岐する3個の第1の分路71,72,73を備える。また、光変調器200Aは、第2の終端抵抗60と接続点6とを接続する主路から分岐する3個の第2の分路81,82,83を備える。
 第1の分路71,72,73のそれぞれにおいて、キャパシタ221,222,223が接続されている。キャパシタ221,222,223は対接地接続されている。キャパシタ221,222,223の容量値は互いに異なる。例えば、キャパシタ221の容量値は高い周波数に対してインピーダンスが十分に低くなる値であり、キャパシタ222の容量値はキャパシタ221よりも低い周波数に対してインピーダンスが十分に低くなる値であり、キャパシタ223の容量値はキャパシタ222よりも低い周波数に対してインピーダンスが十分に低くなる値である。
 第2の分路81,82,83のそれぞれにおいて、キャパシタ231,232,233が接続されている。キャパシタ231,232,233は対接地接続されている。キャパシタ231,232,233の容量値は互いに異なる。例えば、キャパシタ231の容量値は高い周波数に対してインピーダンスが十分に低くなる値であり、キャパシタ232の容量値はキャパシタ231よりも低い周波数に対してインピーダンスが十分に低くなる値であり、キャパシタ233の容量値はキャパシタ232よりも低い周波数に対してインピーダンスが十分に低くなる値である。
 市販のキャパシタおよび半導体プロセスで作製したキャパシタには、容量成分だけでなく寄生の誘導成分も内在し、この誘導成分は周波数が高い程大きくなる。第1、第2の信号電極30,40に入力する高周波信号の差動のアンバランス、製造のばらつきによる第1、第2の信号電極30,40を伝搬する電気信号の電気長のアンバランスが、幅広い周波数において生じることがある。
 そこで、図5に示した光変調器200Aにおいては、幅広い周波数において高周波信号の差動のアンバランスが生じた場合において、接続点6の電位がゼロとなるように補償するため、第1の終端抵抗50と接続点6とを接続する主路から分岐する複数の第1の分路71,72,73に、容量の異なる複数のキャパシタ221,222,223を設ける。また、第2の終端抵抗60と接続点6とを接続する主路から分岐する複数の第2の分路81,82,83に容量値の異なる複数のキャパシタ231,232,233を設ける。
 なお、周波数が高い程電気長が長いため、図5に示したように、より高い周波数用のキャパシタ221,231を第1、第2の終端抵抗50,60のより近くに配置した方が、高周波信号に対する接続点6の電位をより効果的にゼロに補償することができる。
 また、本変形例においては、第1の分路71,72,73の個数を3個としたが、第1の分路が複数であれば、これに限定されるものではない。同様に、本変形例においては、第2の分路81,82,83の個数を3個としたが、第2の分路が複数であれば、これに限定されるものではない。
 <効果>
 本実施の形態2における光変調器200は、第1の終端抵抗50と接続点6とを接続する主路から分岐する少なくとも1つの第1の分路70と、第2の終端抵抗60と接続点6とを接続する主路から分岐する少なくとも1つの第2の分路80と、をさらに備え、第1の分路70にはキャパシタ220が接続されていて、第2の分路80にはキャパシタ230が接続されている。
 実施の形態2における光変調器200においては、高周波信号の差動のアンバランスが生じた場合であっても、第1の分路70に設けられたキャパシタ220および第2の分路80に設けられたキャパシタ230が接続点6の電位を高周波信号に対してゼロに補償する。従って、高周波信号に直流電圧源7側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することができる。
 また、本実施の形態2の変形例における光変調器200Aにおいて、少なくとも1つの第1の分路70は複数であり、複数の第1の分路71,72,73のそれぞれに接続されているキャパシタ221,222,232の容量値は互いに異なり、少なくとも1つの第2の分路80は複数であり、複数の第2の分路81,82,83のそれぞれに接続されているキャパシタ231,232,233の容量値は互いに異なる。
