WO2016104332A1 - アルデヒド化合物の製造方法およびアセタール化合物 - Google Patents

アルデヒド化合物の製造方法およびアセタール化合物 Download PDF

Info

Publication number
WO2016104332A1
WO2016104332A1 PCT/JP2015/085384 JP2015085384W WO2016104332A1 WO 2016104332 A1 WO2016104332 A1 WO 2016104332A1 JP 2015085384 W JP2015085384 W JP 2015085384W WO 2016104332 A1 WO2016104332 A1 WO 2016104332A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
reaction
methyl
Prior art date
Application number
PCT/JP2015/085384
Other languages
English (en)
French (fr)
Inventor
拓大 ▲鶴▼田
亮佑 清水
貴裕 細野
直也 源
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016566176A priority Critical patent/JP6558742B2/ja
Priority to SG11201705230WA priority patent/SG11201705230WA/en
Priority to CA2971549A priority patent/CA2971549A1/en
Priority to EP15872901.2A priority patent/EP3239127A4/en
Priority to RU2017121566A priority patent/RU2693040C1/ru
Priority to US15/538,443 priority patent/US10040743B2/en
Priority to CN201580069836.XA priority patent/CN107108426A/zh
Publication of WO2016104332A1 publication Critical patent/WO2016104332A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/42Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/57Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
    • C07C45/59Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/12Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/12Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/26Radicals substituted by doubly bound oxygen or sulfur atoms or by two such atoms singly bound to the same carbon atom

