WO2019176665A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2019176665A1
WO2019176665A1 PCT/JP2019/008741 JP2019008741W WO2019176665A1 WO 2019176665 A1 WO2019176665 A1 WO 2019176665A1 JP 2019008741 W JP2019008741 W JP 2019008741W WO 2019176665 A1 WO2019176665 A1 WO 2019176665A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency line
frequency
optical
line
segments
Prior art date
Application number
PCT/JP2019/008741
Other languages
English (en)
French (fr)
Inventor
菊池 順裕
英一 山田
常祐 尾崎
義弘 小木曽
悠太 上田
慎介 中野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/970,283 priority Critical patent/US11372307B2/en
Publication of WO2019176665A1 publication Critical patent/WO2019176665A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern

Definitions

  • the present invention relates to an optical modulator that performs modulation with a high-frequency modulation signal.
  • optical components have been integrated, complicated, and signal speeded up.
  • optical components include an optical modulator.
  • an optical I / Q modulator based on a Mach-Zehnder (MZ) modulator that supports multi-level modulation such as QPSK and 16QAM (for example, the following non-patent document) 1) has been used.
  • MZ Mach-Zehnder
  • FIG. 1 shows a configuration example of a conventional optical I / Q modulator.
  • the optical I / Q modulator 100 includes MZ interferometers MZa and MZb arranged in parallel on the optical waveguide substrate 101, and an optical circuit constituting the MZ interferometer MZc that connects these MZ interferometers MZa and MZb in parallel. Is formed.
  • electrodes including an input high-frequency line 103, a light modulation high-frequency line 104, and an output high-frequency line 105 are further formed.
  • the light modulation high-frequency line 104 includes a signal electrode formed on each arm of the MZ interferometers MZa and MZb, and a ground electrode formed on both sides of the signal electrode.
  • a modulator driving driver IC 102 for generating a high-frequency electric signal and a termination resistor 106 are connected to the input high-frequency line 103 and the output high-frequency line 105, respectively.
  • the high-frequency electric signal generated by the driver IC 102 is input to the light modulation high-frequency line 104 formed in the light modulation region via the input high-frequency line 103, and converted into an optical signal by the electro-optic (EO) effect in the light modulation high-frequency line 104. Modulation is applied.
  • the high-frequency electric signal transmitted through the light modulation high-frequency line 104 is terminated by the termination resistor 106 through the output high-frequency line 105.
  • the optical I / Q modulator 100 for example, in order to generate an optical modulation signal of 100 Gbit / s or more, a high-frequency high-frequency electric signal having a symbol rate of several tens of Gbaud is input to each MZ modulator in the chip. It will be. In order to handle a signal having a very high frequency as described above, the optical I / Q modulator 100 is required to have a wide EO band in order to generate a high-quality optical signal.
  • traveling wave electrodes For widening the bandwidth, the use of traveling wave electrodes is known as an effective method. In the design of the traveling wave electrode, it is important that the propagation loss of the light modulation high-frequency line 104 is small, and that 50 ⁇ impedance matching and speed matching between electricity and light are taken.
  • One method of forming the light modulation high-frequency line 104 with a small propagation loss is to increase the cross-sectional area of the wiring electrode to lower the wiring resistance.
  • this lowers the impedance and increases the phase speed of electricity, so that impedance mismatches and velocity mismatches may occur in some cases in designs that place too much emphasis on reducing propagation loss.
  • impedance mismatch occurs, the high-frequency electrical signal output from the driver IC 102 cannot be efficiently input to the optical modulator, and the waveform is deteriorated due to the influence of reflection. Further, the efficiency of light modulation also decreases when the speed mismatch is large.
  • a broadband optical modulation high-frequency line that realizes impedance matching and velocity matching at a high level is required.
  • an optical modulation high-frequency line a traveling wave line loaded with a capacitor (see Non-Patent Document 2), a segment, and the like Divided traveling wave lines (see Non-Patent Document 3) and the like are known. These light modulation high-frequency lines are designed to have a predetermined impedance for each segment, and the plurality of segments are repeated to form a uniform impedance line.
  • Non-Patent Document 4 an open drain or open collector configuration has been proposed as a connection method between the driver IC and the optical modulator.
  • the impedance matching condition when the modulator is viewed from the driver IC is relaxed, a high-frequency electric signal can be efficiently input to an optical modulator having an arbitrary impedance within a certain range, and low power consumption can be achieved.
  • the impedance when the driver IC is viewed from the modulator side that is, the output impedance appears infinite. Therefore, if there is a reflection point due to impedance mismatch after the input high-frequency line, multiple reflections occur between the reflection point due to the impedance mismatch and the connection point between the driver IC and the optical modulator, and waveform degradation may occur in some cases. May occur.
  • the EO modulation degree of the traveling wave electrode type optical modulator is determined by the length of the light modulation region, the impedance, the electric propagation constant, and the group velocity of light.
  • the fact that the EO band is a wide band means that the frequency dependence of the EO modulation degree is small and the drop in the modulation degree on the high frequency side is small.
  • FIG. 2 shows an equivalent circuit of one high-frequency line of the optical modulator shown in FIG. 1, and Z S , Z a , Z MZ , Z b , and Z L are input terminals, input high-frequency lines 103, and MZ, respectively.
  • This is the impedance of the light modulation high-frequency line 104, output high-frequency line 105, and termination resistor 106 in the modulator section.
  • Z S is usually 50 ⁇
  • a design in which Z a , Z MZ , Z b , and Z L are all impedance matched to 50 ⁇ is common.
  • the high-frequency electric signal input from the driver IC 102 is reflected at each connection point according to the impedance difference. Finally, it is terminated with a termination resistor 106.
  • FIGS. 3 and 4 show cross sections of line examples of traveling wave electrode type semiconductor optical modulators.
  • FIG. 3 shows the line configuration of the input high-frequency line 103 and the output high-frequency line 105 employing a microstrip line
  • FIG. 4 shows the line configuration of the light modulation high-frequency line 104.
  • the input high-frequency line 103 and the output high-frequency line 105 have a structure in which a ground electrode 302, a dielectric 303, and a signal electrode 304 are sequentially stacked on an optical waveguide substrate 301.
  • a lower clad layer 402 In the optical modulation high-frequency line 104, a lower clad layer 402, a core layer 404, and an upper clad layer 405 are sequentially laminated on an optical waveguide substrate 401 to form a ridge-type waveguide, and a ground electrode 403 and an upper portion are formed on the lower clad layer 402.
  • Each of the signal electrodes 406 is formed on the cladding layer 405.
  • FIG. 5 shows an input end, an input high-frequency line 103, a light-modulated high-frequency line 104 of the MZ modulator section, an output high-frequency line 105, and a termination resistor in the traveling wave electrode type semiconductor optical modulator adopting the line configuration shown in FIGS.
  • the impedances Z S , Z a , Z MZ , Z b , and Z L of 106 are shown.
  • Impedance Z a is 50 ⁇ input impedance Z S of the input high-frequency line 103, for propagation loss reduction of the optical modulation region, the light modulating transmission line 104 and later of the line, i.e., the impedance of the light modulating high-frequency line 104 Z MZ, the output
  • the impedance Z b of the high-frequency line 105 and the impedance Z L of the termination resistor 106 are 30 ⁇ . The impedance of each part was realized by appropriately setting the width of the signal electrode.
  • FIG. 6 shows the transmission characteristic S21 and the reflection characteristic S11 with S parameters calculated for the traveling wave electrode type semiconductor optical modulator shown in FIGS.
