WO2017204155A1 - アセタール化合物の製造方法 - Google Patents

アセタール化合物の製造方法 Download PDF

Info

Publication number
WO2017204155A1
WO2017204155A1 PCT/JP2017/019014 JP2017019014W WO2017204155A1 WO 2017204155 A1 WO2017204155 A1 WO 2017204155A1 JP 2017019014 W JP2017019014 W JP 2017019014W WO 2017204155 A1 WO2017204155 A1 WO 2017204155A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
reaction
compound represented
acid
Prior art date
Application number
PCT/JP2017/019014
Other languages
English (en)
French (fr)
Inventor
直也 源
亮佑 清水
拓大 ▲鶴▼田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2017204155A1 publication Critical patent/WO2017204155A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/12Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing an acetal compound useful as a synthesis intermediate of glutaraldehyde having a substituent at the ⁇ -position.
  • Glutaraldehyde having a substituent at the ⁇ -position such as 3-methylglutaraldehyde (3-methyl-1,5-pentanediar, hereinafter abbreviated as MGL) is a curing agent for light-sensitive materials, a tanning agent for leather, and a synthesis. It is a compound useful as an intermediate (see, for example, Patent Documents 1 to 3).
  • MGL 3-methylglutaraldehyde having a substituent at the ⁇ -position
  • MGL 3-methylglutaraldehyde having a substituent at the ⁇ -position
  • MGL 3-methylglutaraldehyde (3-methyl-1,5-pentanediar
  • An object of the present invention is to provide a method for producing an acetal compound such as IPTL which is useful as a synthesis intermediate for glutaraldehyde having a substituent at the ⁇ -position.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms
  • a compound represented by the formula (hereinafter referred to as alcohol (1)) is oxidized to give the following general formula (2)
  • aldehyde (2) a compound represented by the following (hereinafter referred to as aldehyde (2))
  • the aldehyde (2) obtained in the step (A) is acetalized in the presence of an acid to give the following general formula (3)
  • a process for producing an acetal compound comprising: [2] The method according to [1], comprising a step (A ′) of removing at least a part of the compound represented by the general formula (1) that has not been reacted between the step (A) and the step (B). Production method. [3] The production method of [1] or [2], wherein in the step (B), an acid is used in a range of 0.00001 to 0.1 mol in terms of hydrogen cation with respect to 1 mol of the aldehyde (2).
  • the acetal compound (3) can be produced.
  • the acetal compound (3) is preferably produced by the following two-stage reaction.
  • Step (A) is a step in which alcohol (1) is oxidized to obtain aldehyde (2).
  • the oxidation reaction in the step (A) is preferably performed in the gas phase in the presence of oxygen.
  • the method will be described.
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 may be linear, branched or cyclic. Among them, one selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an isopropyl group is preferable, and one selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group. A seed is more preferable, and a methyl group is more preferable. Alcohol (1) may be commercially available or may be produced according to a known method.
  • oxygen molecular oxygen
  • Molecular oxygen may be diluted with nitrogen, argon, helium, water vapor or the like, and it is convenient to use air.
  • the amount of molecular oxygen used is preferably 0.4 mol or less, more preferably 0.2 to 0.4 mol, relative to 1 mol of alcohol (1).
  • the conversion rate of alcohol (1) becomes high by making the said usage-amount into 0.2 mol or more.
  • the amount used is 0.4 mol or less, a decrease in the selectivity of aldehyde (2) can be suppressed, and the reaction heat can be easily removed.
  • a catalyst In the step (A), it is preferable to use a catalyst.
  • the catalyst include copper oxide / zinc oxide / chromium oxide / aluminum oxide, copper / zinc oxide, silver / magnesium oxide, silver / zinc oxide, silver / copper alloys; silver nitrate, copper nitrate, silver oxide, copper oxide, Metal compounds such as zinc oxide; simple metals such as silver, copper and zinc can be employed. Of these, a single silver crystal is preferable. You may use what activated by heating after amalgamating the surface of these metals. Further, these catalysts may be used by being supported on a carrier.
  • the amount of catalyst used is not particularly limited, and may be appropriately selected according to the type of catalyst used.
  • As the catalyst layer any of a fixed bed, a fluidized bed and a moving bed can be adopted, but a fixed bed is preferable.