Definitions

  • the present invention relates to a method for producing 3-methylglutaraldehyde and a novel acetal compound.
  • MGL 3-Methylglutaraldehyde
  • a method for producing MGL a method of hydrolyzing pyranyl ether obtained by Diels-Alder reaction of crotonaldehyde and methyl vinyl ether is known (see Non-Patent Documents 1 and 2).
  • an object of the present invention is to provide a method for producing MGL with good yield under mild conditions, and a novel acetal compound useful for carrying out the method.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms, or are connected to each other to represent an alkylene group having 2 to 6 carbon atoms.
  • a method for producing 3-methylglutaraldehyde comprising a step of hydrolyzing a compound represented by the formula (hereinafter referred to as acetal compound (1)).
  • acetal compound (1) a compound represented by the formula (hereinafter referred to as acetal compound (1)).
  • R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms, or are connected to each other to represent an alkylene group having 2 to 6 carbon atoms.
  • acetal compound (3) A compound represented by the following general formula (3) (hereinafter referred to as acetal compound (3)).
  • R 5 represents a linear alkylene group having 2 to 6 carbon atoms.
  • a method for producing MGL with good yield under mild conditions and a novel acetal compound useful for carrying out the method are provided.
  • MGL is produced by hydrolysis of the acetal compound (1).
  • the acetal compound (1) can be preferably produced by a hydroformylation reaction of the acetal compound (2).
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 to R 4 may be linear, branched or cyclic, for example, methyl group, ethyl group, n-propyl Group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, cyclohexyl group and the like.
  • a methyl group, an ethyl group, and an n-propyl group are preferable, and a methyl group and an ethyl group are more preferable.
  • Examples of the alkylene group formed by connecting R 1 and R 2 , R 3 and R 4 to each other include an ethylene group, an n-propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group, Examples include 2-methylethylene group, 1,2-dimethylethylene group, 2-methyl-n-propylene group, 2,2-dimethyl-n-propylene group, and 3-methyl-n-pentylene group.
  • ethylene group, n-propylene group, 2-methyl-n-propylene group, 2,2-dimethyl-n-propylene group, 2-methylethylene group and 1,2-dimethylethylene group are preferable, and ethylene group, n- A propylene group, a 2-methyl-n-propylene group, and a 2,2-dimethyl-n-propylene group are more preferable, and an ethylene group and an n-propylene group are particularly preferable.
  • Acetal Compound (2) There is no limitation on the production method of the acetal compound (2), and examples thereof include a method in which 3-methyl-3-buten-1-al is acetalized in the presence of an alcohol corresponding to R 1 to R 4 described above.
  • the 3-methyl-3-buten-1-al used here can be synthesized from isoprenol, for example, according to the methods described in JP-T-2007-525522 and International Patent Publication No. 08/037693.
  • the acetalization reaction proceeds even without a catalyst, but an acid catalyst may be used if necessary.
  • the acid used is not particularly limited.
  • inorganic acids such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, boric acid and their salts; formic acid, acetic acid, propionic acid, oxalic acid, methanesulfonic acid, paratoluenesulfonic acid, paratoluene
  • organic acids such as pyridinium sulfonate and salts thereof; solid acids such as cation exchange resin, silica alumina, zeolite, and activated clay.
  • the amount of the catalyst described above varies depending on the type of acid used and the amount of water.
  • hydrochloric acid when used, 0.00001 to 10% by mass of the reaction solution in terms of hydrogen chloride molecules.
  • the range is preferably used, and more preferably in the range of 0.0001% by mass to 5% by mass.
  • the amount is less than 0.00001% by mass, a sufficient reaction rate is often not obtained, and when the amount exceeds 10% by mass, the amount of base used for neutralization increases and the load on the post-treatment process increases. .
  • the acetalization reaction can be carried out by either a batch method or a continuous method. Further, it is possible to employ a system in which water generated when 3-methyl-3-buten-1-al is converted to an acetal compound (2) is extracted from the system simultaneously with the reaction. After the reaction, if necessary, the acid catalyst can be removed and used in the next reaction, or it may be purified by a usual purification method such as distillation.
  • the acetal compounds (2) the following acetal compounds (3) are preferable because they are easy to produce.
  • R 5 represents a linear alkylene group having 2 to 6 carbon atoms.
  • this acetal compound (3) is a novel compound.
  • the acetal compound (1) is preferably obtained by a method of hydroformylating the acetal compound (2).
  • the hydroformylation reaction is carried out by reacting the acetal compound (2) with carbon monoxide and hydrogen in the presence of a Group 8-10 metal compound and optionally a ligand.
  • Examples of the Group 8 to 10 metal compounds include rhodium compounds, cobalt compounds, ruthenium compounds, and iron compounds.
  • rhodium compounds include Rh (acac) (CO) 2 , Rh (acac) 3 , RhCl (CO) (PPh 3 ) 2 , RhCl (PPh 3 ) 3 , RhBr (CO) (PPh 3 ) 2 , Rh 4. (CO) 12 , Rh 6 (CO) 16 and the like.
  • Examples of the cobalt compound include HCo (CO) 3 , HCo (CO) 4 , Co 2 (CO) 8 , HCo 3 (CO) 9, and the like.
  • the ruthenium compound examples include Ru (CO) 3 (PPh 3 ) 2 , RuCl 2 (PPh 3 ) 3 , RuCl 3 (PPh 3 ) 3 , Ru 3 (CO) 12 and the like.
  • the iron compounds for example, Fe (CO) 5, Fe ( CO) 4 PPh 3, Fe (CO) 4 (PPh 3) 2 and the like.
  • the amount of the Group 8-10 metal compound used is preferably in the range of 0.0001-100 mmol in terms of metal atoms, and more preferably in the range of 0.005-10 mmol, per liter of the reaction mixture. preferable.
  • the amount of the Group 8-10 metal compound used is less than 0.0001 mmol per liter of the reaction mixture in terms of metal atoms, the reaction rate tends to become extremely slow, and even if it exceeds 100 mmol, it is commensurate with it. The effect is not obtained, and the catalyst cost only increases.
  • ligands include, for example, compounds represented by the following general formulas (4) to (6), phosphoramidites (WO03 / 018192, WO02 / 083695, International Publication No. 04/026803, International Publication No. 06/045557, International Publication No. 03/06642, International Publication No. 00/005641, International Publication No. 99/65606, International Publication No.
  • R 6 to R 8 each independently represents a hydrocarbon group having 1 to 24 carbon atoms which may have a substituent, and may be linked to each other.
  • R 9 to R 11 each independently represents a hydrocarbon group having 1 to 24 carbon atoms which may have a substituent, and may be linked to each other.
  • R 12 , R 13 , R 15 and R 16 each independently represent a hydrocarbon group having 1 to 40 carbon atoms which may have a substituent, and R 12 and R 13 , R 15 and R 16 are R 14 represents a hydrocarbon bridging group which may have a substituent having 1 to 40 carbon atoms.
  • the hydrocarbon group having 1 to 24 carbon atoms which may have a substituent represented by each of R 6 to R 11 is linear or branched. Or may be cyclic, for example, an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, a cyclohexyl group; a phenyl group, a naphthyl group And aryl groups such as anthracenyl group. Of these, a phenyl group and a naphthyl group are preferable.
  • the hydrocarbon group may have any substituent as long as it does not inhibit the hydroformylation reaction, and is an alkyl group, aryl group, alkoxy group, silyl group, amino group, acyl group, carboxy group, acyloxy group, amide group, Examples include ionic groups such as —SO 3 M (where M represents an inorganic or organic cation), sulfonyl groups, halogens, nitro groups, cyano groups, fluoroalkyl groups, hydroxy groups, and the like.
  • Examples of the compound represented by the general formula (4) used as a ligand in the present invention include tris (2-methylphenyl) phosphite, tris (2,6-dimethylphenyl) phosphite, tris (2 -Isopropylphenyl) phosphite, tris (2-phenylphenyl) phosphite, tris (2-tert-butylphenyl) phosphite, tris (2-tert-butyl-5-methylphenyl) phosphite, tris (2,4 -Di-t-butylphenyl) phosphite, di (2-methylphenyl) (2-t-butylphenyl) phosphite, di (2-t-butylphenyl) (2-methylphenyl) phosphite
  • tris (2-t-butylphenyl) phosphite tris (2-t-butyl-5-methylphenyl) phosphite
  • tris (2,4-di-t-butylphenyl) phosphite Is preferable.
  • Examples of the compound represented by the general formula (5) used as a ligand in the present invention include triphenylphosphine, tri (p-tolyl) phosphine, tri (p-methoxyphenyl) phosphine, tri (p-fluoro).
  • Phenyl) phosphine tri (p-chlorophenyl) phosphine, tri (dimethylaminophenyl) phosphine, propyldiphenylphosphine, t-butyldiphenylphosphine, n-butyldiphenylphosphine, n-hexyldiphenylphosphine, cyclohexyldiphenylphosphine, dicyclohexylphenylphosphine , Tricyclohexylphosphine, tribenzylphosphine, sulfonated triphenylphosphine, (tri-m-sulfonyl) phosphine and (m-sulfonyl) diphenylphosphine
  • metal salts and alkaline earth metal salts include, but are not limited to.
  • the electronic parameter (Electronic Parameter: ⁇ -Values) is 2080 to 2090 cm ⁇ 1 and the steric parameter (Steric Parameter: ⁇ -Values) is 135 to 190 °. Those included in the range are preferable.
  • the above two parameters are described in the literature [C. A. Tolman, Chem. Rev. , 177, 313 (1977)], and the electronic parameter is the A1 infrared absorption spectrum of CO of Ni (CO) 3 L (L is a phosphorus ligand) measured in dichloromethane.
  • the steric parameter is defined so as to surround the van der Waals radius of the outermost atom of the group bonded to phosphorus at a position 2.28 angstroms from the center of the phosphorus atom. It is defined by the apex angle of the drawn cone.
  • the hydrocarbon group having 1 to 40 carbon atoms which may have a substituent represented by R 12 , R 13 , R 15 , or R 16 is a linear or branched group. Or may be cyclic, for example, an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, a cyclohexyl group; a phenyl group, a naphthyl group And aryl groups such as anthracenyl group. Of these, a phenyl group and a naphthyl group are preferable.
  • the hydrocarbon group may have any substituent as long as it does not inhibit the hydroformylation reaction, and is an alkyl group, aryl group, alkoxy group, silyl group, amino group, acyl group, carboxy group, acyloxy group, amide group, Examples include ionic groups such as —SO 3 M (where M represents an inorganic or organic cation), sulfonyl groups, halogens, nitro groups, cyano groups, fluoroalkyl groups, hydroxy groups, and the like.