  • FIG. 7 shows the EO response to the frequency calculated for the traveling wave electrode type semiconductor optical modulator shown in FIGS.
  • the calculation result shown in FIG. 6 indicates that the reflection characteristic S11 is degraded to near ⁇ 10 dB due to impedance mismatch occurring at the interface between the input high-frequency line 103 and the light modulation high-frequency line 104. This is because the high-frequency electrical signal from the driver IC 102 cannot be efficiently input to the optical modulation region, and the EO band cannot be said to be sufficiently expanded, and there is a problem in terms of suppressing waveform deterioration due to the signal return to the driver IC 102. is there.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an optical modulator that can efficiently input a high-frequency electric signal to an optical modulation region and has a broadband optical modulation high-frequency line. It is in.
  • an optical modulation high-frequency line formed so as to provide an electro-optic effect to an electric signal propagating through an optical waveguide, and the optical modulation high-frequency line connected to the optical modulation high-frequency line
  • An optical modulator including a high-frequency line including an input high-frequency line and an output high-frequency line, wherein at least one of the light-modulated high-frequency line, the input high-frequency line, and the output high-frequency line includes a plurality of It is divided into segments, and has different characteristic impedances and propagation constants between adjacent segments so that the EO band in the optical modulation high-frequency line is expanded as compared with the case where the characteristic impedances and propagation constants of the plurality of segments are uniform. Characterized by being designed.
  • an optical modulation high-frequency line formed so as to provide an electro-optic effect to an electric signal propagating through an optical waveguide, an input high-frequency line connected to the optical modulation high-frequency line, and an output high-frequency line And at least one of the optical modulation high-frequency line, the input high-frequency line, and the output high-frequency line is divided into a plurality of segments. It is designed to have different characteristic impedances and propagation constants between the adjacent segments so that reflection characteristics become smaller at the input end of the input high-frequency line than when the characteristic impedance and propagation constant are uniform.
  • the high-frequency line further divided into the plurality of segments is designed such that at least one of the width and thickness of the signal line of the high-frequency line differs between the adjacent segments. To do.
  • the high-frequency line further divided into the plurality of segments is designed such that the inter-electrode distance between the signal electrode and the ground electrode is different between the adjacent segments.
  • the high-frequency line divided into the plurality of segments is designed such that the dielectric constant of the dielectric between the signal electrode and the ground electrode is different between the adjacent segments.
  • FIG. 6 is a diagram showing transmission characteristics S21 and reflection characteristics S11 with S parameters calculated for the traveling wave electrode type semiconductor optical modulator shown in FIGS.
  • FIG. 6 is a diagram showing an EO response to frequency calculated for the traveling wave electrode type semiconductor optical modulator shown in FIGS. It is a figure which shows the characteristic impedance of the high frequency track
  • the input high-frequency line and the output high-frequency line according to this embodiment are microstrip lines, and a ground electrode 302, a dielectric layer 303, and a signal electrode are formed on the SI-InP substrate 301 as shown in the cross-sectional view of FIG.
  • the basic structure is sequentially laminated with 304.
  • the light modulation high-frequency line is as shown in the cross-sectional view of FIG. 4.
  • an n-InP cladding layer 402 a non-doped semiconductor core layer 404 functioning as an optical waveguide layer
  • p An InP cladding layer 405 is sequentially stacked.
  • the optical waveguide structure has a high mesa waveguide structure, and voltage is applied to the semiconductor core layer 404, a signal electrode 406 and a ground electrode 403 are formed on the n-InP cladding layer 402 and the p-InP cladding layer 405, respectively. Is provided. When a negative voltage (reverse bias) is applied between these electrodes, a refractive index change occurs in the semiconductor core layer 404 due to the electro-optic effect, and as a result, the phase of light can be changed, that is, modulated.
  • a negative voltage reverse bias
  • the semiconductor core layer 404 can be composed of a single-component quaternary mixed crystal bulk layer or multiple quantum well layer using a material system such as InGaAsP or InGaAlAs. Further, the semiconductor core layer 404 may have a structure including a multiple quantum well layer and an optical confinement layer having a band gap larger than that of the multiple quantum well layer and lower than that of the InP layer. Furthermore, non-doped InP layers can be inserted above and below these semiconductor core layers 404. Further, the band gap wavelength of the quaternary mixed crystal bulk layer or the multiple quantum well layer is set so that the electro-optic effect acts effectively and the light absorption does not become a problem at the light wavelength to be used.
  • FIG. 8 shows the characteristic impedance of the high-frequency line of the optical modulator according to the first embodiment of the present invention.
  • the high-frequency line that is, the input high-frequency line (AB), the light-modulated high-frequency line (BC), and the output high-frequency line (CD) in the optical modulator as shown in FIG.
  • the output high-frequency line (CD) are each divided into a plurality of segments, and a line configuration having different characteristic impedances and propagation constants between adjacent segments is obtained.
  • Such an input high-frequency line and an output high-frequency line are obtained by changing the width or thickness of the signal electrode 902 formed on the dielectric 901 constituting the microstrip line between adjacent segments as shown in FIG. It is feasible.
  • the characteristic impedance and the propagation constant can be changed by changing the dielectric constant of the dielectric 901 instead of changing the width or thickness of the signal electrode 902.
  • the examples shown in FIGS. 8 and 9 are divided into 7 segments.
  • the high-frequency signal input from the input terminal changes the reflection amount according to the impedance difference at the impedance discontinuity point between the input high-frequency line 103 and the termination resistor 106.
  • a reflected wave is generated, and this reflected wave sometimes generates multiple reflections, which are superimposed on each other or cancel each other, and are also synthesized with a traveling wave.
  • This synthesized high frequency signal modulates the optical signal by the electro-optic effect in the optical modulation region. Therefore, if the generation of this reflected wave is optimally designed and the synthesized harmonic signal maintains a higher voltage in the optical modulation region and can obtain a higher degree of modulation at each frequency, it is possible to obtain a wide band.
  • An optical modulator with high modulation efficiency can be realized.
  • the total length of the input high frequency line 103 and the output high frequency line 105 of the optical I / Q modulator shown in FIG. 1 is 1.5 mm, and the length of the light modulation high frequency line 104 is 3.0 mm.
  • the lengths of the unit segments of the input high-frequency line 103 and the output high-frequency line 105 are each 100 um.
  • the input terminal impedance Z S was fixed at 50 ⁇ , the optical modulation high-frequency line impedance Z MZ , and the termination resistor impedance Z L at 30 ⁇ .
  • the impedances of the input high-frequency line 103 and the output high-frequency line 105 are changed to the width of the signal electrode of the microstrip so that 18 kinds of values can be obtained between 30 to 75 ⁇ .
  • the propagation constant is uniquely determined according to the impedance determined by the structure.
