WO2017204212A1 - Cha型ゼオライト及びその製造方法 - Google Patents
Cha型ゼオライト及びその製造方法 Download PDFInfo
- Publication number
- WO2017204212A1 WO2017204212A1 PCT/JP2017/019183 JP2017019183W WO2017204212A1 WO 2017204212 A1 WO2017204212 A1 WO 2017204212A1 JP 2017019183 W JP2017019183 W JP 2017019183W WO 2017204212 A1 WO2017204212 A1 WO 2017204212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cha
- sio
- less
- type zeolite
- salt
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7015—CHA-type, e.g. Chabazite, LZ-218
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
Definitions
- the present invention relates to a CHA-type zeolite and a method for producing the same.
- it relates to an industrial method for producing CHA-type zeolite.
- SSZ-13 has been reported as an aluminosilicate that is a CHA-type zeolite and has a low Al content (Patent Document 1). Since SSZ-13 has high stability, it is a solid acid catalyst (MTO catalyst) for producing ethylene or propylene from methanol, a nitrogen oxide reduction catalyst (NH 3 -SCR catalyst) in the presence of urea, or these catalysts. Used as a carrier.
- MTO catalyst solid acid catalyst
- NH 3 -SCR catalyst nitrogen oxide reduction catalyst
- N-alkyl-3-quinuclidinol ammonium salt N, N, N-trialkyl is used as an organic structure directing agent (hereinafter also referred to as “OSDA”) from which SSZ-13 is obtained.
- OSDA organic structure directing agent
- -2-Ammonium exonorbornane salts or N, N, N-trimethyladamantyl ammonium salts are disclosed.
- N, N, N-trialkyladamantyl including N, N, N-trimethyladamantyl ammonium salt (hereinafter also referred to as “TMAd salt”), due to the wide range of production conditions for crystallizing CHA-type zeolite.
- An ammonium salt (hereinafter also referred to as “ADA salt”) is used as OSDA in an industrial process for producing SSZ-13.
- an N, N, N-trialkylbenzylammonium salt such as N, N, N-trimethylbenzylammonium hydroxide or N, N, N-triethylbenzylammonium hydroxide ( (Hereinafter, also referred to as “TABA salt”) as OSDA (Patent Document 2), N, N, N-trimethylcyclohexylammonium hydroxide (Patent Document 3), N, N, N-triethyl hydroxide N, N, N-trialkylcyclohexylammonium salts such as cyclohexylammonium hydroxide, N, N, N-methyldiethylcyclohexylammonium hydroxide, and N, N, N-dimethylethylcyclohexylammonium hydroxide (Patent Document 4) "TACHA salt”) is used as OSDA. Manufacturing method
- the CHA-type zeolite obtained using the TABA salt as OSDA was only the same as the CHA-type zeolite obtained using only the ADA salt as OSDA.
- the TABA salt is a cheaper compound than the ADA salt
- the production method using the TABA salt has a lower yield of CHA-type zeolite and the production efficiency is lower than the production method using the ADA salt. Therefore, the unit price of OSDA can be reduced, but there are drawbacks such as an increase in the amount used. Therefore, the production method using TABA salt has a limited reduction in production cost, and the production method using TABA salt is mass-produced. It was not suitable for.
- the CHA-type zeolite production methods that have been reported so far using TACHA salts are limited in reducing the production cost of the CHA-type zeolite for the same reason as the TABA salt, and the conditions under which the CHA-type zeolite is produced. Was very limited. For this reason, the production methods reported so far using the TACHA salt are more difficult to control the production conditions than the production methods using the TABA salt, and are not suitable for mass production.
- the present invention has higher crystallinity more suitable for catalysts and catalyst carriers than conventional CHA-type zeolites, particularly conventional CHA-type zeolites obtained using only ADA salts as organic structure directing agents.
- An object of the present invention is to provide a CHA-type zeolite.
- another object of the present invention is to provide a process for producing a CHA-type zeolite in which a highly crystalline CHA-type zeolite is obtained in a yield suitable for industrial production.
- the present inventor examined a CHA-type zeolite suitable for a catalyst and a catalyst carrier and a method for producing a CHA-type zeolite suitable for industrial production. As a result, they found a CHA-type zeolite having higher heat resistance and crystallinity than the conventional CHA-type zeolite obtained by using ADA salt as OSDA. Furthermore, by using an ADA salt and a specific TACHA salt in combination, a highly crystalline CHA zeolite can be obtained in a yield equivalent to or higher than that of a conventional method for producing a CHA zeolite using an ADA salt. I found it.
- the gist of the present invention is as follows.
- the molar ratio of silica to alumina is 10.0 or more and less than 20.0, and the molar ratio of silanol groups to silicon is 0.15 ⁇ 10 ⁇ 2 or more and 0.50 ⁇ 10 ⁇ 2 or less,
- the molar ratio of silica to alumina is 20.0 or more and 35.0 or less, and the molar ratio of silanol groups to silicon is 0.15 ⁇ 10 ⁇ 2 or more and 1.10 ⁇ 10 ⁇ 2 or less
- the molar ratio of silica to alumina is more than 35.0 and not more than 45.0 and the molar ratio of silanol groups to silicon is 0.15 ⁇ 10 ⁇ 2 or more and 1.65 ⁇ 10 ⁇ 2 or less, or CHA-type zeolite in which the molar ratio of silica to alumina is more than 45.0 and not more than 55.0, and the molar ratio of silanol groups to silicon is not less than
- Crystallizing a composition comprising an alumina source, a silica source, an alkali source, water, an N, N, N-trialkyladamantyl ammonium salt and an N, N, N-trialkylcyclohexyl ammonium salt having the following general formula
- R 1 is an ethyl group
- R 2 is an alkyl group of either a methyl group or an ethyl group
- R 3 is an alkyl group of either a methyl group or an ethyl group
- X ⁇ is N, N, N— It is a counter anion of a trialkylcyclohexylammonium cation.
- At least one of the N, N, N-trialkylcyclohexyl ammonium salt and the N, N, N-trialkyladamantyl ammonium salt is a hydroxide, chloride, bromide, iodide, carbonic acid monoester salt.
- the salt is at least one salt selected from the group consisting of a monoester salt of sulfate, a nitrate and a sulfate.
- the salt is at least one salt selected from the group consisting of a monoester salt of sulfate, a nitrate and a sulfate.
- X ⁇ is a counter anion of N, N, N-dimethylethylcyclohexylammonium cation.
- the N, N, N-dimethylethylcyclohexylammonium salt is at least one member selected from the group consisting of hydroxide, chloride, bromide, iodide, carbonate monoester salt, sulfate monoester salt, nitrate and sulfate.
- CHA-type zeolites compared to conventional CHA-type zeolites, particularly conventional CHA-type zeolites obtained using only ADA salts as organic structure directing agents, highly crystalline CHA-type zeolites suitable for catalysts and catalyst carriers, especially It is possible to provide a nitrogen oxide reduction catalyst or a support thereof, and further a CHA-type zeolite suitable for a nitrogen oxide reduction catalyst or a support thereof in the presence of urea. Furthermore, according to the present invention, it is possible to provide a method for producing a CHA-type zeolite in which a highly crystalline CHA-type zeolite can be obtained in a yield suitable for industrial production.
- the present invention relates to a CHA type zeolite.
- the CHA-type zeolite is a crystalline aluminosilicate having a crystal structure (hereinafter, also simply referred to as “CHA structure”) that has a CHA structure according to a structure code defined by the International Zeolite Society.
- the CHA structure can be confirmed by a powder X-ray diffraction (hereinafter referred to as “XRD”) pattern.
- XRD powder X-ray diffraction
- Table By comparing with the XRD pattern of 1 or 2, it can be confirmed that the CHA-type zeolite of the present invention is a CHA-type zeolite having a crystal structure equivalent to SSZ-13.
- Table. 1 is an XRD pattern of a CHA-type zeolite containing OSDA in the crystal structure.
- 2 is an XRD pattern of a CHA-type zeolite obtained by removing OSDA from the crystal structure.
- the CHA-type zeolite of the present invention preferably has only a CHA structure and does not contain a crystal structure other than the CHA structure.
- the CHA-type zeolite of the present invention is a crystalline aluminosilicate.
- a crystalline aluminosilicate is a skeleton having a three-dimensional network structure in which aluminum (Al) and silicon (Si) are used as a skeleton metal (hereinafter also referred to as “T atom”), and T atoms are bonded via oxygen (O). It consists of a crystal having a structure. Therefore, the CHA-type zeolite of the present invention does not contain silicoaluminophosphate (SAPO) or aluminophosphate (AlPO) containing phosphorus (P) as a T atom. Furthermore, the conceptual crystalline aluminosilicate is composed only of the network structure.
- the crystalline aluminosilicate that actually exists is the end of the network structure (FIG. 1 (a)) and the end of the network structure (FIG. 1 (b)) (hereinafter, These are collectively referred to as “skeleton end portion”), and the skeleton end portion becomes a silanol group (Si—OH). Therefore, silanol groups are contained in the crystal of realistic crystalline aluminosilicate.
- the silanol group is formed by bonding silicon (Si) of T atom and hydroxyl group (OH). Therefore, the content of silanol groups is affected by the amount of silicon in the skeleton structure. For example, it can be mentioned that the more the amount of silicon in the skeleton structure is, that is, the higher silica zeolite, the more silanol groups. Generally, when the content of silanol groups increases, the skeletal structure in a high temperature atmosphere tends to collapse.
- the molar ratio of silica to alumina (hereinafter also referred to as “SiO 2 / Al 2 O 3 ”) and the molar ratio of silanol groups to silicon (hereinafter also referred to as “SiOH / Si ratio”), Both satisfy the range of the CHA-type zeolite of the present invention, so that even when the silanol group is increased, the skeletal structure is hardly collapsed in a high-temperature atmosphere.
- the CHA-type zeolite of the present invention exhibits high heat resistance and is suitable as a catalyst or a catalyst support, particularly as a nitrogen oxide reduction catalyst or a support thereof.
- the SiOH / Si of the CHA-type zeolite of the present invention depends on SiO 2 / Al 2 O 3 . That is, the CHA-type zeolite of the present invention is The molar ratio of silica to alumina is 10.0 or more and less than 20.0, and the molar ratio of silanol groups to silicon is 0.15 ⁇ 10 ⁇ 2 or more and 0.50 ⁇ 10 ⁇ 2 or less, The molar ratio of silica to alumina is 20.0 or more and 35.0 or less, and the molar ratio of silanol groups to silicon is 0.15 ⁇ 10 ⁇ 2 or more and 1.10 ⁇ 10 ⁇ 2 or less, The molar ratio of silica to alumina is more than 35.0 and not more than 45.0 and the molar ratio of silanol groups to silicon is 0.15 ⁇ 10 ⁇ 2 or more and 1.65 ⁇ 10 ⁇ 2 or less, or The molar ratio of silica to alumina is 10.0 or more and less
- the SiOH / Si ratio is 0.15 ⁇ 10 ⁇ 2 or more and 0.50 ⁇ 10 ⁇ 2 or less. .
- the SiOH / Si ratio is preferably 0.40 ⁇ 10 ⁇ 2 or less.
- the SiOH / Si ratio is 0.15 ⁇ 10 ⁇ 2 or more and 1.10 ⁇ 10 ⁇ 2 or less. is there. In this case, the SiOH / Si ratio is preferably less than 1.00 ⁇ 10 ⁇ 2 .
- the SiOH / Si ratio is 0.15 ⁇ 10 ⁇ 2 or more and 1.65 ⁇ 10 ⁇ 2 or less, It is.
- the SiOH / Si ratio is preferably 1.40 ⁇ 10 ⁇ 2 or less, more preferably 1.30 ⁇ 10 ⁇ 2 or less.
- the SiOH / Si ratio is 0.15 ⁇ 10 ⁇ 2 or more and 1.80 ⁇ 10 ⁇ 2 or less, It is. In this case, the SiOH / Si ratio is preferably 1.75 ⁇ 10 ⁇ 2 or less.
- the SiOH / Si ratio of the CHA-type zeolite of the present invention is 0.15 ⁇ 10 ⁇ 2 or more, 0.20 ⁇ 10 ⁇ 2 or more, and further 0.30 ⁇ 10 ⁇ 2 or more. It is done.
- the CHA-type zeolite of the present invention tends to have a wider range of silanol groups contained as the SiO 2 / Al 2 O 3 increases.
- the SiOH / Si ratio when SiO 2 / Al 2 O 3 is 20.0 or more is 0.15 ⁇ 10 ⁇ 2 or more, further 0.40 ⁇ 10 ⁇ 2 or more, and further 0.50 ⁇ 10 ⁇ 2 or more, and the SiOH / Si ratio when SiO 2 / Al 2 O 3 exceeds 35.0 is 0.15 ⁇ 2 or more, further 0.6 ⁇ 10 ⁇ 2 or more, and further Is 1.0 ⁇ 10 ⁇ 2 or more.
- the SiOH / Si ratio is 0.15 ⁇ 10 ⁇ 2 or more, further 0.60 ⁇ 10 ⁇ 2 or more, and further 1.00 ⁇ 10 -2 or more, further 1.20 ⁇ 10 -2 or more, and further 1.40 ⁇ 10 -2 or more.
- the SiOH / Si ratio can be determined from the silanol amount determined from the 1 H MAS NMR spectrum with respect to the silicon content of the CHA-type zeolite.
- the silicon content of the CHA-type zeolite can be determined by fluorescent X-ray analysis or other composition analysis.
- An example of a method for measuring the silicon content by fluorescent X-ray analysis is a method using a calibration curve method.
- the calibration curve used in the calibration curve method is that the intensity of the X-ray fluorescence peak corresponding to silicon (Si) is measured for 8 to 15 silicon-containing compounds with known silicon content, and the intensity-silicon content It can be created by drawing a calibration curve with quantity.
- the intensity of the fluorescent X-ray peak corresponding to silicon (Si) in the fluorescent X-ray pattern of the CHA-type zeolite that is the measurement sample is measured, and the silicon content of the CHA-type zeolite is compared with the calibration curve. Can be measured.
- the amount of silanol can be determined from the 1 H MAS NMR spectrum.
- 1 H MAS NMR measurement of dehydrated thio-CHA-type zeolite can be performed, and the silanol amount can be calculated from the obtained 1 H MAS NMR spectrum by a calibration curve method.
- the CHA-type zeolite is dehydrated by holding it at 350 to 400 ° C. for 5 ⁇ 2 hours under vacuum exhaust, and the dehydrated CHA-type zeolite is collected under a nitrogen atmosphere. Weighing and performing 1 H MAS NMR measurement can be mentioned. Obtaining the amount of silanol in the CHA-type zeolite by a calibration curve method from the area intensity of the peak (2.0 ⁇ 0.5 ppm peak) attributed to the silanol group in the 1 H MAS NMR spectrum obtained by the measurement. It is done.
- the SiO 2 / Al 2 O 3 of the CHA-type zeolite of the present invention is 10.0 or more and 55.0 or less.
- This range of SiO 2 / Al 2 O 3 is suitable as a catalyst or catalyst support.
- Preferred SiO 2 / Al 2 O 3 is 18.0 to 50.0, more preferably 20.0 to 45.0, further 20.0 to 45.0, and further 20.0 to 35. 0 or less can be mentioned.
- SiO 2 / Al 2 O 3 particularly suitable as a nitrogen oxide reduction catalyst or carrier thereof is 20.0 to 55.0, more preferably 20.0 to 45.0, and further 20.0 to 35.0. In the following, it may be 20.0 or more and 31.5 or less, and further 23.0 or more and 31.5 or less.
- the CHA-type zeolite of the present invention has a certain relationship between SiO 2 / Al 2 O 3 and the SiOH / Si ratio.
- the present invention relates to a CHA-type zeolite having a SiO 2 / Al 2 O 3 of 10.0 or more and less than 20.0 and a SiOH / Si ratio of 0.15 ⁇ 10 ⁇ 2 or more and 0.50 ⁇ 10 ⁇ 2 or less, CHA-type zeolite having SiO 2 / Al 2 O 3 of 20.0 or more and 35.0 or less and SiOH / Si ratio of 0.15 ⁇ 10 ⁇ 2 or more and 1.10 ⁇ 10 ⁇ 2 or less, SiO 2 / Al 2 O 3 Is over 35.0 and under 45.0 and the SiOH / Si ratio is 0.10 -2 to 1.65 ⁇ 10 -2 and CHA-type zeolite, and SiO 2 / Al 2 O 3 is over 45.0
- CHA-type zeolite of the present invention SiO 2 / Al 2 O 3 is 20.0 or more and 35.0 or less and SiOH / Si ratio is 0.15 ⁇ 10 ⁇ 2 or more and 1.10 ⁇ 10 ⁇ 2 or less.
- CHA-type zeolite having a SiO 2 / Al 2 O 3 ratio of 23.0 to 31.0 and a SiOH / Si ratio of 0.40 ⁇ 10 ⁇ 2 to 1.00 ⁇ 10 ⁇ 2 Can be mentioned.
- the CHA-type zeolite of the present invention preferably has high crystallinity.
- the high crystallinity can be confirmed by comparing the strength of XRD peaks between CHA-type zeolites.
- the crystallinity of the CHA-type zeolite of the present invention can be confirmed from the half width of the XRD peak (hereinafter also referred to as “FWHM”).
- FWHM of the corresponding peak) is 0.170 ° or more and 0.250 ° or less.
- the CHA-type zeolite of the present invention may include crystal particles formed while primary particles are chemically aggregated during crystallization of the CHA-type zeolite.
- the CHA-type zeolite of the present invention includes aggregated particle (aggregate) -like crystal particles (hereinafter also referred to as “aggregated crystal particles”) formed by chemically bonding such primary particles. Nevertheless, it has high heat resistance.
- Aggregated crystal particles can be confirmed as polyhedral crystal particles including a part of primary particles having at least one of rhombohedral and cubic shapes in SEM observation, and each side is 0.5 ⁇ m or more 5 It is a polyhedral crystal particle including a plurality of faces of 0.0 ⁇ m or less, and further 0.5 ⁇ m or more and 3.0 ⁇ m or less.
- the CHA-type zeolite of the present invention preferably contains crystal particles (hereinafter also referred to as “primary crystal particles”) in which each primary particle grows independently in addition to the aggregate crystal particles. And may be included.
- the primary crystal particle is a crystal particle in which the primary particle and the crystal particle have the same shape, and in SEM observation, it may be a crystal particle having at least one of a rhombohedral shape or a cubic shape.
- the CHA-type zeolite of the present invention has high heat resistance, that is, even after being exposed to a high-temperature atmosphere, it is difficult for the skeletal structure to break down such as detachment of T atoms from the skeleton.
- the heat resistance of the CHA-type zeolite of the present invention can be confirmed from the XRD pattern of the CHA-type zeolite before and after exposure to a high temperature atmosphere.
- CHA-type zeolite In CHA-type zeolite, the collapse of the skeleton structure is slow when heat-treated at 600 ° C., but the collapse of the skeleton structure proceeds remarkably when heat-treated at 1000 ° C. The intensity of the XRD peak decreases with the collapse of the skeleton structure. Therefore, the CHA-type zeolite treated at 1000 ° C. in the atmosphere with respect to the intensity of the XRD peak of the 20-1 reflection of the CHA-type zeolite treated at 600 ° C.
- the ratio of the intensity (hereinafter also referred to as “I 1000 ”) of one reflection XRD peak (hereinafter also referred to as “I ratio”) can be used as an index of heat resistance. It means that heat resistance is so high that the value of I ratio is large. When the heat treatment is performed at 1000 ° C., the skeletal structure collapses more than when the heat treatment is performed at 600 ° C., so that the I ratio is 1.00 or less.
- the CHA-type zeolite of the present invention has an I ratio (hereinafter also referred to as “I 1000/600 ”) of 0.30 or more as a ratio of I 1000 heat treated in 5 hours to I 600 heat treated in 5 hours. Is more preferably 0.50 or more, and particularly preferably 0.52 or more.
- the air in the heat treatment is an air having a dew point of ⁇ 20 ° C. or lower, more preferably an air having a dew point of ⁇ 50 ° C. or lower, and is preferably an air having a low water content.
- the production method of the present invention comprises a crystallization step of crystallizing a composition comprising an alumina source, a silica source, an alkali source, water, and an N, N, N-trialkylcyclohexylammonium salt having the following general formula: It is a manufacturing method of the CHA type zeolite containing.
- one of the production methods of the present invention includes an alumina source, a silica source, an alkali source, water, an N, N, N-trialkyladamantyl ammonium salt, and an N, N, N-trialkyl having the following general formula:
- a method for producing a CHA-type zeolite, comprising a crystallization step of crystallizing a composition containing a cyclohexylammonium salt hereinafter also referred to as “raw material composition 1”.
- R 1 is an ethyl group
- R 2 is an alkyl group of either a methyl group or an ethyl group
- R 3 is an alkyl group of either a methyl group or an ethyl group
- X ⁇ is N, N, N— It is a counter anion of a trialkylcyclohexylammonium cation.
- Raw material composition 1 contains an N, N, N-trialkylcyclohexylammonium (hereinafter also referred to as “MECHA”) salt having the following general formula.
- MECHA salt By including the MECHA salt, the directivity of the CHA-type zeolite of the raw material composition 1 becomes strong.
- the structural formula of MECHA salt is shown below.
- R 1 is an ethyl group
- R 2 is an alkyl group of either a methyl group or an ethyl group
- R 3 is an alkyl group of either a methyl group or an ethyl group
- X ⁇ is N, N, N—
- MECHA + trialkylcyclohexylammonium cation
- MECHA + contained in the MECHA salt functions as an OSDA directed to the CHA structure. Furthermore, the directional action of the CHA-type zeolite is further strengthened by the coexistence of the MECHA salt and the ADA salt. As a result, the crystallization region of the CHA-type zeolite is widened. For example, when the amount of seed crystals used is very small, and even when no seed crystals are used, highly crystalline CHA-type zeolite is crystallized. can do. Furthermore, the coexistence of the ADA salt and the MECHA salt makes it easier to obtain a CHA-type zeolite even when the content of hydroxide ion (OH ⁇ ) in the raw material composition 1 is small.
- the MECHA salt may be a compound containing MECHA + .
- the MECHA salt include at least one member selected from the group consisting of hydroxide, chloride, bromide, iodide, carbonic acid monoester salt, sulfuric monoester salt, nitrate and sulfate of MECHA.
- the MECHA salt is at least one member selected from the group consisting of hydroxides, chlorides, bromides, iodides, nitrates and sulfates of MECHA, and further includes a group consisting of chlorides, bromides and iodides of MECHA. It is preferable that it is at least one of at least one kind, or even a chloride or bromide of MECHA.
- X ⁇ in the general formula of MECHA salt is OH ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CH 3 CO 3 ⁇ , CH 3 SO 4 ⁇ , C 2 H 5 SO 4 ⁇ , NO 3 ⁇ and 1 /. 2 (SO 4 2 ⁇ ), and at least one selected from the group consisting of OH ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
- the MECHA salt may be two or more kinds of salts containing MECHA + , and examples thereof include at least two kinds of a group consisting of a hydroxide, chloride, bromide and iodide of the MECHA salt.
- Examples of the method for producing MECHA salt include a method for reacting N, N-dialkylcyclohexylamine and an alkylating agent in a solvent at room temperature to 150 ° C.
- Examples of the alkylating agent include at least one selected from the group consisting of alkyl halides, carbonic acid diesters, and sulfuric acid diesters.
- Examples of the solvent include water, alcohol, and at least one selected from the group consisting of methanol, ethanol, and 2-propanol.
- the MECHA salt is N, N, N-dimethylethylcyclohexylammonium salt (hereinafter also referred to as “DMECHA salt”) or N, N, N-methyldiethylcyclohexylammonium salt (hereinafter also referred to as “MDECHA salt”). It is preferable that it is at least one of these, and it is more preferable that it is a DMECHA salt.
- DMECHA salt N, N, N-dimethylethylcyclohexylammonium salt
- MDECHA salt N-methyldiethylcyclohexylammonium salt
- X ⁇ is a counter anion of a DMECHA cation (hereinafter also referred to as “DMECHA + ”).
- X ⁇ is a counter anion of the MDECHA cation (hereinafter also referred to as “MDECHA + ”).
- the MECHA salt contained in the raw material composition 1 may be two or more kinds of salts containing at least either DMECHA + or MDECHA + , for example, hydroxide, chloride, bromide and iodide of DMECHA salt. At least two or more of the group consisting of MDECHA salt hydroxide, chloride, bromide and iodide, or a DMECHA salt hydroxide, chloride, bromide and iodide And at least one member selected from the group consisting of hydroxides, chlorides, bromides and iodides of the MDECHA salt.
- Raw material composition 1 contains N, N, N-trialkyladamantyl ammonium salt (ADA salt).