  • R 12 and R 13 , R 15 and R 16 , and R 14 linked to each other include an alkylene group, a cycloalkylene group, a phenylene group, a naphthylene group, and a divalent bridging group represented by the following general formula (7). Etc.
  • R 17 and R 18 each independently represents an optionally substituted alkylene group having 1 to 6 carbon atoms
  • Ar 1 and Ar 2 are each independently an arylene group optionally having a substituent.
  • M, n, p, x, y each represents 0 or 1
  • Q represents —CR 19 R 20 —, —O—, —S—, —NR 21 —, —SiR 22 R 23 — and —
  • a divalent bridging group selected from CO— R 19 to R 23 are each independently hydrogen, an alkyl group which may have a substituent of 1 to 12 carbon atoms, a phenyl group, a tolyl group, anisyl; Represents any of the groups.
  • alkylene group examples include an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a group represented by the following formula.
  • Examples of the cycloalkylene group include a cyclopropylene group, 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4 -Cyclohexylene group and the like.
  • Examples of the phenylene group include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group.
  • Examples of the naphthylene group include 1,2-naphthylene group and 1,8-naphthylene group.
  • R 12 and R 13 , R 15 and R 16 , and R 14 connected to each other may have a substituent, and examples of the substituent include a methyl group, an ethyl group, a propyl group, a butyl group, Preferably an alkyl group having 1 to 5 carbon atoms such as a pentyl group; preferably an alkoxyl group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group; an aryl group such as a phenyl group and a naphthyl group Can be mentioned.
  • examples of the alkylene group having 1 to 6 carbon atoms which may have a substituent represented by R 17 and R 18 include an ethylene group, an n-propylene group, an n-butylene group, an n- Pentylene group, n-hexylene group, 2-methyl-ethylene group, 1,2-dimethylethylene group, 2-methyl-n-propylene group, 2,2-dimethyl-n-propylene group, 3-methyl-n- A pentylene group is exemplified.
  • Examples of the arylene group represented by Ar 1 and Ar 2 include a phenylene group, a naphthylene group, and an anthracenylene group.
  • Examples of the alkyl group which may have a substituent having 1 to 12 carbon atoms represented by R 19 to R 23 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a t-butyl group, an n-pentyl group, and a cyclohexyl group.
  • R 17 to R 23 and Ar 1 and Ar 2 may have any substituent as long as they do not inhibit the hydroformylation reaction, and may be an alkyl group, an aryl group, an alkoxy group, a silyl group, an amino group, an acyl group, Carboxy group, acyloxy group, amide group, ionic group such as —SO 3 M (wherein M represents an inorganic or organic cation), sulfonyl group, halogen, nitro group, cyano group, fluoroalkyl group, hydroxy group, etc. Can be mentioned.
  • Examples of the compound represented by the general formula (6) include the following compounds, but are not limited thereto.
  • the compound represented by the formula (4) is particularly preferable from the viewpoint of reaction rate.
  • the amount of the ligand used is not particularly limited, but it is in the range of 1 to 1000 mol in terms of the coordinating atom in the ligand with respect to 1 mol of the metal in the group 8-10 metal compound. It is preferably in the range of 2 to 500 moles, more preferably in the range of 3 to 200 moles from the viewpoint of reaction rate.
  • the amount of the ligand used is less than 2 mol in terms of a coordinating atom in the ligand with respect to 1 mol of the metal in the group 8-10 metal compound, the stability of the catalyst is impaired, and 1000 mol When the ratio exceeds 1, the reaction rate tends to decrease.
  • the hydroformylation reaction can be performed in the presence or absence of a solvent.
  • solvents include saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, propylbenzene, xylene, and ethyltoluene; Alcohols such as butanol, isopentanol, neopentyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, diethylene glycol, triethylene glycol; Dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, t-butyl methyl ether
  • the reaction temperature in the hydroformylation reaction is preferably in the range of 40 to 170 ° C., and more preferably in the range of 50 to 150 ° C. from the viewpoint of suppressing catalyst deactivation.
  • the reaction pressure is preferably in the range of 0.01 to 15 MPa (gauge pressure), and more preferably in the range of 0.5 to 10 MPa (gauge pressure).
  • the reaction time is usually in the range of 0.5 to 20 hours, and preferably in the range of 0.5 to 10 hours.
  • the method for carrying out the hydroformylation reaction is not particularly limited.
  • the reaction can be carried out batchwise or continuously using a stirring reaction tank, a circulation reaction tank, a bubble column reaction tank, or the like. If necessary, the unreacted acetal compound (2) may be recovered from the reaction solution after the reaction and recycled to the reactor.
  • the continuous mode can be carried out in a single reactor or multiple reactors in series or parallel.
  • the method for separating and purifying the acetal compound (1) from the reaction mixture obtained by the above method is not particularly limited, and a method used for separation and purification of ordinary organic compounds can be applied.
  • a high-purity acetal compound (1) can be obtained by distilling off the solvent, basic substance, and the like from the reaction mixture under reduced pressure and then distilling the residue under reduced pressure.
  • the ligand and the Group 8-10 metal compound may be separated by subjecting to methods such as evaporation, extraction, and adsorption. The separated ligand and the Group 8-10 metal compound can be used again for the hydroformylation reaction.
  • MGL can be obtained by reacting the acetal compound (1) with water.
  • the reaction with water may be non-catalyzed, and an acid may be used as a catalyst if necessary.
  • the acid used is not particularly limited.
  • inorganic acids such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, boric acid and their salts; formic acid, acetic acid, propionic acid, oxalic acid, methanesulfonic acid, paratoluenesulfonic acid, paratoluene
  • organic acids such as pyridinium sulfonate and salts thereof
  • solid acids such as cation exchange resin, silica alumina, zeolite, and activated clay.
  • the amount of the acid used varies depending on the type of acid used and the amount of water. For example, when hydrochloric acid is used, the acid is used in the range of 0.0001% to 10% by weight of the reaction solution.
  • the range of 0.001% by mass to 5% by mass is more preferable. When the amount is less than 0.0001% by mass, a sufficient reaction rate is often not obtained. When the amount exceeds 10% by mass, the amount of base used for neutralization increases and the load on the post-treatment process increases. .
  • the amount of water to be used is not particularly limited, but is usually 0.1 to 10000 times by mass, preferably 0.2 to 5000 times by mass, preferably 0.3 to 1000 times by mass with respect to the acetal compound (1). More preferably, it is double. When the amount is less than 0.1 times by mass, a sufficient yield is often not obtained, and when the amount exceeds 10,000 times by mass, the energy required for recovering the target product tends to increase.
  • the reaction can be performed in the presence or absence of a solvent.
  • ethers such as tetrahydrofuran, diethyl ether, diisopropyl ether, t-butyl methyl ether, methyl tetrahydropyran, and ethylene glycol dimethyl ether; aliphatics such as hexane, heptane, cyclohexane, toluene, xylene, and mesitylene Or aromatic hydrocarbons; ketones such as acetone, methyl isopropyl ketone, and methyl isobutyl ketone. These may be used alone or in combination of two or more. There is no restriction
  • the reaction time is not particularly limited, but is usually 5 seconds or longer, preferably 1 minute or longer, and more preferably 10 minutes or longer.
  • the reaction temperature is not particularly limited, but is usually ⁇ 20 ° C. to 350 ° C., preferably 0 ° C. to 250 ° C., more preferably 10 ° C. to 100 ° C.
  • MGL in the reaction mixture obtained by the above method can be separated and purified as necessary.
  • separation / purification method The method used for isolation
  • a solvent or alcohol produced by hydrolysis is distilled off from the reaction mixture under reduced pressure, and then the residue is distilled under reduced pressure to obtain high-purity MGL.
  • the acid may be removed by a method such as neutralization, adsorption, or washing.
  • the obtained MGL can be diluted with a solvent such as water and stored as necessary in order to avoid multimerization.
  • a reaction vessel was charged with 1390 g of cyclohexane, 618.0 g (9.96 mol) of ethylene glycol and 0.3 g (3.1 mmol) of sulfuric acid and heated to 90 ° C. While removing generated water out of the system by azeotropic dehydration, 686.0 g (8.16 mol) of 3-methyl-3-butene-1-al was added dropwise over 4 hours. After completion of the dropwise addition, the mixture was stirred at 90 ° C. for 1 hour, and then the reaction mixture was cooled to room temperature and neutralized with sodium methoxide.
  • Example 5 Synthesis of MGL A three-necked flask was charged with 636.4 mg of 1 mol / L hydrochloric acid (hydrochloric acid 0.64 mmol, 23.3 mg), 600 ml of distilled water and 100.8 g (636.9 mmol) of compound B, and 3.5 nitrogen at 60 ° C. under a nitrogen atmosphere. Stir for hours. When the obtained reaction liquid was analyzed by gas chromatography, the conversion rate of Compound B was 97.2%, and the selectivity of MGL was 99.8%. The reaction solution was cooled to room temperature, neutralized with sodium hydrogen carbonate, and extracted three times with 600 ml of ethyl acetate. The obtained organic layers were combined, the solvent was distilled off under reduced pressure, and then purified by distillation to obtain 65.8 g (576.4 mmol, yield 90.5%) of MGL.
  • hydrochloric acid hydrochloric acid 0.64 mmol, 23.3 mg
  • 100.8 g 636.9 mmol
  • 3-Methylglutaraldehyde (MGL) obtained by the present invention is a useful compound as a curing agent for photosensitive materials, a tanning agent for leather, and a synthetic intermediate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】温和な条件で収率良く3-メチルグルタルアルデヒドを製造する方法、および当該方法の実施に有用な新規アセタール化合物の提供。 【解決手段】下記一般式(1)(R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す。) で表される化合物を加水分解する工程を含む、3-メチルグルタルアルデヒドの製造方法。