  • the optimization procedure is as follows. First, for example, 100 kinds of individual arrays of combinations of impedances and propagation constants of the input high-frequency line 103 having 15 segments and the output high-frequency line 105 are created by random numbers. This is the first generation population. Next, two individuals are selected by random numbers, and the arrays of the individuals are exchanged with the segments determined by the random numbers (crossover). Further, the impedance and propagation constant of the segment having a certain set probability are replaced with the original 18 types of impedance and propagation constant (mutation). By repeating these 50 times, 100 new individuals can be generated. The S parameter and the EO band of the entire 100 individual optical modulators are calculated, and the evaluation value is calculated.
  • the evaluation value is the sum of the reflection amount of S11 of each frequency and the deviation amount from 0 dB (modulation degree 100%) of the EO response over the entire frequency. That is, the smaller this evaluation value, the smaller the reflection seen from the input end, the EO characteristic is flat with respect to the frequency, and the EO band is wide.
  • three individuals are selected by random numbers from the new group of 100 individuals, and the one with the smallest evaluation value is selected as the second generation individual.
  • 100 individuals of the second generation can be generated.
  • Such a procedure is repeated a predetermined number of times, and each time a generation is passed, the population is adapted to the environment (the EO band is wide). Then, an array having the smallest evaluation value in the final generation is obtained as an optimal solution.
  • FIG. 10 and 11 show the S parameter and EO response of the optimum solution finally obtained as the high-frequency line of the optical modulator according to the first embodiment of the present invention.
  • the S parameter and the EO response in the line of uniform width mentioned in the prior art are similarly plotted for comparison.
  • FIG. 10 in the present invention, reflection is particularly suppressed on the high frequency side. As a result, a high frequency signal can be efficiently input from the driver IC 102. Due to this reflection suppression effect, smoother characteristics can also be realized in the EO band.
  • FIG. 12 shows the impedance of a high-frequency line of an optical modulator employing an open drain / open collector connection configuration for connection between a driver IC and an optical I / Q modulator. Indicates. As described above, in this configuration, when the driver IC 102 is viewed from the modulator side, it appears to be high impedance. This time, the calculation was performed assuming that the impedance Z s of the input terminal is 1000 ⁇ . All other parameters are the same. The evaluation value is the total sum of the deviation amounts from 0 dB (modulation degree 100%) of the EO response over the entire frequency.
  • FIG. 12 shows an example in which the image is divided into 7 segments. The following example is an example in which the image is divided into 15 segments.
  • FIG. 13 shows an EO response of the optimum solution finally obtained as a high-frequency line of the optical modulator employing the open drain / open collector connection configuration according to the first embodiment of the present invention.
  • the impedance Z s of the input terminal is 1000 ⁇
  • the impedance Z a of the input high-frequency line the impedance Z MZ of the light modulation high-frequency line
  • the impedance Z b of the output high-frequency line the impedance ZL of the termination resistor are 30 ⁇ . Is illustrated.
  • the result of FIG. 13 shows that the application of the present invention greatly increases the EO band.
  • both the input high-frequency line 103 and the output high-frequency line 105 are segmented.
  • only one of the input high-frequency line 103 and the output high-frequency line 105 is segmented. Even if optimized, the reflection characteristics and EO response characteristics can be improved.
  • FIG. 15 shows the characteristic impedance of the high-frequency line of the optical modulator according to the second embodiment of the present invention.
  • the first embodiment is an example in which the input high-frequency line 103 and the output high-frequency line 105 are divided into segments
  • the light modulation high-frequency line 104 is also divided into segments.
  • FIG. 15 shows an example in which the input high-frequency line 103 and the output high-frequency line 105 are divided into 7 segments, and the light modulation high-frequency line 104 is divided into 10 segments.
  • the total length of the input high frequency line 103 and the output high frequency line 105 is 1.5 mm
  • the length of the light modulation high frequency line 104 is 3.0 mm
  • the input high frequency line 103 the output high frequency line.
  • the length of the 105 unit segments was 100 um
  • the length of the unit segments of the optical modulation high-frequency line 104 was 300 um. That is, the input high frequency line 103 and the output high frequency line 105 were divided into 15 segments, and the light modulation high frequency line 104 was divided into 10 segments.
  • the input terminal impedance Z S was fixed at 50 ⁇ , and the terminal resistance impedance Z L was fixed at 30 ⁇ .
  • the input high-frequency line 103 and the output high-frequency line 105 can take 18 kinds of values between 30 and 75 ⁇ by changing the signal line width of the microstrip line.
  • the width or thickness of the signal electrode 1401 is changed between adjacent segments, and the impedance is reduced to 30 ⁇ to 40 ⁇ by changing the distance from the ground electrode 1402. 8 kinds of values can be taken.
  • the propagation constant is uniquely determined according to the impedance determined by the structure. Instead of changing the width or thickness of the signal electrode 1401, the characteristic impedance and the propagation constant can be changed by changing the distance between the signal electrode 1401 and the ground electrode 1402 by changing the width of the ground electrode 1402. Is possible.
  • the optimization procedure is the same as the method shown in the first embodiment except that a segmented light modulation region is added as an optimization target.
  • the evaluation value was defined as the sum of the reflection amount of S11 of each frequency and the deviation amount of the EO response from 0 dB (modulation degree 100%) over the entire frequency.
  • 16 to 18 show the S parameter, EO response, and characteristic impedance of the optimum solution finally obtained as the high-frequency line of the optical modulator according to the second embodiment of the present invention.
  • the impedance Z S of the input terminal is 50 ⁇
  • the impedance Z a of the input high-frequency line 103 is 50 ⁇
  • the impedance Z MZ of the light modulation high-frequency line 104 is 30 ⁇
  • FIG. 16 shows that reflection is remarkably suppressed in this embodiment.
  • a high frequency signal can be efficiently input from the driver IC 102.
  • the electrical transmission characteristic S21 is deteriorated from the reference example.
  • the result of the EO response shown in FIG. 17 is that the EO band important as an optical modulator is greatly improved, and a smooth and wide band characteristic can be realized. It shows that.
  • FIG. 18 shows the characteristic impedance of the high-frequency line of the optical modulator employing an open drain / open collector connection configuration for connection between the driver IC and the optical I / Q modulator according to the second embodiment of the present invention.
  • FIG. 19 shows an EO response of the optimum solution finally obtained as a high-frequency line of an optical modulator employing the open drain / open collector connection configuration according to the second embodiment of the present invention.
  • the comparative example shown for reference has the same configuration as the comparative example shown in the first embodiment. The result of FIG. 19 shows that the application of the second embodiment significantly increases the EO band.
  • the present invention is not limited to the structures of the input high-frequency line, output high-frequency line, and light modulation high-frequency line shown in the first and second embodiments, but can be applied to various high-frequency lines such as a coplanar high-frequency line. Applicable.
  • the semiconductor optical modulator is not limited to the exemplified parameter range such as impedance, but can be applied to an optical modulator using other materials such as LiNbO 3 or Si.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光変調領域に効率よく高周波電気信号を入力でき、広帯域な光変調高周波線路を有する光変調器を提供すること。光変調器の高周波線路、すなわち図1と同様に入力高周波線路(A-B)、光変調高周波線路(B-C)及び出力高周波線路(C-D)において、入力高周波線路(A-B)及び出力高周波線路(C-D)をそれぞれ複数のセグメントに分割し、隣接するセグメント間で異なる特性インピーダンス、伝搬定数を持つ線路構成とすることを特徴としている。入力高周波線路および出力高周波線路は、マイクロストリップラインを構成する誘電体上に形成されたシグナル電極の幅又は厚みを隣接するセグメント間で変更することで実現可能である。また、シグナル電極の幅又は厚みを変更する代わりに、誘電体の誘電率を変更することでも特性インピーダンスおよび伝搬定数を変化させることが可能である。