- ADA salt N-trialkyladamantyl ammonium salt
- R 4 , R 5 and R 6 are each an alkyl group, preferably at least one of a methyl group or an ethyl group.
- R 4 , R 5 and R 6 may be the same alkyl group or different alkyl groups.
- X ⁇ is a counter anion of an N, N, N-trialkyladamantyl ammonium cation.
- TMAd salt N, N, N-trimethyladamantyl ammonium salt (TMAd salt) is particularly preferable.
- the structural formula of TMAd salt is shown below.
- X ⁇ is the counter anion of the N, N, N-trimethyladamantyl ammonium cation.
- the ADA salt contained in the raw material composition 1 is at least one of the group consisting of hydroxide, chloride, bromide, iodide, carbonic acid monoester salt, sulfuric acid monoester salt, nitrate and sulfate.
- the ADA salt is at least one member selected from the group consisting of hydroxide, chloride, bromide and iodide, further at least one member selected from the group consisting of hydroxide, chloride and bromide, and further hydroxylated.
- At least one of the MECHA salt or the ADA salt is at least one salt selected from the group consisting of chloride, bromide, iodide, carbonate monoester salt and sulfate monoester salt, nitrate and sulfate, More preferably, the ADA salt is at least one salt selected from the group consisting of chloride, bromide, iodide, carbonic acid monoester salt, sulfuric acid monoester salt, nitrate and sulfate.
- the yield of CHA-type zeolite tends to be higher.
- OSDA is a salt thereof, even when the raw material composition 1 contains an alkali source as a hydroxide, the hydroxide ion (OH ⁇ ) content in the raw material composition 1 is sufficiently high. Lower. Thereby, crystallization can be performed in a state in which the raw material composition 1 sufficiently contains alkali metal ions, that is, an atmosphere in which the CHA-type zeolite directivity of the MECHA salt is higher. As a result, a highly crystalline CHA-type zeolite is easily obtained with a higher yield.
- the alumina source is alumina (Al 2 O 3 ) or an aluminum compound serving as a precursor thereof.
- alumina aluminum sulfate, aluminum nitrate, sodium aluminate, aluminum hydroxide, aluminum chloride, amorphous aluminosilicate, metal Mention may be made of at least one member selected from the group consisting of aluminum and aluminum alkoxides.
- the silica source is silica (SiO 2 ) or a silicon compound serving as a precursor thereof.
- silica SiO 2
- a silicon compound serving as a precursor thereof.
- colloidal silica amorphous silica, sodium silicate, tetraethoxysilane, tetraethylorthosilicate, precipitated silica, fumed silica, amorphous
- at least one member of the group consisting of quality aluminosilicate there may be mentioned at least one member of the group consisting of quality aluminosilicate.
- the alumina source and the silica source preferably contain amorphous aluminosilicate.
- the alkali source is an alkali metal compound and is at least one compound selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and at least two compounds selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
- the alkali metal compound is preferably at least one member selected from the group consisting of alkali metal hydroxides, chlorides, bromides and iodides.
- the alkali metal contained in these also functions as an alkali source.
- the alkali source contained in the raw material composition 1 preferably contains one or more members selected from the group consisting of potassium, rubidium and cesium, and particularly contains potassium. preferable.
- Examples of the water contained in the raw material composition 1 include deionized water and pure water. Moreover, when at least one of an alumina source, a silica source, a MECHA salt, an ADA salt, or an alkali source is an aqueous solution, water contained in these raw materials may be used.
- the raw material composition 1 preferably does not contain a fluorine (F) -containing compound.
- Fluorine is particularly highly corrosive, and a production method using the fluorine requires special production equipment that exhibits corrosion resistance. This tends to increase the manufacturing cost. Therefore, it is preferable that the raw material composition 1 does not contain fluorine, for example, the fluorine content of the raw material composition 1 is preferably 1 ppm or less.
- the total molar ratio (hereinafter also referred to as “OSDA / SiO 2 ”) of the MECHA salt and the ADA salt with respect to silica of the raw material composition 1 is 0.03 or more, and further 0.06 or more.
- OSDA / SiO 2 When OSDA / SiO 2 is 0.03 or more, a CHA-type zeolite is easily obtained in a single phase. It is not necessary to increase OSDA more than necessary from the viewpoint of manufacturing cost, and OSDA / SiO 2 may be 0.30 or less, and further 0.20 or less. Furthermore, even if OSDA / SiO 2 is 0.10 or less, a highly crystalline CHA-type zeolite can be obtained in a single phase.
- a preferable range of OSDA / SiO 2 is 0.06 or more and 0.20 or less, further 0.06 or more and 0.12 or less, and further 0.06 or more and 0.10 or less.
- ADA / MECHA The higher the molar ratio of the ADA salt to the MECHA salt of the raw material composition 1 (hereinafter also referred to as “ADA / MECHA”), the higher the crystallinity of the resulting CHA-type zeolite.
- ADA / MECHA the higher the crystallinity of the resulting CHA-type zeolite.
- the production cost increases.
- ADA / MECHA is 2.0 or less, further 1.0 or less, and even 0.5 or less, the crystallinity is obtained in a yield equivalent to that in the production method in which OSDA is an ADA salt alone.
- High CHA-type zeolite Moreover, if ADA / MECHA is 0.025 or more, and further 0.05 or more, a highly crystalline CHA-type zeolite can be obtained more easily.
- ADA / SiO 2 The higher the molar ratio of the ADA salt to the silica of the raw material composition 1 (hereinafter also referred to as “ADA / SiO 2 ”), the easier the single phase of the CHA-type zeolite is crystallized. Even when ADA / SiO 2 is 0.05 or less, and further 0.03 or less, CHA-type zeolite can be obtained in a yield equivalent to that of the production method in which OSDA is an ADA salt alone. Further, when ADA / SiO 2 is 0.005 or more, and further 0.010 or more, CHA-type zeolite is more easily obtained.
- the molar ratio of MECHA salt to silica (hereinafter also referred to as “MECHA / SiO 2 ”) is 0.02 or more and 0.10 or less, and ADA / SiO 2 is 0.00. 005 or more and 0.10 or less, and ADA / MECHA is 1.0 or less.
- the molar ratio of silica to alumina of the raw material composition 1 is preferably 10 or more and 100 or less, and more preferably 10 or more and 60 or less.
- the heat resistance of the CHA-type zeolite obtained by having SiO 2 / Al 2 O 3 of 10 or more tends to be high.
- SiO 2 / Al 2 O 3 is 100 or less, the zeolite has a sufficient acid site that contributes to the catalytic reaction. It is more preferable that the SiO 2 / Al 2 O 3 of the raw material composition 1 is 10 or more and 40 or less, and further 10 or more and 35 or less.
- the molar ratio of the alkali metal to the silica of the raw material composition 1 (hereinafter also referred to as “M / SiO 2 ”) is preferably 0.10 or more and 0.50 or less, and more preferably 0.10 or more and 0.30 or less. .
- M / SiO 2 is 0.10 or more, crystallization of CHA-type zeolite is easily promoted.
- M / SiO 2 is 0.50 or less, formation of zeolite having a structure other than the CHA structure is less likely to occur, and further M / SiO 2 is 0.15 or less, and further 0.13 or less.
- the heat resistance of the CHA type zeolite obtained by it to become high.
- the molar ratio of at least one member selected from the group consisting of potassium, rubidium and cesium to the silica of the raw material composition 1 is preferably greater than 0 and less than 0.15, more preferably greater than 0.02 and less than 0.15, and 0.03 or more and 0.13 or less. More preferably it is.
- the molar ratio of sodium to silica in the raw material composition 1 exceeds 0 and is 0.12 or less. Preferably, it is more than 0 and 0.09 or less.
- the molar ratio of sodium to potassium (hereinafter also referred to as “Na / K”) is from 0.05 to 20.0, further from 0.065 to 5.0, and further from 0.1 to 2. It is mentioned that it is 0 or less.
- the molar ratio of water (H 2 O) to silica of the raw material composition 1 (hereinafter also referred to as “H 2 O / SiO 2 ”) is 5.0 or more and 50.0 or less, and further 10.0 or more and 20.0. The following is preferable.
- H 2 O / SiO 2 is 5.0 or more, the raw material composition 1 has such fluidity that it can be stirred.
- H 2 O / SiO 2 is 50.0 or less, the yield of CHA-type zeolite tends to be high.
- a single-phase CHA-type zeolite can be obtained even when H 2 O / SiO 2 is 10.0 or more and 15.5 or less, and further 11.0 or more and 15.5 or less. There is a case.
- the molar ratio of hydroxyl anion (OH ⁇ ) to silica (hereinafter also referred to as “OH / SiO 2 ”) is 0.05 or more and 1.0 or less, and further 0.1 or more and 0.5 or less. It is preferable that When OH / SiO 2 is 0.05 or more, production of zeolite having a structure other than the CHA structure is less likely to occur. On the other hand, if OH / SiO 2 is 1.0 or less, a sufficient yield of CHA-type zeolite is easily obtained.
- OH / SiO 2 is 0.30 or less, further 0.24 or less, further 0.20 or less, or even 0.17 or less. Preferably there is. Furthermore, the heat resistance of the CHA-type zeolite obtained when OH / SiO 2 is 0.15 or less tends to be high.
- OH / SiO 2 is preferably 0.30 or less, more preferably 0.24 or less, and even more preferably 0.20 or less.
- the raw material composition 1 may not contain a seed crystal, that is, the content of the seed crystal may be 0% by weight.
- the raw material composition 1 may contain seed crystals.
- the seed crystal is preferably CHA-type zeolite, more preferably SSZ-13.
- the content (wt%) satisfying the following formula may be used.
- w1 is a weight obtained by converting Al in the raw material composition 1 into Al 2 O 3
- w2 is a weight obtained by converting Si in the raw material composition 1 into SiO 2
- w3 represents Al in the seed crystal as Al 2.
- the weight converted to O 3 and w4 are the weights of Si in the seed crystal converted to SiO 2 .
- the seed crystal is more preferably a content satisfying the following formula. 0% by weight ⁇ (w3 + w4) / (w1 + w2) ⁇ ⁇ 100 ⁇ 5% by weight, Furthermore, 1.5 wt% ⁇ ⁇ (w3 + w4) / (w1 + w2) ⁇ ⁇ 100 ⁇ 5 wt%
- ADA is an ADA salt
- MECHA is a MECHA salt
- OSDA is a MECHA salt and an ADA salt
- M is Na and K.
- More preferable composition of the raw material composition 1 includes the following.
- TMAd is N, N, N-trimethyladamantyl ammonium salt
- DMECHA is N, N, N-dimethylethylcyclohexylammonium salt
- OSDA is N, N, N-dimethylethylcyclohexylammonium salt and N , N, N-trimethyladamantyl ammonium salt
- M is Na and K.
- the raw material composition 1 is crystallized.
- the crystallization method include hydrothermal synthesis. In that case, what is necessary is just to fill an airtight container with a raw material mixture, and to heat this. Crystallization may be performed in any state of standing or stirring.
- the crystallization temperature is preferably 130 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower, and still more preferably 140 ° C. or higher and 170 ° C. or lower. Furthermore, in the production method of the present invention, a highly crystalline CHA-type zeolite can be obtained within 48 hours even when the crystallization temperature is 130 ° C. or higher and 160 ° C. or lower, and further 130 ° C. or higher and 155 ° C. or lower. it can. By setting the reaction temperature to 155 ° C. or less, the thermal decomposition of OSDA hardly occurs.
- the crystallization temperature may be changed during crystallization.
- crystallization may be started at 130 ° C. or more and 160 ° C. or less, and then the crystallization temperature may be changed to more than 160 ° C. and 200 ° C. or less for crystallization.
- the crystallization time varies depending on the crystallization temperature, but is preferably 10 hours or longer, and more preferably 24 hours (one day) or longer. As a result, the CHA-type zeolite crystallizes. On the other hand, if the crystallization time is 5 days or less, further 72 hours (3 days) or less, and further 48 hours (2 days) or less, CHA-type zeolite can be easily obtained in a single phase.
- the production method of the present invention may include at least one of a washing step, a drying step, and an ion exchange step after the crystallization step.
- the crystallized CHA-type zeolite and the liquid phase are subjected to solid-liquid separation.
- solid-liquid separation may be performed by a known method, and the CHA-type zeolite obtained as a solid phase may be washed with deionized water.
- the drying step moisture is removed from the CHA-type zeolite after the crystallization step or the washing step.
- the conditions for the drying step are arbitrary, it can be exemplified that the CHA-type zeolite after the crystallization step or the washing step is allowed to stand in the atmosphere at 50 ° C. or higher and 150 ° C. or lower for 2 hours or longer.
- the CHA-type zeolite after crystallization may have metal ions such as alkali metal ions on its ion exchange site. In the ion exchange step, this is ion-exchanged to a non-metallic cation such as ammonium ion (NH 4 + ) or proton (H + ). Examples of ion exchange to ammonium ions include mixing and stirring CHA-type zeolite in an ammonium chloride aqueous solution. In addition, ion exchange for protons can be performed by calcining ammonium-type CHA-type zeolite after ion-exchanging CHA-type zeolite with ammonia.
- the CHA-type zeolite obtained by the production method of the present invention is a CHA-type zeolite containing no zeolite having a structure other than the CHA structure, that is, a single-phase CHA-type zeolite.
- a CHA-type zeolite suitable for industrial production can be obtained with a sufficiently high yield. That is, in the production method of the present invention, 70% or more, further 80% or more, and further 90% or more of the silica and alumina contained in the raw material composition 1 can be recovered as CHA-type zeolite.
- the yield of the zeolite in the present invention is, for example, the weight ratio of the silica content of the obtained crystalline zeolite to the silica contained in the raw material composition 1 (hereinafter also referred to as “silica yield” or “Si yield”). )).
- the silica yield can be determined from the ratio (%) of SiO 2 / Al 2 O 3 in the product obtained after crystallization with respect to SiO 2 / Al 2 O 3 of the raw material composition 1. What is necessary is just to obtain
- the silica yield in the production method of the present invention is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more.
- a CHA-type zeolite that is a high silica zeolite and that does not have SiO 2 / Al 2 O 3 higher than necessary is obtained.
- preferred SiO 2 / Al 2 O 3 of the CHA-type zeolite obtained by the production method of the present invention is 5 or more and 50 or less, and further 10 or more and 30 or less.
- the CHA-type zeolite obtained in the present invention is highly crystalline.
- high crystallinity can be confirmed from the fact that the crystallinity of the CHA-type zeolite obtained by the production method of the present invention is equal to or higher than the crystallinity of the conventional CHA-type zeolite.
- a CHA-type zeolite obtained by crystallizing a raw material composition containing only a TMAd salt as OSDA can be exemplified.
- the crystallinity of the CHA-type zeolite can be determined from the XRD peak intensity corresponding to 20-1 reflection of the CHA structure (hereinafter also referred to as “CHA peak intensity”).
- the relative crystallinity of the CHA-type zeolite obtained by the production method of the present invention with the ratio of the CHA peak intensity of the CHA-type zeolite obtained by the production method of the present invention (hereinafter also referred to as “CHA crystallinity”).
- the zeolite obtained in the present invention is a zeolite having no single phase of CHA-type zeolite, that is, a zeolite having a crystal phase other than CHA-type zeolite and amorphous aluminosilicate.
- the production method of the present invention comprises a crystallization step of crystallizing a composition comprising an alumina source, a silica source, an alkali source, water, and an N, N, N-trialkylcyclohexylammonium salt having the following general formula: It is a manufacturing method of the CHA type zeolite containing.
- one of the production methods of the present invention comprises an alumina source, a silica source, an alkali source, water, and a composition containing only N, N, N-dimethylethylcyclohexylammonium salt having the following general formula as an organic structure directing agent:
- a crystallization step of crystallizing a product hereinafter also referred to as “raw material composition 2”), wherein the alkali source contains at least sodium, and the molar ratio of sodium to silica of the composition is 0. It is a process for producing a CHA-type zeolite characterized by being over 0.095.
- X ⁇ is a counter anion of N, N, N-dimethylethylcyclohexylammonium cation.
- the production method of the present invention can crystallize a CHA-type zeolite within a realistic time by combining the raw material composition 2 containing a specific OSDA and a specific sodium content. It can be done.
- the N, N, N-dimethylethylcyclohexylammonium (hereinafter also referred to as “DMECHA”) salt is a compound containing an N, N, N-dimethylethylcyclohexylammonium cation (hereinafter also referred to as “DMECHA + ”). That's fine.
- DMECHA salt include at least one selected from the group consisting of hydroxide, chloride, bromide, iodide, carbonate monoester salt, monoester sulfate, nitrate and sulfate of DMECHA.
- the DMECHA salt is at least one member selected from the group consisting of hydroxides, chlorides, bromides, iodides, nitrates and sulfates of DMECHA, and further includes a group consisting of chlorides, bromides, and iodides of DMECHA. It is preferable that at least one of the chlorides or bromides of DMECHA. Further, it may be at least two or more of the group consisting of hydroxide, chloride, bromide and iodide of DMECHA. Thereby, the yield of CHA-type zeolite tends to be higher.
- OSDA is a salt thereof, even when the raw material composition 2 contains an alkali source as a hydroxide, the hydroxide ion (OH ⁇ ) content in the raw material composition 2 is sufficiently high. Lower. Thereby, crystallization can be performed in a state in which the raw material composition 2 sufficiently contains alkali metal ions, that is, an atmosphere in which the CHA-type zeolite directivity of the MECHA salt is higher. As a result, a highly crystalline CHA-type zeolite is easily obtained with a higher yield.
- X ⁇ in the general formula of DMECHA salt is OH ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CH 3 CO 3 ⁇ , CH 3 SO 4 ⁇ , C 2 H 5 SO 4 ⁇ , NO 3 ⁇ and 1/2 ( SO 4 2 ⁇ ), and at least one selected from the group consisting of OH ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
- Examples of the method for producing the DMECHA salt include a method for reacting N, N-dimethylcyclohexylamine and an alkylating agent in a solvent at room temperature to 150 ° C.
- Examples of the alkylating agent include at least one member selected from the group consisting of ethyl halide, diethyl carbonate, and diethyl sulfate.
- the solvent is preferably a solvent capable of dissolving the raw material, and includes at least one member selected from the group consisting of water, alcohol, methanol, ethanol and 2-propanol.
- any of a halogenated salt, a carbonate monoester salt, or a sulfuric acid monoester salt of DMECHA can be synthesized as a DMECHA salt.
- a hydroxide salt of DMECHA what is necessary is just to ion-exchange the DMECHA salt obtained above using the hydroxide ion type strong basic anion exchange resin.
- the alumina source is alumina (Al 2 O 3 ) or an aluminum compound serving as a precursor thereof.
- alumina aluminum sulfate, aluminum nitrate, sodium aluminate, aluminum hydroxide, aluminum chloride, amorphous aluminosilicate, metal Mention may be made of at least one member selected from the group consisting of aluminum and aluminum alkoxides.
- the silica source is silica (SiO 2 ) or a silicon compound serving as a precursor thereof.
- silica SiO 2
- a silicon compound serving as a precursor thereof.
- colloidal silica amorphous silica, sodium silicate, tetraethoxysilane, tetraethylorthosilicate, precipitated silica, fumed silica, amorphous
- at least one member of the group consisting of quality aluminosilicate there may be mentioned at least one member of the group consisting of quality aluminosilicate.
- the alumina source and the silica source preferably contain amorphous aluminosilicate.
- the alkali source includes at least sodium, and can include, for example, a compound of sodium, and at least one selected from the group consisting of sodium hydroxide, chloride, bromide, and iodide. Preferably, it is at least one member selected from the group consisting of compounds and bromides, and further a sodium hydroxide.
- the alkali source may contain an alkali metal compound other than sodium, and includes at least one compound selected from the group consisting of lithium, potassium, rubidium and cesium, and at least one compound selected from the group consisting of potassium, rubidium and cesium. May be included.
- the alkali metal compound other than the sodium compound is preferably at least one member of the group consisting of hydroxide, chloride, bromide and iodide.
- the alkali source contained in the raw material composition 2 preferably contains one or more members selected from the group consisting of potassium, rubidium and cesium, and particularly contains potassium. preferable.
- a particularly preferable alkali source other than the sodium compound a potassium compound and further potassium hydroxide are preferable, and the raw material composition 2 particularly preferably contains sodium and potassium.
- the alkali metal contained therein also functions as an alkali source.
- the water contained in the raw material composition 2 can include deionized water and pure water. Moreover, when at least any one of an alumina source, a silica source, a DMECHA salt, or an alkali source is an aqueous solution, the water contained in these raw materials may be sufficient.
- the raw material composition 2 preferably does not contain a fluorine (F) -containing compound.
- Fluorine is particularly highly corrosive, and a production method using the fluorine requires special production equipment that exhibits corrosion resistance. This tends to increase the manufacturing cost. Therefore, it is preferable that the raw material composition 2 does not contain fluorine.
- the fluorine content of the raw material composition 2 is preferably 1 ppm or less.
- the molar ratio of the raw material composition 2 to the DMECHA salt (hereinafter also referred to as “DMECHA / SiO 2 ” or “OSDA / SiO 2 ”) with respect to silica is 0.03 or more, and further 0.06 or more.
- OSDA / SiO 2 is 0.03 or more, a CHA-type zeolite is easily obtained in a single phase. It is not necessary to increase OSDA more than necessary from the viewpoint of manufacturing cost, and OSDA / SiO 2 may be 0.30 or less, and further 0.20 or less. Furthermore, even if OSDA / SiO 2 is 0.10 or less, a highly crystalline CHA-type zeolite can be obtained in a single phase.
- a preferable range of OSDA / SiO 2 is 0.06 or more and 0.20 or less, further 0.06 or more and 0.12 or less, and further 0.06 or more and 0.10 or less.
- the raw material composition 2 contains only the DMECHA salt as OSDA.
- OSDA for example, ADA salt, contained in the crystalline aluminosilicate contained in the raw material composition 2 as a seed crystal or silica alumina source may be included.
- ADA / SiO 2 the molar ratio of the ADA salt to the silica of the raw material composition 2
- ADA / SiO 2 is less than 0.005
- ADA / SiO 2 is 0.003 or less.
- the molar ratio of silica to alumina in the raw material composition 2 is preferably 10 or more and 100 or less, and more preferably 10 or more and 60 or less.
- the heat resistance of the CHA-type zeolite obtained by having SiO 2 / Al 2 O 3 of 10 or more tends to be high.
- SiO 2 / Al 2 O 3 is 100 or less, the zeolite has a sufficient acid site that contributes to the catalytic reaction. It is more preferable that the SiO 2 / Al 2 O 3 of the raw material composition 2 is 10 or more and 40 or less, and further 10 or more and 35 or less.
- Na / SiO 2 The molar ratio of sodium of the raw material composition 2 to silica (hereinafter also referred to as “Na / SiO 2 ”) exceeds 0 and is 0.095 or less.
- Na / SiO 2 exceeds 0.095, the CHA-type zeolite does not crystallize in a realistic time, and further, the crystallization of the zeolite itself does not proceed.
- Na / SiO 2 is preferably more than 0 and 0.09 or less, more preferably 0.02 or more and 0.09 or less, and still more preferably 0.02 or more and 0.08 or less.
- the total molar ratio of the alkali metal to the silica of the raw material composition 2 (hereinafter also referred to as “M total / SiO 2 ”) is 0.10 or more and 0.50 or less, and further 0.10 or more and 0.30 or less. Is preferred. When M total / SiO 2 is 0.10 or more, crystallization of CHA-type zeolite is easily promoted. On the other hand, if M total / SiO 2 is 0.50 or less, formation of a zeolite having a structure other than the CHA structure is less likely to occur, and M total / SiO 2 is 0.15 or less, and further 0.13 There exists a tendency for the heat resistance of the CHA-type zeolite obtained by becoming below to become high.
- the molar ratio of at least one member selected from the group consisting of potassium, rubidium and cesium to the silica of the raw material composition 2 is preferably more than 0 and less than 0.15, more preferably more than 0.02 and less than 0.15, more preferably 0.03 or more and 0.13 or less. More preferably.
- the molar ratio of sodium to potassium (hereinafter also referred to as “Na / K”) is 0.05 or more and 20.0 or less, and further 0.065 or more. 5.0 or less, and further 0.1 or more and 2.0 or less.
- the molar ratio of water (H 2 O) to silica of the raw material composition 2 (hereinafter also referred to as “H 2 O / SiO 2 ”) is 5.0 or more and 50.0 or less, and further 10.0 or more and 20.0. The following is preferable.
- H 2 O / SiO 2 is 5.0 or more, the raw material composition 2 has fluidity that can be stirred.
- H 2 O / SiO 2 is 50.0 or less, the yield of CHA-type zeolite tends to be high.
- a single-phase CHA-type zeolite can be obtained even when H 2 O / SiO 2 is 10.0 or more and 15.5 or less, and further 11.0 or more and 15.5 or less. There is a case.