Description

アルデヒド化合物の製造方法およびアセタール化合物
 本発明は、3-メチルグルタルアルデヒドの製造方法および新規アセタール化合物に関する。
 3-メチルグルタルアルデヒド(3-メチル-1,5-ペンタンジアール、以下MGLと略する)は、感光材料用の硬化剤や皮革用なめし剤、合成中間体として有用な化合物である(例えば特許文献1から3参照)。MGLの製造方法としては、クロトンアルデヒドとメチルビニルエーテルのディールスアルダー反応により得られたピラニルエーテルを加水分解する方法が知られている(非特許文献1および2参照)。
特開平07-281342号公報 ドイツ特許2137603号公報 特開2009-102244号公報
Organic Syntheses,Vol.34,p.29(1954) Organic Syntheses,Vol.34,p.71(1954)
 上記従来法ではクロトンアルデヒドとメチルビニルエーテルのディールスアルダー反応の反応性が低く、高温高圧の過酷な条件が必要であるとともに、MGLの収率が低いことから改善の余地があった。しかして、本発明の目的は、温和な条件で収率良くMGLを製造する方法、および当該方法の実施に有用な新規アセタール化合物を提供することにある。
 本発明によれば、上記した目的は、下記[1]~[3]により達成される。
[1]下記一般式(1)
Figure JPOXMLDOC01-appb-C000006
(R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す。)
で表される化合物(以下、アセタール化合物(1)と称する。)を加水分解する工程を含む、3-メチルグルタルアルデヒドの製造方法。
[2]下記一般式(2)
Figure JPOXMLDOC01-appb-C000007
(R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す。)
で表される化合物(以下、アセタール化合物(2)と称する。)をヒドロホルミル化してアセタール化合物(1)を得る工程をさらに含む、[1]の製造方法。
[3]下記一般式(3)で表される化合物(以下、アセタール化合物(3)と称する。)。
Figure JPOXMLDOC01-appb-C000008
(Rは炭素数2から6の直鎖アルキレン基を表す。)
 本発明によれば、温和な条件で収率良くMGLを製造する方法、および当該方法の実施に有用な新規アセタール化合物が提供される。
 本発明では、アセタール化合物(1)の加水分解によりMGLを製造する。
 アセタール化合物(1)は、好適にはアセタール化合物(2)のヒドロホルミル化反応により製造できる。
 アセタール化合物(1)およびアセタール化合物(2)において、R~Rが表す炭素数1~6のアルキル基は直鎖状でも分岐状でも環状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、シクロヘキシル基などが挙げられる。中でもメチル基、エチル基、n-プロピル基が好ましく、メチル基、エチル基がより好ましい。
 また、RとR、RとRが互いに連結して形成するアルキレン基としては、例えばエチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-へキシレン基、2-メチルエチレン基、1,2-ジメチルエチレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、3-メチル-n-ペンチレン基などが挙げられる。中でもエチレン基、n-プロピレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、2-メチルエチレン基、1,2-ジメチルエチレン基が好ましく、エチレン基、n-プロピレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基がより好ましく、エチレン基、n-プロピレン基が特に好ましい。
(アセタール化合物(2)の製造)
 アセタール化合物(2)の製造方法に制限はなく、例えば3-メチル-3-ブテン-1-アールを、上記したR~Rに対応するアルコールの存在下でアセタール化する方法が挙げられる。ここで、用いる3-メチル-3-ブテン-1-アールは、例えば特表2007-525522号や国際特許公開08/037693号記載の方法に従い、イソプレノールから合成できる。
 アセタール化反応は無触媒でも進行するが、必要に応じて酸触媒を用いてもよい。用いる酸としては特に限定されず、例えば、硫酸、燐酸、硝酸、塩酸、ホウ酸などの無機酸およびその塩;ギ酸、酢酸、プロピオン酸、シュウ酸、メタンスルホン酸、パラトルエンスルホン酸、パラトルエンスルホン酸ピリジニウムなどの有機酸およびその塩;陽イオン交換樹脂、シリカアルミナ、ゼオライト、活性白土などの固体酸などが挙げられる。
 上記した触媒の使用量は、使用する酸の種類や水の量により異なるが、塩酸を使用する場合の例を挙げれば、塩化水素分子換算で反応溶液の0.00001質量%~10質量%の範囲で使用するのが好ましく、0.0001質量%~5質量%の範囲がさらに好ましい。0.00001質量%未満では十分な反応速度が得られないことが多く、10質量%を超えて使用した場合は、中和する際の塩基の使用量が増えて後処理工程の負荷が増大する。
 アセタール化反応は、回分式、連続式いずれの方法でも実施可能である。また、3-メチル-3-ブテン-1-アールがアセタール化合物(2)に転化する際に生成する水を反応と同時に系外に抜き取る方式も採用することも出来る。反応後は、必要に応じて酸触媒を除去して次の反応に用いることもできるし、蒸留などの通常の精製方法で精製してもよい。
 アセタール化合物(2)の中でも、製造が容易であることなどから、下記アセタール化合物(3)
Figure JPOXMLDOC01-appb-C000009
(Rは炭素数2から6の直鎖アルキレン基を表す。)
が特に好ましい。なお、かかるアセタール化合物(3)は新規化合物である。
(アセタール化合物(1)の製造)
 アセタール化合物(1)は、好適にはアセタール化合物(2)をヒドロホルミル化する方法により得られる。
 ヒドロホルミル化反応は、アセタール化合物(2)を、第8~10族金属化合物および必要に応じて配位子の存在下に、一酸化炭素および水素と反応させることによって行なう。
 上記第8~10族金属化合物としては、例えばロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物などが挙げられる。ロジウム化合物としては、例えばRh(acac)(CO)、Rh(acac)、RhCl(CO)(PPh、RhCl(PPh、RhBr(CO)(PPh、Rh(CO)12、Rh(CO)16などが挙げられる。コバルト化合物としては、例えばHCo(CO)、HCo(CO)、Co(CO)、HCo(CO)などが挙げられる。ルテニウム化合物としては、例えばRu(CO)(PPh、RuCl(PPh、RuCl(PPh、Ru(CO)12などが挙げられる。また、鉄化合物としては、例えばFe(CO)、Fe(CO)PPh、Fe(CO)(PPhなどが挙げられる。これらの中でも、比較的温和な反応条件を選択し易いロジウム化合物を使用するのが好ましく、入手容易性の観点からRh(acac)(CO)、Rh(acac)を使用するのが特に好ましい。
 第8~10族金属化合物の使用量は、反応混合液1リットルあたり、金属原子換算で0.0001~100ミリモルの範囲であるのが好ましく、0.005~10ミリモルの範囲であるのがより好ましい。第8~10族金属化合物の使用量が、金属原子換算で反応混合液1リットルあたり0.0001ミリモル未満であると、反応速度が極めて遅くなる傾向にあり、また100ミリモルを超えてもそれに見合う効果が得られず、触媒コストが増大するのみである。
 用いる配位子としては、特に限定されず、従来公知のものを用いることができる。このような配位子の例としては、例えば、下記一般式(4)~(6)で表される化合物や、ホスホロアミダイト(国際公開第03/018192号、国際公開第02/083695号、国際公開第04/026803号、国際公開第06/045597号、国際公開第03/06642号、国際公開第00/005641号、国際公開第99/65606号、国際公開第99/46044号)、特定の架橋構造を有するホスファイト(国際公開第95/00525号、国際公開第01/58589号)、特定の置換基を有するホスフィン(国際公開第03/053571号、国際公開第03/053572号、国際公開第09/059963号、国際公開第00/69801号)、ホスファベンゼン(国際公開第97/46507号、国際公開第00/55164号)、特定の架橋構造を有するホスフィン(国際公開第01/85661号)などを用いることができる。
 具体的には、例えば特表2007-506691号の9~40頁に記載の化合物を用いることができる。
 配位子はそれぞれ単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000010
(R~Rはそれぞれ独立して置換基を有してもよい炭素数1~24の炭化水素基を表し、互いに連結していてもよい。)
Figure JPOXMLDOC01-appb-C000011
(R~R11はそれぞれ独立して置換基を有してもよい炭素数1~24の炭化水素基を表し、互いに連結していてもよい。)