Description

光変調器
 本発明は、高周波変調信号で変調を行う光変調器に関する。
 近年の爆発的なデータ通信量の増大に伴い光通信システムの大容量化が求められており、使われる光部品が集積化、複雑化、信号の高速化が進められている。そういった光部品の中には、例えば、光変調器が挙げられる。
 最近では、伝送容量を増大するため、QPSKや16QAMなどの多値変調に対応するマッハ・ツェンダー(MZ:Mach-Zehnder)変調器をベースとした光I/Q変調器(例えば、下記非特許文献1参照)が用いられるようになってきている。
 図1に、従来の光I/Q変調器の構成例を示す。光I/Q変調器100は、光導波路基板101上に並列に配置されたMZ干渉計MZa、MZb、およびそれらMZ干渉計MZa、MZbを並列に接続するMZ干渉計MZcを構成する光回路が形成されている。光導波路基板101上には、さらに入力高周波線路103、光変調高周波線路104および出力高周波線路105を含む電極が形成されている。光変調高周波線路104は、MZ干渉計MZa、MZbの各アーム上に形成されたシグナル電極と、シグナル電極の両側に形成されたグランド電極を含む。また、高周波電気信号を生成する変調器駆動用のドライバIC102、および終端抵抗106が、入力高周波線路103、出力高周波線路105にそれぞれ接続されている。
 ドライバIC102で生成された高周波電気信号は、入力高周波線路103を介して光変調領域に形成された光変調高周波線路104に入力され、光変調高周波線路104において電気光学(EO)効果により光信号に変調が加えられる。光変調高周波線路104を透過した高周波電気信号は、出力高周波線路105を通って終端抵抗106にて終端される。
 光I/Q変調器100では、例えば、100Gbit/s以上の光変調信号を生成するため、チップ内の各MZ変調器にはそれぞれ数十Gbaudのシンボルレートの高速な高周波電気信号が入力されることになる。このように非常に高い周波数の信号を扱うため、光I/Q変調器100には高品質な光信号を生成するために広帯域なEO帯域を持つことが求められる。
 広帯域化については、進行波電極の採用が有効な方法として知られている。この進行波電極の設計においては、光変調高周波線路104の伝搬ロスが小さいこと、および50Ωインピーダンス整合と電気と光の速度整合を取ることが重要である。
 伝搬ロスの小さい光変調高周波線路104を形成する1つの方法として、配線電極の断面積を拡大して配線抵抗を下げることが挙げられる。しかしながら、これは低インピーダンス化と電気の位相速度が高くなるため、伝搬ロス低減を重視しすぎる設計では、場合によりインピーダンス不整合や速度不整合が発生する。インピーダンス不整合が発生するとドライバIC102から出力される高周波電気信号が効率よく光変調器に入力できなくなり、反射の影響で波形劣化を招くことになる。また、速度不整合が大きい場合も光変調の効率が低下してしまう。
 そのためインピーダンス整合や速度整合を高いレベルで実現する広帯域な光変調高周波線路が求められるが、そのような光変調高周波線路としては容量が装荷された進行波線路(非特許文献2参照)や、セグメント分割された進行波線路(非特許文献3参照)などが知られている。これらの光変調高周波線路では、セグメント毎に所定のインピーダンスになるように設計され、それら複数のセグメントが繰り返されて均一なインピーダンス線路を構成している。
 しなしながら、これらの従来の光変調高周波線路は、部分的に光変調を供する導波路と接続された構成となっているため、単位長さ当たりの変調度が落ちるという課題がある。
 さらに最近では、ドライバICと光変調器との接続方法として、オープンドレイン、あるいはオープンコレクタ構成が提案されている(非特許文献4参照)。この構成では、ドライバICから変調器を見たインピーダンス整合条件が緩和され、ある範囲内の任意のインピーダンスを持つ光変調器に効率よく高周波電気信号を入力でき、低消費電力化も図れるという特徴を有する。
 しかしながら、このオープンドレイン、オープンコレクタを用いた構成では、変調器側からドライバICを見たインピーダンス、すなわち、出力インピーダンスは無限大に見える。そのため、入力高周波線路以降にインピーダンス不整合による反射点があると、そのインピーダンス不整合による反射点と、ドライバICと光変調器との接続点との間で多重反射が発生し、場合により波形劣化を生じさせることがある。
Nobuhiro Kikuchi, et al., "80-Gb/s Low-Driving-Voltage InP DQPSK Modulator With an n-p-i-n Structure", IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 12, JUNE 15, 2009, pp. 787-789 Robert G. Walker, "High-speed III-V Semiconductor Intensity Modulators", IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. 3, MARCH 1991, pp. 654-667 Robert Lewen, et al., "Segmented Transmission-Line Electroabsorption Modulators", Journal of Lightwave Technology, vol. 22, No.1, January 2004, pp. 172-179 N. Wolf, et al., "Electro-Optical Co-Design to Minimize Power Consumption of a 32 GBd Optical IQ-Transmitter Using InP MZ-Modulators", 37th IEEE COMPOUND SEMICONDUCTOR IC (CSIC) SYMPOSIUM, 2015 S. H. Lin, et al., "High-throughput GaAs PIN electroopitc modulator with a 3-dB bandwidth of 9.6 GHz at 1.3 GHz", Applied Optics, Vol.26, No.9, May 1987, pp. 1696-1700
 進行波電極型光変調器のEO変調度は、非特許文献5で示されているように、光変調領域の長さ、インピーダンス、電気の伝搬定数、光の群速度によって決まる。EO帯域が広帯域であるということは、上記EO変調度の周波数依存性が小さく、高周波側での変調度の落ち込みが小さいということである。