- the raw material composition 2 has a molar ratio of hydroxyl anion (OH ⁇ ) to silica (hereinafter also referred to as “OH / SiO 2 ”) of 0.05 to 1.0, more preferably 0.1 to 0.5. It is preferable that When OH / SiO 2 is 0.05 or more, production of zeolite having a structure other than the CHA structure is less likely to occur. On the other hand, if OH / SiO 2 is 1.0 or less, a sufficient yield of CHA-type zeolite is easily obtained.
- OH / SiO 2 is 0.30 or less, further 0.24 or less, further 0.20 or less, or even 0.17 or less. Preferably there is. Furthermore, the heat resistance of the CHA-type zeolite obtained when OH / SiO 2 is 0.15 or less tends to be high.
- OH / SiO 2 is preferably 0.30 or less, more preferably 0.24 or less, and even more preferably 0.20 or less.
- the raw material composition 2 may not contain a seed crystal, that is, the content of the seed crystal may be 0% by weight.
- the raw material composition 2 may contain seed crystals.
- the seed crystal is preferably CHA-type zeolite, more preferably SSZ-13.
- the content (wt%) satisfying the following formula may be used.
- w1 is a weight obtained by converting Al in the raw material composition 2 into Al 2 O 3
- w2 is a weight obtained by converting Si in the raw material composition 2 into SiO 2
- w3 represents Al in the seed crystal as Al 2.
- the weight converted to O 3 and w4 are the weights of Si in the seed crystal converted to SiO 2 .
- the seed crystal is more preferably a content satisfying the following formula.
- OSDA is N
- OSDA is N, N, N-dimethylethylcyclohexylammonium salt and M total alkali metal are Na and K.
- the raw material composition 2 is crystallized.
- the crystallization method include hydrothermal synthesis. In that case, what is necessary is just to fill an airtight container with a raw material mixture, and to heat this. Crystallization may be performed in any state of standing or stirring.
- the crystallization temperature is preferably 130 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower, and still more preferably 140 ° C. or higher and 170 ° C. or lower. Furthermore, in the production method of the present invention, a highly crystalline CHA-type zeolite can be obtained within 48 hours even when the crystallization temperature is 130 ° C. or higher and 160 ° C. or lower, and further 130 ° C. or higher and 155 ° C. or lower. it can. By setting the reaction temperature to 155 ° C. or less, the thermal decomposition of OSDA hardly occurs.
- the crystallization temperature may be changed during crystallization.
- crystallization may be started at 130 ° C. or more and 160 ° C. or less, and then the crystallization temperature may be changed to more than 160 ° C. and 200 ° C. or less for crystallization.
- the crystallization time varies depending on the crystallization temperature, but is preferably 10 hours or longer, and more preferably 24 hours (one day) or longer. As a result, the CHA-type zeolite crystallizes. On the other hand, if the crystallization time is 5 days or less, further 72 hours (3 days) or less, and further 48 hours (2 days) or less, CHA-type zeolite can be easily obtained in a single phase.
- the production method of the present invention may include at least one of a washing step, a drying step, and an ion exchange step after the crystallization step.
- the crystallized CHA-type zeolite and the liquid phase are subjected to solid-liquid separation.
- solid-liquid separation may be performed by a known method, and the CHA-type zeolite obtained as a solid phase may be washed with deionized water.
- the drying step moisture is removed from the CHA-type zeolite after the crystallization step or the washing step.
- the conditions for the drying step are arbitrary, it can be exemplified that the CHA-type zeolite after the crystallization step or the washing step is allowed to stand in the atmosphere at 50 ° C. or higher and 150 ° C. or lower for 2 hours or longer.
- the CHA-type zeolite after crystallization may have metal ions such as alkali metal ions on its ion exchange site. In the ion exchange step, this is ion-exchanged to a non-metallic cation such as ammonium ion (NH 4 + ) or proton (H + ). Examples of ion exchange to ammonium ions include mixing and stirring CHA-type zeolite in an ammonium chloride aqueous solution. In addition, ion exchange for protons may be performed by ion-exchanging CHA-type zeolite with ammonia and then calcining it.
- the CHA-type zeolite obtained by the production method of the present invention is a CHA-type zeolite containing no zeolite having a structure other than the CHA structure, that is, a single-phase CHA-type zeolite.
- CHA-type zeolite suitable for industrial production can be obtained with a sufficiently high yield. That is, in the production method of the present invention, 70% or more, further 80% or more, and further 90% or more of the silica and alumina contained in the raw material composition 2 can be recovered as CHA-type zeolite.
- the yield of zeolite in the present invention is, for example, the weight ratio of the silica content of the obtained crystalline zeolite to the silica contained in the raw material composition 2 (hereinafter also referred to as “silica yield” or “Si yield”). )).
- silica yields can be obtained from the relative SiO 2 / Al 2 O 3 raw material composition 2, the ratio of SiO 2 / Al 2 O 3 in the product obtained after crystallization (%). What is necessary is just to obtain
- the silica yield in the production method of the present invention is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more.
- a CHA-type zeolite that is a high silica zeolite and that does not have SiO 2 / Al 2 O 3 higher than necessary is obtained.
- preferred SiO 2 / Al 2 O 3 of the CHA-type zeolite obtained by the production method of the present invention is 5 or more and 50 or less, and further 10 or more and 30 or less.
- the CHA-type zeolite obtained in the present invention is highly crystalline.
- high crystallinity can be confirmed from the fact that the crystallinity of the CHA-type zeolite obtained by the production method of the present invention is equal to or higher than the crystallinity of the conventional CHA-type zeolite.
- a conventional CHA type zeolite there can be mentioned a CHA type zeolite obtained by crystallizing a raw material composition containing only TMAD + as OSDA.
- the crystallinity of the CHA-type zeolite can be determined from the XRD peak intensity corresponding to 20-1 reflection of the CHA structure (hereinafter also referred to as “CHA peak intensity”).
- the relative crystallinity of the CHA-type zeolite obtained by the production method of the present invention with the ratio of the CHA peak intensity of the CHA-type zeolite obtained by the production method of the present invention (hereinafter also referred to as “CHA crystallinity”).
- the zeolite obtained in the present invention is a zeolite having no single phase of CHA-type zeolite, that is, a zeolite having a crystal phase other than CHA-type zeolite and amorphous aluminosilicate.
- the structure of the sample was identified by comparing with the XRD pattern of the CHA-type zeolite indicated by 1.
- Examples A-1 to A-5, Comparative Example A-1, Examples B-1 to B-11, and Comparative Examples B-1 to B-9 were obtained as Comparative Example B-4.
- the sample SiO 2 / Al 2 O 3 was determined.
- Silica yield The raw material composition and the product SiO 2 / Al 2 O 3 were determined by composition analysis. The ratio of the product SiO 2 / Al 2 O 3 to the AiO 2 / Al 2 O 3 of the raw material composition was defined as the silica yield, and the yield of the product was determined.
- Content of silanol group The silanol group content of the CHA-type zeolite was measured by 1 H MAS NMR.
- the sample Prior to measurement, the sample was held at 400 ° C. for 5 hours under vacuum evacuation and dehydrated for pretreatment. After the pretreatment, a sample cooled to room temperature was collected in a nitrogen atmosphere and weighed.
- a general NMR measuring device device name: VXR-300S, manufactured by Varian
- the measurement conditions were as follows.
- Resonance frequency 300.0 MHz Pulse width: ⁇ / 2 Measurement waiting time: 10 seconds Integration count: 32 times Rotation frequency: 4 kHz Shift standard: TMS From the obtained 1 H MAS NMR spectrum, a peak of 2.0 ⁇ 0.5 ppm was defined as a peak attributed to a silanol group. The peak was waveform-separated and the area intensity was determined. From the obtained area strength, the amount of silanol in the sample was determined by a calibration curve method.
- the sample after pretreatment was divided into two, one was heat-treated at 600 ° C for 5 hours in the atmosphere with a dew point of -50 ° C, and the other was heat-treated at 1000 ° C for 5 hours in the atmosphere with a dew point of -50 ° C.
- the intensity of the XRD peak at ⁇ 21.0 ° was determined, the intensity of the XRD peak of the measurement sample heat-treated at 600 ° C. was set as I 600, and the intensity of the XRD peak of the measurement sample heat-treated at 1000 ° C. was set as I 1000 . From the obtained I600 and I1000 , I1000 / I600 was determined.
- Synthesis Example 2 (Synthesis of DMECHAOH) 20.0 g of DMECHABr obtained in Synthesis Example 1 was dissolved in 180.0 g of deionized water. This aqueous solution was ion-exchanged through a column packed with an anion exchange resin (Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation), and N, N, N-dimethylethylcyclohexylammonium hydroxide (hereinafter, “DMECHAOH”) was also exchanged. Solution) was obtained. This solution was concentrated at 50 ° C. using a rotary evaporator to obtain a 25 wt% aqueous DMECHAOH solution.
- DMECHAOH N, N, N-dimethylethylcyclohexylammonium hydroxide
- Synthesis Example 3 (Synthesis of MDECAI) A 300 mL eggplant flask was charged with 50.0 g of N, N-diethylcyclohexylamine and 100 mL of ethanol, and cooled with ice. To this solution, 50.3 g of methyl iodide was added dropwise over 30 minutes, and then returned to room temperature and allowed to react for another 12 hours. After completion of the reaction, unreacted substances and the solvent were distilled off under reduced pressure at 70 ° C. to obtain N, N, N-methyldiethylcyclohexylammonium iodide (hereinafter also referred to as “MDECAI”). The compound was dissolved in deionized water to obtain a 25.0 wt% MDECAI aqueous solution.
- MDECAI N-methyldiethylcyclohexylammonium iodide
- the product is a single phase of CHA-type zeolite, the crystallinity is 124%, the FWHM of the XRD peak of 100 reflection is 0.160 °, and the FWHM of the XRD peak of 20-1 reflection is 0.179. ⁇ . Also, I 1000 / I 600 was 0.55.
- Example A-2 A product was obtained in the same manner as in Example A-1, except that the following composition in the raw material mixture was changed.
- Example A-3 Except for using an amorphous aluminosilicate with SiO 2 / Al 2 O 3 of 31.0 as the alumina source, using TMAdOH instead of TMAdCl, and changing the following composition in the raw material mixture The product was obtained in the same manner as in Example A-1.
- the product was a single phase of CHA-type zeolite and had a 100 reflection XRD peak FWHM of 0.172 ° and a 20-1 reflection XRD peak FWHM of 0.183 °. Also, I 1000 / I 600 was 0.59.
- Example A-4 As the alumina source, an amorphous aluminosilicate with SiO 2 / Al 2 O 3 of 31.0 was used, DMECHABr and DMECHAOH were used instead of DMECHABr, TMAdOH was used instead of TMAdCl, and A product was obtained in the same manner as in Example A-1, except that the following composition in the raw material mixture was changed.
- the product was a single phase of CHA-type zeolite and had a 100 reflection XRD peak FWHM of 0.169 ° and a 20-1 reflection XRD peak FWHM of 0.184 °.
- I1000 / I600 was 0.65.
- Example A-5 Except for using alumina aluminosilicate with SiO 2 / Al 2 O 3 of 24.5 as the alumina source, using TMAdOH instead of TMAdCl, and changing the following composition in the raw material mixture The product was obtained in the same manner as in Example A-1.
- Comparative Example A-1 A product was obtained in the same manner as in Example A-1, except that DMECHABr was not used and the following composition in the raw material mixture was changed.
- CHA-type zeolite was obtained by using ADA salt and MECHA salt as OSDA.
- Example A-1 the CHA-type zeolite obtained by using DMECHA salt as OSDA was compared with the zeolite obtained by using only TMAd as OSDA. It was confirmed that the SiOH / Si ratio was lowered, that is, the skeleton end portion was reduced.
- the CHA-type zeolite of the example has an I 1000 / I 600 of 0.55, which is a high I 1000 / I 600 of 0.30 or more, whereas the CH A-type zeolite of Comparative Example A-1 has an I 1000 / I 600 of Was 0.29. Furthermore, although the CHA-type zeolite of Comparative Example A-1 had higher CHA crystallinity than Example A-3, I 1000 / I 600 was lower than Example A-3. From this, it was confirmed that the CHA-type zeolite of the present invention has higher heat resistance than the CHA-type zeolite obtained by using only ADA salt as OSDA.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 118%. Also, SiO 2 / Al 2 O 3 was 24.9.
- Example B-2 A product was obtained in the same manner as in Example B-1, except that K / SiO 2 was changed to 0.06.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 129%. Also, SiO 2 / Al 2 O 3 was 25.2.
- Example B-3 Produced in the same manner as in Example B-2 except that a 25 wt% DMECHAOH aqueous solution was used instead of the 25 wt% DMECHABr aqueous solution, and that a 25 wt% TMAdOH aqueous solution was used instead of the 25% wt% TMAdCl aqueous solution. I got a thing.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 118%. Also, SiO 2 / Al 2 O 3 was 23.8.
- Example B-4 A product was obtained in the same manner as in Example B-1, except that a 25 wt% MDECHAI aqueous solution was used instead of the 25 wt% DMECHABr aqueous solution.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 112%. Also, SiO 2 / Al 2 O 3 was 24.7.
- Comparative Example B-1 A product was obtained in the same manner as in Example B-1, except that 25% by weight DMECHABr aqueous solution was used alone as OSDA, and 5% by weight CHA-type zeolite was mixed as a seed crystal into the raw material composition. It was.
- Comparative Example B-2 A product was obtained in the same manner as in Example B-1, except that 25% by weight DMECHAOH aqueous solution was used alone as OSDA, and 5% by weight CHA-type zeolite was mixed as a seed crystal into the raw material composition. It was.
- Comparative Example B-3 A product was obtained in the same manner as in Example B-1, except that a 25 wt% TMAdCl aqueous solution was used alone as OSDA.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 100%. Also, SiO 2 / Al 2 O 3 is 24.2, I 1000 / I 600 was less than 0.30.
- Comparative Example B-4 A product was obtained in the same manner as in Example B-1, except that a 25 wt% TMAdOH aqueous solution was used alone as OSDA.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 100%. Also, SiO 2 / Al 2 O 3 is 22.1, I 1000 / I 600 had less than 0.30.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 132%. Also, SiO 2 / Al 2 O 3 is 25.1, I 1000 / I 600 was 0.35.
- Example B-6 A product was obtained in the same manner as in Example B-5 except that the raw material compositions DMECHABr / SiO 2 and TMAdCl / SiO 2 were changed to 0.07 and 0.01, respectively.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 130%. Also, SiO 2 / Al 2 O 3 is 24.9, SiOH / Si ratio was 0.54, I 1000 / I 600 was 0.42.
- Example B-7 Example B-5 except that DMECHABr / SiO 2 and TMAdCl / SiO 2 were 0.07 and 0.01, respectively, and 2% by weight of CHA-type zeolite as a seed crystal was mixed into the raw material composition. The product was obtained in a similar manner.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 129%. Also, SiO 2 / Al 2 O 3 is 24.7, I 1000 / I 600 was 0.41.
- Example B-8 A product was obtained in the same manner as in Example B-2 except that the reaction temperature was 150 ° C.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 129%.
- the SiO 2 / Al 2 O 3 ratio was 24.9.
- the CHA-type zeolite of this example contained aggregated crystal particles obtained by chemically aggregating primary crystal particles having a side of 1 ⁇ m.
- Example B-9 A product was obtained in the same manner as in Example B-5 except that the reaction temperature was 150 ° C.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 132%. Also, SiO 2 / Al 2 O 3 is 25.2, I 1000 / I 600 was 0.38.
- the CHA-type zeolite of this example contained many primary crystal particles having a side of 1 ⁇ m, and the primary crystal particles and aggregated crystal particles in which the primary particles were chemically aggregated existed.
- Example B-10 A product was obtained in the same manner as in Example B-9, except that a 25 wt% TMAdOH aqueous solution was used instead of the 25 wt% TMAdCl aqueous solution.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 129%. Also, SiO 2 / Al 2 O 3 is 23.9, I 1000 / I 600 was 0.32.
- the CHA-type zeolite of this example contained many primary crystal particles having a side of 1 ⁇ m, and the primary crystal particles and aggregated crystal particles in which the primary particles were chemically aggregated existed.
- Example B-11 A product was obtained in the same manner as in Example B-9, except that a 25 wt% MDECHAI aqueous solution was used instead of the 25 wt% DMECHABr aqueous solution.
- the product was a single phase of CHA-type zeolite and the CHA crystallinity was 120%. Also, SiO 2 / Al 2 O 3 was 24.9.
- Example B-5 25% by weight N, N, N-trimethylcyclohexylammonium iodide (hereinafter also referred to as “TMCHAI”) was used in place of the 25% by weight DMECHABr aqueous solution, and 5% by weight CHA zeolite was used as a seed crystal.
- TMCHAI N, N, N-trimethylcyclohexylammonium iodide
- the obtained product was a mixture of a CHA type zeolite and an ERI type zeolite, and the CHA crystallinity in the mixture was 99%. Also, SiO 2 / Al 2 O 3 ratio of the mixture is 24.8, I 1000 / I 600 was less than 0.30.
- Comparative Example B-6 A product was obtained in the same manner as in Comparative Example B-5 except that TMCHAI / SiO 2 and TMAdCl / SiO 2 were changed to 0.06 and 0.02, respectively.
- Comparative Example B-7 A product was obtained in the same manner as in Comparative Example B-6, except that a 25 wt% TMAdOH aqueous solution was used instead of the 25 wt% TMAdCl aqueous solution.
- Comparative Example B-8 A 25 wt% N, N, N-dimethylpropylcyclohexylammonium bromide (hereinafter also referred to as “DMPCHABr”) aqueous solution was used in place of the 25 wt% DMECHABr aqueous solution, and 5 wt% CHA type was used as a seed crystal. A product was obtained in the same manner as in Example B-1, except that zeolite was mixed into the raw material composition.
- DMPCHABr N, N, N-dimethylpropylcyclohexylammonium bromide
- the obtained product was a mixture of a CHA type zeolite and an ERI type zeolite, and the CHA crystallinity in the mixture was 72%. Further, the SiO 2 / Al 2 O 3 ratio of the mixture was 24.5.
- Comparative Example B-9 A 25 wt% N, N, N-trimethylbenzylammonium bromide (hereinafter also referred to as “TMBABr”) aqueous solution was used in place of the 25 wt% DMECHABr aqueous solution, and 5 wt% CHA type zeolite was used as a seed crystal. A product was obtained in the same manner as in Example B-1, except that was mixed with the raw material composition.
- TMBABr N, N, N-trimethylbenzylammonium bromide
- the obtained product was a mixture of a CHA type zeolite and an ERI type zeolite, and the CHA crystallinity in the mixture was 100%. Also, SiO 2 / Al 2 O 3 ratio of the mixture is 25.0, I 1000 / I 600 was less than 0.30.
- a raw material composition having the following molar composition was obtained by mixing.
- a raw material composition having the following molar composition was obtained by mixing.
- a raw material composition having the following molar composition was obtained.
- a raw material composition having the following molar composition was obtained.
- Example C-7 25% by weight DMECHABr aqueous solution, 25% by weight DMECHAOH aqueous solution, 48% sodium hydroxide aqueous solution, 48% by weight potassium hydroxide aqueous solution, deionized water, silica gel (product name: Nipsil-VN3, manufactured by Nippon Silica Kogyo Co., Ltd.), aluminum isopropoxy (Zida Chemical Co., Ltd.) and SSZ-13 as a seed crystal were mixed to obtain a raw material composition having the following molar composition.
- Comparative Example C-1 Crystallization was carried out in the same manner as in Example C-1, except that a raw material composition having the following molar composition was used.
- Comparative Example C-2 Crystallization was carried out in the same manner as in Example C-1, except that a raw material composition having the following molar composition was used.
- Table 11 shows the main compositions of the raw material compositions of these Examples and Comparative Examples, and Table 12 shows the products.
- the CHA-type zeolite obtained in the examples had an I 1000 / I 600 of more than 0.30 and excellent heat resistance.
- Example C-1 Example C-1 except that 25 wt% aqueous N, N, N-trimethylcyclohexylammonium iodide (TMCHAI) solution and 25 wt% N, N, N-trimethylcyclohexylammonium hydroxide (TMCHAOH) were used as OSDA Similarly, 50.0 g of a raw material composition was obtained.
- TMCHAI N, N-trimethylcyclohexylammonium iodide
- TMCHAOH 25 wt% N, N, N-trimethylcyclohexylammonium hydroxide
- Comparative Example C-4 A raw material composition having the same composition as that of Comparative Example C-1 was obtained except that 2.0% by weight of SSZ-13 was contained as a seed crystal.
- Example C-1 Crystallization was carried out in the same manner as in Example C-1, except that the obtained raw material composition was used. However, the raw material composition did not crystallize, and an amorphous product was obtained.
- Comparative Example C-5 As OSDA, 25 wt% N, N, N-triethylcyclohexylammonium bromide (hereinafter also referred to as “TECHABr”) aqueous solution and 25 wt% N, N, N-triethylcyclohexylammonium hydroxide (hereinafter also referred to as “TECHAOH”). .) A raw material composition having the following composition was obtained using an aqueous solution.
- TECHABr 25 wt% N, N, N-triethylcyclohexylammonium bromide
- TECHAOH 25 wt% N, N, N-triethylcyclohexylammonium hydroxide
- Comparative Example C-6 As OSDA, 25% by weight N, N, N-trimethyladamantanammonium chloride (hereinafter referred to as “TMAdCl”) aqueous solution and N, N, N-trimethyladamantanammonium hydroxide (hereinafter referred to as “TMAdOH”) were used. A raw material composition having the following composition was obtained.
- TMAdCl N, N, N-trimethyladamantanammonium chloride
- TMAdOH N, N, N-trimethyladamantanammonium hydroxide
- Comparative Example C-7 As OSDA, 25% by weight N, N, N-trimethyladamantanammonium chloride (hereinafter referred to as “TMAdCl”) aqueous solution and N, N, N-trimethyladamantanammonium hydroxide (hereinafter referred to as “TMAdOH”) were used. A raw material composition having the following composition was obtained.
- TMAdCl N, N, N-trimethyladamantanammonium chloride
- TMAdOH N, N, N-trimethyladamantanammonium hydroxide
- Comparative Example C-8 As OSDA, 25% by weight N, N, N-trimethyladamantanammonium chloride (hereinafter referred to as “TMAdCl”) aqueous solution and N, N, N-trimethyladamantanammonium hydroxide (hereinafter referred to as “TMAdOH”) were used. A raw material composition having the following composition was obtained.
- TMAdCl N, N, N-trimethyladamantanammonium chloride
- TMAdOH N, N, N-trimethyladamantanammonium hydroxide
- CHA-type zeolite was crystallized by using only TMAd salt as OSDA.
- all of the CHA-type zeolites had I 1000 / I 600 of less than 0.30, and it was confirmed that the heat resistance was lower than the CHA-type zeolites of the examples.
- the I 1000 / I 600 of the CHA type zeolite of Example 2 is 0.59.