 実施の形態2の変形例における光変調器200Aにおいては、幅広い周波数において高周波信号の差動のアンバランスが生じた場合であっても、複数の第1の分路71,72,73に設けられた互いに容量値の異なるキャパシタ221,222,223および複数の第2の分路81,82,83に設けられた互いに容量値の異なるキャパシタ231,232,233が接続点6の電位を高周波信号に対してゼロに補償する。従って、高周波信号に直流電圧源7側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することができる。
 <実施の形態3>
 図6は、本実施の形態3における光変調器300の構成を示す図である。図6において、実施の形態1における光変調器100(図1)又は実施の形態2における光変調器200(図4)と共通する構成要素に関しては、同一の符号を付して説明を省略する。
 図6に示すように、本実施の形態3における光変調器200は、実施の形態1における光変調器100(図1)に対して、分路90をさらに備える。分路90は、接続点6と直流電圧源7とを接続する主路から分岐する。分路90にはキャパシタ240が接続されている。キャパシタ240は対接地接続されている。キャパシタ240の高周波信号に対するインピーダンスは十分に低いものとする。
 <変形例>
 図7は、実施の形態3における光変調器300の変形例としての光変調器300Aを示す図である。光変調器300(図6)においては、分路90を1個設けた。一方、光変調器300Aにおいては複数の分路91,92,93を設ける。
 図7に示すように、本変形例において光変調器300Aは、接続点6と直流電圧源7とを接続する主路から分岐する3個の分路91,92,93を備える。
 分路91,92,93のそれぞれにおいて、キャパシタ241,242,243が接続されている。キャパシタ241,242,243は対接地接続されている。キャパシタ241,242,243の容量値は互いに異なる。例えば、キャパシタ241の容量値は高い周波数に対してインピーダンスが十分に低くなる値であり、キャパシタ242の容量値はキャパシタ241よりも低い周波数に対してインピーダンスが十分に低くなる値であり、キャパシタ243の容量値はキャパシタ242よりも低い周波数に対してインピーダンスが十分に低くなる値である。
 なお、本変形例においては、分路91,92,93の個数を3個としたが、分路が複数であれば、これに限定されるものではない。
 <効果>
 本実施の形態3における光変調器300は、接続点6と直流電圧源7とを接続する主路から分岐する少なくとも1つの分路90をさらに備え、分路90にはキャパシタ240が接続されている。
 従って、本実施の形態3における光変調器300においては、実施の形態2における光変調器200と同様の効果が得られるとともに、光変調器200と比較してキャパシタの個数を削減することが可能である。よって、光変調器300のサイズの増大を抑制出来る利点がある。
 また、本実施の形態3の変形例における光変調器300Aにおいて、少なくとも1つの分路90は複数であり、複数の分路91,92,93のそれぞれに接続されているキャパシタ241,242,243の容量値は互いに異なる。
 実施の形態3の変形例における光変調器300Aにおいては、幅広い周波数において高周波信号の差動のアンバランスが生じた場合であっても、複数の分路91,92,93に設けられた互いに容量値の異なるキャパシタ241,242,243が接続点6の電位を高周波信号に対してゼロに補償する。従って、高周波信号に直流電圧源7側のインピーダンスの影響を与えずに、直流の電圧を第1、第2の信号電極30,40に印加することができる。さらに、実施の形態2の変形例における光変調器200Aと比較して、キャパシタの個数を削減することが可能である。よって、光変調器300Aのサイズの増大を抑制出来る利点がある。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1,2,100,200,200A,300,300A 光変調器、3 光分波部、4 光合波部、5 光位相πシフタ、6 接続点、7 直流電圧源、8 信号入力部、9 終端部、10 第1の光導波路、20 第2の光導波路、30 第1の信号電極、31,41 グランド電極、40 第2の信号電極、50 第1の終端抵抗、60 第2の終端抵抗、70,71,72,73 第1の分路、80,81,82,83 第2の分路、90,91,92,93 分路、140,150,183,193 終端抵抗、180,190 バイアスティー、181,191 インダクタ、182,192 キャパシタ、220,221,222,223,230,231,232,233,240,241,242,243 キャパシタ。