 また、ドライバICからの高周波電気信号を効率よく光変調領域へ入力するためには、光変調器の入力側のインピーダンス整合が取れている必要がある。図2は、図1に示した光変調器の1つの高周波線路の等価回路を示すもので、Z、Z、ZMZ、Z、Zはそれぞれ入力端、入力高周波線路103、MZ変調器部の光変調高周波線路104、出力高周波線路105、終端抵抗106のインピーダンスである。Zは通常50Ωであるため、Z、ZMZ、Z、Zをすべて50Ωにインピーダンス整合させる設計が一般的である。
 しかしながら、設計上や構造上の制約等によってインピーダンス整合が完全に取れない場合もあり、その場合、ドライバIC102から入力された高周波電気信号は、各接続点でインピーダンスの差に応じた反射を伴いながら、最終的には終端抵抗106で終端される。
 例えば、半導体材料を用いた進行波電極型光変調器においては、光変調高周波線路の変調効率と伝搬損失を鑑みて少し低めのインピーダンスを設定する場合がある。ここで、図3、4に、進行波電極型半導体光変調器の線路例の断面を示す。図3に、マイクロストリップ線路を採用した入力高周波線路103、及び、出力高周波線路105の線路構成を示し、図4に、光変調高周波線路104の線路構成を示す。入力高周波線路103、及び、出力高周波線路105は、光導波路基板301上にグランド電極302、誘電体303、シグナル電極304が順に積層された構造を有している。光変調高周波線路104は、光導波路基板401上に下部クラッド層402、コア層404、上部クラッド層405が順に積層されてリッジ型導波路が形成され、下部クラッド層402上にグランド電極403、上部クラッド層405上にシグナル電極406がそれぞれ形成された構造を有している。
 図5は、図3、4に示す線路構成を採用した進行波電極型半導体光変調器における入力端、入力高周波線路103、MZ変調器部の光変調高周波線路104、出力高周波線路105、終端抵抗106のインピーダンスZ、Z、ZMZ、Z、Zを示したものである。入力端のインピーダンスZと入力高周波線路103のインピーダンスZは50Ω、光変調領域の伝搬ロス低減のため、光変調高周波線路104以降の線路、すなわち、光変調高周波線路104のインピーダンスZMZ、出力高周波線路105のインピーダンスZ、終端抵抗106のインピーダンスZを30Ωとしている。各部のインピーダンスは、シグナル電極の幅を適切に設定することで実現した。
 図6に、図3~5に示す進行波電極型半導体光変調器に関して計算されたSパラメータで透過特性S21と反射特性S11を示す。また、図7に、図3~5に示す進行波電極型半導体光変調器に関して計算された周波数に対するEO応答を示す。図6に示す計算結果では、入力高周波線路103と光変調高周波線路104のインターフェースで発生しているインピーダンス不整合により反射特性S11が-10dB近くまで劣化していることを示している。これは、ドライバIC102からの高周波電気信号を効率よく光変調領域へ入力できておらず、EO帯域も十分伸びているとは言えず、ドライバIC102への信号戻りによる波形劣化抑制の観点でも問題がある。
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは光変調領域に効率よく高周波電気信号を入力でき、広帯域な光変調高周波線路を有する光変調器を提供することにある。
 上記の課題を解決するために、本発明の一実施形態では、光導波路を伝搬する電気信号に対して電気光学効果を供するように形成された光変調高周波線路と、前記光変調高周波線路に接続された入力高周波線路、及び出力高周波線路とを含む高周波線路を備えた光変調器であって、前記光変調高周波線路、前記入力高周波線路、及び前記出力高周波線路のうち少なくとも1つは、複数のセグメントに分割され、前記複数のセグメントの特性インピーダンスおよび伝搬定数が均一な場合よりも前記光変調高周波線路におけるEO帯域が拡大されるように隣接する前記セグメント間で異なる特性インピーダンス及び伝搬定数を有するよう設計されたことを特徴とする。
 別の一実施形態では、光導波路を伝搬する電気信号に対して電気光学効果を供するように形成された光変調高周波線路と、前記光変調高周波線路に接続された入力高周波線路、及び出力高周波線路とを含む高周波線路を備えた光変調器であって、前記光変調高周波線路、前記入力高周波線路、及び前記出力高周波線路のうち少なくとも1つは、複数のセグメントに分割され、前記複数のセグメントの特性インピーダンスおよび伝搬定数が均一な場合よりも前記入力高周波線路の入力端で反射特性が小さくなるように隣接する前記セグメント間で異なる特性インピーダンス及び伝搬定数を有するよう設計されたことを特徴とする。
 別の実施形態では、さらに前記複数のセグメントに分割された高周波線路は、隣接する前記セグメント間で前記高周波線路のシグナル線路の幅および厚さの少なくとも一方が異なるよう設計されていることを特長とする。
 別の実施形態では、さらに前記複数のセグメントに分割された高周波線路は、隣接する前記セグメント間でシグナル電極とグランド電極との電極間距離が異なるよう設計されていることを特徴とする。
 別の実施形態では、前記複数のセグメントに分割された高周波線路は、隣接する前記セグメント間でシグナル電極とグランド電極との間の誘電体の誘電率が異なるよう設計されていることを特徴とする。
 本発明によれば、大容量光通信用に用いられる高速動作可能で高効率な光変調器を実現することができる。
従来の光I/Q変調器の構成例を示す図である。 図1に示した光変調器の1つの高周波線路の等価回路を示す図である。 進行波電極型光変調器のマイクロストリップ線路を採用した入力高周波線路、及び、出力高周波線路の線路構成を示す図である。 進行波電極型光変調器の光変調高周波線路の線路構成を示す図である。 図3~5に示す進行波電極型半導体光変調器における入力端、入力高周波線路、MZ変調器部の光変調高周波線路、出力高周波線路、終端抵抗のインピーダンスZ、Z、ZMZ、Z、Zを示す図である。 図3~5に示す進行波電極型半導体光変調器に関して計算されたSパラメータで透過特性S21と反射特性S11を示す図である。 図3~5に示す進行波電極型半導体光変調器に関して計算された周波数に対するEO応答を示す図である。 本発明の第1の実施形態に係る光変調器の高周波線路の特性インピーダンスを示す図である。 本発明の第1の実施形態に係る光変調器の入力高周波線路および出力高周波線路の上面図である。 本発明の第1の実施形態に係る光変調器の高周波線路として最終的に求められた最適解のSパラメータを示す図である。 本発明の第1の実施形態に係る光変調器の高周波線路として最終的に求められた最適解のEO応答を示す図である。 本発明の第1の実施形態に係るドライバICと光I/Q変調器との接続にオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路の特性インピーダンスを示す図である。 