  • the temperature in the catalyst layer is preferably 300 to 600 ° C., more preferably 400 to 500 ° C.
  • the yield of the aldehyde (2) per catalyst unit volume becomes large.
  • 600 degrees C or less a side reaction is suppressed and the active life of a catalyst becomes long.
  • step (A) the supply amount of alcohol (1) to the reaction zone is 0.5 to 60 hr ⁇ 1 as LHSV (liquid volume of alcohol (1) supplied per hour per unit volume of catalyst). It is preferable to set it as the range. Within this range, when the amount of molecular oxygen used for alcohol (1) is the same, the greater the LHSV, the greater the selectivity to aldehyde (2) and the higher the space time yield (STY). There is a tendency to be able to. However, from the viewpoint of ease of heat removal, it is more preferable to set LHSV within the range of 3 to 30 hr ⁇ 1 .
  • the residence time of the reaction gas on the catalyst is preferably 1 second or less. There is no restriction
  • Step (B) is a step of acetalizing compound (3) by acetalizing aldehyde (2) obtained in step (A) in the presence of an acid.
  • a method of acetalizing the aldehyde (2) in the presence of an alcohol can be employed.
  • the method will be described.
  • step (B) alcohol is reacted with aldehyde (2).
  • R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms
  • alcohols represented by R 2 OH and R 3 OH are used.
  • the alkyl group having 1 to 6 carbon atoms represented by R 2 and R 3 may be linear, branched or cyclic. Among them, one selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an isopropyl group is preferable, and one selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group. A seed is more preferable, and a methyl group is more preferable.
  • R 4 may be linear, branched or cyclic. Among them, one selected from the group consisting of ethylene group, n-propylene group, isopropylene group, isopropylidene group, n-butylene group, and isobutylene group is preferable. Ethylene group, n-propylene group, isopropylene group, isopropylene group are preferable. One type selected from the group consisting of a redene group is more preferable, and an ethylene group is more preferable. In this case, the acetal compound (3) obtained can be represented by the following general formula (4).
  • the acid used in the step (B) is not particularly limited, and examples thereof include inorganic acids such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, boric acid and salts thereof; formic acid, acetic acid, propionic acid, oxalic acid, methanesulfonic acid, paratoluenesulfone Examples thereof include organic acids such as acid and pyridinium p-toluenesulfonate and salts thereof; solid acids such as cation exchange resin, silica alumina, zeolite and activated clay. Of these, inorganic acids are preferable, and sulfuric acid is more preferable.
  • inorganic acids are preferable, and sulfuric acid is more preferable.
  • the amount of the acid used is preferably in the range of 0.00001 to 0.1 mol in terms of hydrogen cation with respect to 1 mol of the compound represented by the general formula (2), and in the range of 0.0001 mol to 0.01 mol. It is more preferable to use it, and it is more preferable to use it in the range of 0.00015 mol to 0.0015 mol.
  • a sufficient reaction rate can be obtained by setting the amount of acid used to 0.00001 mol or more in terms of hydrogen cation with respect to 1 mol of the compound represented by the general formula (2).
  • a side reaction can be suppressed by making the usage-amount of an acid into 0.1 mol or less in conversion of a hydrogen cation with respect to 1 mol of compounds represented by General formula (2), and the selectivity of an acetal compound (3) is improved. it can.
  • Acetalization can be carried out by either a batch method or a continuous method. Moreover, the system which draws out the water produced
  • the acetalization can be performed in the presence or absence of a solvent.
  • solvents include saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, propylbenzene, xylene, and ethyltoluene; dimethyl ether, ethyl Methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, t-butyl methyl ether, dibutyl ether, ethyl phenyl ether, diphenyl ether, tetrahydrofuran, 1,4-dioxane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • the reaction temperature is usually in the range of 60 to 120 ° C, preferably in the range of 80 to 100 ° C.
  • the reaction temperature is usually in the range of 60 to 120 ° C, preferably in the range of 80 to 100 ° C.
  • the reaction pressure is not particularly limited, and the reaction can be performed under normal pressure, reduced pressure, or increased pressure. Normal pressure is preferable from the viewpoint of simplification of the reaction apparatus / equipment.