- I 1000 / I 600 of the CHA type zeolite of Comparative Example C-7 is 0.24
- the CHA type zeolite of the present invention is a CHA type zeolite obtained from a raw material composition containing only TMAd salt as OSDA. It was confirmed that the heat resistance was significantly higher than that.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
従来のCHA型ゼオライト、特に有機構造指向剤としてADA塩のみを使用して得られた従来のCHA型ゼオライトと比べ、触媒や触媒担体により適した高結晶性のCHA型ゼオライトを提供する。 アルミナに対するシリカのモル比が10.0以上20.0未満及びケイ素に対するシラノール基のモル比が0.15×10-2以上0.50×10-2以下、 アルミナに対するシリカのモル比が20.0以上35.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.10×10-2以下、 アルミナに対するシリカのモル比が35.0を超え45.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.65×10-2以下、若しくは、 アルミナに対するシリカのモル比が45.0を超え55.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.80×10-2以下、のいずれかであるCHA型ゼオライト。
Description
本発明はCHA型ゼオライト及びその製造方法に関する。特に、工業的なCHA型ゼオライトの製造方法に関する。
CHA型ゼオライトであり、なおかつAl含有量の少ないアルミノシリケートとしてSSZ-13が報告されている(特許文献1)。SSZ-13は安定性が高いため、メタノールからのエチレン製造又はプロピレン製造用の固体酸触媒(MTO触媒)、尿素存在下における窒素酸化物還元触媒(NH3-SCR触媒)、又は、これらの触媒担体として使用されている。
このようなCHA型ゼオライト及びその工業的な製造方法として、以下のものが報告されている。例えば、特許文献1において、SSZ-13が得られる有機構造指向剤(以下、「OSDA」ともいう。)として、N-アルキル-3-キヌクリジノールアンモニウム塩、N,N,N-トリアルキル-2-アンモニウムエキソノルボルナン塩又はN,N,N-トリメチルアダマンチルアンモニウム塩が開示されている。CHA型ゼオライトが結晶化される製造条件の範囲が広いため、N,N,N-トリメチルアダマンチルアンモニウム塩(以下、「TMAd塩」ともいう。)をはじめとするN,N,N-トリアルキルアダマンチルアンモニウム塩(以下、「ADA塩」ともいう。)が、工業的なSSZ-13の製造方法のOSDAとして使用されている。
その一方、ADA塩は高価であるため、ADA塩を使用せずにCHA型ゼオライトを製造する方法が検討されている。
ADA塩を使用しないCHA型ゼオライトの製造方法として、水酸化N,N,N-トリメチルベンジルアンモニウム又は水酸化N,N,N-トリエチルベンジルアンモニウムなどのN,N,N-トリアルキルベンジルアンモニウム塩(以下、「TABA塩」ともいう。)をOSDAとして使用する製造方法や(特許文献2)、水酸化N,N,N-トリメチルシクロヘキシルアンモニウム(特許文献3)、水酸化N,N,N-トリエチルシクロヘキシルアンモニウム、水酸化N,N,N-メチルジエチルシクロヘキシルアンモニウム、水酸化N,N,N-ジメチルエチルシクロヘキシルアンモニウム(特許文献4)などの、N,N,N-トリアルキルシクロヘキシルアンモニウム塩(以下、「TACHA塩」ともいう。)をOSDAとして使用する製造方法が報告されている。
TABA塩をOSDAとして使用して得られるCHA型ゼオライトは、ADA塩のみをOSDAとして得られたCHA型ゼオライトと同様なものしか得られなかった。
さらに、TABA塩はADA塩より安価な化合物であるが、TABA塩を使用とした製造方法は、ADA塩を使用した製造方法よりも、CHA型ゼオライトの収率が低く、生産効率が悪い。そのため、OSDAの単価は削減できるが、その使用量は増えるなどの欠点があるため、TABA塩の使用による製造方法製造コストの低減は限定的であり、TABA塩を使用とした製造方法は大量生産には適していなかった。
TACHA塩を使用したこれまで報告されているCHA型ゼオライトの製造方法も、TABA塩と同様な理由でCHA型ゼオライトの製造コストの低減が限定的であることに加え、CHA型ゼオライトが生成する条件が非常に限定されていた。そのため、TACHA塩を使用したこれまで報告されている製造方法は、TABA塩を使用した製造方法と比べても製造条件の制御が困難であり、一層、大量生産には適していなかった。
これらの課題に鑑み、本発明は、従来のCHA型ゼオライト、特に有機構造指向剤としてADA塩のみを使用して得られた従来のCHA型ゼオライトと比べ、触媒や触媒担体により適した高結晶性のCHA型ゼオライトを提供することを目的とする。さらに、本発明は高結晶性のCHA型ゼオライトが工業的な生産に適した収率で得られるCHA型ゼオライトの製造方法を提供することを別の目的とする。
本発明者は、触媒や触媒担体により適したCHA型ゼオライト、及び、工業的な製造に適したCHA型ゼオライトの製造方法について検討した。その結果、ADA塩をOSDAとして得られる従来のCHA型ゼオライトと比べ、耐熱性や結晶性が高いCHA型ゼオライトを見出した。更には、ADA塩と特定のTACHA塩とを併用することで、ADA塩を使用した従来のCHA型ゼオライトの製造方法と同等以上の収率で、高結晶性のCHA型ゼオライトが得られることを見出した。また更には、特定のTACHA塩を使用することで、ADA塩を使用した従来のCHA型ゼオライトの製造方法と同等以上の収率で、高結晶性のCHA型ゼオライトが得られることを見出し、本発明を完成した。
すなわち、本発明の要旨は以下のとおりである。
[1] アルミナに対するシリカのモル比が10.0以上20.0未満及びケイ素に対するシラノール基のモル比が0.15×10-2以上0.50×10-2以下、
アルミナに対するシリカのモル比が20.0以上35.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.10×10-2以下、
アルミナに対するシリカのモル比が35.0を超え45.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.65×10-2以下、若しくは、
アルミナに対するシリカのモル比が45.0を超え55.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.80×10-2以下、のいずれかであるCHA型ゼオライト。
[2] 大気中、600℃、5時間で熱処理したCHA型ゼオライトの20-1反射の粉末X線回折ピークの強度に対する、大気中、1000℃、5時間で熱処理したCHA型ゼオライトの20-1反射の粉末X線回折ピークの強度の比が、0.30以上である上記[1]に記載のCHA型ゼオライト。
[3] 一次粒子同士が化学的に凝集しながら形成された結晶粒子を含む上記[1]又は[2]に記載のCHA型ゼオライト。
[1] アルミナに対するシリカのモル比が10.0以上20.0未満及びケイ素に対するシラノール基のモル比が0.15×10-2以上0.50×10-2以下、
アルミナに対するシリカのモル比が20.0以上35.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.10×10-2以下、
アルミナに対するシリカのモル比が35.0を超え45.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.65×10-2以下、若しくは、
アルミナに対するシリカのモル比が45.0を超え55.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.80×10-2以下、のいずれかであるCHA型ゼオライト。
[2] 大気中、600℃、5時間で熱処理したCHA型ゼオライトの20-1反射の粉末X線回折ピークの強度に対する、大気中、1000℃、5時間で熱処理したCHA型ゼオライトの20-1反射の粉末X線回折ピークの強度の比が、0.30以上である上記[1]に記載のCHA型ゼオライト。
[3] 一次粒子同士が化学的に凝集しながら形成された結晶粒子を含む上記[1]又は[2]に記載のCHA型ゼオライト。
[4] アルミナ源、シリカ源、アルカリ源、水、N,N,N-トリアルキルアダマンチルアンモニウム塩及び以下の一般式を有するN,N,N-トリアルキルシクロヘキシルアンモニウム塩を含む組成物を結晶化する結晶化工程、を有することを特徴とするCHA型ゼオライトの製造方法。
R1はエチル基、R2はメチル基又はエチル基のいずれかのアルキル基、及びR3はメチル基又はエチル基のいずれかのアルキル基であり、なおかつ、X-はN,N,N-トリアルキルシクロヘキシルアンモニウムカチオンのカウンターアニオンである。
[5] 前記N,N,N-トリアルキルシクロヘキシルアンモニウム塩又は前記N,N,N-トリアルキルアダマンチルアンモニウム塩の少なくともいずれかが、水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種の塩である上記[4]に記載の製造方法。
[6] 前記組成物のN,N,N-トリアルキルシクロヘキシルアンモニウム塩に対するN,N,N-トリアルキルアダマンチルアンモニウム塩のモル比が0.025以上である上記[4]又は[5]に記載の製造方法。
[7] 前記組成物のシリカに対するN,N,N-トリアルキルアダマンチルアンモニウム塩のモル比が0.005以上0.04以下である上記[4]乃至[6]のいずれかに記載の製造方法。
[8] 前記アルカリ源がカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含む上記[4]乃至[7]のいずれかに記載の製造方法。
[9] 前記原料組成物のシリカに対する、カリウム、ルビジウム及びセシウムからなる群のいずれか1種以上のモル比が0を超え0.15未満である上記[4]乃至[8]のいずれかに記載の製造方法。
[10] 前記N,N,N-トリアルキルアダマンチルアンモニウム塩が、N,N,N-トリメチルアダマンチルアンモニウム塩である上記[4]乃至[9]のいずれかに記載の製造方法。
[11] 前記アルミナ源及びシリカ源が非晶質アルミノシリケートを含む上記[4]乃至[10]のいずれかに記載の製造方法。
[12] 前記組成物のシリカに対する水酸化物イオンのモル比が0.30以下である[4]乃至[11]のいずれかに記載の製造方法。
[13] 前記N,N,N-トリアルキルシクロヘキシルアンモニウム塩が、N,N,N-ジメチルエチルシクロヘキシルアンモニウム塩又はN,N,N-メチルジエチルシクロヘキシルアンモニウム塩の少なくともいずれかである上記[4]乃至[12]のいずれかに記載の製造方法。
[14] 前記組成物が以下の組成を有する上記[4]乃至[13]のいずれかに記載の製造方法。
SiO2/Al2O3 =10以上60以下
TMAd/DMECHA =0.025以上1.0以下
OSDA/SiO2 =0.06以上0.20以下
M/SiO2 =0.10以上0.30以下
OH/SiO2 =0.05以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、TMAdはN,N,N-トリメチルアダマンチルアンモニウム塩、DMECHAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩及びN,N,N-トリメチルアダマンチルアンモニウム塩、並びに、MはNa及びKである。
[5] 前記N,N,N-トリアルキルシクロヘキシルアンモニウム塩又は前記N,N,N-トリアルキルアダマンチルアンモニウム塩の少なくともいずれかが、水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種の塩である上記[4]に記載の製造方法。
[6] 前記組成物のN,N,N-トリアルキルシクロヘキシルアンモニウム塩に対するN,N,N-トリアルキルアダマンチルアンモニウム塩のモル比が0.025以上である上記[4]又は[5]に記載の製造方法。
[7] 前記組成物のシリカに対するN,N,N-トリアルキルアダマンチルアンモニウム塩のモル比が0.005以上0.04以下である上記[4]乃至[6]のいずれかに記載の製造方法。
[8] 前記アルカリ源がカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含む上記[4]乃至[7]のいずれかに記載の製造方法。
[9] 前記原料組成物のシリカに対する、カリウム、ルビジウム及びセシウムからなる群のいずれか1種以上のモル比が0を超え0.15未満である上記[4]乃至[8]のいずれかに記載の製造方法。
[10] 前記N,N,N-トリアルキルアダマンチルアンモニウム塩が、N,N,N-トリメチルアダマンチルアンモニウム塩である上記[4]乃至[9]のいずれかに記載の製造方法。
[11] 前記アルミナ源及びシリカ源が非晶質アルミノシリケートを含む上記[4]乃至[10]のいずれかに記載の製造方法。
[12] 前記組成物のシリカに対する水酸化物イオンのモル比が0.30以下である[4]乃至[11]のいずれかに記載の製造方法。
[13] 前記N,N,N-トリアルキルシクロヘキシルアンモニウム塩が、N,N,N-ジメチルエチルシクロヘキシルアンモニウム塩又はN,N,N-メチルジエチルシクロヘキシルアンモニウム塩の少なくともいずれかである上記[4]乃至[12]のいずれかに記載の製造方法。
[14] 前記組成物が以下の組成を有する上記[4]乃至[13]のいずれかに記載の製造方法。
SiO2/Al2O3 =10以上60以下
TMAd/DMECHA =0.025以上1.0以下
OSDA/SiO2 =0.06以上0.20以下
M/SiO2 =0.10以上0.30以下
OH/SiO2 =0.05以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、TMAdはN,N,N-トリメチルアダマンチルアンモニウム塩、DMECHAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩及びN,N,N-トリメチルアダマンチルアンモニウム塩、並びに、MはNa及びKである。
[15] アルミナ源、シリカ源、アルカリ源、水及び有機構造指向剤として以下の一般式を有するN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩のみを含み、組成物を結晶化する結晶化工程を有し、該アルカリ源が少なくともナトリウムを含み、なおかつ、該組成物のシリカに対するナトリウムのモル比が0を超え0.095以下であること特徴とするCHA型ゼオライトの製造方法。
X-はN,N,N-ジメチルエチルシクロヘキシルアンモニウムカチオンのカウンターアニオンである。
[16] 前記N,N,N-ジメチルエチルシクロヘキシルアンモニウム塩が、水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種の塩である上記[15]に記載の製造方法。
[17] 前記アルカリ源がカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含む上記[15]又は[16]に記載の製造方法。
[18] 前記原料組成物のシリカに対する、カリウム、ルビジウム及びセシウムからなる群のいずれか1種以上のモル比が0を超え0.15未満である上記[15]乃至[17]のいずれかに記載の製造方法。
[18] 前記原料組成物のシリカに対する、カリウム、ルビジウム及びセシウムからなる群のいずれか1種以上のモル比が0を超え0.15未満である上記[15]乃至[17]のいずれかに記載の製造方法。
[19] 前記アルミナ源及びシリカ源が非晶質アルミノシリケートを含む上記[15]乃至[18]のいずれかに記載の製造方法。
[20] 前記組成物のシリカに対する水酸化物イオンのモル比が0.30以下である[15]乃至[19]のいずれかに記載の製造方法。
[20] 前記組成物のシリカに対する水酸化物イオンのモル比が0.30以下である[15]乃至[19]のいずれかに記載の製造方法。
本発明により、従来のCHA型ゼオライト、特に有機構造指向剤としてADA塩のみを使用して得られた従来のCHA型ゼオライトと比べ、触媒や触媒担体により適した高結晶性のCHA型ゼオライト、特に窒素酸化物還元触媒又はその担体、更には尿素存在下における窒素酸化物還元触媒又はその担体に適したCHA型ゼオライトを提供することができる。さらに、本発明により高結晶性のCHA型ゼオライトが工業的な生産に適した収率で得られるCHA型ゼオライトの製造方法を提供することができる。
以下、本発明のCHA型ゼオライトについて詳細に説明する。
本発明はCHA型ゼオライトに係る。CHA型ゼオライトは、国際ゼオライト学会で定義される構造コードでCHA構造となる結晶構造(以下、単に「CHA構造」ともいう。)を有する結晶性アルミノシリケートである。CHA構造は、粉末X線回折(以下、「XRD」という。)パターンによって確認することができる。例えば、特許文献1のTable.1又は2のXRDパターンと比較することで、本発明のCHA型ゼオライトがSSZ-13と同等の結晶構造を有するCHA型ゼオライトであることを確認することができる。なお、特許文献1のTable.1は結晶構造中にOSDAを含んだCHA型ゼオライトのXRDパターンであり、特許文献1のTable.2は結晶構造中からOSDAを除いたCHA型ゼオライトのXRDパターンである。
本発明のCHA型ゼオライトは、結晶構造がCHA構造のみであり、CHA型構造以外の結晶構造を含まないことが好ましい。
本発明のCHA型ゼオライトは結晶性アルミノシリケートである。結晶性アルミノシリケートはアルミニウム(Al)とケイ素(Si)を骨格金属(以下、「T原子」ともいう。)とし、T原子が酸素(O)を介して結合した三次元のネットワーク構造からなる骨格構造を有する結晶からなる。そのため、本発明のCHA型ゼオライトは、T原子としてリン(P)を含むシリコアルミノホスフェート(SAPO)やアルミノホスフェート(AlPO)を含まない。さらに、概念的な結晶性アルミノシリケートはネットワーク構造のみから構成される。これに対し、現実的に存在する結晶性アルミノシリケートは、図1に示すように、ネットワーク構造の末端(図1(a))やネットワーク構造中の端部(図1(b))(以下、これらをまとめて「骨格端部」ともいう。)を有し、骨格端部はシラノール基(Si-OH)となる。従って、現実的な結晶性アルミノシリケートの結晶にはシラノール基が含まれる。
シラノール基はT原子のケイ素(Si)と水酸基(OH)が結合して形成する。そのため、シラノール基の含有量は骨格構造中のケイ素量の影響を受ける。例えば、骨格構造中のケイ素量が多いゼオライト、すなわちハイシリカゼオライトであるほど、シラノール基が多くなりやすいことが挙げられる。一般に、シラノール基の含有量が多くなると、高温雰囲気における骨格構造の崩壊が生じやすくなる。これに対し、アルミナに対するシリカのモル比(以下、「SiO2/Al2O3」ともいう。)と、ケイ素に対するシラノール基のモル比(以下、「SiOH/Si比」ともいう。)と、の両方が本発明のCHA型ゼオライトの範囲を満たすことにより、シラノール基が増えた場合であっても、高温雰囲気における骨格構造の崩壊が生じにくくなる。これにより、本発明のCHA型ゼオライトが高い耐熱性を示し、触媒又は触媒担体として、特に窒素酸化物還元触媒又はその担体として適する。
シラノール基の量はケイ素含有量の影響を受けるため、本発明のCHA型ゼオライトが有するSiOH/SiはSiO2/Al2O3に依存する。すなわち、本発明のCHA型ゼオライトは、
アルミナに対するシリカのモル比が10.0以上20.0未満及びケイ素に対するシラノール基のモル比が0.15×10-2以上0.50×10-2以下、
アルミナに対するシリカのモル比が20.0以上35.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.10×10-2以下、
アルミナに対するシリカのモル比が35.0を超え45.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.65×10-2以下、若しくは、
アルミナに対するシリカのモル比が45.0を超え55.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.80×10-2以下、のいずれかである。
アルミナに対するシリカのモル比が10.0以上20.0未満及びケイ素に対するシラノール基のモル比が0.15×10-2以上0.50×10-2以下、
アルミナに対するシリカのモル比が20.0以上35.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.10×10-2以下、
アルミナに対するシリカのモル比が35.0を超え45.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.65×10-2以下、若しくは、
アルミナに対するシリカのモル比が45.0を超え55.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.80×10-2以下、のいずれかである。
本発明のCHA型ゼオライトのSiO2/Al2O3が10.0以上20.0未満である場合、SiOH/Si比は0.15×10-2以上0.50×10-2以下である。この場合のSiOH/Si比は0.40×10-2以下であることが好ましい。
本発明のCHA型ゼオライトのSiO2/Al2O3が20.0以上35.0以下である場合、SiOH/Si比は0.15×10-2以上1.10×10-2以下、である。この場合のSiOH/Si比は1.00×10-2未満であることが好ましい。
本発明のCHA型ゼオライトのSiO2/Al2O3が35.0を超え45.0以下である場合、SiOH/Si比は0.15×10-2以上1.65×10-2以下、である。この場合のSiOH/Si比は1.40×10-2以下、更には1.30×10-2以下であることが好ましい。
本発明のCHA型ゼオライトのSiO2/Al2O3が45.0を超え55.0以下である場合、SiOH/Si比は0.15×10-2以上1.80×10-2以下、である。この場合のSiOH/Si比は1.75×10-2以下であることが好ましい。
本発明のCHA型ゼオライトのSiOH/Si比は0.15×10-2以上であり、0.20×10-2以上であること、更には0.30×10-2以上であることが挙げられる。本発明のCHA型ゼオライトはSiO2/Al2O3が高くなるほど、含有されるシラノール基の範囲が広くなる傾向にある。そのため、SiO2/Al2O3が20.0以上の場合のSiOH/Si比は0.15×10-2以上、更には0.40×10-2以上、また更には0.50×10-2以上であることが挙げられ、SiO2/Al2O3が35.0を超える場合のSiOH/Si比は0.15-2以上、更には0.6×10-2以上、また更には1.0×10-2以上であることが挙げられる。また、SiO2/Al2O3が45.0を超える場合のSiOH/Si比は0.15×10-2以上、更には0.60×10-2以上、また更には1.00×10-2以上、また更には1.20×10-2以上、また更には1.40×10-2以上であることが挙げられる。
SiOH/Si比は、CHA型ゼオライトのケイ素の含有量に対する1H MAS NMRスペクトルから求まるシラノール量、から求めることができる。CHA型ゼオライトのケイ素の含有量は蛍光X線分析その他の組成分析により求めることができる。蛍光X線分析によるケイ素の含有量の測定方法として、検量線法による測定方法を挙げることができる。検量線法で使用する検量線は、8~15点の、ケイ素含有量が既知であるケイ素含有化合物について、ケイ素(Si)に相当する蛍光X線ピークの強度を測定し、当該強度-ケイ素含有量とで検量線を引くことで作成すること、が挙げられる。測定試料であるCHA型ゼオライトの蛍光X線パターンのケイ素(Si)に相当する蛍光X線ピークの強度を測定し、当該強度と検量線とを対比すること、でCHA型ゼオライトのケイ素の含有量を測定することができる。
シラノール量は1H MAS NMRスペクトルから求めることができる。シラノール量の求め方として、脱水処理をしたチCHA型ゼオライトを1H MAS NMR測定し、得られた1H MAS NMRスペクトルから検量線法により、シラノール量を算出することが例示できる。
より具体的なシラノール量の測定方法として、CHA型ゼオライトを真空排気下にて350~400℃で5±2時間保持して脱水処理し、脱水処理後のCHA型ゼオライトを窒素雰囲気下で採取し秤量し、1H MAS NMR測定をすることが挙げられる。当該測定により得られる1H MAS NMRスペクトルのシラノール基に帰属されるピーク(2.0±0.5ppmのピーク)の面積強度から、検量線法によりCHA型ゼオライト中のシラノール量を求めることが挙げられる。
本発明のCHA型ゼオライトのSiO2/Al2O3は10.0以上55.0以下である。この範囲のSiO2/Al2O3は、触媒又は触媒担体として適する。好ましいSiO2/Al2O3として18.0以上50.0以下、さらには20.0以上45.0以下、また更には20.0以上45.0以下、また更には20.0以上35.0以下を挙げることができる。窒素酸化物還元触媒又はその担体として特に適したSiO2/Al2O3として20.0以上55.0以下、更には20.0以上45.0以下、また更には20.0以上35.0以下、また更には20.0以上31.5以下、また更には23.0以上31.5以下を挙げることができる。
このように、本発明のCHA型ゼオライトはSiO2/Al2O3とSiOH/Si比とが一定の関係を有するものである。換言すると、本発明は、SiO2/Al2O3が10.0以上20.0未満及びSiOH/Si比が0.15×10-2以上0.50×10-2以下のCHA型ゼオライト、SiO2/Al2O3が20.0以上35.0以下及びSiOH/Si比が0.15×10-2以上1.10×10-2以下のCHA型ゼオライト、SiO2/Al2O3が35.0を超え45.0以下及びSiOH/Si比が0.10-2以上1.65×10-2以下のCHA型ゼオライト、及び、SiO2/Al2O3が45.0を超え55.0以下及びSiOH/Si比が0.15×10-2以上1.80×10-2以下のCHA型ゼオライト、からなる群のいずれかのCHA型ゼオライト、である。さらには、本発明のCHA型ゼオライトは、本明細書で開示した任意のSiO2/Al2O3及びSiOH/Si比の組合せを満たすCHA型ゼオライトであることが好ましい。
本発明の特に好ましいCHA型ゼオライトとして、SiO2/Al2O3が20.0以上35.0以下及びSiOH/Si比が0.15×10-2以上1.10×10-2以下であるCHA型ゼオライト、更にはSiO2/Al2O3が23.0以上31.0以下及びSiOH/Si比が0.40×10-2以上1.00×10-2未満であるCHA型ゼオライトを挙げることができる。
本発明のCHA型ゼオライトは、結晶性が高いことが好ましい。結晶性が高いことは、CHA型ゼオライト同士のXRDピークの強度の比較から確認することができる。
本発明のCHA型ゼオライトの結晶性はXRDピークの半値幅(以下、「FWHM」ともいう。)から確認することができる。本発明のCHA型ゼオライトは、CHA型ゼオライトの100反射のXRDピーク(線源としてCuKα線を用いた場合に、2θ=9.6±0.5゜に相当するピーク)のFWHMが0.150゜以上0.200゜以下であることが挙げられ、また、CHA型ゼオライトの20-1反射のXRDピーク(線源としてCuKα線を用いた場合に、2θ=20.8±0.5゜に相当するピーク)のFWHMが0.170゜以上0.250゜以下であることが挙げられる。
本発明のCHA型ゼオライトは、CHA型ゼオライトは結晶化において、一次粒子同士が化学的に凝集しながら形成された結晶粒子を含んでいてもよい。本発明のCHA型ゼオライトは、このような一次粒子同士が化学結合しながら形成された凝集粒子(アグリゲート:aggregate)状の結晶粒子(以下、「凝集結晶粒子」ともいう。)を含んでいるにも関わらず、高い耐熱性を有する。凝集結晶粒子は、SEM観察において、菱面体又は立方体の少なくともいずれかの形状を有する一次粒子の一部の面を含んだ多面体状の結晶粒子として確認することができ、一辺が0,5μm以上5.0μm以下、更には0.5μm以上3.0μm以下である面を複数含んだ多面体状の結晶粒子であることが挙げられる。
本発明のCHA型ゼオライトは凝集結晶粒子に加え、個々の一次粒子が独立して成長し結晶粒子(以下、「一次結晶粒子」ともいう。)を含むことが好ましく、凝集結晶粒子と一次結晶粒子とを含んでいてもよい。一次結晶粒子は、一次粒子と結晶粒子とが同様な形状を有する結晶粒子であり、SEM観察において、菱面体又は立方体の少なくともいずれかの形状を有した結晶粒子であることが挙げられる。
本発明のCHA型ゼオライトは耐熱性が高いこと、すなわち、高温雰囲気に曝露された後であっても、骨格からのT原子の脱離などの骨格構造の崩壊が進行しにくいこと、が好ましい。本発明のCHA型ゼオライトの耐熱性は、高温雰囲気の曝露前後のCHA型ゼオライトのXRDパターンから確認することができる。
CHA型ゼオライトは、600℃で熱処理した場合の骨格構造の崩壊は進行が遅いが、1000℃で熱処理した場合は骨格構造の崩壊が顕著に進行する。骨格構造の崩壊に伴いXRDピークの強度が低下する。そのため、大気中、600℃で処理したCHA型ゼオライトの20-1反射のXRDピークの強度(以下、「I600」ともいう。)に対する、大気中、1000℃で処理したCHA型ゼオライトの20-1反射のXRDピークの強度(以下、「I1000」ともいう。)の比(以下、「I比」ともいう。)をもって耐熱性の指標とすることができる。I比の値が大きいほど、耐熱性が高いことを意味する。1000℃で熱処理した場合は、600℃で熱処理した場合よりも、骨格構造の崩壊が進行するため、I比は1.00以下となる。
本発明のCHA型ゼオライトは、5時間で熱処理したI600に対する、5時間で熱処理したI1000の比としてのI比(以下、「I1000/600」ともいう。)が0.30以上であることが好ましく、0.50以上であることがより好ましく、0.52以上であることが特に好ましい。
なお、上記の熱処理における大気は露点-20℃以下の大気、更には露点-50℃以下の大気であり、水分含有量が少ない大気であることが好ましい。また、これらのXRDピークの測定条件として以下のものを挙げることができる。