Figure JPOXMLDOC01-appb-C000012
(R12、R13、R15、R16はそれぞれ独立して置換基を有してもよい炭素数1~40の炭化水素基を表し、R12とR13、R15とR16は互いに連結していてもよい。R14は炭素数1~40の置換基を有してもよい炭化水素架橋基を表す。)
 上記一般式(4)および一般式(5)において、R~R11がそれぞれ独立して表す置換基を有してもよい炭素数1から24の炭化水素基は、直鎖状でも分岐状でも環状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、シクロヘキシル基などのアルキル基;フェニル基、ナフチル基、アントラセニル基などのアリール基などが挙げられる。中でもフェニル基、ナフチル基が好ましい。
 上記炭化水素基はヒドロホルミル化反応を阻害しない限りいかなる置換基を有していてもよく、アルキル基、アリール基、アルコキシ基、シリル基、アミノ基、アシル基、カルボキシ基、アシルオキシ基、アミド基、-SOM(ここでMは無機または有機カチオンを示す)などのイオン性基、スルホニル基、ハロゲン、ニトロ基、シアノ基、フルオロアルキル基、ヒドロキシ基などが挙げられる。
 本発明で配位子として使用される一般式(4)で表される化合物としては、例えば、トリス(2-メチルフェニル)ホスファイト、トリス(2,6-ジメチルフェニル)ホスファイト、トリス(2-イソプロピルフェニル)ホスファイト、トリス(2-フェニルフェニル)ホスファイト、トリス(2-t-ブチルフェニル)ホスファイト、トリス(2-t-ブチル-5-メチルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジ(2-メチルフェニル)(2-t-ブチルフェニル)ホスファイト、ジ(2-t-ブチルフェニル)(2-メチルフェニル)ホスファイトなどが挙げられるが、これらに限定されない。中でもトリス(2-t-ブチルフェニル)ホスファイト、トリス(2-t-ブチル-5-メチルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトが本発明を工業的に実施する上で好ましい。
 また、一般式(4)において、R~Rが互いに連結している化合物の具体例を以下に挙げるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000013
 本発明で配位子として使用される一般式(5)で表される化合物としては、例えばトリフェニルホスフィン、トリ(p-トリル)ホスフィン、トリ(p-メトキシフェニル)ホスフィン、トリ(p-フルオロフェニル)ホスフィン、トリ(p-クロルフェニル)ホスフィン、トリ(ジメチルアミノフェニル)ホスフィン、プロピルジフェニルホスフィン、t-ブチルジフェニルホスフィン、n-ブチルジフェニルホスフィン、n-ヘキシルジフェニルホスフィン、シクロヘキシルジフェニルホスフィン、ジシクロヘキシルフェニルホスフィン、トリシクロヘキシルホスフィン、トリベンジルホスフィン、スルホン化トリフェニルホスフィン、(トリ-m-スルホニル)ホスフィン及び(m-スルホニル)ジフェニルホスフィンなどのアルカリ金属塩及びアルカリ土類金属塩などが挙げられるが、これらに限定されない。
 一般式(4)、(5)で表される化合物のうち、エレクトロニックパラメーター(ElectronicParameter:ν-Values)が2080~2090cm-1であり、かつステリックパラメーター(StericParameter:θ-Values)が135~190°の範囲に含まれるものが好ましい。上記2種のパラメーターは、文献〔C.A.Tolman,Chem.Rev.,177,313(1977)〕の記載に従って定義された値であり、エレクトロニックパラメーターとはジクロロメタン中で測定されたNi(CO)L(Lはリン配位子)のCOのA1赤外吸収スペクトルの振動数で定義されるものであり、またステリックパラメーターとはリン原子の中心から2.28オングストロームの位置でリンに結合している基の最も外側にある原子のファンデルワールス半径を囲むように描いた円錐の頂角で定義されるものである。
 上記一般式(6)において、R12、R13、R15、R16がそれぞれ独立して表す置換基を有してもよい炭素数1~40の炭化水素基は、直鎖状でも分岐状でも環状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、シクロヘキシル基などのアルキル基;フェニル基、ナフチル基、アントラセニル基などのアリール基が挙げられる。中でもフェニル基、ナフチル基が好ましい。
 上記炭化水素基はヒドロホルミル化反応を阻害しない限りいかなる置換基を有していてもよく、アルキル基、アリール基、アルコキシ基、シリル基、アミノ基、アシル基、カルボキシ基、アシルオキシ基、アミド基、-SOM(ここでMは無機または有機カチオンを示す)などのイオン性基、スルホニル基、ハロゲン、ニトロ基、シアノ基、フルオロアルキル基、ヒドロキシ基などが挙げられる。
 互いに連結したR12とR13、R15とR16、およびR14としては、例えばアルキレン基、シクロアルキレン基、フェニレン基、ナフチレン基、下記一般式(7)で表される2価の架橋基などが挙げられる。
Figure JPOXMLDOC01-appb-C000014
(R17、R18はそれぞれ独立して置換基を有しても良い炭素数1~6のアルキレン基を表し、Ar、Arはそれぞれ独立して置換基を有しても良いアリーレン基を表し、m、n、p、x、yはそれぞれ0または1を表し、Qは-CR1920-、-O-、-S-、-NR21-、-SiR2223-および-CO-から選択される二価の架橋基を示す。R19~R23はそれぞれ独立して水素、炭素数1~12の置換基を有しても良いアルキル基、フェニル基、トリル基、アニシル基のいずれかを表す。)
 上記アルキレン基としては、例えばエチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、下記式で示される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、波線は連結部位を表す。)
 上記シクロアルキレン基としては、例えばシクロプロピレン基、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基などが挙げられる。
 上記フェニレン基としては、例えば1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 上記ナフチレン基としては、例えば1,2-ナフチレン基、1,8-ナフチレン基などが挙げられる。
 互いに連結したR12とR13、R15とR16、およびR14はいずれも置換基を有していてもよく、かかる置換基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基などの好ましくは炭素数1~5のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などの好ましくは炭素数1~4のアルコキシル基;フェニル基、ナフチル基などのアリール基などが挙げられる。
 一般式(7)において、R17、R18が表す置換基を有しても良い炭素数1~6のアルキレン基としては、例えば、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-へキシレン基、2-メチル-エチレン基、1,2-ジメチルエチレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、3-メチル-n-ペンチレン基などが挙げられる。Ar、Arが表すアリーレン基としては、フェニレン基、ナフチレン基、アントラセニレン基などが挙げられる。R19~R23が表す炭素数1~12の置換基を有しても良いアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、シクロヘキシル基が挙げられる。
 上記したR17~R23およびAr、Arはヒドロホルミル化反応を阻害しない限りいかなる置換基を有していてもよく、アルキル基、アリール基、アルコキシ基、シリル基、アミノ基、アシル基、カルボキシ基、アシルオキシ基、アミド基、-SOM(ここでMは無機または有機カチオンを示す)などのイオン性基、スルホニル基、ハロゲン、ニトロ基、シアノ基、フルオロアルキル基、ヒドロキシ基などが挙げられる。
 一般式(6)で表される化合物としては、例えば以下に示す化合物を挙げることができるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記した配位子の中でも、反応速度の観点から式(4)で表される化合物が特に好ましい。
 配位子の使用量に特に制限は無いが、第8~10族金属化合物中の金属1モルに対して、配位子中の配位性原子換算で1~1000モルの範囲であるのが好ましく、2~500モルの範囲であるのがより好ましく、反応速度の観点からは3~200モルの範囲であるのがさらに好ましい。配位子の使用量が第8~10族金属化合物中の金属1モルに対して配位子中の配位性原子換算で2モル未満の場合、触媒の安定性が損なわれ、また1000モルを超える場合、反応速度が小さくなる傾向にある。