Claims (5)

  1.  分岐した光を伝搬させる第1、第2の光導波路(10,20)と、
     前記第1の光導波路(10)に第1の高周波信号を入力する第1の信号電極(30)と、
     前記第2の光導波路(20)に、前記第1の高周波信号と逆相の第2の高周波信号を入力する第2の信号電極(40)と、
     前記第1の信号電極(30)の終端部側に接続された第1の終端抵抗(50)と、
     前記第2の信号電極(40)の終端部側に接続された第2の終端抵抗(60)と、
     前記第1、第2の終端抵抗(50,60)を介して前記第1、第2の信号電極(30,40)を接続する接続点(6)と、
     前記接続点(6)に接続された直流電圧源(7)と、
     を備え、
     前記第1の終端抵抗(50)の抵抗値は、前記第1の信号電極(30)の特性インピーダンスと等しく、
     前記第2の終端抵抗(60)の抵抗値は、前記第2の信号電極(40)の特性インピーダンスと等しい、
    光変調器(100)。
  2.  前記第1の終端抵抗(50)と前記接続点(6)とを接続する主路から分岐する少なくとも1つの第1の分路(70)と、
     前記第2の終端抵抗(60)と前記接続点(6)とを接続する主路から分岐する少なくとも1つの第2の分路(80)と、
     をさらに備え、
     前記第1の分路(70)にはキャパシタ(220)が接続されていて、
     前記第2の分路(80)にはキャパシタ(230)が接続されている、
    請求項1に記載の光変調器(200)。
  3.  前記少なくとも1つの第1の分路(70)は複数であり、
     複数の前記第1の分路(71,72,73)のそれぞれに接続されている前記キャパシタ(221,222,223)の容量値は互いに異なり、
     前記少なくとも1つの第2の分路(80)は複数であり、
     複数の前記第2の分路(81,82,83)のそれぞれに接続されている前記キャパシタ(231,232,233)の容量値は互いに異なる、
    請求項2に記載の光変調器(200A)。
  4.  前記接続点(6)と前記直流電圧源(7)とを接続する主路から分岐する少なくとも1つの分路(90)をさらに備え、
     前記分路(90)にはキャパシタ(240)が接続されている、
    請求項1に記載の光変調器(300)。
  5.  前記少なくとも1つの分路(90)は複数であり、
     複数の前記分路(91,92,93)のそれぞれに接続されている前記キャパシタ(241,242,243)の容量値は互いに異なる、
    請求項4に記載の光変調器(300A)。
PCT/JP2017/006805 2016-06-03 2017-02-23 光変調器 WO2017208526A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780031577.0A CN109154728B (zh) 2016-06-03 2017-02-23 光调制器
DE112017002791.8T DE112017002791T5 (de) 2016-06-03 2017-02-23 Optischer Modulator
JP2018520362A JP6703102B2 (ja) 2016-06-03 2017-02-23 光変調器
US16/092,357 US10534239B2 (en) 2016-06-03 2017-02-23 Optical modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111475 2016-06-03
JP2016111475 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017208526A1 true WO2017208526A1 (ja) 2017-12-07

Family

ID=60478281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006805 WO2017208526A1 (ja) 2016-06-03 2017-02-23 光変調器

Country Status (5)

Country Link
US (1) US10534239B2 (ja)
JP (1) JP6703102B2 (ja)
CN (1) CN109154728B (ja)
DE (1) DE112017002791T5 (ja)
WO (1) WO2017208526A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220971A1 (ja) * 2018-05-16 2019-11-21 日本電信電話株式会社 光変調器
JP2021021896A (ja) * 2019-07-30 2021-02-18 富士通オプティカルコンポーネンツ株式会社 光デバイス
CN113424100A (zh) * 2019-02-14 2021-09-21 日本电信电话株式会社 半导体马赫-曾德光学调制器和iq调制器
EP3913425A4 (en) * 2019-01-16 2022-10-12 Nippon Telegraph And Telephone Corporation MACH ZEHNDER OPTICAL SEMICONDUCTOR MODULATOR