  • the reaction is preferably performed in a nitrogen atmosphere.
  • the reaction time is usually 0.5 to 20 hours, preferably 0.5 to 10 hours.
  • Step (A ′) The unreacted alcohol (1) in the step (A) is usually easy to remove after the step (B).
  • the present inventors have found that the conversion of aldehyde (2) and the selectivity of acetal compound (3) are reduced when alcohol (1) is contained in the reaction system in step (B). The reason for this is not necessarily clear, but the unreacted alcohol (1) reacts with the aldehyde (2), or the alcohol (1) traps a part of the acid used in the step (B). Is considered to be the cause.
  • the yield of the acetal compound (3) is temporarily improved by increasing the amount of the acid used in the step (B), a side reaction proceeds when the acid is used excessively, and the acetal compound (3 ) Is reduced.
  • step (A ′)) of removing at least a part, preferably all, of the unreacted alcohol (1) from the reaction system is not a step after step (B) ( By carrying out after A), it discovered that the yield of the final acetal compound (3) can be improved dramatically, suppressing the usage-amount of the acid in a process (B).
  • the method for removing unreacted alcohol (1) is not particularly limited, but it is easy to carry out by distillation utilizing the fact that alcohol (1) has a higher boiling point than aldehyde (2).
  • Distillation is preferably performed in an inert gas atmosphere such as nitrogen. Distillation is preferably performed at 100 ° C. or lower, and is preferably performed at 70 ° C. or lower from the viewpoint of the thermal stability of the aldehyde (2).
  • the distillation column to be used it is preferable to use one having various known fillers from the viewpoint of ensuring separation performance (theoretical plate number). In distillation, it is preferable to perform reflux.
  • the reflux ratio is preferably 1 to 20, and more preferably 2 to 10.
  • Example 1 (Process (A)) After filling 3 mL of acicular silver crystals as a catalyst and glass beads as a filler into a cylindrical reaction tube (25 mm ⁇ , length 765 mm) and heating to 420 ° C., 3-methyl-3-butene-1 was added to this catalyst layer. -All was fed at 78.6 mL / hr -1 while air was fed at a rate of 26.1 L / hr -1 . At this time, the amount of molecular oxygen used is 0.3 mol with respect to 1 mol of 3-methyl-3-buten-1-ol, LHSV is 26 hr ⁇ 1 , and the residence time of the reaction gas on the catalyst is 0.1 Second.
  • the amount of 3-methyl-3-butene-1-al was 25.3% by weight and the by-product 3-methyl-2-butene was quantified by gas chromatography using an internal standard method. It contained 7.9% by weight of -1-ol and 50.3% by weight of unreacted 3-methyl-3-buten-1-ol.
  • Example 2 In the step (B), the reaction was conducted in the same manner as in Example 1 except that the amount of sulfuric acid used was 38 mg (390 ⁇ mol). After completion of the dropwise addition, the obtained reaction solution was quantified by an internal standard method by gas chromatography. The conversion of 3-methyl-3-buten-1-al was 100%, and the selectivity for IPTL was 73.7%. Met. Then, when stirred for 2 hours, the selectivity of IPTL was 53.0%.
  • Example 3 (Process (A ')) The reaction solution obtained in step (A) of Example 1 was refluxed using a distillation column (filler: Sulzer Lab Packing (manufactured by Sumitomo Heavy Industries, Ltd.), column length: 88 cm) under a reduced pressure of 40 kPa. Was distilled to obtain an organic layer containing 82.2% by weight of 3-methyl-3-butene-1-al as a fraction having a boiling point of 56 ° C./40 kPa while being azeotroped and separated with water. . This organic layer did not contain 3-methyl-3-buten-1-ol.
  • Example 1 shows that an acetal compound (3) is obtained by the method of the present invention.
  • the yield of the acetal compound (3) can be temporarily improved by increasing the amount of acid used in the step (B) from Example 2, side reactions proceed with the passage of time, and finally the acetal It turns out that the selectivity of a compound (3) falls.
  • Example 3 the yield of the acetal compound (3) while suppressing the amount of acid used and suppressing side reactions by sandwiching the step (A ′) between the step (A) and the step (B). It can be seen that can be improved.
  • the acetal compound (3) obtained by the production method of the present invention is useful as an intermediate for synthesis of glutaraldehyde having a substituent at the ⁇ -position.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