 ヒドロホルミル化反応は、溶媒の存在下または不存在下に行なうことができる。かかる溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン、エチルトルエンなどの芳香族炭化水素;イソプロパノール、イソブタノール、イソペンタノール、ネオペンチルアルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコールなどのアルコール;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t-ブチルメチルエーテル、ジブチルエーテル、エチルフェニルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテルなどのエーテル;アセトン、エチルメチルケトン、メチルイソプロピルケトン、ジエチルケトン、エチルプロピルケトン、ジプロピルケトンなどのケトンなどが挙げられる。これらの溶媒は1つを単独で使用してもよいし、2つ以上を併用してもよい。溶媒を使用する場合、溶媒の使用量に特に制限はないが、反応混合液全体に対して、通常、1~90質量%の範囲であるのが好ましい。
 ヒドロホルミル化反応における反応温度は40~170℃の範囲であるのが好ましく、触媒失活を抑制する観点からは50~150℃の範囲であるのがより好ましい。また反応圧力は、0.01~15MPa(ゲージ圧)の範囲であるのが好ましく、0.5~10MPa(ゲージ圧)の範囲であるのがより好ましい。反応時間は、通常、0.5~20時間の範囲であり、0.5~10時間の範囲であるのが好ましい。
 ヒドロホルミル化反応の実施方法に特に制限はなく、例えば一酸化炭素:水素=1:1(モル比)の混合ガスの存在下、アセタール化合物(2)を仕込み、攪拌しながら配位子、第8~10族金属化合物および溶媒の混合溶液を供給し、所定温度、所定圧力で所定時間反応させる。
 反応は、攪拌型反応槽、循環型反応槽、気泡塔型反応槽などを用いて、バッチ方式または連続方式で行うことができる。必要ならば、未反応のアセタール化合物(2)を反応後の反応液から回収し、反応器へ再循環しながら実施してもよい。連続方式は、単一反応器または直列もしくは並列の複数の反応器で実施することができる。
 上記方法により得られた反応混合液からのアセタール化合物(1)の分離・精製方法に特に制限はなく、通常の有機化合物の分離・精製に用いられる方法を適用できる。例えば、反応混合液から溶媒や塩基性物質などを減圧下で留去した後、残留物を減圧下に蒸留することで、高純度のアセタール化合物(1)を取得できる。また、かかる蒸留に先立ち、蒸発、抽出、吸着などの方法に付すことによって配位子および第8~10族金属化合物を分離してもよい。分離した配位子および第8~10族金属化合物は、再度ヒドロホルミル化反応に使用することができる。
(MGLの製造)
 次に、アセタール化合物(1)を加水分解することによりMGLを得る方法について説明する。MGLはアセタール化合物(1)と水を反応させることにより得ることができる。水との反応は無触媒でもよく、必要に応じて酸を触媒として用いてもよい。用いる酸としては特に限定されず、例えば、硫酸、燐酸、硝酸、塩酸、ホウ酸などの無機酸およびその塩;ギ酸、酢酸、プロピオン酸、シュウ酸、メタンスルホン酸、パラトルエンスルホン酸、パラトルエンスルホン酸ピリジニウムなどの有機酸およびその塩;陽イオン交換樹脂、シリカアルミナ、ゼオライト、活性白土などの固体酸などが挙げられる。
 上記した酸の使用量は、使用する酸の種類や水の量により異なるが、塩酸を使用する場合の例を挙げれば、反応液の0.0001質量%~10質量%の範囲で使用するのが好ましく、0.001質量%~5質量%の範囲がさらに好ましい。0.0001質量%未満では十分な反応速度が得られないことが多く、10質量%を超えて使用した場合は、中和する際の塩基の使用量が増えて後処理工程の負荷が増大する。
 用いる水の量に特に制限は無いが、通常、アセタール化合物(1)に対して0.1~10000質量倍であり、0.2~5000質量倍であることが好ましく、0.3~1000質量倍であることがより好ましい。0.1質量倍未満の場合は十分な収率が得られないことが多く、10000質量倍を超えて使用した場合は目的物の回収に必要なエネルギーが増大する傾向となる。
 反応は、溶媒の存在下または非存在下に行なうことができる。使用する溶媒に特に制限は無いが、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、メチルテトラヒドロピラン、エチレングリコールジメチルエーテルなどのエーテル;ヘキサン、ヘプタン、シクロヘキサン、トルエン、キシレン、メシチレンなどの脂肪族または芳香族炭化水素;アセトン、メチルイソプロピルケトン、メチルイソブチルケトンなどのケトンなどが挙げられる。これらは、1種を単独で使用しても良いし、2種以上を併用しても良い。溶媒の使用量に特に制限は無い。
 反応時間に特に制限は無いが、通常5秒以上であり、1分以上であることが好ましく、10分以上であることがより好ましい。反応温度について特に制限は無いが、通常-20℃から350℃であり、0℃から250℃であることが好ましく、10℃から100℃であることがより好ましい。
 上記方法により得られた反応混合液中のMGLは、必要に応じて分離・精製することができる。分離・精製方法に特に制限はなく、通常の有機化合物の分離・精製に用いられる方法を適用できる。例えば、反応混合液から溶媒や加水分解によって生成したアルコールなどを減圧下で留去した後、残留物を減圧下に蒸留することで高純度のMGLを取得できる。また、かかる蒸留に先立ち、中和、吸着、洗浄などの方法に付すことによって酸を除去してもよい。得られたMGLは、多量体化を避けるために必要に応じて水などの溶媒で希釈して保管することもできる。
 以下、実施例等により本発明を具体的に説明するが、本発明は以下の例により何ら限定されない。
(実施例1 化合物Aの合成)
Figure JPOXMLDOC01-appb-C000024
 反応容器にシクロヘキサン1390g、エチレングリコール618.0g(9.96mol)、硫酸0.3g(3.1mmol)をとり、90℃に加熱した。生成する水を共沸脱水により系外に除去しながら3-メチル-3-ブテン-1-アール686.0g(8.16mol)を4時間かけて滴下した。滴下終了後、90℃で1時間撹拌した後に、反応混合液を室温まで冷却し、ナトリウムメトキシドで中和した。得られた反応液から溶媒を減圧下に留去した後、蒸留精製することにより、目的とする化合物Aを969.0g得た(7.56mmol、収率92.6%)。
H-NMR(400MHz、CDCl、TMS)δ:1.805(s,3H)、2.382 (d,2H)、3.843-4.008(m,4H)、4.828(q,1H)、4.868(t,1H)、4.982(t,1H)
(実施例2 化合物Bの合成)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 ビスホスファイトA1.08gおよびRh(acac)(CO)2 14.2mgをトルエン100mlに溶解させた溶液を調製した[ロジウム原子:リン原子=1:20(モル比)]。ガス導入口およびサンプリング口を備えた電磁攪拌式オートクレーブに、窒素雰囲気下、化合物A45mlおよび上記調製した触媒液10ml(反応系内のロジウム化合物濃度; 0.1mmol/L)を加え、オートクレーブ内を一酸化炭素:水素=1:1(モル比)の混合ガスで8MPa(ゲージ圧)とした後、攪拌しながらオートクレーブ内の温度を130℃に昇温し、4時間反応させた。なお、反応中は、一酸化炭素:水素=1:1(モル比)の混合ガスを常時供給し、反応系内の圧力を一定に保った。得られた反応液をガスクロマトグラフィーで分析したところ、化合物Aの転化率は90.0%、化合物Bの選択率は97.0%であった。
(実施例3 化合物Bの合成)
 ビスホスファイトAに代えてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト3.56gを用いてロジウム原子:リン原子=1:100(モル比)にし、反応時間を2時間とした以外は、実施例2と同様にして反応を実施した。化合物Aの転化率は99.2%、化合物Bの選択率は94.3%であった。
(実施例4 化合物Bの合成)
 ビスホスファイトAに代えてトリフェニルホスフィン1.44gを用いてロジウム原子:リン原子=1:100(モル比)にし、反応時間を3.5時間とした以外は、実施例2と同様にして反応を実施した。化合物Aの転化率は80.0%、化合物Bの選択率は94.1%であった。
(実施例5 MGLの合成)
 3つ口フラスコに1mol/Lの塩酸636.4mg(塩酸0.64mmol、23.3mg)、蒸留水600mlおよび化合物B100.8g(636.9mmol)を仕込み、窒素雰囲気下、60℃で3.5時間攪拌した。得られた反応液をガスクロマトグラフィーで分析したところ、化合物Bの転化率は97.2%、MGLの選択率は99.8%であった。反応液を室温まで冷却した後、炭酸水素ナトリウムで中和し、酢酸エチル600mlで3回抽出した。得られた有機層を合わせて溶媒を減圧留去した後、蒸留精製することでMGL65.8g(576.4mmol、収率90.5%)を得た。
 本発明により得られる3-メチルグルタルアルデヒド(MGL)は、感光材料用の硬化剤や皮革用なめし剤、合成中間体として有用な化合物である。