線源 : CuKα線(λ=1.5405Å)
測定範囲: 2θ=5°~43°
線源 : CuKα線(λ=1.5405Å)
測定範囲: 2θ=5°~43°
次に、本発明のCHA型ゼオライトの製造方法について説明する。
本発明の製造方法は、アルミナ源、シリカ源、アルカリ源、水、及び、以下の一般式を有するN,N,N-トリアルキルシクロヘキシルアンモニウム塩を含む組成物を結晶化させる結晶化工程、を含むCHA型ゼオライトの製造方法である。
詳細には、本発明の製造方法のひとつは、アルミナ源、シリカ源、アルカリ源、水、N,N,N-トリアルキルアダマンチルアンモニウム塩及び以下の一般式を有するN,N,N-トリアルキルシクロヘキシルアンモニウム塩を含む組成物(以下、「原料組成物1」ともいう。)を結晶化させる結晶化工程、を有することを特徴とするCHA型ゼオライトの製造方法。
R1はエチル基、R2はメチル基又はエチル基のいずれかのアルキル基、及びR3はメチル基又はエチル基のいずれかのアルキル基であり、なおかつ、X-はN,N,N-トリアルキルシクロヘキシルアンモニウムカチオンのカウンターアニオンである。
原料組成物1は、以下の一般式を有するN,N,N-トリアルキルシクロヘキシルアンモニウム(以下、「MECHA」ともいう。)塩を含む。MECHA塩を含むことで原料組成物1のCHA型ゼオライトの指向性が強くなる。MECHA塩の構造式を以下に示す。
R1はエチル基、R2はメチル基又はエチル基のいずれかのアルキル基、及びR3はメチル基又はエチル基のいずれかのアルキル基であり、なおかつ、X-はN,N,N-トリアルキルシクロヘキシルアンモニウムカチオン(以下、「MECHA+」ともいう。)のカウンターアニオンである。R2とR3は異なるアルキル基であることが好ましい。
MECHA塩に含まれるMECHA+は、CHA構造を指向するOSDAとして機能する。さらに、MECHA塩とADA塩とが共存することでCHA型ゼオライトの指向作用をより強くする。これにより、CHA型ゼオライトの結晶化領域が広くなり、例えば、種晶の使用量を非常に少なくした場合、更には種晶を使用しない場合であっても高結晶性のCHA型ゼオライトを結晶化することができる。さらには、ADA塩とMECHA塩とが共存することで、原料組成物1中の水酸化物イオン(OH-)含有量が少ない場合であってもCHA型ゼオライトが得られやすくなる。
MECHA塩は、MECHA+を含む化合物であればよい。MECHA塩として、MECHAの水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種を挙げることができる。工業的な観点からMECHA塩はMECHAの水酸化物、塩化物、臭化物、ヨウ化物、硝酸塩及び硫酸塩からなる群の少なくとも1種、更にはMECHAの塩化物、臭化物、及びヨウ化物からなる群の少なくとも1種、また更にはMECHAの塩化物又は臭化物の少なくともいずれかであることが好ましい。よって、MECHA塩の一般式におけるX-は、OH-、Cl-、Br-、I-、CH3CO3
-、CH3SO4
-、C2H5SO4
-、NO3
-及び1/2(SO4
2-)、からなる群の少なくともいずれかであることが挙げられ、OH-、Cl-、Br-及びI-からなる群の少なくともいずれかであることが好ましい。さらに、MECHA塩はMECHA+を含む2種以上の塩であってもよく、MECHA塩の水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも2種以上を挙げることができる。
MECHA塩の製造方法として、例えば、N,N-ジアルキルシクロヘキシルアミンとアルキル化剤とを溶媒中、室温~150℃で反応させる製造方法が挙げられる。アルキル化剤としてハロゲン化アルキル、炭酸ジエステル及び硫酸ジエステルからなる群の少なくとも1種が挙げられる。溶媒としては水、アルコール、更にはメタノール、エタノール及び2-プロパノールからなる群の少なくとも1種を挙げることができる。これにより、MECHA塩として、MECHAのハロゲン化塩、炭酸モノエステル塩又は硫酸モノエステル塩のいずれかを合成することができる。また、MECHAの水酸化物塩を得る場合は、水酸化物イオン型強塩基性陰イオン交換樹脂を用いて上記で得られたMECHA塩をイオン交換すればよい。
MECHA塩は、N,N,N-ジメチルエチルシクロヘキシルアンモニウム塩(以下、「DMECHA塩」ともいう。)又は、N,N,N-メチルジエチルシクロヘキシルアンモニウム塩(以下、「MDECHA塩」ともいう。)の少なくともいずれかであることが好ましく、DMECHA塩であることがより好ましい。
DMECHA塩の構造式を以下に示す。
上記の式において、X-はDMECHAカチオン(以下、「DMECHA+」ともいう。)のカウンターアニオンである。
MDECHA塩の構造式を以下に示す。
上記の式において、X-はMDECHAカチオン(以下、「MDECHA+」ともいう。)のカウンターアニオンである。
原料組成物1に含まれる、MECHA塩は、DMECHA+又MDECHA+の少なくともいずれかを含む2種以上の塩であってもよく、例えば、DMECHA塩の水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも2種以上、MDECHA塩の水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも2種以上、若しくは、DMECHA塩の水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも1種以上とMDECHA塩の水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも1種以上、を挙げることができる。
原料組成物1はN,N,N-トリアルキルアダマンチルアンモニウム塩(ADA塩)を含む。MECHA塩とADA塩とが共存することで、CHA型ゼオライトの指向性を下げることなく、ADA塩の使用量を削減することができ、なおかつ、ADA塩を単独で使用した製造方法と同等以上の収率で高結晶性のCHA型ゼオライトが単一相で得られる。ADA塩の構造式を以下に示す。
上記の式において、R4、R5及びR6はそれぞれアルキル基であり、メチル基又はエチル基の少なくともいずれかであることが好ましい。また、R4、R5及びR6は同一のアルキル基であってもよく、それぞれが異なるアルキル基であってもよい。X-はN,N,N-トリアルキルアダマンチルアンモニウムカチオンのカウンターアニオンである。
ADA塩の中で、N,N,N-トリメチルアダマンチルアンモニウム塩(TMAd塩)が特に好ましい。TMAd塩の構造式を以下に示す。
上記の式において、X-はN,N,N-トリメチルアダマンチルアンモニウムカチオンのカウンターアニオンである。
原料組成物1に含まれるADA塩は水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種であることが挙げられる。工業的な観点からADA塩は水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも1種、更には水酸化物、塩化物及び臭化物からなる群の少なくとも1種、また更には水酸化物、塩化物及び臭化物からなる群の少なくも1種、また更には塩化物又は臭化物の少なくともいずれかであることが好ましい。
MECHA塩又はADA塩の少なくともいずれかが塩化物、臭化物、ヨウ化物、炭酸モノエステル塩及び硫酸モノエステル塩、硝酸塩および硫酸塩からなる群の少なくとも1種の塩であることが好ましく、MECHA塩及びADA塩が、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種の塩であることが更に好ましい。これにより、CHA型ゼオライトの収率がより高くなりやすい。さらに、OSDAがこれらの塩であることで、原料組成物1がアルカリ源を水酸化物として含む場合であっても、原料組成物1中の水酸化物イオン(OH-)含有量が十分に低くなる。これにより、原料組成物1が十分にアルカリ金属イオンを含む状態、すなわち、MECHA塩のCHA型ゼオライト指向性がより高い雰囲気で結晶化が行える。その結果、高結晶性のCHA型ゼオライトがより一層高い収率で得られやすくなる。
アルミナ源は、アルミナ(Al2O3)又はその前駆体となるアルミニウム化合物であり、例えば、アルミナ、硫酸アルミニウム、硝酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、非晶質アルミノシリケート、金属アルミニウム及びアルミニウムアルコキシドからなる群の少なくとも1種を挙げることができる。
シリカ源は、シリカ(SiO2)又はその前駆体となるケイ素化合物であり、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエトキシシラン、テトラエチルオルトシリケート、沈殿法シリカ、ヒュームドシリカ、非晶質アルミノシリケートからなる群の少なくとも1種を挙げることができる。
CHA型ゼオライトの結晶化速度が速くなるため、アルミナ源及びシリカ源は、非晶質アルミノシリケートを含むことが好ましい。
アルカリ源は、アルカリ金属化合物であり、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種の化合物、更にはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群の少なくとも2種の化合物であることが好ましい。アルカリ金属化合物は、アルカリ金属の水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも1種であることが好ましい。特に好ましいアルカリ源として、ナトリウム又はカリウムの少なくともいずれかの化合物、更には水酸化ナトリウム又は水酸化カリウムの少なくともいずれか、更には水酸化ナトリウム及び水酸化カリウムであることが好ましい。また、原料組成物1に含まれる他の原料がアルカリ金属を含む場合、これらに含まれるアルカリ金属もアルカリ源として機能する。
CHA型ゼオライトが単一相で生成しやすくなるため、原料組成物1に含まれるアルカリ源はカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含むことが好ましく、カリウムを含むことが特に好ましい。
原料組成物1に含まれる水は、脱イオン水や、純水を挙げることができる。また、アルミナ源、シリカ源、MECHA塩、ADA塩又はアルカリ源の少なくともいずれかが水溶液である場合、これらの原料に含まれる水であってもよい。
本発明において、原料組成物1はフッ素(F)含有化合物を含まないことが好ましい。フッ素は腐食性が特に高く、これを使用する製造方法は、耐腐食性を示す特殊な製造設備が必要となる。これにより、製造コストが高くなりやすい。そのため、原料組成物1はフッ素を含有しないことが好ましく、例えば、原料組成物1のフッ素含有量が1ppm以下であることが好ましい。
原料組成物1のシリカに対するMECHA塩及びADA塩の合計モル比(以下、「OSDA/SiO2」ともいう。)は、0.03以上、更には0.06以上である。OSDA/SiO2が0.03以上であることでCHA型ゼオライトが単一相で得られやすくなる。製造コストの観点からOSDAを必要以上に多くする必要はなく、OSDA/SiO2は0.30以下、更には0.20以下であればよい。さらに、OSDA/SiO2が0.10以下であっても、結晶性の高いCHA型ゼオライトが単一相で得られる。好ましいOSDA/SiO2の範囲として、0.06以上0.20以下、更には0.06以上0.12以下、また更には0.06以上0.10以下を挙げることができる。
原料組成物1のMECHA塩に対するADA塩のモル比(以下、「ADA/MECHA」ともいう。)が高くなるほど、得られるCHA型ゼオライトの結晶性は高くなりやすい。
しかしながら、原料組成物1中のADA塩が多くなると製造コストが高くなる。本発明においては、ADA/MECHAは2.0以下、更には1.0以下、また更には0.5以下であっても、OSDAがADA塩単独である製造方法と同等の収率で結晶性の高いCHA型ゼオオライトが得られる。また、ADA/MECHAが0.025以上、更には0.05以上であれば高結晶性のCHA型ゼオライトがより得られやすくなる。
しかしながら、原料組成物1中のADA塩が多くなると製造コストが高くなる。本発明においては、ADA/MECHAは2.0以下、更には1.0以下、また更には0.5以下であっても、OSDAがADA塩単独である製造方法と同等の収率で結晶性の高いCHA型ゼオオライトが得られる。また、ADA/MECHAが0.025以上、更には0.05以上であれば高結晶性のCHA型ゼオライトがより得られやすくなる。
原料組成物1のシリカに対するADA塩のモル比(以下、「ADA/SiO2」ともいう。)が高くなるほど、CHA型ゼオライトの単一相が結晶化しやすくなる。ADA/SiO2が0.05以下、更には0.03以下であっても、OSDAがADA塩単独である製造方法と、同等の収率でCHA型ゼオオライトが得られる。また、ADA/SiO2が0.005以上、更には0.010以上であればCHA型ゼオライトがより得られやすくなる。
原料組成物1の好ましいOSDA含有量として、シリカに対するMECHA塩のモル比(以下、「MECHA/SiO2」ともいう。)が0.02以上0.10以下であり、ADA/SiO2が0.005以上0.10以下であり、なおかつ、ADA/MECHAが1.0以下であることが挙げられる。
原料組成物1のアルミナに対するシリカのモル比(SiO2/Al2O3)は10以上100以下、更には10以上60以下であることが好ましい。SiO2/Al2O3が10以上であることで得られるCHA型ゼオライトの耐熱性が高くなりやすい。一方、SiO2/Al2O3が100以下であれば触媒反応に寄与する十分な酸点を有するゼオライトとなる。原料組成物1のSiO2/Al2O3が10以上40以下、更には10以上35以下であることがより好ましい。
原料組成物1のシリカに対するアルカリ金属のモル比(以下、「M/SiO2」ともいう。)は0.10以上0.50以下、更には0.10以上0.30以下であることが好ましい。M/SiO2が0.10以上であることでCHA型ゼオライトの結晶化が促進されやすい。一方、M/SiO2が0.50以下であれば、CHA構造以外の構造を有するゼオライトの生成がより生じにくくなり、更にはM/SiO2が0.15以下、更には0.13以下であることで得られるCHA型ゼオライトの耐熱性が高くなる傾向がある。
原料組成物1がカリウム、ルビジウム及びセシウムからなる群の少なくとも1種、更にはカリウムを含む場合、原料組成物1のシリカに対する、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種のモル比(以下、「M1/SiO2」ともいう。)は0を超え0.15未満であることが好ましく、0.02を超え0.15未満であることがより好ましく、0.03以上0.13以下であることが更に好ましい。
原料組成物1がアルカリ金属としてナトリウム及びカリウムを含有する場合、原料組成物1中のシリカに対するナトリウムのモル比(以下、「Na/SiO2」ともいう。)が0を超え0.12以下であることが好ましく、0を超え0.09以下であることがより好ましい。また、カリウムに対するナトリウムのモル比(以下、「Na/K」ともいう。)は0.05以上20.0以下、更には0.065以上5.0以下、また更には0.1以上2.0以下であることが挙げられる。
原料組成物1のシリカに対する水(H2O)のモル比(以下、「H2O/SiO2」ともいう。)は5.0以上50.0以下、更には10.0以上20.0以下であることが好ましい。H2O/SiO2が5.0以上であることで原料組成物1が撹拌できる程度の流動性を有する。一方、H2O/SiO2が50.0以下であることで、CHA型ゼオライトの収率が高くなりやすい。更に、本発明の製造方法においてはH2O/SiO2が10.0以上15.5以下、更には11.0以上15.5以下であっても、単一相のCHA型ゼオライトが得られる場合がある。
原料組成物1は、シリカに対する水酸基アニオン(OH-)のモル比(以下、「OH/SiO2」ともいう。)が0.05以上1.0以下、更には0.1以上0.5以下であることが好ましい。OH/SiO2が0.05以上であることで、CHA構造以外の構造を有するゼオライトの生成がより生じにくくなる。一方、OH/SiO2が1.0以下であれば、十分な収率のCHA型ゼオライトが得られやすくなる。得られるCHA型ゼオライトの収率がより高くなる傾向があるため、OH/SiO2は0.30以下、更には0.24以下、また更には0.20以下、また更には0.17以下であることが好ましい。さらに、OH/SiO2が0.15以下であることで得られるCHA型ゼオライトの耐熱性が高くなる傾向がある。
CHA型ゼオライトの収率をより高くするため、OH/SiO2は0.30以下、更には0.24以下、また更には0.20以下であることが好ましい。
本発明の製造方法においては、原料組成物1が種晶を含まなくとも、十分に短い時間で高い収率でCHA型ゼオライトが得られる。そのため、原料組成物1は種晶を含まないこと、すなわち、種晶の含有量が0重量%であってもよい。
しかしながら、原料組成物1は、種晶を含んでもよい。種晶はCHA型ゼオライト、更にはSSZ-13であることが好ましい。
種晶を含む場合、以下の式を満たす含有量(重量%)とすればよい。
0重量%<{(w3+w4)/(w1+w2)}×100≦30重量%
上記式において、w1は原料組成物1中のAlをAl2O3に換算した重量、w2は原料組成物1中のSiをSiO2に換算した重量、w3は種晶中のAlをAl2O3に換算した重量、及び、w4は種晶中のSiをSiO2に換算した重量である。
上記式において、w1は原料組成物1中のAlをAl2O3に換算した重量、w2は原料組成物1中のSiをSiO2に換算した重量、w3は種晶中のAlをAl2O3に換算した重量、及び、w4は種晶中のSiをSiO2に換算した重量である。
種晶を含む場合、種晶は以下の式を満たす含有量であることが更に好ましい。
0重量%<{(w3+w4)/(w1+w2)}×100≦5重量%、
更には、
1.5重量%≦{(w3+w4)/(w1+w2)}×100≦5重量%
0重量%<{(w3+w4)/(w1+w2)}×100≦5重量%、
更には、
1.5重量%≦{(w3+w4)/(w1+w2)}×100≦5重量%
原料組成物1の好ましい組成として以下のものをあげることができる。
SiO2/Al2O3 =10以上100以下
ADA/MECHA =0.015以上2.0以下
ADA/SiO2 =0.003以上0.04以下
OSDA/SiO2 =0.03以上0.30以下
M/SiO2 =0.05以上1.0以下
OH/SiO2 =0.05以上1.0以下
H2O/SiO2 =5.0以上50.0以下
種晶 =0.0重量%以上30.0重量%以下
但し、ADAはADA塩、MECHAはMECHA塩、OSDAはMECHA塩及びADA塩、並びに、MはNa及びKである。
ADA/MECHA =0.015以上2.0以下
ADA/SiO2 =0.003以上0.04以下
OSDA/SiO2 =0.03以上0.30以下
M/SiO2 =0.05以上1.0以下
OH/SiO2 =0.05以上1.0以下
H2O/SiO2 =5.0以上50.0以下
種晶 =0.0重量%以上30.0重量%以下
但し、ADAはADA塩、MECHAはMECHA塩、OSDAはMECHA塩及びADA塩、並びに、MはNa及びKである。
さらに好ましい原料組成物1の組成として以下のものをあげることができる。
SiO2/Al2O3 =10以上60以下
TMAd/DMECHA =0.025以上1.0以下
TMAd/SiO2 =0.005以上0.02以下
OSDA/SiO2 =0.06以上0.20以下
M/SiO2 =0.10以上0.30以下
OH/SiO2 =0.10以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、TMAdはN,N,N-トリメチルアダマンチルアンモニウム塩、DMECHAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩及びN,N,N-トリメチルアダマンチルアンモニウム塩、並びに、MはNa及びKである。
TMAd/DMECHA =0.025以上1.0以下
TMAd/SiO2 =0.005以上0.02以下
OSDA/SiO2 =0.06以上0.20以下
M/SiO2 =0.10以上0.30以下
OH/SiO2 =0.10以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、TMAdはN,N,N-トリメチルアダマンチルアンモニウム塩、DMECHAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩及びN,N,N-トリメチルアダマンチルアンモニウム塩、並びに、MはNa及びKである。
結晶化工程では、原料組成物1を結晶化する。結晶化方法は、水熱合成があげられる。その場合、原料混合物を密閉容器に充填し、これを加熱すればよい。結晶化は、静置又は撹拌のいずれの状態で行ってもよい。
結晶化温度は130℃以上200℃以下、更には140℃以上180℃以下、また更には140℃以上170℃以下であることが好ましい。さらに、本発明の製造方法では結晶化温度を130℃以上160℃以下、更には130℃以上155℃以下とした場合であっても、48時間以内に高い結晶性のCHA型ゼオライトを得ることができる。反応温度を155℃以下とすることでOSDAの熱分解が起こり難くなる。
上記の範囲であれば、結晶化中に結晶化温度を変更してもよい。例えば、130℃以上160℃以下で結晶化を開始し、その後、結晶化温度を160℃超200℃以下に変更して結晶化してもよい。
結晶化時間は、結晶化温度により異なるが、10時間以上、更には24時間(1日)以上であることが好ましい。これによりCHA型ゼオライトが結晶化する。一方、結晶時間が5日以下、更には72時間(3日)以下、また更には48時間(2日)以下であればCHA型ゼオライトが単一相で得られやすくなる。
本発明の製造方法では、結晶化工程の後、洗浄工程、乾燥工程及びイオン交換工程の少なくともいずれかを含んでいてもよい。
洗浄工程は、結晶化後のCHA型ゼオライトと液相とを固液分離する。洗浄工程は、公知の方法で固液分離をし、固相として得られるCHA型ゼオライトを脱イオン水で洗浄すればよい。
乾燥工程は、結晶化工程後又は洗浄工程後のCHA型ゼオライトから水分を除去する。乾燥工程の条件は任意であるが、結晶化工程後又は洗浄工程後のCHA型ゼオライトを、大気中、50℃以上150℃以下で2時間以上、静置することが例示できる。
結晶化後のCHA型ゼオライトは、そのイオン交換サイト上にアルカリ金属イオン等の金属イオンを有する場合がある。イオン交換工程では、これをアンモニウムイオン(NH4
+)や、プロトン(H+)等の非金属カチオンにイオン交換する。アンモニウムイオンへのイオン交換は、CHA型ゼオライトを塩化アンモニウム水溶液に混合、攪拌することが挙げられる。また、プロトンへのイオン交換は、CHA型ゼオライトをアンモニアでイオン交換した後、アンモニウム型のCHA型ゼオライトを焼成することがあげられる。
本発明の製造方法により得られるCHA型ゼオライトは、CHA構造以外の構造を有するゼオライトを含まないCHA型ゼオライト、すなわち、単一相のCHA型ゼオライトである。
本発明の製造方法では、工業的な製造に適した、十分に高い収率でCHA型ゼオライトを得ることができる。すなわち、本発明の製造方法では、原料組成物1に含まれるシリカ及びアルミナの70%以上、更には80%以上、また更には90%以上をCHA型ゼオライトとして回収することができる。本発明におけるゼオライトの収率は、例えば、原料組成物1に含まれるシリカに対する、得られた結晶性ゼオライトのシリカ含有量の重量割合(以下、「シリカ収率」又は「Si収率」ともいう。)で求めることができる。
本発明の製造方法では、原料組成物1中のアルミニウム(Al)はほとんど全てがゼオライトに取込まれる。そのため、シリカ収率は、原料組成物1のSiO2/Al2O3に対する、結晶化後に得られる生成物中のSiO2/Al2O3の比率(%)から求めることができる。原料組成物1及び生成物のシリカ含有量はICP測定により求めればよい。
シリカ収率が高いほど、CHA型ゼオライトの収率が高くなるため、工業的により好ましい。本発明の製造方法におけるシリカ収率は70%以上、更には80%以上、また更には90%以上であることが好ましい。
さらに、本発明の製造方法では、ハイシリカゼオライトであって、なおかつ、必要以上にSiO2/Al2O3が高くないCHA型ゼオライトが得られる。例えば、本発明の製造方法により得られるCHA型ゼオライトの好ましいSiO2/Al2O3として5以上50以下、更には10以上30以下を挙げることができる。
本発明で得られるCHA型ゼオライトは高結晶性である。本発明において、高結晶性であることは、本発明の製造方法で得られるCHA型ゼオライトの結晶性が、従来のCHA型ゼオライトの結晶性と同等以上であることから確認することができる。
従来のCHA型ゼオライトとして、OSDAとしてTMAd塩のみを含む原料組成物を結晶化して得られたCHA型ゼオライトを挙げることできる。
CHA型ゼオライトの結晶性は、CHA構造の20-1反射に相当するXRDピーク強度(以下、「CHAピーク強度」ともいう。)から求めることができ、従来のCHA型ゼオライトのCHAピーク強度に対する、本発明の製造方法で得られるCHA型ゼオライトのCHAピークの強度の割合(以下、「CHA結晶化度」ともいう。)をもって、本発明の製造方法で得られるCHA型ゼオライトの相対的な結晶度を確認することができる。なお、CHA構造の20-1反射に相当するXRDピークは、線源としてCuKα線(λ=1.5405Å)を用いたXRD測定において2θ=20.8±0.5°のピークとして確認できる。
さらに、本発明で得られるゼオライトは、CHA型ゼオライトの単一相、すなわち、CHA型ゼオライト以外の結晶相を有するゼオライト及び非晶質アルミノシリケートを含まないゼオライトである。
次に、本発明のCHA型ゼオライトの製造方法について説明する。
本発明の製造方法は、アルミナ源、シリカ源、アルカリ源、水、及び、以下の一般式を有するN,N,N-トリアルキルシクロヘキシルアンモニウム塩を含む組成物を結晶化させる結晶化工程、を含むCHA型ゼオライトの製造方法である。
詳細には、本発明の製造方法のひとつは、アルミナ源、シリカ源、アルカリ源、水及び有機構造指向剤として以下の一般式を有するN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩のみを含む組成物(以下、「原料組成物2」ともいう。)を結晶化させる結晶化工程、を有し、該アルカリ源が少なくともナトリウムを含み、なおかつ、該組成物のシリカに対するナトリウムのモル比が0を超え0.095以下であること特徴とするCHA型ゼオライトの製造方法である。
本発明の製造方法は、原料組成物2が特定のOSDAを含むこと、及び、特定のナトリウム含有量であることを兼備することで、現実的な時間以内でCHA型ゼオライトを結晶化することができるものである。
N,N,N-ジメチルエチルシクロヘキシルアンモニウム(以下、「DMECHA」ともいう。)塩は、N,N,N-ジメチルエチルシクロヘキシルアンモニウムカチオン(以下、「DMECHA+」ともいう。)を含む化合物であればよい。DMECHA塩として、DMECHAの水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種を挙げることができる。工業的な観点からDMECHA塩はDMECHAの水酸化物、塩化物、臭化物、ヨウ化物、硝酸塩及び硫酸塩からなる群の少なくとも1種、更にはDMECHAの塩化物、臭化物、及びヨウ化物からなる群の少なくとも1種、また更にはDMECHAの塩化物又は臭化物の少なくともいずれかであることが好ましい。さらに、DMECHAの水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも2種以上であってもよい。これにより、CHA型ゼオライトの収率がより高くなりやすい。さらに、OSDAがこれらの塩であることで、原料組成物2がアルカリ源を水酸化物として含む場合であっても、原料組成物2中の水酸化物イオン(OH-)含有量が十分に低くなる。これにより、原料組成物2が十分にアルカリ金属イオンを含む状態、すなわち、MECHA塩のCHA型ゼオライト指向性がより高い雰囲気で結晶化が行える。その結果、高結晶性のCHA型ゼオライトがより一層高い収率で得られやすくなる。
DMECHA塩の一般式におけるX-は、OH-、Cl-、Br-、I-、CH3CO3
-、CH3SO4
-、C2H5SO4
-、NO3
-及び1/2(SO4
2-)、からなる群の少なくともいずれかであることが挙げられ、OH-、Cl-、Br-及びI-からなる群の少なくともいずれかであることが好ましい。
DMECHA塩の製造方法として、例えば、N,N-ジメチルシクロヘキシルアミンとアルキル化剤とを溶媒中、室温~150℃で反応させる製造方法が挙げられる。アルキル化剤としてハロゲン化エチル、炭酸ジエチル及び硫酸ジエチルからなる群の少なくとも1種が挙げられる。溶媒は原料を溶解できるものが好ましく、水、アルコール、更にはメタノール、エタノール及び2-プロパノールからなる群の少なくとも1種を挙げることができる。これにより、DMECHA塩として、DMECHAのハロゲン化塩、炭酸モノエステル塩又は硫酸モノエステル塩のいずれかを合成することができる。また、DMECHAの水酸化物塩を得る場合は、水酸化物イオン型強塩基性陰イオン交換樹脂を用いて上記で得られたDMECHA塩をイオン交換すればよい。
DMECHA塩の構造式を以下に示す。
アルミナ源は、アルミナ(Al2O3)又はその前駆体となるアルミニウム化合物であり、例えば、アルミナ、硫酸アルミニウム、硝酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、非晶質アルミノシリケート、金属アルミニウム及びアルミニウムアルコキシドからなる群の少なくとも1種を挙げることができる。
シリカ源は、シリカ(SiO2)又はその前駆体となるケイ素化合物であり、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエトキシシラン、テトラエチルオルトシリケート、沈殿法シリカ、ヒュームドシリカ、非晶質アルミノシリケートからなる群の少なくとも1種を挙げることができる。
CHA型ゼオライトの結晶化速度が速くなるため、アルミナ源及びシリカ源は、非晶質アルミノシリケートを含むことが好ましい。
アルカリ源は、少なくともナトリウムを含み、例えば、ナトリウムの化合物、更にはナトリウムの水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくともいずれかを挙げることができ、ナトリウムの水酸化物、塩化物及び臭化物からなる群の少なくとも1種、更にはナトリウムの水酸化物であることが好ましい。アルカリ源はナトリウム以外のアルカリ金属化合物を含んでいてもよく、リチウム、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種の化合物、更にはカリウム、ルビジウム及びセシウムからなる群の少なくとも1種の化合物を含んでいてもよい。ナトリウムの化合物以外のアルカリ金属化合物は、水酸化物、塩化物、臭化物及びヨウ化物からなる群の少なくとも1種であることが好ましい。