本発明の第1の実施形態に係るオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路として最終的に求められた最適解のEO応答を示す図である。 本発明の第2の実施形態に係る光変調器の光変調高周波線路の上面図である。 本発明の第2の実施形態に係る光変調器の高周波線路の特性インピーダンスを示す図である。 本発明の第2の実施形態に係る光変調器の高周波線路として最終的に求められた最適解のSパラメータを示す図である。 本発明の第2の実施形態に係る光変調器の高周波線路として最終的に求められた最適解のEO応答を示す図である。 本発明の第2の実施形態に係るドライバICと光I/Q変調器との接続にオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路の特性インピーダンスを示す図である。 本発明の第2の実施形態に係るオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路として最終的に求められた最適解のEO応答を示す図である。
 以下に、図面を参照して本発明の実施形態について図1に示す半導体光変調器を例に取り説明する。
 (第1の実施形態)
 本実施形態に係わる入力高周波線路、及び、出力高周波線路はマイクロストリップ線路となっており、図3に示す断面図のようにSI-InP基板301上にグランド電極302、誘電体層303、シグナル電極304と順次積層された基本構成となっている。また、光変調高周波線路は、図4に示す断面図のようになっており、SI-InP基板401上に、n-InPクラッド層402、光導波層として機能するノンドープの半導体コア層404、p-InPクラッド層405が順次積層されている。また、光導波構造としてハイメサ導波路構造を有し、半導体コア層404へ電圧印加を行うため、n-InPクラッド層402およびp-InPクラッド層405の上部に、それぞれシグナル電極406とグランド電極403が設けられている。これら電極の間に負電圧(逆バイアス)を印加すると、半導体コア層404において電気光学効果により屈折率変化が発生し、結果、光の位相が変化、すなわち、変調することができる。
 半導体コア層404は、例えばInGaAsPやInGaAlAsなどの材料系を用い、単一組成の四元混晶のバルク層や多重量子井戸層で構成することができる。また、半導体コア層404は、多重量子井戸層とその上下にバンドギャップが多重量子井戸層よりも大きく、かつ、InP層よりも小さい値を持つ光閉じ込め層を有する構造とすることもできる。さらに、これらの半導体コア層404の上下にノンドープのInP層を挿入することも可能である。また、四元混晶のバルク層や多重量子井戸層のバンドギャップ波長は、使用する光波長において、電気光学効果が有効に作用し、かつ、光吸収が問題とならないように設定されている。
 図8に、本発明の第1の実施形態に係る光変調器の高周波線路の特性インピーダンスを示す。図1に示すような光変調器における高周波線路、すなわち入力高周波線路(A-B)、光変調高周波線路(B-C)及び出力高周波線路(C-D)において、入力高周波線路(A-B)及び出力高周波線路(C-D)をそれぞれ複数のセグメントに分割し、隣接するセグメント間で異なる特性インピーダンス、伝搬定数を持つ線路構成とすることを特徴としている。このような入力高周波線路および出力高周波線路は、例えば図9に示すようにマイクロストリップラインを構成する誘電体901上に形成されたシグナル電極902の幅又は厚みを隣接するセグメント間で変更することで実現可能である。また、シグナル電極902の幅又は厚みを変更する代わりに、誘電体901の誘電率を変更することでも特性インピーダンスおよび伝搬定数を変化させることが可能である。なお、図8、9に示す例は、7セグメントに分割したものである。
 このような構成においては、入力端より入力された高周波信号は、入力高周波線路103に入ってから終端抵抗106に至る間のインピーダンスの不連続点において、そのインピーダンス差に応じて反射量を変えながら反射波が発生し、この反射波はときに多重反射を発生し、互いに重畳したり打ち消し合ったりして、進行波とも合成される。この合成された高周波信号が、光変調領域において電気光学効果により光信号に変調を加える。よって、この反射波の発生を最適に設計し、各周波数において、合成された高調波信号が光変調領域でより高い電圧を維持して、より高い変調度を得られるようにすれば、広帯域で高変調効率の光変調器を実現することができる。
 但し、この最適設計を解析的に求めることは難しい。そこで、以下の本発明の実施例では、遺伝的アルゴリズムを用いて反射抑制効果の高い線路構成を求めた。具体的には、図1に示す光I/Q変調器の入力高周波線路103、及び、出力高周波線路105のトータルの長さをそれぞれ1.5mm、光変調高周波線路104の長さを3.0mm、入力高周波線路103、及び、出力高周波線路105の単位セグメントの長さをそれぞれ100umとした。また、入力端インピーダンスZは50Ω、光変調高周波線路のインピーダンスZMZ、及び、終端抵抗のインピーダンスZは30Ωで固定とした。一方、入力高周波線路103、及び、出力高周波線路105のインピーダンスはマイクロストリップのシグナル電極幅を変化させ、30~75Ωの間で18種類の値を取れるようにした。また、構造により決まるインピーダンスに合わせて伝搬定数は一意に決まる。
 最適化の手順としては、以下の通りである。まず、15セグメントある入力高周波線路103、及び、出力高周波線路105のインピーダンスと伝搬定数の組みの配列を乱数により例えば100通りの個体を作成する。これを第1世代の個体群とする。次に乱数により2つの個体を選択し、そして、乱数により決められたセグメントで個体の配列を入れ換える(交叉)。さらに、ある設定した確率であるセグメントのインピーダンスと伝搬定数を元の18種類のインピーダンスと伝搬定数の組みに入れ換える(突然変異)。これらを50回繰り返すことで新たな100個の個体が生成できる。この新たな100個の個体の光変調器全体のSパラメータとEO帯域を計算し、評価値を算出する。
 ここでは、評価値を各周波数のS11の反射量とEO応答の0dB(変調度100%)からのずれ量の周波数全体での総和とした。すなわち、この評価値が小さい程、入力端からみた反射が小さく、EO特性が周波数に対してフラットでEO帯域が広いこととなる。
 次に、新たな100個の個体群から乱数により3個体を選び出し、最も評価値が小さいものを選択し、第2世代の個体とする。これを100回繰り返すことで、第2世代の100個の個体群が生成できる。このような手順を所定の回数を繰り返し、世代を経る毎により環境に適合(EO帯域が広い)した個体群になってくる。そして、最終世代での中でもっとも評価値が小さい配列を最適解として求める。