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091969B2 (ja) * 2018-09-25 2022-06-28 日本電信電話株式会社 光変調器モジュール
JP6995247B2 (ja) * 2019-05-29 2022-02-04 三菱電機株式会社 光モジュール
CN113625476B (zh) * 2020-05-07 2024-06-18 华为技术有限公司 电光调制器、电光调制电路以及光通信设备
JP2022131936A (ja) * 2021-02-26 2022-09-07 Tdk株式会社 光変調素子および光変調器
GB2614523A (en) * 2021-11-09 2023-07-12 Smart Photonics Holding B V Electro-optical modulator
GB2619055A (en) * 2022-05-26 2023-11-29 Axenic Ltd A travelling wave electro-optic modulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328348A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 光変調装置および交番位相化パルス発生装置
JP2012078759A (ja) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp 光変調器
US20140199014A1 (en) * 2011-06-20 2014-07-17 Fraunhofer Gesellschaft zur Foerderung angewandten Forschung e.V. Electro-optic mach-zehnder modulator and method for fabricating an electro-optic mach-zehnder modulator
WO2015075259A1 (en) * 2013-11-25 2015-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrical line arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376795B2 (ja) * 2003-03-24 2009-12-02 富士通株式会社 導波路型光変調器
JP5806174B2 (ja) 2012-06-27 2015-11-10 日本電信電話株式会社 マッハツェンダ光変調器を用いた光強度変調装置
US8948608B1 (en) * 2012-09-27 2015-02-03 Inphi Corporation Direct-coupled driver for mach-zehnder optical modulators
JP6217268B2 (ja) 2013-09-13 2017-10-25 富士通オプティカルコンポーネンツ株式会社 光モジュールおよび光送信機
JP6330549B2 (ja) * 2014-07-25 2018-05-30 住友電気工業株式会社 光半導体素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328348A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 光変調装置および交番位相化パルス発生装置
JP2012078759A (ja) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp 光変調器
US20140199014A1 (en) * 2011-06-20 2014-07-17 Fraunhofer Gesellschaft zur Foerderung angewandten Forschung e.V. Electro-optic mach-zehnder modulator and method for fabricating an electro-optic mach-zehnder modulator
WO2015075259A1 (en) * 2013-11-25 2015-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrical line arrangement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220971A1 (ja) * 2018-05-16 2019-11-21 日本電信電話株式会社 光変調器
JP2019200293A (ja) * 2018-05-16 2019-11-21 日本電信電話株式会社 光変調器
US11467467B2 (en) 2018-05-16 2022-10-11 Nippon Telegraph And Telephone Corporation Optical modulator
EP3913425A4 (en) * 2019-01-16 2022-10-12 Nippon Telegraph And Telephone Corporation MACH ZEHNDER OPTICAL SEMICONDUCTOR MODULATOR
CN113424100A (zh) * 2019-02-14 2021-09-21 日本电信电话株式会社 半导体马赫-曾德光学调制器和iq调制器
EP3926393A4 (en) * 2019-02-14 2022-10-05 Nippon Telegraph And Telephone Corporation SEMICONDUCTOR MACH-ZEHNDER OPTICAL MODULATOR AND IQ OPTICAL MODULATOR
JP2021021896A (ja) * 2019-07-30 2021-02-18 富士通オプティカルコンポーネンツ株式会社 光デバイス
JP7404696B2 (ja) 2019-07-30 2023-12-26 富士通オプティカルコンポーネンツ株式会社 光デバイス

Also Published As

Publication number Publication date
CN109154728A (zh) 2019-01-04
US20190129273A1 (en) 2019-05-02
JP6703102B2 (ja) 2020-06-03
US10534239B2 (en) 2020-01-14
DE112017002791T5 (de) 2019-02-14
CN109154728B (zh) 2022-03-22
JPWO2017208526A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6703102B2 (ja) 光変調器
US9244327B2 (en) Mach-Zehnder modulator with backplane voltage equalization
US9606416B2 (en) Differential TWE MZM driver for silicon photonics
US9069223B2 (en) Mach-Zehnder optical modulator using a balanced coplanar stripline with lateral ground planes
US9482925B2 (en) Mach-Zehnder optical modulator with embedded active elements
US10678112B2 (en) Fully differential traveling wave series push-pull mach-zehnder modulator
US7133576B2 (en) Traveling-wave optoelectronic wavelength converter
US9008469B2 (en) Mach-zehnder optical modulator having an asymmetrically-loaded traveling wave electrode
JP6701115B2 (ja) 光送信機
JP2018105975A (ja) 光変調素子
JP2005062855A (ja) 分布型低域フィルタ伝送線回路装置
JP2015125153A (ja) 光モジュール
US9915849B2 (en) Optical modulator
JP2019045666A (ja) 半導体マッハツェンダ光変調器およびiq変調器
JP2015212769A (ja) 半導体マッハツェンダ光変調器
WO2019176665A1 (ja) 光変調器
JP6639375B2 (ja) 光変調器
WO2023248352A1 (ja) 光変調器
WO2023248360A1 (ja) 光変調器
JP5532038B2 (ja) 光変調器
WO2023095261A1 (ja) マッハツェンダ変調器
JP4209357B2 (ja) 半導体光変調器
JP6306936B2 (ja) 光送信器及び光送信器の制御方法
JP2002076508A (ja) 分布型ブラッグ反射鏡レーザ内の電気的クロストーク及び波長チャープを減少させる方法及び装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520362

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806088

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806088

Country of ref document: EP

Kind code of ref document: A1