CHA型ゼオライトが単一相で生成しやすくなるため、原料組成物2に含まれるアルカリ源はカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含むことが好ましく、カリウムを含むことが特に好ましい。ナトリウムの化合物以外の特に好ましいアルカリ源として、カリウムの化合物、更には水酸化カリウムであることが好ましく、原料組成物2はナトリウムとカリウムを含むことが特に好ましい。
また、原料組成物2に含まれる他の原料がアルカリ金属を含む場合、これらに含まれるアルカリ金属もアルカリ源として機能する。
原料組成物2に含まれる水は、脱イオン水や、純水を挙げることができる。また、アルミナ源、シリカ源、DMECHA塩又はアルカリ源の少なくともいずれかが水溶液である場合、これらの原料に含まれる水であってもよい。
本発明において、原料組成物2はフッ素(F)含有化合物を含まないことが好ましい。フッ素は腐食性が特に高く、これを使用する製造方法は、耐腐食性を示す特殊な製造設備が必要となる。これにより、製造コストが高くなりやすい。そのため、原料組成物2はフッ素を含有しないことが好ましく、例えば、原料組成物2のフッ素含有量が1ppm以下であることが好ましい。
原料組成物2のシリカに対するDMECHA塩のモル比(以下、「DMECHA/SiO2」又は「OSDA/SiO2」ともいう。)は、0.03以上、更には0.06以上である。OSDA/SiO2が0.03以上であることでCHA型ゼオライトが単一相で得られやすくなる。製造コストの観点からOSDAを必要以上に多くする必要はなく、OSDA/SiO2は0.30以下、更には0.20以下であればよい。さらに、OSDA/SiO2が0.10以下であっても、結晶性の高いCHA型ゼオライトが単一相で得られる。好ましいOSDA/SiO2の範囲として、0.06以上0.20以下、更には0.06以上0.12以下、また更には0.06以上0.10以下を挙げることができる。
原料組成物2はOSDAとしてDMECHA塩のみを含む。一方、種晶やシリカアルミナ源として原料組成物2に含まれる結晶性アルミノシリケートが含有するOSDA、例えばADA塩を含んでいてもよい。この場合、原料組成物2のシリカに対するADA塩のモル比(以下、「ADA/SiO2」ともいう。)として0.005未満であることが挙げられ、ADA/SiO2が0.003以下であることが好ましい。
原料組成物2のアルミナに対するシリカのモル比(SiO2/Al2O3)は10以上100以下、更には10以上60以下であることが好ましい。SiO2/Al2O3が10以上であることで得られるCHA型ゼオライトの耐熱性が高くなりやすい。一方、SiO2/Al2O3が100以下であれば触媒反応に寄与する十分な酸点を有するゼオライトとなる。原料組成物2のSiO2/Al2O3が10以上40以下、更には10以上35以下であることがより好ましい。
原料組成物2のシリカに対するナトリウムのモル比(以下、「Na/SiO2」ともいう。)が0を超え0.095以下である。Na/SiO2が0.095を超えると、現実的な時間でCHA型ゼオライトが結晶化せず、更にはゼオライト自体の結晶化が進行しない。Na/SiO2は0を超え0.09以下であることが好ましく、0.02以上0.09以下であることが更に好ましく、0.02以上0.08以下であることが更に好ましい。
原料組成物2のシリカに対するアルカリ金属の合計モル比(以下、「Mtotal/SiO2」ともいう。)は0.10以上0.50以下、更には0.10以上0.30以下であることが好ましい。Mtotal/SiO2が0.10以上であることでCHA型ゼオライトの結晶化が促進されやすい。一方、Mtotal/SiO2が0.50以下であれば、CHA構造以外の構造を有するゼオライトの生成がより生じにくくなり、更にはMtotal/SiO2が0.15以下、更には0.13以下であることで得られるCHA型ゼオライトの耐熱性が高くなる傾向がある。
原料組成物2がカリウム、ルビジウム及びセシウムからなる群の少なくとも1種、更にはカリウムを含む場合、原料組成物2のシリカに対する、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種のモル比(以下、「Madd/SiO2」ともいう。)は0を超え0.15未満であることが好ましく、0.02を超え0.15未満であることがより好ましく、0.03以上0.13以下であることが更に好ましい。
原料組成物2がアルカリ金属としてナトリウム及びカリウムを含有する場合、カリウムに対するナトリウムのモル比(以下、「Na/K」ともいう。)は0.05以上20.0以下、更には0.065以上5.0以下、また更には0.1以上2.0以下であることが挙げられる。
原料組成物2のシリカに対する水(H2O)のモル比(以下、「H2O/SiO2」ともいう。)は5.0以上50.0以下、更には10.0以上20.0以下であることが好ましい。H2O/SiO2が5.0以上であることで原料組成物2が撹拌できる程度の流動性を有する。一方、H2O/SiO2が50.0以下であることで、CHA型ゼオライトの収率が高くなりやすい。更に、本発明の製造方法においてはH2O/SiO2が10.0以上15.5以下、更には11.0以上15.5以下であっても、単一相のCHA型ゼオライトが得られる場合がある。
原料組成物2は、シリカに対する水酸基アニオン(OH-)のモル比(以下、「OH/SiO2」ともいう。)が0.05以上1.0以下、更には0.1以上0.5以下であることが好ましい。OH/SiO2が0.05以上であることで、CHA構造以外の構造を有するゼオライトの生成がより生じにくくなる。一方、OH/SiO2が1.0以下であれば、十分な収率のCHA型ゼオライトが得られやすくなる。得られるCHA型ゼオライトの収率がより高くなる傾向があるため、OH/SiO2は0.30以下、更には0.24以下、また更には0.20以下、また更には0.17以下であることが好ましい。さらに、OH/SiO2が0.15以下であることで得られるCHA型ゼオライトの耐熱性が高くなる傾向がある。
CHA型ゼオライトの収率をより高くするため、OH/SiO2は0.30以下、更には0.24以下、また更には0.20以下であることが好ましい。
本発明の製造方法においては、原料組成物2が種晶を含まなくとも、十分に短い時間で高い収率でCHA型ゼオライトが得られる。そのため、原料組成物2は種晶を含まないこと、すなわち、種晶の含有量が0重量%であってもよい。
しかしながら、原料組成物2は、種晶を含んでもよい。種晶はCHA型ゼオライト、更にはSSZ-13であることが好ましい。
種晶を含む場合、以下の式を満たす含有量(重量%)とすればよい。
0重量%<{(w3+w4)/(w1+w2)}×100≦30重量%
上記式において、w1は原料組成物2中のAlをAl2O3に換算した重量、w2は原料組成物2中のSiをSiO2に換算した重量、w3は種晶中のAlをAl2O3に換算した重量、及び、w4は種晶中のSiをSiO2に換算した重量である。
上記式において、w1は原料組成物2中のAlをAl2O3に換算した重量、w2は原料組成物2中のSiをSiO2に換算した重量、w3は種晶中のAlをAl2O3に換算した重量、及び、w4は種晶中のSiをSiO2に換算した重量である。
種晶を含む場合、種晶は以下の式を満たす含有量であることが更に好ましい。
0重量%<{(w3+w4)/(w1+w2)}×100≦5重量%、
更には、
1.5重量%≦{(w3+w4)/(w1+w2)}×100≦5重量%
原料組成物2の好ましい組成として以下のものをあげることができる。
更には、
1.5重量%≦{(w3+w4)/(w1+w2)}×100≦5重量%
原料組成物2の好ましい組成として以下のものをあげることができる。
SiO2/Al2O3 =10以上100以下
OSDA/SiO2 =0.03以上0.30以下
Na/SiO2 =0を超え0.09以下
Mtotal/SiO2 =0.05以上1.0以下
OH/SiO2 =0.05以上1.0以下
H2O/SiO2 =5.0以上50.0以下
種晶 =0.0重量%以上30.0重量%以下
但し、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、並びに、Mtotalのアルカリ金属はNa及びKである
さらに好ましい原料組成物2の組成として以下のものをあげることができる。
OSDA/SiO2 =0.03以上0.30以下
Na/SiO2 =0を超え0.09以下
Mtotal/SiO2 =0.05以上1.0以下
OH/SiO2 =0.05以上1.0以下
H2O/SiO2 =5.0以上50.0以下
種晶 =0.0重量%以上30.0重量%以下
但し、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、並びに、Mtotalのアルカリ金属はNa及びKである
さらに好ましい原料組成物2の組成として以下のものをあげることができる。
SiO2/Al2O3 =10以上60以下
OSDA/SiO2 =0.06以上0.20以下
Na/SiO2 =0を超え0.09以下
Mtotal/SiO2 =0.10以上0.30以下
OH/SiO2 =0.10以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、及び、Mtotalのアルカリ金属はNa及びKである。
OSDA/SiO2 =0.06以上0.20以下
Na/SiO2 =0を超え0.09以下
Mtotal/SiO2 =0.10以上0.30以下
OH/SiO2 =0.10以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、及び、Mtotalのアルカリ金属はNa及びKである。
結晶化工程では、原料組成物2を結晶化する。結晶化方法は、水熱合成があげられる。その場合、原料混合物を密閉容器に充填し、これを加熱すればよい。結晶化は、静置又は撹拌のいずれの状態で行ってもよい。
結晶化温度は130℃以上200℃以下、更には140℃以上180℃以下、また更には140℃以上170℃以下であることが好ましい。さらに、本発明の製造方法では結晶化温度を130℃以上160℃以下、更には130℃以上155℃以下とした場合であっても、48時間以内に高い結晶性のCHA型ゼオライトを得ることができる。反応温度を155℃以下とすることでOSDAの熱分解が起こり難くなる。
上記の範囲であれば、結晶化中に結晶化温度を変更してもよい。例えば、130℃以上160℃以下で結晶化を開始し、その後、結晶化温度を160℃超200℃以下に変更して結晶化してもよい。
結晶化時間は、結晶化温度により異なるが、10時間以上、更には24時間(1日)以上であることが好ましい。これによりCHA型ゼオライトが結晶化する。一方、結晶時間が5日以下、更には72時間(3日)以下、また更には48時間(2日)以下であればCHA型ゼオライトが単一相で得られやすくなる。
本発明の製造方法では、結晶化工程の後、洗浄工程、乾燥工程及びイオン交換工程の少なくともいずれかを含んでいてもよい。
洗浄工程は、結晶化後のCHA型ゼオライトと液相とを固液分離する。洗浄工程は、公知の方法で固液分離をし、固相として得られるCHA型ゼオライトを脱イオン水で洗浄すればよい。
乾燥工程は、結晶化工程後又は洗浄工程後のCHA型ゼオライトから水分を除去する。乾燥工程の条件は任意であるが、結晶化工程後又は洗浄工程後のCHA型ゼオライトを、大気中、50℃以上150℃以下で2時間以上、静置することが例示できる。
結晶化後のCHA型ゼオライトは、そのイオン交換サイト上にアルカリ金属イオン等の金属イオンを有する場合がある。イオン交換工程では、これをアンモニウムイオン(NH4
+)や、プロトン(H+)等の非金属カチオンにイオン交換する。アンモニウムイオンへのイオン交換は、CHA型ゼオライトを塩化アンモニウム水溶液に混合、攪拌することが挙げられる。また、プロトンへのイオン交換は、CHA型ゼオライトをアンモニアでイオン交換した後、これを焼成することがあげられる。
本発明の製造方法により得られるCHA型ゼオライトは、CHA構造以外の構造を有するゼオライトを含まないCHA型ゼオライト、すなわち、単一相のCHA型ゼオライトである。
本発明の製造方法では、工業的な製造に適した、十分に高い収率でCHA型ゼオライトを得ることができる。すなわち、本発明の製造方法では、原料組成物2に含まれるシリカ及びアルミナの70%以上、更には80%以上、また更には90%以上をCHA型ゼオライトとして回収することができる。本発明におけるゼオライトの収率は、例えば、原料組成物2に含まれるシリカに対する、得られた結晶性ゼオライトのシリカ含有量の重量割合(以下、「シリカ収率」又は「Si収率」ともいう。)で求めることができる。
本発明の製造方法では、原料組成物2中のアルミニウム(Al)はほとんど全てがゼオライトに取込まれる。そのため、シリカ収率は、原料組成物2のSiO2/Al2O3に対する、結晶化後に得られる生成物中のSiO2/Al2O3の比率(%)から求めることができる。原料組成物2及び生成物のシリカ含有量はICP測定により求めればよい。
シリカ収率が高いほど、CHA型ゼオライトの収率が高くなるため、工業的により好ましい。本発明の製造方法におけるシリカ収率は70%以上、更には80%以上、また更には90%以上であることが好ましい。
さらに、本発明の製造方法では、ハイシリカゼオライトであって、なおかつ、必要以上にSiO2/Al2O3が高くないCHA型ゼオライトが得られる。例えば、本発明の製造方法により得られるCHA型ゼオライトの好ましいSiO2/Al2O3として5以上50以下、更には10以上30以下を挙げることができる。
本発明で得られるCHA型ゼオライトは高結晶性である。本発明において、高結晶性であることは、本発明の製造方法で得られるCHA型ゼオライトの結晶性が、従来のCHA型ゼオライトの結晶性と同等以上であることから確認することができる。
従来のCHA型ゼオライトとして、OSDAとしてTMAD+のみを含む原料組成物を結晶化して得られたCHA型ゼオライトを挙げることできる。
CHA型ゼオライトの結晶性は、CHA構造の20-1反射に相当するXRDピーク強度(以下、「CHAピーク強度」ともいう。)から求めることができ、従来のCHA型ゼオライトのCHAピーク強度に対する、本発明の製造方法で得られるCHA型ゼオライトのCHAピークの強度の割合(以下、「CHA結晶化度」ともいう。)をもって、本発明の製造方法で得られるCHA型ゼオライトの相対的な結晶度を確認することができる。なお、CHA構造の20-1反射に相当するXRDピークは、線源としてCuKα線(λ=1.5405Å)を用いたXRD測定において2θ=20.8±0.5°のピークとして確認できる。
さらに、本発明で得られるゼオライトは、CHA型ゼオライトの単一相、すなわち、CHA型ゼオライト以外の結晶相を有するゼオライト及び非晶質アルミノシリケートを含まないゼオライトである。
以下、実施例及び比較例に基づき本発明をさらに具体的に説明する。しかしながら、本発明は以下の実施例に制限されるものではない。以下、評価方法及び評価条件を示す。
(結晶の同定)
粉末X線回折装置(装置名:UltimaIV、株式会社リガク社製)を使用し、試料のXRD測定をした。線源にはCuKα線(λ=1.5405Å)を用い、測定範囲は2θとして5°から43°の範囲で測定した。
(結晶の同定)
粉末X線回折装置(装置名:UltimaIV、株式会社リガク社製)を使用し、試料のXRD測定をした。線源にはCuKα線(λ=1.5405Å)を用い、測定範囲は2θとして5°から43°の範囲で測定した。
得られたXRDパターンと、特許文献1のTable.1で示されたCHA型ゼオライトのXRDパターンとを比較することで、試料の構造を同定した。
また、実施例A-1乃至A-5、比較例A-1、実施例B-1乃至B-11、及び、比較例B-1乃至B-9については、比較例B-4として得たCHA型ゼオライトの2θ=20.8°に相当するXRDピーク(CHA型ゼオライトの20-1反射に対応するXRDピーク)の強度を100%とし、同ピーク強度との相対強度をCHA結晶度(%)とした。
また、実施例C-1乃至C-7、及び、比較例C-4乃至C-6については、比較例C-7として得たCHA型ゼオライトの2θ=20.8°に相当するXRDピーク(CHA型ゼオライトの20-1反射に対応するXRDピーク)の強度を100%とし、同ピーク強度との相対強度をCHA結晶度(%)とした。
(組成分析)
フッ酸と硝酸の混合水溶液に試料を溶解して試料溶液を調製した。ICP装置(装置名:OPTIMA5300DV、PerkinElmer社製)を使用して、当該試料溶液を誘導結合プラズマ発光分光分析(ICP-AES)で測定した。得られたSi、Alの測定値から、試料のSiO2/Al2O3を求めた。
(シリカ収率)
組成分析により原料組成物及び生成物のSiO2/Al2O3を求めた。原料組成物のAiO2/Al2O3に対する生成物のSiO2/Al2O3の割合をシリカ収率とし、生成物の収率を求めた。
(シラノール基の含有量)
1H MAS NMRにより、CHA型ゼオライトのシラノール基の含有量を測定した。
(組成分析)
フッ酸と硝酸の混合水溶液に試料を溶解して試料溶液を調製した。ICP装置(装置名:OPTIMA5300DV、PerkinElmer社製)を使用して、当該試料溶液を誘導結合プラズマ発光分光分析(ICP-AES)で測定した。得られたSi、Alの測定値から、試料のSiO2/Al2O3を求めた。
(シリカ収率)
組成分析により原料組成物及び生成物のSiO2/Al2O3を求めた。原料組成物のAiO2/Al2O3に対する生成物のSiO2/Al2O3の割合をシリカ収率とし、生成物の収率を求めた。
(シラノール基の含有量)
1H MAS NMRにより、CHA型ゼオライトのシラノール基の含有量を測定した。
測定に先立ち、試料を真空排気下にて400℃で5時間保持し脱水することで前処理とした。前処理後、室温まで冷却した試料を窒素雰囲気下で採取し秤量した。測定装置は一般的なNMR測定装置(装置名:VXR-300S、Varian製)を使用した。測定条件は以下のとおりとした。
共鳴周波数 :300.0MHz
パルス幅 :π/2
測定待ち時間 :10秒
積算回数 :32回
回転周波数 :4kHz
シフト基準 :TMS
得られた1H MAS NMRスペクトルから2.0±0.5ppmのピークをシラノール基に帰属されるピークとした。当該ピークを波形分離し、その面積強度を求めた。得られた面積強度から検量線法により試料中のシラノール量を求めた。
(SiOH/Si比)
蛍光X線分析により得られたCHA型ゼオライトのケイ素含有量(mol/g)に対する、1H MAS NMRにより測定されたCHA型ゼオライトのシラノール基の含有量(mol/g)の比を求め、これをSiOH/Si比とした。
(I比)
測定試料としてCHA型ゼオライトの単一相のものを使用した。測定に先立ち、CHA型ゼオライトを600℃で熱処理してOSDAを取り除いた後、塩化アンモニウム水溶液でイオン交換し、110℃で3時間乾燥することで前処理とした。
パルス幅 :π/2
測定待ち時間 :10秒
積算回数 :32回
回転周波数 :4kHz
シフト基準 :TMS
得られた1H MAS NMRスペクトルから2.0±0.5ppmのピークをシラノール基に帰属されるピークとした。当該ピークを波形分離し、その面積強度を求めた。得られた面積強度から検量線法により試料中のシラノール量を求めた。
(SiOH/Si比)
蛍光X線分析により得られたCHA型ゼオライトのケイ素含有量(mol/g)に対する、1H MAS NMRにより測定されたCHA型ゼオライトのシラノール基の含有量(mol/g)の比を求め、これをSiOH/Si比とした。
(I比)
測定試料としてCHA型ゼオライトの単一相のものを使用した。測定に先立ち、CHA型ゼオライトを600℃で熱処理してOSDAを取り除いた後、塩化アンモニウム水溶液でイオン交換し、110℃で3時間乾燥することで前処理とした。
前処理後の試料を2つに分け、一方を露点-50℃の大気中、600℃で5時間熱処理し、他方を露点-50℃の大気中、1000℃で5時間熱処理した。
熱処理後の測定試料について、それぞれ、結晶の同定と同様な方法でXRDパターンを測定し、XRDパターンについてバックグランド処理を行った後、CHA型ゼオライトの20-1反射に対応する2θ=20.5~21.0゜のXRDピークの強度を求め、600℃で熱処理した測定試料のXRDピークの強度をI600とし、1000℃で熱処理した測定試料のXRDピークの強度をI1000とした。得られたI600及びI1000からI1000/I600を求めた。
合成例1(DMECHABrの合成)
300mLナスフラスコにN,N-ジメチルシクロヘキシルアミン 50.0g、臭化エチル42.8gおよびエタノール100mLを入れ、60℃で3時間反応させた。反応終了後、70℃で未反応物および溶媒を減圧留去することで臭化N,N,N-ジメチルエチルシクロヘキシルアンモニウム(以下、「DMECHABr」ともいう。)を得た。当該化合物を脱イオン水に溶解することで25.0重量%DMECHABr水溶液を得た。
300mLナスフラスコにN,N-ジメチルシクロヘキシルアミン 50.0g、臭化エチル42.8gおよびエタノール100mLを入れ、60℃で3時間反応させた。反応終了後、70℃で未反応物および溶媒を減圧留去することで臭化N,N,N-ジメチルエチルシクロヘキシルアンモニウム(以下、「DMECHABr」ともいう。)を得た。当該化合物を脱イオン水に溶解することで25.0重量%DMECHABr水溶液を得た。
合成例2(DMECHAOHの合成)
合成例1で得たDMECHABr20.0gを脱イオン水180.0gに溶解させた。この水溶液を陰イオン交換樹脂(ダイヤイオンSA-10A、三菱化学株式会社製)を充填したカラムに通してイオン交換し、水酸化N,N,N-ジメチルエチルシクロヘキシルアンモニウム(以下、「DMECHAOH」ともいう。)の水溶液を得た。この液を50℃でロータリーエバポレータを用いて濃縮し、25重量%DMECHAOH水溶液を得た。
合成例1で得たDMECHABr20.0gを脱イオン水180.0gに溶解させた。この水溶液を陰イオン交換樹脂(ダイヤイオンSA-10A、三菱化学株式会社製)を充填したカラムに通してイオン交換し、水酸化N,N,N-ジメチルエチルシクロヘキシルアンモニウム(以下、「DMECHAOH」ともいう。)の水溶液を得た。この液を50℃でロータリーエバポレータを用いて濃縮し、25重量%DMECHAOH水溶液を得た。
合成例3(MDECHAIの合成)
300mLナスフラスコにN,N-ジエチルシクロヘキシルアミン50.0gおよび、タノール100mLを入れ、氷冷した。この溶液にヨウ化メチル50.3gを30分かけて滴下し、その後室温に戻してさらに12時間反応させた。反応終了後、70℃で未反応物および溶媒を減圧留去することでヨウ化N,N,N-メチルジエチルシクロヘキシルアンモニウム(以下、「MDECHAI」ともいう。)を得た。当該化合物を脱イオン水に溶解することで25.0重量%MDECHAI水溶液を得た。
300mLナスフラスコにN,N-ジエチルシクロヘキシルアミン50.0gおよび、タノール100mLを入れ、氷冷した。この溶液にヨウ化メチル50.3gを30分かけて滴下し、その後室温に戻してさらに12時間反応させた。反応終了後、70℃で未反応物および溶媒を減圧留去することでヨウ化N,N,N-メチルジエチルシクロヘキシルアンモニウム(以下、「MDECHAI」ともいう。)を得た。当該化合物を脱イオン水に溶解することで25.0重量%MDECHAI水溶液を得た。
実施例A-1
25重量%DMECHABr水溶液、25重量%TMAdCl水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=23.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
25重量%DMECHABr水溶液、25重量%TMAdCl水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=23.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
SiO2/Al2O3 =23.7
OSDA/SiO2 =0.08
DMECHABr/SiO2 =0.06
TMAdCl/SiO2 =0.02
TMAdCl/DMECHABr =0.33
K/SiO2 =0.06
Na/SiO2 =0.06
Na/K =1.00
H2O/SiO2 =15.0
OH/SiO2 =0.12
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら150℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。
OSDA/SiO2 =0.08
DMECHABr/SiO2 =0.06
TMAdCl/SiO2 =0.02
TMAdCl/DMECHABr =0.33
K/SiO2 =0.06
Na/SiO2 =0.06
Na/K =1.00
H2O/SiO2 =15.0
OH/SiO2 =0.12
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら150℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。
当該生成物はCHA型ゼオライトの単一相であり、結晶度は124%であり、100反射のXRDピークのFWHMが0.160゜、及び、20-1反射のXRDピークのFWHMが0.179゜であった。また、I1000/I600は0.55であった。
実施例A-2
原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
DMECHABr/SiO2 =0.075
TMAdCl/SiO2 =0.005
当該生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.164゜、及び、20-1反射のXRDピークのFWHMが0.173゜であった。また、I1000/I600は0.59であった。
TMAdCl/SiO2 =0.005
当該生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.164゜、及び、20-1反射のXRDピークのFWHMが0.173゜であった。また、I1000/I600は0.59であった。
実施例A-3
アルミナ源として、SiO2/Al2O3が31.0の非晶質アルミノシリケートを使用したこと、TMAdClの代わりにTMAdOHを使用したこと、及び、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
アルミナ源として、SiO2/Al2O3が31.0の非晶質アルミノシリケートを使用したこと、TMAdClの代わりにTMAdOHを使用したこと、及び、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
SiO2/Al2O3 =31.0
TMAdOH/SiO2 =0.02
K/SiO2 =0.04
当該生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.172゜、及び、20-1反射のXRDピークのFWHMが0.183゜であった。また、I1000/I600は0.59であった。
TMAdOH/SiO2 =0.02
K/SiO2 =0.04
当該生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.172゜、及び、20-1反射のXRDピークのFWHMが0.183゜であった。また、I1000/I600は0.59であった。
実施例A-4
アルミナ源として、SiO2/Al2O3が31.0の非晶質アルミノシリケートを使用したこと、DMECHABrの代わりにDMECHABr及びDMECHAOHを使用したこと、TMAdClの代わりにTMAdOHを使用したこと、並びに、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
アルミナ源として、SiO2/Al2O3が31.0の非晶質アルミノシリケートを使用したこと、DMECHABrの代わりにDMECHABr及びDMECHAOHを使用したこと、TMAdClの代わりにTMAdOHを使用したこと、並びに、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
SiO2/Al2O3 =31.0
DMECHAOH/SiO2 =0.015
TMAdOH/SiO2 =0.005
K/SiO2 =0.04
当該生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.169゜、及び、20-1反射のXRDピークのFWHMが0.184゜であった。また、I1000/I600は0.65であった。
DMECHAOH/SiO2 =0.015
TMAdOH/SiO2 =0.005
K/SiO2 =0.04
当該生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.169゜、及び、20-1反射のXRDピークのFWHMが0.184゜であった。また、I1000/I600は0.65であった。
実施例A-5
アルミナ源として、SiO2/Al2O3が24.5の非晶質アルミノシリケートを使用したこと、TMAdClの代わりにTMAdOHを使用したこと、並びに、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
アルミナ源として、SiO2/Al2O3が24.5の非晶質アルミノシリケートを使用したこと、TMAdClの代わりにTMAdOHを使用したこと、並びに、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
SiO2/Al2O3 =24.5
TMAdOH/SiO2 =0.02
Na/SiO2 =0.08
K/SiO2 =0.12
H2O/SiO2 =18.0
OH/SiO2 =0.22
当該生成物はCHA型ゼオライトの単一相であった。
TMAdOH/SiO2 =0.02
Na/SiO2 =0.08
K/SiO2 =0.12
H2O/SiO2 =18.0
OH/SiO2 =0.22
当該生成物はCHA型ゼオライトの単一相であった。
比較例A-1
DMECHABrを使用しなかったこと、及び、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
DMECHABrを使用しなかったこと、及び、原料混合物における以下の組成を変更したこと以外は実施例A-1と同様な方法で生成物を得た。
DMECHABr/SiO2 =0