 図10、11に、本発明の第1の実施形態に係る光変調器の高周波線路として最終的に求められた最適解のSパラメータとEO応答をそれぞれ示す。なお、参考のため、従来技術で挙げた均一な幅の線路におけるSパラメータとEO応答を比較のため同様にプロットしている。図10に示すように、本発明では反射が高周波側で特に顕著に抑制されている。これによりドライバIC102から高周波信号が効率よく入力できることになる。この反射抑制効果により、EO帯域もよりスムーズな特性が実現できている。
 本発明の第1の実施形態のもう1つの例として、図12に、ドライバICと光I/Q変調器との接続にオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路のインピーダンスを示す。先に記載した通り、本構成では変調器側からドライバIC102をみるとハイインピーダンスに見えることなる。今回は、仮に入力端のインピーダンスZを1000Ωとおいて計算を行った。それ以外のパラメータはすべて同じである。また、評価値としては、EO応答の0dB(変調度100%)からのずれ量の周波数全体での総和とした。図12は、7セグメントに分割した例を示すが、以下の実施例は15セグメントに分割した例である。
 図13に、本発明の第1の実施形態に係るオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路として最終的に求められた最適解のEO応答を示す。参考のため、入力端のインピーダンスZを1000Ω、入力高周波線路のインピーダンスZ、光変調高周波線路のインピーダンスZMZ、出力高周波線路のインピーダンスZ、及び、終端抵抗のインピーダンスZLは30Ωとしたものを図示している。図13の結果は、本発明を適用したものは、EO帯域が大幅に伸びていることを示している。
 また、本発明を用いると、高周波線路上にワイヤリングなどの構造上の問題でインピーダンス不連続点があったとしても、それを既定のものとして最適化計算に組み込むことで最適解を求めることが可能である。
 また、第1の実施形態では、入力高周波線路103と出力高周波線路105の両方をセグメント分割した例を示したが、入力高周波線路103と出力高周波線路105とのどちらか一方のみをセグメント分割して最適化しても反射特性およびEO応答特性の改善は可能である。
 (第2の実施形態)
 図15に、本発明の第2の実施形態に係る光変調器の高周波線路の特性インピーダンスを示す。第1の実施形態が、入力高周波線路103、及び、出力高周波線路105をセグメントに分割した例であったが、本実施形態では、光変調高周波線路104もセグメント分割する。図15には、入力高周波線路103と出力高周波線路105とを7セグメントに分割し、光変調高周波線路104を10セグメントに分割した例を示している。
 具体的には、入力高周波線路103、及び、出力高周波線路105のトータルの長さをそれぞれ1.5mm、光変調高周波線路104の長さを3.0mm、入力高周波線路103、及び、出力高周波線路105の単位セグメントの長さをそれぞれ100um、光変調高周波線路104の単位セグメントの長さを300umとした。すなわち、入力高周波線路103と出力高周波線路105とを15セグメントに分割し、光変調高周波線路104を10セグメントに分割した。
 また、入力端インピーダンスZは50Ω、及び、終端抵抗のインピーダンスZは30Ωで固定とした。一方、入力高周波線路103、及び、出力高周波線路105は、マイクロストリップ線路のシグナル線路幅を変化させることでインピーダンスを30~75Ωの間で18種類の値を取れるようにした。さらに、光変調高周波線路104においても、図14に示すように、シグナル電極1401の幅又は厚みを隣接するセグメント間で変化させ、グラウンド電極1402との距離を変化させることでインピーダンスを30Ω~40Ωの間で8種類の値を取れるようにした。また、構造により決まるインピーダンスに合わせて伝搬定数は一意に決まる。なお、シグナル電極1401の幅又は厚みを変化させる代わりに、グラウンド電極1402の幅を変化させることでシグナル電極1401とグランド電極1402との距離を変化させることで特性インピーダンスおよび伝搬定数を変化させることが可能である。
 最適化の手順は、最適化の対象としてセグメント化された光変調領域が加わること以外は、第1の実施形態で示した手法と同様である。評価値を各周波数のS11の反射量とEO応答の0dB(変調度100%)からのずれ量の周波数全体での総和とした。
 図16~18に、本発明の第2の実施形態に係る光変調器の高周波線路として最終的に求められた最適解のSパラメータ、EO応答、特性インピーダンスをそれぞれ示す。なお図16、17には、参考のため、入力端のインピーダンスZを50Ω、入力高周波線路103のインピーダンスZを50Ω、光変調高周波線路104のインピーダンスZMZを30Ω、出力高周波線路105のインピーダンスZを30Ω、及び、終端抵抗106のインピーダンスZを30Ωとしたものも図示している。
 図16の結果は、本実施形態では、反射が顕著に抑制されていることを示している。これによりドライバIC102から高周波信号が効率よく入力できることになる。電気の透過特性のS21は逆に参考例より劣化しているが、図17に示すEO応答の結果は、光変調器として重要なEO帯域が大きく改善し、スムーズで広帯域な特性が実現できていることを示している。
 図18に、本発明の第2の実施形態に係るドライバICと光I/Q変調器との接続にオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路の特性インピーダンスを示す。また図19に、本発明の第2の実施形態に係るオープンドレイン/オープンコレクタ接続構成を採用した光変調器の高周波線路として最終的に求められた最適解のEO応答を示す。参考に図示されている比較例は、第1の実施形態で示した比較例と同じ構成のものである。図19の結果は、第2の実施形態を適用したものは、EO帯域が大幅に伸びていることを示している。
 なお、本発明は、第1および第2の実施形態で示した入力高周波線路、出力高周波線路、光変調高周波線路の構造に限定されるものではなく、コプレーナ型の高周波線路など様々な高周波線路に適用できる。また、例示したインピーダンスなどのパラメータ範囲に限定されるものではなく、半導体光変調器を例に示しているが、他の材料、例えば、LiNbOやSiを用いた光変調器にも適用できる。
 101、301、401 光導波路基板
 102 ドライバIC
 103 入力高周波線路
 104 光変調高周波線路
 105 出力高周波線路
 106 終端抵抗
 302、402 グランド電極
 303 誘電体
 304、406 シグナル電極
 403 下部クラッド層
 404 コア層
 405 上部クラッド層
 901 誘電体
 902、1401 シグナル電極
 1402 グランド電極