下記一般式(1)(Rは炭素数1~6のアルキル基を表す) で表される化合物を酸化して下記一般式(2) (Rは前記定義の通りである) で表される化合物を得る工程(A)、 酸の存在下、前記工程(A)で得られた一般式(2)で表される化合物をアセタール化して下記一般式(3) (Rは前記定義の通りであり、R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す) で表される化合物を得る工程(B) を含む、アセタール化合物の製造方法。

Description

アセタール化合物の製造方法
 本発明は、β位に置換基を有するグルタルアルデヒドの合成中間体等として有用なアセタール化合物の製造方法に関する。
 3-メチルグルタルアルデヒド(3-メチル-1,5-ペンタンジアール、以下MGLと略する)等のβ位に置換基を有するグルタルアルデヒドは、感光材料用の硬化剤や皮革用なめし剤、合成中間体として有用な化合物である(例えば特許文献1から3参照)。MGLの製造方法としては、クロトンアルデヒドとメチルビニルエーテルのディールスアルダー反応により得られたピラニルエーテルを加水分解する方法が知られている(非特許文献1および2参照)。しかし、上記従来法ではクロトンアルデヒドとメチルビニルエーテルのディールスアルダー反応の反応性が低く、高温高圧の過酷な条件が必要であるとともに、MGLの収率が低いことから改善の余地があった。一方本発明者らの検討により、下記式で表されるアセタール化合物(以下、IPTLと称する。)をヒドロホルミル化した後に脱アセタール化することでより温和な条件で収率よくMGLを製造できることが判明している。
Figure JPOXMLDOC01-appb-C000004
 しかしながら、IPTL等のアセタール化合物の入手方法は知られていない。
特開平7-281342号公報 ドイツ特許第2137603号明細書 特開2009-102244号公報
Organic Syntheses,Vol.34,p.29(1954) Organic Syntheses,Vol.34,p.71(1954)
 本発明の課題は、β位に置換基を有するグルタルアルデヒドの合成中間体等として有用なIPTL等のアセタール化合物の製造方法を提供することにある。
 上記課題は、下記[1]~[3]により達成される。
[1]下記一般式(1)
Figure JPOXMLDOC01-appb-C000005
(Rは炭素数1~6のアルキル基を表す)
で表される化合物(以下、アルコール(1)と称する)を酸化して下記一般式(2)
Figure JPOXMLDOC01-appb-C000006
(Rは前記定義の通りである)
で表される化合物(以下、アルデヒド(2)と称する)を得る工程(A)、
酸の存在下、前記工程(A)で得られたアルデヒド(2)をアセタール化して下記一般式(3)
Figure JPOXMLDOC01-appb-C000007
(Rは前記定義の通りであり、R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す)
で表される化合物(以下、アセタール化合物(3)と称する)を得る工程(B)
を含む、アセタール化合物の製造方法。
[2]前記工程(A)と前記工程(B)の間に、未反応の一般式(1)で表される化合物の少なくとも一部を除去する工程(A’)を含む、[1]の製造方法。
[3]前記工程(B)において、アルデヒド(2)1molに対して酸を水素陽イオン換算で0.00001~0.1molの範囲で用いる、[1]または[2]の製造方法。
 本発明によれば、アセタール化合物(3)を製造することができる。
 本発明では、好ましくは以下の二段階の反応によりアセタール化合物(3)を製造する。
Figure JPOXMLDOC01-appb-C000008
(式中、R~Rは前記定義の通りである)
 上記反応a)およびb)が、それぞれ本発明の工程(A)および(B)に該当する。以下、工程(A)および(B)について詳細に説明する。
[工程(A)]
 工程(A)はアルコール(1)を酸化してアルデヒド(2)を得る工程である。
 工程(A)における酸化反応は、酸素の存在下、気相にて行う方法が好ましい。以下、当該方法について説明する。
(アルコール(1))