TMAdCl/SiO2 =0.080
当該生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.29であった。
TMAdCl/SiO2 =0.080
当該生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.29であった。
いずれの実施例でもCHA型ゼオライトの単一相が得られ、なおかつ、ADA塩のみをOSDAとした比較例以上のSi収率であった。これより、ADA塩とMECHA塩とをOSDAとして使用することでCHA型ゼオライトが得られることが確認できた。
また、実施例A-1、A-2及び比較例A-1より、OSDAとしてDMECHA塩を使用して得られたCHA型ゼオライトは、OSDAとしてTMAdのみを使用して得られたゼオライトと比べ、SiOH/Si比が低くなること、すなわち、骨格端部が少なくなる事確認できた。
実施例のCHA型ゼオライトはI1000/I600が0.55と、0.30以上の高いI1000/I600を有するのに対し、比較例A-1のCHA型ゼオライトのI1000/I600は0.29であった。さらに、比較例A-1のCHA型ゼオライトは、実施例A-3よりもCHA結晶度が高いにもかかわらず、I1000/I600は実施例A-3よりも低くなった。これより、本発明のCHA型ゼオライトは、ADA塩のみをOSDAとして得られたCHA型ゼオライトよりも高い耐熱性を有することが確認できた。
実施例B-1
25重量%DMECHABr水溶液、25重量%TMAdCl水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=25.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
25重量%DMECHABr水溶液、25重量%TMAdCl水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=25.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
SiO2/Al2O3 =25.7
OSDA/SiO2 =0.08
DMECHABr/SiO2 =0.04
TMAdCl/SiO2 =0.04
TMAdCl/DMECHABr =1.00
K/SiO2 =0.10
Na/SiO2 =0.10
Na/K =1.00
H2O/SiO2 =15.0
OH/SiO2 =0.20
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら170℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。
OSDA/SiO2 =0.08
DMECHABr/SiO2 =0.04
TMAdCl/SiO2 =0.04
TMAdCl/DMECHABr =1.00
K/SiO2 =0.10
Na/SiO2 =0.10
Na/K =1.00
H2O/SiO2 =15.0
OH/SiO2 =0.20
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら170℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は118%であった。また、SiO2/Al2O3は24.9であった。
実施例B-2
K/SiO2を0.06としたこと以外は実施例B-1と同様な方法で生成物を得た。
K/SiO2を0.06としたこと以外は実施例B-1と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は129%であった。また、SiO2/Al2O3は25.2であった。
実施例B-3
25重量%DMECHABr水溶液の代わりに25重量%DMECHAOH水溶液を使用したこと、及び25%重量%TMAdCl水溶液の代わりに25重量%TMAdOH水溶液を使用したこと以外は実施例B-2と同様な方法で生成物を得た。
25重量%DMECHABr水溶液の代わりに25重量%DMECHAOH水溶液を使用したこと、及び25%重量%TMAdCl水溶液の代わりに25重量%TMAdOH水溶液を使用したこと以外は実施例B-2と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は118%であった。また、SiO2/Al2O3は23.8であった。
実施例B-4
25重量%DMECHABr水溶液の代わりに25重量%MDECHAI水溶液を使用したこと以外は実施例B-1と同様な方法で生成物を得た。
25重量%DMECHABr水溶液の代わりに25重量%MDECHAI水溶液を使用したこと以外は実施例B-1と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は112%であった。また、SiO2/Al2O3は24.7であった。
比較例B-1
OSDAとして25重量%DMECHABr水溶液を単独で用いたこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
OSDAとして25重量%DMECHABr水溶液を単独で用いたこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
本比較例では、48時間の反応後も結晶化せず、生成物はアモルファスであった。
比較例B-2
OSDAとして25重量%DMECHAOH水溶液を単独で用いたこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
OSDAとして25重量%DMECHAOH水溶液を単独で用いたこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
本比較例では、48時間の反応後も結晶化せず、生成物はアモルファスであった。
これらの比較例から、OSDAとしてDMECHA+を単独で使用した場合、48時間ではCHA型ゼオライトは生成しないことがわかる。
比較例B-3
OSDAとして25重量%TMAdCl水溶液を単独で用いたこと以外は実施例B-1と同様な方法で生成物を得た。
OSDAとして25重量%TMAdCl水溶液を単独で用いたこと以外は実施例B-1と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は100%であった。また、SiO2/Al2O3は24.2であり、I1000/I600は0.30未満であった。
比較例B-4
OSDAとして25重量%TMAdOH水溶液を単独で用いたこと以外は実施例B-1と同様な方法で生成物を得た。
OSDAとして25重量%TMAdOH水溶液を単独で用いたこと以外は実施例B-1と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は100%であった。また、SiO2/Al2O3は22.1であり、I1000/I600は0.30未満あった。
これらの比較例から、OSDAとしてTMAd+を単独で使用した場合、MECAH+とTMAd+の併用系よりCHA結晶度が低いことがわかる。また、これらの比較例ではTMAd+の添加量が多いため、OSDAコストが高い。
これらの実施例及び比較例の原料組成物の主な組成を表3に、生成物の結果を表4に示した。
実施例B-5
25重量%DMECHABr水溶液、25重量%TMAdCl水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=25.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
25重量%DMECHABr水溶液、25重量%TMAdCl水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=25.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
SiO2/Al2O3 =25.7
OSDA/SiO2 =0.08
DMECHABr/SiO2 =0.06
TMAdCl/SiO2 =0.02
TMAdCl/DMECHABr =0.33
K/SiO2 =0.06
Na/SiO2 =0.10
Na/K =1.67
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら170℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。
OSDA/SiO2 =0.08
DMECHABr/SiO2 =0.06
TMAdCl/SiO2 =0.02
TMAdCl/DMECHABr =0.33
K/SiO2 =0.06
Na/SiO2 =0.10
Na/K =1.67
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら170℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は132%であった。また、SiO2/Al2O3は25.1であり、I1000/I600は0.35であった。
実施例B-6
原料組成物のDMECHABr/SiO2及びTMAdCl/SiO2を、それぞれ0.07及び0.01としたこと以外は実施例B-5と同様な方法で生成物を得た。
原料組成物のDMECHABr/SiO2及びTMAdCl/SiO2を、それぞれ0.07及び0.01としたこと以外は実施例B-5と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は130%であった。また、SiO2/Al2O3は24.9であり、SiOH/Si比は0.54であり、I1000/I600は0.42であった。
実施例B-7
DMECHABr/SiO2及びTMAdCl/SiO2を、それぞれ0.07及び0.01としたこと、並びに、種晶として2重量%のCHA型ゼオライトを原料組成物に混合した以外は実施例B-5と同様な方法で生成物を得た。
DMECHABr/SiO2及びTMAdCl/SiO2を、それぞれ0.07及び0.01としたこと、並びに、種晶として2重量%のCHA型ゼオライトを原料組成物に混合した以外は実施例B-5と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は129%であった。また、SiO2/Al2O3は24.7であり、I1000/I600は0.41であった。
これらの実施例の原料組成物の主な組成を表5に、生成物の結果を表6に示した。これらの実施例から、TMAd+の使用量を低下させた場合であっても、高結晶のCHA型ゼオライトが得られることがわかる。
実施例B-8
反応温度を150℃としたこと以外は実施例B-2と同様な方法で生成物を得た。
反応温度を150℃としたこと以外は実施例B-2と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は129%であった。また、SiO2/Al2O3比は24.9であった。
本実施例のCHA型ゼオライトは、一辺が1μmの一次結晶粒子が化学的に凝集した凝集結晶粒子を含むことが確認できた。
実施例B-9
反応温度を150℃としたこと以外は実施例B-5と同様な方法で生成物を得た。
反応温度を150℃としたこと以外は実施例B-5と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は132%であった。また、SiO2/Al2O3は25.2であり、I1000/I600は0.38であった。
本実施例のCHA型ゼオライトは、一辺が1μmの一次結晶粒子を多く含み、当該一次結晶粒子と、一次粒子が化学的に凝集した凝集結晶粒子とが存在することが確認できた。
実施例B-10
25重量%TMAdCl水溶液の代わりに25重量%TMAdOH水溶液を使用したこと以外は実施例B-9と同様な方法で生成物を得た。
25重量%TMAdCl水溶液の代わりに25重量%TMAdOH水溶液を使用したこと以外は実施例B-9と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は129%であった。また、SiO2/Al2O3は23.9であり、I1000/I600は0.32であった。
本実施例のCHA型ゼオライトは、一辺が1μmの一次結晶粒子を多く含み、当該一次結晶粒子と、一次粒子が化学的に凝集した凝集結晶粒子とが存在することが確認できた。
実施例B-11
25重量%DMECHABr水溶液の代わりに25重量%MDECHAI水溶液を使用したこと以外は実施例B-9と同様な方法で生成物を得た。
25重量%DMECHABr水溶液の代わりに25重量%MDECHAI水溶液を使用したこと以外は実施例B-9と同様な方法で生成物を得た。
当該生成物はCHA型ゼオライトの単一相であり、CHA結晶度は120%であった。また、SiO2/Al2O3は24.9であった。
これらの実施例の原料組成物の主な組成を表7に、生成物の結果を表8に示した。これらの実施例から、反応温度を150℃に低下させた場合であっても、短時間(48時間)で高結晶のCHA型ゼオライトが得られることがわかる。
比較例B-5
25重量%DMECHABr水溶液の代わりに25重量%ヨウ化N,N,N-トリメチルシクロヘキシルアンモニウム(以下、「TMCHAI」ともいう。)を使用したこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
25重量%DMECHABr水溶液の代わりに25重量%ヨウ化N,N,N-トリメチルシクロヘキシルアンモニウム(以下、「TMCHAI」ともいう。)を使用したこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
得られた生成物はCHA型ゼオライトとERI型ゼオライトの混合物であり、混合物中のCHA結晶度は99%であった。また、混合物のSiO2/Al2O3比は24.8であり、I1000/I600は0.30未満であった。
比較例B-6
TMCHAI/SiO2及びTMAdCl/SiO2を、それぞれ0.06及び0.02としたこと以外は比較例B-5と同様な方法で生成物を得た。
TMCHAI/SiO2及びTMAdCl/SiO2を、それぞれ0.06及び0.02としたこと以外は比較例B-5と同様な方法で生成物を得た。
本比較例では、48時間の反応後も結晶化せず、生成物はアモルファスであった。
比較例B-7
25重量%TMAdCl水溶液の代わりに25重量%TMAdOH水溶液を使用したこと以外は比較例B-6と同様な方法で生成物を得た。
25重量%TMAdCl水溶液の代わりに25重量%TMAdOH水溶液を使用したこと以外は比較例B-6と同様な方法で生成物を得た。
本比較例では、48時間の反応後も結晶化せず、生成物はアモルファスであった。
比較例B-8
25重量%DMECHABr水溶液の代わりに25重量%臭化N,N,N-ジメチルプロピルシクロヘキシルアンモニウム(以下、「DMPCHABr」ともいう。)水溶液を使用したこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
25重量%DMECHABr水溶液の代わりに25重量%臭化N,N,N-ジメチルプロピルシクロヘキシルアンモニウム(以下、「DMPCHABr」ともいう。)水溶液を使用したこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
得られた生成物はCHA型ゼオライトとERI型ゼオライトの混合物であり、混合物中のCHA結晶度は72%であった。また、混合物のSiO2/Al2O3比は24.5であった。
比較例B-9
25重量%DMECHABr水溶液の代わりに25重量%臭化N,N,N-トリメチルベンジルアンモニウム(以下、「TMBABr」ともいう。)水溶液を使用したこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
25重量%DMECHABr水溶液の代わりに25重量%臭化N,N,N-トリメチルベンジルアンモニウム(以下、「TMBABr」ともいう。)水溶液を使用したこと、及び、種晶として5重量%のCHA型ゼオライトを原料組成物に混合したこと以外は実施例B-1と同様な方法で生成物を得た。
得られた生成物はCHA型ゼオライトとERI型ゼオライトの混合物であり、混合物中のCHA結晶度は100%であった。また、混合物のSiO2/Al2O3比は25.0であり、I1000/I600は0.30未満であった。
これらの比較例の原料組成物の主な組成を表9に、生成物の結果を表10に示した。
これらの比較例から、MECHA塩以外のN,N,N-アルキルシクロヘキシルアンモニウム塩とADA塩とを含む原料組成物では、CHA型ゼオライトの単一相が結晶化できないことが確認できた。また、芳香族環を含む4級アンモニウム塩であるTMBABrとADA塩とを含む原料組成物でもCHA型ゼオライトの単一相が結晶化できないことが確認できた。また、比較例B-9のI1000/I600は0.30未満であったことから、CHA型ゼオライト以外のゼオライトとCHA型ゼオライトとの混合物は、CHA型ゼオライトの結晶性が高くても、耐熱性が高くならないことが示された。
実施例C-1
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=18.3)を混合して以下のモル組成を有する原料組成物を得た。
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、及び、非晶質アルミノシリケート(SiO2/Al2O3=18.3)を混合して以下のモル組成を有する原料組成物を得た。
SiO2/Al2O3 =18.3
DMECHABr/SiO2 =0.07
DMECHAOH/SiO2 =0.01
K/SiO2 =0.11
Na/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら150℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。当該生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.16であった。
DMECHABr/SiO2 =0.07
DMECHAOH/SiO2 =0.01
K/SiO2 =0.11
Na/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
原料組成物を内容積80mLの密閉容器内に充填し、当該容器を55rpmで回転攪拌しながら150℃で48時間反応させた。得られた生成物を固液分離し、脱イオン水で洗浄した後、110℃で乾燥した。当該生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.16であった。
実施例C-2
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=24.6)を混合して以下のモル組成を有する原料組成物を得た。
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=24.6)を混合して以下のモル組成を有する原料組成物を得た。
SiO2/Al2O3 =24.6
DMECHABr/SiO2 =0.04
DMECHAOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.196゜及び、20-1反射のXRDピークのFWHMが0.191゜であった。また、I1000/I600は0.59であった。
DMECHABr/SiO2 =0.04
DMECHAOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、100反射のXRDピークのFWHMが0.196゜及び、20-1反射のXRDピークのFWHMが0.191゜であった。また、I1000/I600は0.59であった。
実施例C-3
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=40.0)を混合して以下のモル組成を有する原料組成物を得た。
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=40.0)を混合して以下のモル組成を有する原料組成物を得た。
SiO2/Al2O3 =40.0
DMECHABr/SiO2 =0.02
DMECHAOH/SiO2 =0.06
Na/SiO2 =0.06
K/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =2.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.76であった。
DMECHABr/SiO2 =0.02
DMECHAOH/SiO2 =0.06
Na/SiO2 =0.06
K/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =2.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.76であった。
実施例C-4
25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=50.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=50.7)を混合して以下のモル組成を有する原料組成物50.0gを得た。
SiO2/Al2O3 =50.7
DMECHABr/SiO2 =0.05
DMECHAOH/SiO2 =0.05
Na/SiO2 =0.08
K/SiO2 =0.03
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =2.0重量%
得られた原料組成物を使用したこと、及び、反応温度を170℃とした以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.51であった。
DMECHABr/SiO2 =0.05
DMECHAOH/SiO2 =0.05
Na/SiO2 =0.08
K/SiO2 =0.03
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =2.0重量%
得られた原料組成物を使用したこと、及び、反応温度を170℃とした以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.51であった。
実施例C-5
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=24.6)を混合して以下のモル組成を有する原料組成物50.0gを得た。
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=24.6)を混合して以下のモル組成を有する原料組成物50.0gを得た。
SiO2/Al2O3 =24.6
DMECHABr/SiO2 =0.02
DMECHAOH/SiO2 =0.06
Na/SiO2 =0.04
K/SiO2 =0.10
H2O/SiO2 =15.0
OH/SiO2 =0.20
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.35であった。
DMECHABr/SiO2 =0.02
DMECHAOH/SiO2 =0.06
Na/SiO2 =0.04
K/SiO2 =0.10
H2O/SiO2 =15.0
OH/SiO2 =0.20
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.35であった。
実施例C-6
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=24.6)を混合して以下のモル組成を有する原料組成物50.0gを得た。
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、非晶質アルミノシリケート(SiO2/Al2O3=24.6)を混合して以下のモル組成を有する原料組成物50.0gを得た。
SiO2/Al2O3 =24.6
DMECHAOH/SiO2 =0.08
Na/SiO2 =0.04
K/SiO2 =0.12
H2O/SiO2 =15.0
OH/SiO2 =0.24
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.16であった。
DMECHAOH/SiO2 =0.08
Na/SiO2 =0.04
K/SiO2 =0.12
H2O/SiO2 =15.0
OH/SiO2 =0.24
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.16であった。
実施例C-7
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、シリカゲル(製品名:Nipsil-VN3、日本シリカ工業社製)、アルミニウムイソプロポキシド(キシダ化学株式会社製)および種晶としてSSZ-13を混合して以下のモル組成を有する原料組成物を得た。
25重量%DMECHABr水溶液、25重量%DMECHAOH水溶液、48%水酸化ナトリウム水溶液、48重量%水酸化カリウム水溶液、脱イオン水、シリカゲル(製品名:Nipsil-VN3、日本シリカ工業社製)、アルミニウムイソプロポキシド(キシダ化学株式会社製)および種晶としてSSZ-13を混合して以下のモル組成を有する原料組成物を得た。
SiO2/Al2O3 =35.0
DMECHABr/SiO2 =0.065
DMECHAOH/SiO2 =0.015
Na/SiO2 =0.060
K/SiO2 =0.045
H2O/SiO2 =15.0
OH/SiO2 =0.12
種晶 =2.0重量%
得られた原料組成物を使用したこと、及び、温度を170℃としたこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、また、I1000/I600は0.52であった。
DMECHABr/SiO2 =0.065
DMECHAOH/SiO2 =0.015
Na/SiO2 =0.060
K/SiO2 =0.045
H2O/SiO2 =15.0
OH/SiO2 =0.12
種晶 =2.0重量%
得られた原料組成物を使用したこと、及び、温度を170℃としたこと以外は実施例C-1と同様な方法で結晶化して生成物を得た。得られた生成物はCHA型ゼオライトの単一相であり、また、I1000/I600は0.52であった。
比較例C-1
以下のモル組成を有する原料組成物を使用こと以外は実施例C-1と同様な方法で結晶化をした。
以下のモル組成を有する原料組成物を使用こと以外は実施例C-1と同様な方法で結晶化をした。
SiO2/Al2O3 =24.6
DMECHABr/SiO2 =0.08
Na/SiO2 =0.125
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.205
種晶 =0.0重量%
しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
DMECHABr/SiO2 =0.08
Na/SiO2 =0.125
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.205
種晶 =0.0重量%
しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
比較例C-2
以下のモル組成を有する原料組成物を使用こと以外は実施例C-1と同様な方法で結晶化をした。
以下のモル組成を有する原料組成物を使用こと以外は実施例C-1と同様な方法で結晶化をした。
SiO2/Al2O3 =40.0
DMECHABr/SiO2 =0.08
Na/SiO2 =0.125
K/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.165
種晶 =0.0重量%
しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
DMECHABr/SiO2 =0.08
Na/SiO2 =0.125
K/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.165
種晶 =0.0重量%
しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
これら実施例及び比較例の原料組成物の主な組成を表11に、生成物を表12に示した。
これらの実施例及び比較例はいずれもOSDAとしてDMECHA塩を使用した。実施例ではいずれもCHA型ゼオライトの単一相が得られたのに対し、Na/SiO2が高い原料組成物を用いた比較例ではCHA型ゼオライトが結晶化しなかった。
また、実施例で得られたCHA型ゼオライトはI1000/I600が0.30を超え、耐熱性に優れることが確認できた。
比較例C-3
OSDAとして、25重量%ヨウ化N,N,N-トリメチルシクロヘキシルアンモニウム(TMCHAI)水溶液および25重量%水酸化N,N,N-トリメチルシクロヘキシルアンモニウム(TMCHAOH)を使用した以外は実施例C-1と同様にして、原料組成物50.0gを得た。
OSDAとして、25重量%ヨウ化N,N,N-トリメチルシクロヘキシルアンモニウム(TMCHAI)水溶液および25重量%水酸化N,N,N-トリメチルシクロヘキシルアンモニウム(TMCHAOH)を使用した以外は実施例C-1と同様にして、原料組成物50.0gを得た。
SiO2/Al2O3 =24.6
TMCHAI/SiO2 =0.04
TMCHAOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
TMCHAI/SiO2 =0.04
TMCHAOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
比較例C-4
種晶としてSSZ-13を2.0重量%含有すること以外は比較例C-1の原料組成物と同様な組成の原料組成物を得た。
種晶としてSSZ-13を2.0重量%含有すること以外は比較例C-1の原料組成物と同様な組成の原料組成物を得た。
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。しかしながら、原料組成物は結晶化せず、アモルファスの生成物が得られた。
比較例C-5
OSDAとして25重量%臭化N,N,N-トリエチルシクロヘキシルアンモニウム(以下、「TECHABr」ともいう。)水溶液及び25重量%水酸化N,N,N-トリエチルシクロヘキシルアンモニウム(以下、「TECHAOH」ともいう。)水溶液を使用し、以下の組成を有する原料組成物を得た。
OSDAとして25重量%臭化N,N,N-トリエチルシクロヘキシルアンモニウム(以下、「TECHABr」ともいう。)水溶液及び25重量%水酸化N,N,N-トリエチルシクロヘキシルアンモニウム(以下、「TECHAOH」ともいう。)水溶液を使用し、以下の組成を有する原料組成物を得た。