Claims (5)

  1.  光導波路を伝搬する電気信号に対して電気光学効果を供するように形成された光変調高周波線路と、前記光変調高周波線路に接続された入力高周波線路、及び出力高周波線路とを含む高周波線路を備えた光変調器であって、
     前記光変調高周波線路、前記入力高周波線路、及び前記出力高周波線路のうち少なくとも1つは、複数のセグメントに分割され、前記複数のセグメントの特性インピーダンスおよび伝搬定数が均一な場合よりも前記光変調高周波線路におけるEO帯域が拡大されるように隣接する前記セグメント間で異なる特性インピーダンス及び伝搬定数を有するよう設計されたことを特徴とする光変調器。
  2.  光導波路を伝搬する電気信号に対して電気光学効果を供するように形成された光変調高周波線路と、前記光変調高周波線路に接続された入力高周波線路、及び出力高周波線路とを含む高周波線路を備えた光変調器であって、
     前記光変調高周波線路、前記入力高周波線路、及び前記出力高周波線路のうち少なくとも1つは、複数のセグメントに分割され、前記複数のセグメントの特性インピーダンスおよび伝搬定数が均一な場合よりも前記入力高周波線路の入力端で反射特性が小さくなるように隣接する前記セグメント間で異なる特性インピーダンスおよび伝搬定数を有するよう設計されたことを特徴とする光変調器。
  3.  前記複数のセグメントに分割された高周波線路は、隣接する前記セグメント間で前記高周波線路のシグナル線路の幅および厚さの少なくとも一方が異なるよう設計されていることを特徴とする請求項1又は2に記載の光変調器。
  4.  前記複数のセグメントに分割された高周波線路は、隣接する前記セグメント間でシグナル電極とグランド電極との電極間距離が異なるよう設計されていることを特徴とする請求項1又は2に記載の光変調器。
  5.  前記複数のセグメントに分割された高周波線路は、隣接する前記セグメント間でシグナル電極とグランド電極との間の誘電体の誘電率が異なるよう設計されていることを特徴とする請求項1又は2に記載の光変調器。
PCT/JP2019/008741 2018-03-13 2019-03-06 光変調器 WO2019176665A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/970,283 US11372307B2 (en) 2018-03-13 2019-03-06 Optical modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045791 2018-03-13
JP2018045791A JP2019159115A (ja) 2018-03-13 2018-03-13 光変調器

Publications (1)

Publication Number Publication Date
WO2019176665A1 true WO2019176665A1 (ja) 2019-09-19

Family

ID=67906629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008741 WO2019176665A1 (ja) 2018-03-13 2019-03-06 光変調器

Country Status (3)

Country Link
US (1) US11372307B2 (ja)
JP (1) JP2019159115A (ja)
WO (1) WO2019176665A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095583B2 (ja) * 2018-12-11 2022-07-05 日本電信電話株式会社 光送信機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685988A (en) * 1985-04-04 1987-08-11 United Technologies Corporation Buried microstrip network processing
JP2009116290A (ja) * 2007-10-15 2009-05-28 Anritsu Corp 光変調器
JP2011070026A (ja) * 2009-09-25 2011-04-07 Sumitomo Osaka Cement Co Ltd 光導波路素子モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936858B2 (ja) * 2001-11-01 2007-06-27 日本オプネクスト株式会社 光変調装置
US8269428B2 (en) * 2009-04-17 2012-09-18 LED Bulb, L.L.C. Light emitting diode devices containing replaceable subassemblies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685988A (en) * 1985-04-04 1987-08-11 United Technologies Corporation Buried microstrip network processing
JP2009116290A (ja) * 2007-10-15 2009-05-28 Anritsu Corp 光変調器
JP2011070026A (ja) * 2009-09-25 2011-04-07 Sumitomo Osaka Cement Co Ltd 光導波路素子モジュール

Also Published As

Publication number Publication date
US11372307B2 (en) 2022-06-28
US20210080795A1 (en) 2021-03-18
JP2019159115A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US6721085B2 (en) Optical modulator and design method therefor
US9008469B2 (en) Mach-zehnder optical modulator having an asymmetrically-loaded traveling wave electrode
JP6983908B2 (ja) 半導体光変調器
JP3905367B2 (ja) 半導体光変調器、それを用いたマッハツェンダ型光変調器、及び半導体光変調器の製造方法
US20100158428A1 (en) Optical modulator
US9599843B2 (en) Optical modulator
WO2020149185A1 (ja) 半導体マッハツェンダ光変調器
JP6126541B2 (ja) 半導体マッハツェンダ光変調器
JP6348880B2 (ja) 半導体マッハツェンダ光変調器
JP6871114B2 (ja) 半導体マッハツェンダ光変調器およびiq変調器
WO2019176665A1 (ja) 光変調器
JP2015212769A (ja) 半導体マッハツェンダ光変調器
JP5906210B2 (ja) 光変調器
JP2007072369A (ja) 光変調器
CA3128329C (en) Semiconductor mach-zehnder optical modulator and iq modulator
TW201707272A (zh) 高頻線路
JP4754608B2 (ja) 光変調器
JP2016114712A (ja) 半導体マッハツェンダー光変調器
WO2023095261A1 (ja) マッハツェンダ変調器
JP7207559B2 (ja) Iq変調器
WO2023248490A1 (ja) 光変調器
TWI708984B (zh) 半導體馬赫曾德爾光調變器及iq調變器
WO2023248489A1 (ja) 光変調器
JP5124382B2 (ja) 光変調器
JP2010044197A (ja) 光変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766477

Country of ref document: EP

Kind code of ref document: A1