 アルコール(1)において、Rが表す炭素数1~6のアルキル基は直鎖状、分岐状および環状のいずれであってもよい。中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基からなる群から選択される1種が好ましく、メチル基、エチル基、n-プロピル基からなる群から選択される1種がより好ましく、メチル基がさらに好ましい。
 アルコール(1)は市販されているものを入手してもよいし、公知の方法に準じて製造してもよい。
(酸素)
 酸素は分子状酸素を用いる。分子状酸素は窒素、アルゴン、ヘリウム、水蒸気などで希釈されていてもよく、空気を用いるのが簡便である。分子状酸素の使用量はアルコール(1)1molに対して0.4mol以下が好ましく、0.2~0.4molがより好ましい。当該使用量を0.2mol以上とすることでアルコール(1)の転化率が高くなる。一方当該使用量を0.4mol以下とすることでアルデヒド(2)の選択率の低下を抑制でき、また、反応熱の除去も容易となる。
(触媒)
 工程(A)においては、触媒を用いることが好ましい。触媒としては、例えば酸化銅/酸化亜鉛/酸化クロム/酸化アルミニウム、銅/酸化亜鉛、銀/酸化マグネシウム、銀/酸化亜鉛、銀/銅などの合金;硝酸銀、硝酸銅、酸化銀、酸化銅、酸化亜鉛などの金属化合物;銀、銅、亜鉛などの単体の金属などを採用できる。中でも、単体の銀結晶が好ましい。これらの金属の表面をアマルガム化した後加熱することにより活性化したものを使用してもよい。また、これらの触媒を担体に担持して用いてもよい。
 触媒の使用量に特に制限はなく、使用する触媒の種類に応じて適宜選択すればよい。また触媒層としては固定床、流動床、移動床のいずれも採用可能であるが、固定床が好ましい。
(反応温度)
 工程Aにおいては、触媒層中の温度が300~600℃であることが好ましく、400~500℃であることがより好ましい。300℃以上とすることで触媒単位容量当たりのアルデヒド(2)の収量が大きくなる。また600℃以下とすることで副反応が抑制され、触媒の活性寿命が長くなる。
(その他の条件)
 工程(A)において、アルコール(1)の反応域への供給量を、LHSV(触媒の単位容量当たりの、1時間で供給されるアルコール(1)の液体容量)として0.5~60hr-1の範囲とすることが好ましい。この範囲内においては、分子状酸素のアルコール(1)に対する使用量が同一の場合、LHSVが大きいほどアルデヒド(2)への選択率が増大し、より高い空時収率(STY)を得ることができる傾向にある。しかしながら、除熱の容易性の観点からはLHSVを3~30hr-1の範囲内とすることがより好ましい。
 触媒上の反応ガスの滞留時間は1秒以下が好ましい。
 反応圧力に特に制限はなく、常圧下・減圧下・加圧下でも実施できる。反応装置・設備の簡略化の観点から、常圧下が好ましい。
[工程(B)]
 工程(B)は酸の存在下、工程(A)で得られたアルデヒド(2)をアセタール化してアセタール化合物(3)を得る工程である。
 工程(B)においては、例えばアルデヒド(2)をアルコールの存在下でアセタール化する方法を採用できる。以下、当該方法について説明する。
(アルコール)
 工程(B)においては、アルコールをアルデヒド(2)と反応させる。
 R、Rがそれぞれ独立して炭素数1~6のアルキル基であるアセタール化合物(3)を製造する場合、ROHおよびROHで表されるアルコールを使用する。RおよびRが表す炭素数1~6のアルキル基は直鎖状、分岐状および環状のいずれであってもよい。中でも、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基からなる群から選択される1種が好ましく、メチル基、エチル基、n-プロピル基からなる群から選択される1種がより好ましく、メチル基がさらに好ましい。
 R、Rが互いに連結して炭素数2~6のアルキレン基Rであるアセタール化合物(3)を製造する場合、HO-R-OHで表されるアルコールを使用する。Rは直鎖状、分岐状および環状のいずれであってもよい。中でも、エチレン基、n-プロピレン基、イソプロピレン基、イソプロピリデン基、n-ブチレン基、イソブチレン基からなる群から選択される1種が好ましく、エチレン基、n-プロピレン基、イソプロピレン基、イソプロピリデン基からなる群から選択される1種がより好ましく、エチレン基がさらに好ましい。