SiO2/Al2O3 =24.6
TECHAI/SiO2 =0.04
TECHAOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =2.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
TECHAI/SiO2 =0.04
TECHAOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =2.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。しかしながら、原料組成物は結晶化せず、生成物はアモルファスであった。
これらの比較例の原料組成物の主な組成を表13に示した。
これらの比較例では、いずれもOSDAとしてN,N,N-テトラアルキルシクロヘキシルアンモニウム塩を含む原料組成物を使用した。しかしながら、いずれの比較例においてもCHA型ゼオライトは検証化しなかった。これより、DMECHA塩以外のN,N,N-テトラアルキルシクロヘキシルアンモニウム塩では、CHA型ゼオライトの単一相が結晶化しないことが確認できた。
比較例C-6
OSDAとして25重量%塩化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdCl」という。)水溶液及び水酸化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdOH」という。)を使用し、以下の組成を有する原料組成物を得た。
OSDAとして25重量%塩化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdCl」という。)水溶液及び水酸化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdOH」という。)を使用し、以下の組成を有する原料組成物を得た。
SiO2/Al2O3 =18.3
TMAdCl/SiO2 =0.04
TMAdOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.11
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.10であった。
TMAdCl/SiO2 =0.04
TMAdOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.11
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.10であった。
比較例C-7
OSDAとして25重量%塩化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdCl」という。)水溶液及び水酸化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdOH」という。)を使用し、以下の組成を有する原料組成物を得た。
OSDAとして25重量%塩化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdCl」という。)水溶液及び水酸化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdOH」という。)を使用し、以下の組成を有する原料組成物を得た。
SiO2/Al2O3 =24.6
TMAdCl/SiO2 =0.04
TMAdOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.24であった。
TMAdCl/SiO2 =0.04
TMAdOH/SiO2 =0.04
Na/SiO2 =0.04
K/SiO2 =0.08
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。得られた生成物はCHA型ゼオライトの単一相であり、I1000/I600は0.24であった。
比較例C-8
OSDAとして25重量%塩化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdCl」という。)水溶液及び水酸化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdOH」という。)を使用し、以下の組成を有する原料組成物を得た。
OSDAとして25重量%塩化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdCl」という。)水溶液及び水酸化N,N,N-トリメチルアダマンタンアンモニウム(以下、「TMAdOH」という。)を使用し、以下の組成を有する原料組成物を得た。
SiO2/Al2O3 =40.0
TMAdCl/SiO2 =0.02
TMAdOH/SiO2 =0.06
Na/SiO2 =0.06
K/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。得られた生成物はCHA型ゼオライトの単一相でありI1000/I600は0.10であった。
TMAdCl/SiO2 =0.02
TMAdOH/SiO2 =0.06
Na/SiO2 =0.06
K/SiO2 =0.04
H2O/SiO2 =15.0
OH/SiO2 =0.16
種晶 =0.0重量%
得られた原料組成物を使用したこと以外は実施例C-1と同様な方法で結晶化した。得られた生成物はCHA型ゼオライトの単一相でありI1000/I600は0.10であった。
これらの比較例の原料組成物の主な組成を表14に、生成物を表15にそれぞれ示した。
これらの比較例は、OSDAとしてTMAd塩のみを使用することによりCHA型ゼオライトを結晶化した。しかしながら、いずれのCHA型ゼオライトもI1000/I600が0.30未満であり、耐熱性が実施例のCHA型ゼオライトよりも低いことが確認できた。さらに同程度のSiO2/Al2O3を有する実施例C-2及び比較例C-7のCHA型ゼオライトにおいて、実施例2のCHA型ゼオライトのI1000/I600が0.59であるのに対し、比較例C-7のCHA型ゼオライトのI1000/I600は0.24であり、本発明のCHA型ゼオライトは、OSDAとしてTMAd塩のみを含む原料組成物から得られたCHA型ゼオライトよりも顕著に高い耐熱性を有することが確認できた。
なお、2016年5月23日に出願された日本特許出願2016-102181号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れる。
Claims (20)
- アルミナに対するシリカのモル比が10.0以上20.0未満及びケイ素に対するシラノール基のモル比が0.15×10-2以上0.50×10-2以下、
アルミナに対するシリカのモル比が20.0以上35.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.10×10-2以下、
アルミナに対するシリカのモル比が35.0を超え45.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.65×10-2以下、若しくは、
アルミナに対するシリカのモル比が45.0を超え55.0以下及びケイ素に対するシラノール基のモル比が0.15×10-2以上1.80×10-2以下、のいずれかであるCHA型ゼオライト。 - 大気中、600℃、5時間で熱処理したCHA型ゼオライトの20-1反射の粉末X線回折ピークの強度に対する、大気中、1000℃、5時間で熱処理したCHA型ゼオライトの20-1反射の粉末X線回折ピークの強度の比が、0.30以上である請求項1に記載のCHA型ゼオライト。
- 一次粒子同士が化学的に凝集しながら形成された結晶粒子を含む請求項1又は2に記載のCHA型ゼオライト。
- 前記N,N,N-トリアルキルシクロヘキシルアンモニウム塩又は前記N,N,N-トリアルキルアダマンチルアンモニウム塩の少なくともいずれかが、水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種の塩である請求項4に記載の製造方法。
- 前記組成物のN,N,N-トリアルキルシクロヘキシルアンモニウム塩に対するN,N,N-トリアルキルアダマンチルアンモニウム塩のモル比が0.025以上である請求項4又は5に記載の製造方法。
- 前記組成物のシリカに対するN,N,N-トリアルキルアダマンチルアンモニウム塩のモル比が0.005以上0.04以下である請求項4乃至6のいずれか一項に記載の製造方法。
- 前記アルカリ源がカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含む請求項4乃至7のいずれか一項に記載の製造方法。
- 前記原料組成物のシリカに対する、カリウム、ルビジウム及びセシウムからなる群のいずれか1種以上のモル比が0を超え0.15未満である請求項4乃至8のいずれか一項に記載の製造方法。
- 前記N,N,N-トリアルキルアダマンチルアンモニウム塩が、N,N,N-トリメチルアダマンチルアンモニウム塩である請求項4乃至9のいずれか一項に記載の製造方法。
- 前記アルミナ源及びシリカ源が非晶質アルミノシリケートを含む請求項4乃至10のいずれか一項に記載の製造方法。
- 前記組成物のシリカに対する水酸化物イオンのモル比が0.30以下である請求項4乃至11のいずれか一項に記載の製造方法。
- 前記N,N,N-トリアルキルシクロヘキシルアンモニウム塩が、N,N,N-ジメチルエチルシクロヘキシルアンモニウム塩又はN,N,N-メチルジエチルシクロヘキシルアンモニウム塩の少なくともいずれかである請求項4乃至12のいずれか一項に記載の製造方法。
- 前記組成物が以下の組成を有する請求項4乃至13のいずれか一項に記載の製造方法。
SiO2/Al2O3 =10以上60以下
TMAd/DMECHA =0.025以上1.0以下
OSDA/SiO2 =0.06以上0.20以下
M/SiO2 =0.10以上0.30以下
OH/SiO2 =0.05以上0.50以下
H2O/SiO2 =10.0以上20.0以下
種晶 =0.0重量%以上5.0重量%以下
但し、TMAdはN,N,N-トリメチルアダマンチルアンモニウム塩、DMECHAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩、OSDAはN,N,N-ジメチルエチルシクロヘキシルアンモニウム塩及びN,N,N-トリメチルアダマンチルアンモニウム塩、並びに、MはNa及びKである。 - 前記N,N,N-ジメチルエチルシクロヘキシルアンモニウム塩が、水酸化物、塩化物、臭化物、ヨウ化物、炭酸モノエステル塩、硫酸モノエステル塩、硝酸塩及び硫酸塩からなる群の少なくとも1種の塩である請求項15に記載の製造方法。
- 前記アルカリ源がカリウム、ルビジウム及びセシウムからなる群のいずれか1種以上を含む請求項15又は請求項16に記載の製造方法。
- 前記原料組成物のシリカに対する、カリウム、ルビジウム及びセシウムからなる群のいずれか1種以上のモル比が0を超え0.15未満である請求項15乃至請求項17のいずれか一項に記載の製造方法。
- 前記アルミナ源及びシリカ源が非晶質アルミノシリケートを含む請求項15乃至請求項18のいずれか一項に記載の製造方法。
- 前記組成物のシリカに対する水酸化物イオンのモル比が0.30以下である請求項15乃至請求項19のいずれか一項に記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17802798.3A EP3473598A4 (en) | 2016-05-23 | 2017-05-23 | CHA TYPE ZEOLITE AND PRODUCTION METHOD THEREFOR |
CN201780032379.6A CN109195911B (zh) | 2016-05-23 | 2017-05-23 | Cha型沸石和其制造方法 |
US16/302,964 US10953390B2 (en) | 2016-05-23 | 2017-05-23 | CHA-type zeolite and method for producing the same |
MYPI2018704281A MY197118A (en) | 2016-05-23 | 2017-05-23 | Cha-type zeolite and production method therefor |
CN202310323371.2A CN116251620A (zh) | 2016-05-23 | 2017-05-23 | Cha型沸石和其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-102181 | 2016-05-23 | ||
JP2016102181 | 2016-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204212A1 true WO2017204212A1 (ja) | 2017-11-30 |
Family
ID=60412303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019183 WO2017204212A1 (ja) | 2016-05-23 | 2017-05-23 | Cha型ゼオライト及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10953390B2 (ja) |
EP (1) | EP3473598A4 (ja) |
JP (1) | JP6953791B2 (ja) |
CN (2) | CN109195911B (ja) |
MY (1) | MY197118A (ja) |
WO (1) | WO2017204212A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017210402A (ja) * | 2016-05-23 | 2017-11-30 | 東ソー株式会社 | Cha型ゼオライト及びその製造方法 |
WO2019219623A1 (en) | 2018-05-14 | 2019-11-21 | Umicore Ag & Co. Kg | Stable cha zeolites |
WO2019219629A1 (en) | 2018-05-14 | 2019-11-21 | Umicore Ag & Co. Kg | Stable small-pore zeolites |
WO2020109815A1 (en) * | 2018-11-30 | 2020-06-04 | Johnson Matthey Public Limited Company | Jmz-1, a cha-containing zeolite and methods of preparation |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7410048B2 (ja) * | 2018-03-21 | 2024-01-09 | ビーエーエスエフ コーポレーション | Chaゼオライト材料および関連する合成方法 |
KR102114903B1 (ko) * | 2018-09-27 | 2020-05-26 | 한국화학연구원 | 디메틸에틸시클로헥실암모니움 이온 주형체의 소량 존재하에 hy 제올라이트로부터 ssz-13 제올라이트 합성을 위한 제올라이트간의 변환 방법 |
CN111762794B (zh) * | 2020-07-13 | 2022-08-05 | 包头稀土研究院 | 分子筛及其制备方法 |
US20230416102A1 (en) * | 2020-11-26 | 2023-12-28 | Anhui Zeo New Material Technology Co., Ltd | Extra-large pore molecular sieve zeo-1, its synthesis and use |
CN113996333A (zh) * | 2021-11-26 | 2022-02-01 | 中触媒新材料股份有限公司 | 用于选择性催化还原NOx的SSZ-13分子筛及其合成方法和应用 |
CN114057208B (zh) * | 2021-11-26 | 2023-06-30 | 中触媒新材料股份有限公司 | 一种双模板剂合成的cha型分子筛及应用其制备scr催化剂的方法 |
CN113996335A (zh) * | 2021-11-26 | 2022-02-01 | 中触媒新材料股份有限公司 | 一种用于还原氮氧化物的催化剂载体cha分子筛制备方法及应用 |
CN113996336A (zh) * | 2021-11-26 | 2022-02-01 | 中触媒新材料股份有限公司 | 一种新型cha分子筛合成方法及其scr催化剂的制备 |
CN114130423A (zh) * | 2021-11-26 | 2022-03-04 | 中触媒新材料股份有限公司 | 一种具有特征骨架结构cha分子筛及其合成方法和应用 |
CN114132945B (zh) * | 2021-11-26 | 2023-05-16 | 中触媒新材料股份有限公司 | 一种高骨架四配位铝结构cha分子筛催化剂制备方法及应用 |
WO2023223027A1 (en) | 2022-05-17 | 2023-11-23 | Johnson Matthey Public Limited Company | A cha type zeolite and the method of synthesising said zeolite |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007534582A (ja) * | 2003-12-23 | 2007-11-29 | エクソンモービル・ケミカル・パテンツ・インク | カバサイトタイプ分子篩、その合成、及びオキシジネートをオレフィンへ変換することにおけるそれらの使用 |
US20130323164A1 (en) * | 2012-06-04 | 2013-12-05 | Basf Se | CHA-type Zeolite Materials and Methods for Their Preparation Using Cycloalkyammonium Compounds |
JP2014530797A (ja) * | 2011-09-06 | 2014-11-20 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | N,n−ジメチル有機テンプレートを用いるゼオライト系材料の合成 |
JP2015155364A (ja) * | 2014-01-16 | 2015-08-27 | 東ソー株式会社 | Lev型ゼオライト及びその製造方法 |
JP2015529608A (ja) * | 2012-06-04 | 2015-10-08 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Cha型ゼオライト材料、及びシクロアルキルアンモニウム化合物を用いるそれらの製造方法 |
JP2015536291A (ja) * | 2012-10-18 | 2015-12-21 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | ゼオライト材料の後処理 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
US7754187B2 (en) * | 2005-10-31 | 2010-07-13 | Exxonmobil Chemical Patents Inc. | Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins |
WO2007053239A1 (en) | 2005-10-31 | 2007-05-10 | Exxonmobil Chemical Patents Inc. | Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins |
US7597874B1 (en) | 2008-06-23 | 2009-10-06 | Chevron U.S.A. Inc. | Preparation of zeolites using novel structure directing agents |
JP5482179B2 (ja) * | 2008-12-22 | 2014-04-23 | 東ソー株式会社 | チャバザイト型ゼオライト及びその製造方法 |
US7772335B1 (en) * | 2009-03-27 | 2010-08-10 | Exxonmobil Chemical Patents Inc. | Light olefin selective oxygenate conversion process using CHA framework type aluminosilicate |
JP5895510B2 (ja) * | 2010-12-22 | 2016-03-30 | 東ソー株式会社 | チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法 |
KR20150087302A (ko) | 2012-11-25 | 2015-07-29 | 셰브런 유.에스.에이.인크. | 콜로이드성 알루미노실리케이트를 이용한 cha-형 분자체를 제조하는 방법 |
EP3009400B1 (en) | 2013-06-14 | 2022-11-30 | Tosoh Corporation | Nu-3 lev-type zeolite and production method therefor |
GB2522530B (en) * | 2013-12-03 | 2017-02-08 | Johnson Matthey Plc | Copper CHA framework Zeolite catalyst and use thereof |
CN106660024B (zh) * | 2014-06-05 | 2020-07-24 | 巴斯夫欧洲公司 | Cha型沸石材料和使用环烷基-和四烷基铵化合物的组合制备它们的方法 |
WO2017204212A1 (ja) * | 2016-05-23 | 2017-11-30 | 東ソー株式会社 | Cha型ゼオライト及びその製造方法 |
WO2018064276A1 (en) * | 2016-09-30 | 2018-04-05 | Johnson Matthey Public Limited Company | Novel synthesis of metal promoted zeolite catalyst |
GB2597877B (en) * | 2016-09-30 | 2022-09-14 | Johnson Matthey Plc | A novel zeolite synthesis with a fluoride source |
-
2017
- 2017-05-23 WO PCT/JP2017/019183 patent/WO2017204212A1/ja unknown
- 2017-05-23 CN CN201780032379.6A patent/CN109195911B/zh active Active
- 2017-05-23 JP JP2017101653A patent/JP6953791B2/ja active Active
- 2017-05-23 MY MYPI2018704281A patent/MY197118A/en unknown
- 2017-05-23 US US16/302,964 patent/US10953390B2/en active Active
- 2017-05-23 CN CN202310323371.2A patent/CN116251620A/zh active Pending
- 2017-05-23 EP EP17802798.3A patent/EP3473598A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007534582A (ja) * | 2003-12-23 | 2007-11-29 | エクソンモービル・ケミカル・パテンツ・インク | カバサイトタイプ分子篩、その合成、及びオキシジネートをオレフィンへ変換することにおけるそれらの使用 |
JP2014530797A (ja) * | 2011-09-06 | 2014-11-20 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | N,n−ジメチル有機テンプレートを用いるゼオライト系材料の合成 |
US20130323164A1 (en) * | 2012-06-04 | 2013-12-05 | Basf Se | CHA-type Zeolite Materials and Methods for Their Preparation Using Cycloalkyammonium Compounds |
JP2015529608A (ja) * | 2012-06-04 | 2015-10-08 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Cha型ゼオライト材料、及びシクロアルキルアンモニウム化合物を用いるそれらの製造方法 |
JP2015536291A (ja) * | 2012-10-18 | 2015-12-21 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | ゼオライト材料の後処理 |
JP2015155364A (ja) * | 2014-01-16 | 2015-08-27 | 東ソー株式会社 | Lev型ゼオライト及びその製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017210402A (ja) * | 2016-05-23 | 2017-11-30 | 東ソー株式会社 | Cha型ゼオライト及びその製造方法 |
WO2019219623A1 (en) | 2018-05-14 | 2019-11-21 | Umicore Ag & Co. Kg | Stable cha zeolites |
WO2019219629A1 (en) | 2018-05-14 | 2019-11-21 | Umicore Ag & Co. Kg | Stable small-pore zeolites |
WO2020109815A1 (en) * | 2018-11-30 | 2020-06-04 | Johnson Matthey Public Limited Company | Jmz-1, a cha-containing zeolite and methods of preparation |
US11219885B2 (en) | 2018-11-30 | 2022-01-11 | Johnson Matthey Public Limited Company | JMZ-1, a CHA-containing zeolite and methods of preparation |
Also Published As
Publication number | Publication date |
---|---|
EP3473598A4 (en) | 2020-03-18 |
US20190143309A1 (en) | 2019-05-16 |
EP3473598A1 (en) | 2019-04-24 |
MY197118A (en) | 2023-05-26 |
CN109195911A (zh) | 2019-01-11 |
CN109195911B (zh) | 2023-04-07 |
JP6953791B2 (ja) | 2021-10-27 |
CN116251620A (zh) | 2023-06-13 |
JP2017210402A (ja) | 2017-11-30 |
US10953390B2 (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017204212A1 (ja) | Cha型ゼオライト及びその製造方法 | |
US10669157B2 (en) | Zeolite production method | |
CN1030760C (zh) | 在反应混合物中使用二乙醇胺合成β-沸石的方法 | |
US10821426B2 (en) | Metal-containing cha-type zeolite and method for producing the same | |
JP7207454B2 (ja) | Aei型ゼオライトの製造方法 | |
JP2019529296A (ja) | ゼオライト転換を介するアルミノケイ酸塩ゼオライトssz−26の合成 | |
JP7131753B2 (ja) | ゼオライトの製造方法、チャバザイト型ゼオライトおよびこれを備えるイオン交換体 | |
JP6878821B2 (ja) | Kfi型ゼオライト及びその製造方法 | |
JP6977314B2 (ja) | Cha型ゼオライト及びその製造方法 | |
JP5428501B2 (ja) | ゼオライト製造用の構造指向剤 | |
US10941045B1 (en) | Process for preparing an IZM-2 zeolite in the presence of a nitrogenous organic structuring agent in hydroxide form and of an alkali metal chloride, in fluorinated or non-fluorinated medium | |
CN112551543B (zh) | 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法 | |
JP6786876B2 (ja) | Cha型ゼオライトの製造方法 | |
JP7007638B2 (ja) | リンを含有するgme型ゼオライトおよびその製造方法 | |
JP2018140887A (ja) | リンを含有するafx型ゼオライトおよびその製造方法 | |
JP4639713B2 (ja) | 高純度ハイシリカモルデナイトの合成方法 | |
JP7438733B2 (ja) | Stw型ゼオライト及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802798 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017802798 Country of ref document: EP Effective date: 20190102 |