Claims (4)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す。)
    で表される化合物を加水分解する工程を含む、3-メチルグルタルアルデヒドの製造方法。
  2.  下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す)
    で表される化合物をヒドロホルミル化して下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    (R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す。)
    で表される化合物を得る工程をさらに含む、請求項1に記載の製造方法。
  3.  3-メチル-3-ブテン-1-アールをアセタール化して下記一般式(2)
    Figure JPOXMLDOC01-appb-C000004
    (R、Rはそれぞれ独立して炭素数1~6のアルキル基を表すか、互いに連結して炭素数2~6のアルキレン基を表す)
    で表される化合物を得る工程をさらに含む、請求項2に記載の製造方法。
  4.  下記一般式(3)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
    (Rは炭素数2から6の直鎖アルキレン基を表す。)
PCT/JP2015/085384 2014-12-24 2015-12-17 アルデヒド化合物の製造方法およびアセタール化合物 WO2016104332A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016566176A JP6558742B2 (ja) 2014-12-24 2015-12-17 アルデヒド化合物の製造方法およびアセタール化合物
SG11201705230WA SG11201705230WA (en) 2014-12-24 2015-12-17 Method for producing aldehyde compound, and acetal compound
CA2971549A CA2971549A1 (en) 2014-12-24 2015-12-17 Method for producing aldehyde compound, and acetal compound
EP15872901.2A EP3239127A4 (en) 2014-12-24 2015-12-17 Method for producing aldehyde compound, and acetal compound
RU2017121566A RU2693040C1 (ru) 2014-12-24 2015-12-17 Способ получения альдегидного соединения и ацетального соединения
US15/538,443 US10040743B2 (en) 2014-12-24 2015-12-17 Method for producing aldehyde compound, and acetal compound
CN201580069836.XA CN107108426A (zh) 2014-12-24 2015-12-17 醛化合物的制造方法及缩醛化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-261082 2014-12-24
JP2014261082 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016104332A1 true WO2016104332A1 (ja) 2016-06-30