 この場合、得られるアセタール化合物(3)は下記一般式(4)で表すことができる。
Figure JPOXMLDOC01-appb-C000009
(酸)
 工程(B)において用いる酸は特に限定されず、例えば、硫酸、燐酸、硝酸、塩酸、ホウ酸などの無機酸およびその塩;ギ酸、酢酸、プロピオン酸、シュウ酸、メタンスルホン酸、パラトルエンスルホン酸、パラトルエンスルホン酸ピリジニウムなどの有機酸およびその塩;陽イオン交換樹脂、シリカアルミナ、ゼオライト、活性白土などの固体酸などが挙げられる。中でも無機酸が好ましく、硫酸がより好ましい。
 酸の使用量は、一般式(2)で表される化合物1molに対して水素陽イオン換算で0.00001~0.1molの範囲で用いることが好ましく、0.0001mol~0.01molの範囲で用いるのがより好ましく、0.00015mol~0.0015molの範囲で用いるのがさらに好ましい。酸の使用量を一般式(2)で表される化合物1molに対して水素陽イオン換算で0.00001mol以上とすることで十分な反応速度を得られる。また、酸の使用量を一般式(2)で表される化合物1molに対して水素陽イオン換算で0.1mol以下とすることで副反応を抑制でき、アセタール化合物(3)の選択率を向上できる。
(その他の条件)
 アセタール化は、回分式、連続式いずれの方法でも実施可能である。また、アルデヒド(2)がアセタール化合物(3)に転化する際に生成する水を反応と同時に系外に抜き取る方式も採用できる。
 アセタール化は、溶媒の存在下または不存在下に行なうことができる。かかる溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン、エチルトルエンなどの芳香族炭化水素;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t-ブチルメチルエーテル、ジブチルエーテル、エチルフェニルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテルなどのエーテルなどが挙げられる。これらの溶媒は1つを単独で使用してもよいし、2つ以上を併用してもよい。溶媒を使用する場合の使用量に特に制限はないが、反応混合液全体に対して1~90質量%であるのが好ましい。
 反応温度は通常60~120℃の範囲であり、80~100℃の範囲が好ましい。反応温度を60℃以上とすることで十分な反応速度を得られ、120℃以下とすることで副反応を抑制でき、アセタール化合物(3)の選択率を向上できる。
 反応圧力に特に制限はなく、常圧下・減圧下・加圧下でも実施できる。反応装置・設備の簡略化の観点から、常圧下が好ましい。また、反応は窒素雰囲気下で行うのが好ましい。反応時間は、通常0.5~20時間であり、0.5~10時間であるのが好ましい。
[工程(A’)]
 工程(A)における未反応のアルコール(1)は、通常は工程(B)の後に除去するのが簡便である。しかしながら、本発明者らは、工程(B)において反応系にアルコール(1)が含まれると、アルデヒド(2)の転化率およびアセタール化合物(3)の選択率が低下することを見出した。この理由は必ずしも明らかではないが、未反応のアルコール(1)がアルデヒド(2)と反応することや、工程(B)で用いられる酸の一部をアルコール(1)が捕捉してしまうことなどが原因と考えられる。工程(B)における酸の使用量を増やすことで一時的にアセタール化合物(3)の収率は向上するものの、酸を過剰に使用すると副反応が進行し、時間の経過に伴いアセタール化合物(3)の選択率が低下する。
 本発明者らは鋭意検討した結果、未反応アルコール(1)の少なくとも一部、好ましくは全部を反応系から除去する工程(工程(A’))を、工程(B)の後ではなく工程(A)の後に行うことにより、工程(B)における酸の使用量を抑制しつつも、最終的なアセタール化合物(3)の収率を劇的に改善できることを見出した。
 未反応のアルコール(1)の除去方法は特に制限されないが、アルコール(1)がアルデヒド(2)に比べて高沸点であることを利用し、蒸留により行うことが簡便である。
 蒸留は窒素等不活性ガス雰囲気下で行うことが好ましい。
 蒸留は100℃以下で行うことが好ましく、アルデヒド(2)の熱安定性の観点からは70℃以下で行うことが好ましい。
 使用する蒸留塔は、分離性能(理論段数)を確保する観点から、公知の各種充填材を備えたものを用いることが好ましい。