Family

ID=56150352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085384 WO2016104332A1 (ja) 2014-12-24 2015-12-17 アルデヒド化合物の製造方法およびアセタール化合物

Country Status (8)

Country Link
US (1) US10040743B2 (ja)
EP (1) EP3239127A4 (ja)
JP (1) JP6558742B2 (ja)
CN (1) CN107108426A (ja)
CA (1) CA2971549A1 (ja)
RU (1) RU2693040C1 (ja)
SG (1) SG11201705230WA (ja)
WO (1) WO2016104332A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204155A1 (ja) * 2016-05-25 2017-11-30 株式会社クラレ アセタール化合物の製造方法
JP2019053293A (ja) * 2017-09-13 2019-04-04 住友化学株式会社 偏光フィルムの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694973C2 (ru) * 2014-09-19 2019-07-18 Курарей Ко., Лтд. Ингибитор биологической коррозии металлов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549373A (en) * 1978-09-30 1980-04-09 Basf Ag 33chloroo33methyllbutanee or 33methyll22butenee1*44diaryllbisacetal and its manufacture
JPS60188341A (ja) * 1984-02-01 1985-09-25 デグツサ・アクチエンゲゼルシヤフト 1,4‐ブタンジアールの製法
JPS61194043A (ja) * 1985-02-19 1986-08-28 デグツサ・アクチエンゲゼルシヤフト 2‐アルキル‐1,4‐ブタンジアールの製造方法
WO2002085294A2 (en) * 2001-04-25 2002-10-31 Senomyx, Inc. Use of low molecular weight acetal, alcohol, acylated alcohol and ester compounds to block or reduce odor of carboxylic acids

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702206A (en) * 1950-03-31 1954-01-13 Anglo Iranian Oil Co Ltd Improvements in or relating to the production of dialdehydes and derivatives thereof
DE2137603A1 (de) 1971-07-27 1973-02-08 Diamalt Ag Mittel zum gerben von haeuten und fellen
JPH07281342A (ja) 1994-04-13 1995-10-27 Konica Corp ハロゲン化銀写真感光材料及びその現像処理方法
FR2909088B1 (fr) * 2006-11-24 2009-02-13 Rhodia Recherches & Tech Procede de transformation de composes nitriles en acides carboxyliques et esters correspondants
JP2009102244A (ja) 2007-10-22 2009-05-14 Toyotama Koryo Kk 3−メチルシクロペンタデカン類の製造方法、および3−メチルシクロペンタデカン類製造中間体
RU2694973C2 (ru) * 2014-09-19 2019-07-18 Курарей Ко., Лтд. Ингибитор биологической коррозии металлов
EP3318580B1 (en) * 2015-06-30 2022-12-28 Kuraray Co., Ltd. Aqueous emulsion composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549373A (en) * 1978-09-30 1980-04-09 Basf Ag 33chloroo33methyllbutanee or 33methyll22butenee1*44diaryllbisacetal and its manufacture
JPS60188341A (ja) * 1984-02-01 1985-09-25 デグツサ・アクチエンゲゼルシヤフト 1,4‐ブタンジアールの製法
JPS61194043A (ja) * 1985-02-19 1986-08-28 デグツサ・アクチエンゲゼルシヤフト 2‐アルキル‐1,4‐ブタンジアールの製造方法
WO2002085294A2 (en) * 2001-04-25 2002-10-31 Senomyx, Inc. Use of low molecular weight acetal, alcohol, acylated alcohol and ester compounds to block or reduce odor of carboxylic acids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUNY G. D. ET AL.: "Practical, High-Yield, Regioselective, Rhodium-Catalyzed Hydroformylation of Functionalized alpha-Olefins", J. AM. CHEM. SOC., vol. 115, no. 5, 1993, pages 2066 - 2068, XP000604731 *
See also references of EP3239127A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204155A1 (ja) * 2016-05-25 2017-11-30 株式会社クラレ アセタール化合物の製造方法
JP2019053293A (ja) * 2017-09-13 2019-04-04 住友化学株式会社 偏光フィルムの製造方法

Also Published As

Publication number Publication date
US10040743B2 (en) 2018-08-07
JP6558742B2 (ja) 2019-08-14
CN107108426A (zh) 2017-08-29
RU2693040C1 (ru) 2019-07-01
EP3239127A4 (en) 2018-08-15
US20170369411A1 (en) 2017-12-28
JPWO2016104332A1 (ja) 2017-10-05
EP3239127A1 (en) 2017-11-01
CA2971549A1 (en) 2016-06-30
SG11201705230WA (en) 2017-07-28

Similar Documents

Publication Publication Date Title
CA2649019C (en) Method for producing aldehyde using bisphosphite and group 8-10 metal compound, and such bisphosphite
JP6558742B2 (ja) アルデヒド化合物の製造方法およびアセタール化合物
JP6835403B2 (ja) ジアルデヒド化合物の製造方法
WO2012116977A1 (en) PROCESS FOR THE PREPARATION OF 3-METHYLENE-γ-BUTYROLACTONE
JP6255007B2 (ja) ジアルデヒドの製造方法
JP4964760B2 (ja) ビスホスファイト、並びに該ビスホスファイトおよび第8〜10族金属化合物を用いたアルデヒド化合物の製造方法
Wen et al. Perfectly green organocatalysis: quaternary ammonium base triggered cyanosilylation of aldehydes
US7160835B2 (en) Bisphosphine process for producing the same and use thereof
JP2014189525A (ja) 直鎖状ジアルデヒドの製造方法
JP3812094B2 (ja) アルデヒド類の製造方法
JP2010180142A (ja) シクロヘキサンカルボニトリルの製造方法
JP3610014B2 (ja) 不斉水素化のための改良された製法
JP6086594B2 (ja) 多価アルコールの製造方法
CA2558369C (en) Bisphosphite and process for producing aldehyde(s) using the bisphosphite
CN108137637B (zh) 钌配合物的制造方法
EP1810975A1 (en) Method for producing phosphonate having alcoholic hydroxy group
JP4145548B2 (ja) スルホン化ビスホスフィン、その製造方法およびその用途
JP2023102593A (ja) 2-置換-1,3-プロパンジオールの製造方法
CN117402046A (zh) 由乙烯基环己烯制备二醛的方法
JP2008231001A (ja) アルデヒドの製造方法
JP2012201624A (ja) 4−アミノブチルアルデヒドアセタールの製造方法
JPH0840955A (ja) 環状ケトン化合物を原料とするアルデヒド類および/またはアルコール類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566176

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872901

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2971549

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15538443

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201705230W

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017121566

Country of ref document: RU

Kind code of ref document: A