 蒸留においては、還流を行うことが好ましい。還流比は1~20が好ましく、2~10がより好ましい。還流比を1以上とすることでアルコール(1)の混入を防ぐことができる。また、アルデヒド(2)の熱安定性の観点から、還流比を20以下とすることで収率の低下を防ぐことができる。
 除去したアルコール(1)は、回収して再び工程(A)に用いることができる。
 以下、実施例等により本発明を具体的に説明するが、本発明は以下の例により何ら限定されない。
[実施例1]
(工程(A))
 触媒として針状の銀結晶3mL、充填材としてガラスビーズを筒形反応管(25mmφ、長さ765mm)に充填し、420℃に加熱したのち、この触媒層に3-メチル-3-ブテン-1-オールを78.6mL/hr-1で供給し、同時に空気を26.1L/hr-1の速度で供給した。このとき、分子状酸素の使用量は、3-メチル-3-ブテン-1-オール1molに対して0.3molであり、LHSVは26hr-1、触媒上の反応ガスの滞留時間は0.1秒であった。ガスクロマトグラフィーにて内部標準法で定量したところ、得られた反応液には、3-メチル-3-ブテン-1-アールが25.3重量%、副生成物の3-メチル-2-ブテン-1-オールが7.9重量%、未反応の3-メチル-3-ブテン-1-オールが50.3重量%含まれていた。
(工程(B))
 反応容器にシクロヘキサン133.5g、エチレングリコール85.6g(1.38mol)、硫酸0.38mg(3.9μmol)をとり、90℃に加熱した。生成する水を共沸脱水により系外に除去しながら、工程(A)で得られた反応液145.7gを4時間かけて滴下した。滴下終了後、90℃で2時間撹拌した。得られた反応液をガスクロマトグラフィーにて内部標準法で定量したところ、3-メチル-3-ブテン-1-アールの転化率は18.3%、IPTLの選択率は8.4%であった。
[実施例2]
 工程(B)において、硫酸の使用量を38mg(390μmol)とした以外は実施例1と同様の方法で反応を行った。滴下終了後、得られた反応液をガスクロマトグラフィーにて内部標準法で定量したところ、3-メチル-3-ブテン-1-アールの転化率は100%、IPTLの選択率は73.7%であった。その後、2時間攪拌したところ、IPTLの選択率は53.0%であった。
[実施例3]
(工程(A’))
 実施例1の工程(A)で得られた反応液を、40kPaの減圧下、蒸留塔(充填材:スルザーラボパッキング(住友重機械工業株式会社製)、塔長:88cm)を用いて還流比を5にして蒸留することにより、水と共沸、分液しながら沸点56℃/40kPaの留分として3-メチル-3-ブテン-1-アール82.2重量%を含む有機層を得た。この有機層には、3-メチル-3-ブテン-1-オールは含有されなかった。
(工程(B))
 工程(A’)で得られた有機層を用いて、実施例1の工程(B)と同様の方法で反応を行った。得られた反応液をガスクロマトグラフィーにて内部標準法で定量したところ、3-メチル-3-ブテン-1-アールの転化率は94.7%、IPTLの選択率は96.4%であった。後に、反応液を室温まで冷却し、ナトリウムメトキシドで中和、水洗した。
 得られたIPTL55.8重量%を含む液1919gを、33kPaの減圧下に蒸留することにより、沸点117℃/33kPaの留分として純度98.3%のIPTL990gを得た。蒸留回収率は92.5%であった。
H-NMR(400MHz、CDCl、TMS)δ:1.805(s,3H)、2.382 (d,2H)、3.843-4.008(m,4H)、4.828(q,1H)、4.868(t,1H)、4.982(t,1H)
 実施例1から、本発明の方法によりアセタール化合物(3)が得られることがわかる。実施例2から、工程(B)において酸の使用量を増加することで一時的にアセタール化合物(3)の収率を向上できるものの、時間の経過に伴い副反応が進行し、最終的にアセタール化合物(3)の選択率が低下することがわかる。実施例3からは、工程(A)と工程(B)の間に工程(A’)を挟むことにより、酸の使用量を抑えて副反応を抑制しつつもアセタール化合物(3)の収率を向上できることがわかる。
 本発明の製造方法で得られるアセタール化合物(3)は、β位に置換基を有するグルタルアルデヒドの合成中間体等として有用である。

Claims (3)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (Rは炭素数1~6のアルキル基を表す)
    で表される化合物を酸化して下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (Rは前記定義の通りである)
    で表される化合物を得る工程(A)、
    酸の存在下、前記工程(A)で得られた一般式(2)で表される化合物をアセタール化して下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (Rは前記定義の通りであり、R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す)
    で表される化合物を得る工程(B)
    を含む、アセタール化合物の製造方法。
  2.  前記工程(A)と前記工程(B)の間に、未反応の一般式(1)で表される化合物の少なくとも一部を除去する工程(A’)を含む、請求項1に記載の製造方法。
  3.  前記工程(B)において、一般式(2)で表される化合物1molに対して酸を水素陽イオン換算で0.00001~0.1molの範囲で用いる、請求項1又は2に記載の製造方法。
PCT/JP2017/019014 2016-05-25 2017-05-22 アセタール化合物の製造方法 WO2017204155A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104094 2016-05-25
JP2016-104094 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204155A1 true WO2017204155A1 (ja) 2017-11-30

Family

ID=60411816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019014 WO2017204155A1 (ja) 2016-05-25 2017-05-22 アセタール化合物の製造方法

Country Status (2)

Country Link
TW (1) TW201808871A (ja)
WO (1) WO2017204155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125783A (zh) * 2020-09-10 2020-12-25 万华化学集团股份有限公司 一种光催化制备3-甲基-2-丁烯醇的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283945A (ja) * 1986-05-23 1987-12-09 バスフ アクチェン ゲゼルシャフト 3−アルキルブテン−1−ア−ルの製法
WO2016013221A1 (ja) * 2014-07-25 2016-01-28 株式会社クラレ ビニルアルコール系共重合体及びそれを含有する組成物並びに乳化重合用分散安定剤
WO2016013220A1 (ja) * 2014-07-25 2016-01-28 株式会社クラレ 水性エマルジョン
WO2016104332A1 (ja) * 2014-12-24 2016-06-30 株式会社クラレ アルデヒド化合物の製造方法およびアセタール化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283945A (ja) * 1986-05-23 1987-12-09 バスフ アクチェン ゲゼルシャフト 3−アルキルブテン−1−ア−ルの製法
WO2016013221A1 (ja) * 2014-07-25 2016-01-28 株式会社クラレ ビニルアルコール系共重合体及びそれを含有する組成物並びに乳化重合用分散安定剤
WO2016013220A1 (ja) * 2014-07-25 2016-01-28 株式会社クラレ 水性エマルジョン
WO2016104332A1 (ja) * 2014-12-24 2016-06-30 株式会社クラレ アルデヒド化合物の製造方法およびアセタール化合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KRITCHEVSKY,D. ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 65, 1943, pages 487 *
LEE,T.V.: "THE CERIUM (III) MEDIATED REACTION OF TRIMETHYLSILYLMETHYL MAGNESIUMCHLORIDE WITH ESTERS AND LACTONES: THE EFFICIJWI’ SYNTHESIS OF SQMEFUNCTIONALISED ALLYLSILANES OF USE IN ANNULATION REACTIONS", TETRAHEDRON, vol. 45, no. 18, 1989, pages 5877 - 5886, XP055444458 *
LI,BIN: "Asymmetric Syntheses of 8-Oxabicyclo[3,2,1]octanes: A CationicCascade Cyclization", ANGEWANDE CHEMIE INTERNATIONAL EDITION, vol. 51, 2012, pages 8041 - 8045, XP055444466 *
NARKUNAN,K., SYNLETT, vol. 9, 2000, pages 13 00 - 1302 *
TSUNODA,T., TETRANEDRON LETTERS, vol. 21, no. 14, 1980, pages 1357 - 1358, XP055444461 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125783A (zh) * 2020-09-10 2020-12-25 万华化学集团股份有限公司 一种光催化制备3-甲基-2-丁烯醇的方法
CN112125783B (zh) * 2020-09-10 2022-04-22 万华化学集团股份有限公司 一种光催化制备3-甲基-2-丁烯醇的方法

Also Published As

Publication number Publication date
TW201808871A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
Matsumoto et al. Noncatalyzed Stereoselective Allylation of Carbonyl Compounds with Allylsilacyclobutanes
JP4902988B2 (ja) ビシナルなアルカンジオール及びアルカントリオールの製造方法及びその使用
US9765004B2 (en) α,α-Difluoroacetaldehyde production method
JPS6259097B2 (ja)
JP6687281B2 (ja) 共役ジエンの製造方法
JPS588073A (ja) 5−アルキルブチロラクトンの製造方法
WO2017204155A1 (ja) アセタール化合物の製造方法
US4861922A (en) Hydroformylation of 3-methyl-3-buten-1-ol and analogs thereof and use of such hydroformylation products
JPS5826331B2 (ja) 立体規制されたファルネシル酢酸エステルの製造方法
WO2016104332A1 (ja) アルデヒド化合物の製造方法およびアセタール化合物
JP5816037B2 (ja) 3,3,3−トリフルオロプロパノール類の製造方法
US2920081A (en) Production of 2, 5-dialkoxy-tetrahydrofuran
JP3563105B2 (ja) γ,δ−不飽和アルコールの製造方法
JPS6244549B2 (ja)
JPS582210B2 (ja) 2,3−ジメチル−2,3−ブタンジオ−ルの製法
WO2007083839A1 (ja) 第3級アミンの製造方法
KR100848028B1 (ko) 다가 알콜의 제조 방법
JP2004285068A (ja) α,β−ジカルボニル化合物のアセタールを連続的に製造する方法
JP2000517326A (ja) アルキンジオール又はアルキンジオールとアルキンモノオールとの混合物を製造する方法
JP2005082510A (ja) シクロアルキルアルキルエーテルの製造方法
JPH0153273B2 (ja)
JP3497900B2 (ja) 不飽和アルコールの製造法
JPS64378B2 (ja)
JP2004346007A (ja) 3,3’−ビシクロヘキセニルの製造方法
US20120101307A1 (en) Process for the preparation of 1-methyl-1-alkoxycyclopentanes

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802747

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP