WO2017197732A1 - 一种数字电源提供电路及液晶驱动装置 - Google Patents

一种数字电源提供电路及液晶驱动装置 Download PDF

Info

Publication number
WO2017197732A1
WO2017197732A1 PCT/CN2016/087797 CN2016087797W WO2017197732A1 WO 2017197732 A1 WO2017197732 A1 WO 2017197732A1 CN 2016087797 W CN2016087797 W CN 2016087797W WO 2017197732 A1 WO2017197732 A1 WO 2017197732A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
power supply
input
digital power
terminal
Prior art date
Application number
PCT/CN2016/087797
Other languages
English (en)
French (fr)
Inventor
曹丹
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/305,211 priority Critical patent/US10210824B2/en
Publication of WO2017197732A1 publication Critical patent/WO2017197732A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/44Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the rate of change of electrical quantities

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a digital power supply circuit and a liquid crystal driving device.
  • the existing liquid crystal display device includes a timing controller and a power management module, and the timing controller generates a clock signal through a digital power supply voltage provided by the power management module, whereas the existing power management module is in a soft start (soft In the start phase, the corresponding protection function has not been turned on at this stage, which causes overshoot on the output.
  • Figure 1 shows the waveform of the output voltage of the existing power management module. The abscissa indicates time and the ordinate indicates the voltage value. During the 0-t1 period, the output voltage growth rate (slope) is k1, and the voltage reaches t1.
  • the value is already equal to m, m is for example 3.3v, but after t1, the output voltage continues to increase, and then drops to m, that is, the voltage value in the t1-t2 phase is greater than 3.3v, and overshoot occurs, and at this stage
  • the growth rate during voltage increase is significantly greater than k1. If the output voltage of the power management module is overshooted, it is easy to damage the timing controller, which increases the production cost.
  • An object of the present invention is to provide a digital power supply circuit and a liquid crystal driving device to solve the problem that the protection mechanism of the power management module output voltage is overshooted because the protection mechanism of the power management module is overshooted in the prior art. It is easy to damage the timing controller, resulting in technical problems with higher production costs.
  • the present invention constructs a digital power supply circuit including:
  • a power management module configured to provide a digital power supply voltage to the timing controller, the power management module has a first output end and an enable end, the first output end is configured to output the digital power supply voltage, the enable end Used to control the power management module to be turned on or off;
  • Control module including:
  • An obtaining unit configured to acquire a rate of change of the digital power supply voltage in an initial stage
  • a comparing unit configured to compare the rate of change with a preset threshold to obtain a comparison result, and generate a control signal according to the comparison result
  • a step-down unit configured to: when the rate of change exceeds the preset threshold, pull down an input voltage of the enable end by the control signal, so that the power management module is in a closed state;
  • the obtaining unit includes a first comparator and a capacitor, the first comparator includes a first input end, a second input end, and a second output end; the first input end passes the capacitance and the a first output terminal is connected, the second input terminal is grounded; the first input terminal is further connected to the second output terminal; and the second output terminal is configured to output a rate of change of the digital power supply voltage;
  • the comparison unit includes a second comparator, the second comparator includes a third input terminal, a fourth input terminal, and a third output terminal; the third input terminal inputs the preset threshold, the fourth The input terminal is coupled to the second output terminal, and the third output terminal is configured to output the control signal.
  • the acquisition unit further includes a first resistor; the first resistor is coupled between the capacitor and the first output.
  • the acquisition unit further includes a second resistor; one end of the second resistor is connected between the capacitor and the first input, and the other end of the second resistor Connected to the second output.
  • the buck unit includes a control terminal, a fifth input terminal, and a fourth output terminal; the fifth input terminal is connected to the enable terminal; the control terminal and the The third output is connected, and the fourth output is grounded.
  • the present invention constructs a digital power supply circuit including:
  • a power management module configured to provide a digital power supply voltage to the timing controller, the power management module has a first output end and an enable end, the first output end is configured to output the digital power supply voltage, the enable end Used to control the power management module to be turned on or off;
  • Control module including:
  • An obtaining unit configured to acquire a rate of change of the digital power supply voltage in an initial stage
  • a comparing unit configured to compare the rate of change with a preset threshold to obtain a comparison result, and generate a control signal according to the comparison result
  • a step-down unit configured to: when the rate of change exceeds the preset threshold, pull down an input voltage of the enable end by the control signal, so that the power management module is in a closed state.
  • the acquisition unit includes a first comparator, and the first comparator includes a first input terminal, a second input terminal, and a second output terminal;
  • the first input end is connected to the first output end, the second input end is grounded; the first input end is further connected to the second output end; and the second output end is used for outputting the The rate of change of the digital supply voltage.
  • the acquisition unit further includes a capacitor, one end of the capacitor is connected to the first output end, and the other end of the capacitor is connected to the first input end.
  • the acquisition unit further includes a first resistor; the first resistor is coupled between the capacitor and the first output.
  • the acquisition unit further includes a second resistor; one end of the second resistor is connected between the capacitor and the first input, and the other end of the second resistor Connected to the second output.
  • the comparison unit includes a second comparator, and the second comparator includes a third input terminal, a fourth input terminal, and a third output terminal;
  • the third input terminal inputs the preset threshold, the fourth input terminal is connected to the second output terminal, and the third output terminal is configured to output the control signal.
  • the buck unit includes a control terminal, a fifth input terminal, and a fourth output terminal; the fifth input terminal is connected to the enable terminal; the control terminal and the The third output is connected, and the fourth output is grounded.
  • the invention also provides a liquid crystal driving device, comprising:
  • a digital power supply circuit that includes:
  • a power management module configured to provide a digital power supply voltage to the timing controller, the power management module has a first output end and an enable end, the first output end is configured to output the digital power supply voltage, the enable end Used to control the power management module to be turned on or off;
  • Control module including:
  • An obtaining unit configured to acquire a rate of change of the digital power supply voltage in an initial stage
  • a comparing unit configured to compare the rate of change with a preset threshold to obtain a comparison result, and generate a control signal according to the comparison result
  • a step-down unit configured to: when the rate of change exceeds the preset threshold, pull down an input voltage of the enable end by the control signal, so that the power management module is in a closed state.
  • the acquisition unit includes a first comparator, and the first comparator includes a first input terminal, a second input terminal, and a second output terminal;
  • the first input end is connected to the first output end, the second input end is grounded; the first input end is further connected to the second output end; and the second output end is used for outputting the The rate of change of the digital supply voltage.
  • the acquisition unit further includes a capacitor, one end of the capacitor is connected to the first output end, and the other end of the capacitor is connected to the first input end.
  • the acquisition unit further includes a first resistor; the first resistor is connected between the capacitor and the first output terminal.
  • the acquisition unit further includes a second resistor; one end of the second resistor is connected between the capacitor and the first input end, and the other end of the second resistor is The second output is connected.
  • the comparison unit includes a second comparator, and the second comparator includes a third input terminal, a fourth input terminal, and a third output terminal;
  • the third input terminal inputs the preset threshold, the fourth input terminal is connected to the second output terminal, and the third output terminal is configured to output the control signal.
  • the step-down unit includes a control end, a fifth input end, and a fourth output end; the fifth input end is connected to the enable end; the control end and the first end The three outputs are connected, and the fourth output is grounded.
  • the digital power supply circuit and the liquid crystal driving device of the present invention increase the voltage of the enable terminal by adding a control module to the output end of the existing power management module to increase the output voltage of the power management module when the rate of change of the output voltage is greater than a preset threshold.
  • the power management module is turned off, effectively preventing overshoot of the output voltage, thereby avoiding damage to the timing controller and reducing production costs.
  • 1 is a waveform diagram of an output voltage of an existing power management module
  • FIG. 2 is a circuit diagram of a prior art power management module
  • FIG. 3 is a schematic structural view of a digital power supply circuit of the present invention.
  • FIG. 4 is a waveform diagram of an output voltage of a power management module of the present invention.
  • Figure 5 is a preferred circuit diagram of the digital power supply circuit of the present invention.
  • FIG. 2 is a circuit diagram of a prior art power management module.
  • the power management module of the prior art specifically includes a switching power supply chip, and the switching power supply chip is mainly used for bucking, that is, the switching power supply chip includes a BS pin, a GND pin, an FB pin, an LX pin, an IN pin, and an EN.
  • Pin BS pin is used to connect the self-supplied capacitor; FB pin for input feedback voltage; LX pin for input switching signal; IN pin for input power supply VCC; EN pin for input enable signal; BS pin for capacitor C6 and LX Pin connection, GND pin ground, IN pin is connected to EN pin through resistor R3, EN pin is also grounded through capacitor C2, IN pin is grounded through capacitor C3, LX pin is connected to output through inductor L, output The terminal outputs the digital power supply voltage, the first node Q1 between the inductor L and the output terminal is grounded through the series branch of the resistor R4 and the resistor R5, the resistor R4 is also connected in parallel with the capacitor C4; the second node Q2 between the inductor L and the output terminal The capacitor C5 is grounded, and the node and the output terminal are also grounded through a capacitor C7.
  • the switching power supply chip utilizes the energy storage characteristics of the capacitor and the inductor, and performs the operation of the high frequency switch through the controllable switch, and stores the input electric energy in the capacitor or the inductor, and then releases the electric energy to the load when the switch is turned off,
  • the energy is supplied, the ability of the output voltage to be related to the duty cycle (i.e., the ratio of the switch on time to the period of the entire switch).
  • the ratio of the feedback voltage input to the FB pin is adjusted by the ratio of the resistor R4 and the resistor R5 to implement the step-down function.
  • FIG. 3 is a schematic structural diagram of a digital power supply circuit of the present invention.
  • the digital power supply circuit of the present invention includes a power management module 11 and a control module 12;
  • the control module 12 includes an acquisition unit 13, a comparison unit 14, and a voltage reduction unit 15;
  • the power management module 11 is configured to provide a digital power supply voltage to the timing controller, the power management module having a first output end and an enable end (ie, an EN pin in FIG. 5), the first output end being used for output a digital power supply voltage, the enable end is configured to control whether the power management module is turned on or off;
  • the obtaining unit 13 is configured to acquire a rate of change of the digital power supply voltage in an initial phase (ie, a soft start phase);
  • the comparing unit 14 is configured to compare the rate of change with a preset threshold to obtain a comparison result, and generate a control signal according to the comparison result;
  • the buck unit 15 is configured to: when the rate of change exceeds the preset threshold, pull down an input voltage of the enable end by the control signal, so that the power management module is in a closed state.
  • the control module 12 detects the digital power output from the power management module 11.
  • the voltage growth rate is greater than k1
  • the voltage of the enable terminal is pulled down. Since the power management module 11 is at the high level of the enable terminal, it can work normally. Therefore, when the voltage of the enable terminal is pulled down, the power management is inevitably turned off. Module 11, to avoid the occurrence of overshoot, thereby preventing damage to the timing controller.
  • the maximum value of the output voltage is m, that is, no overshoot occurs.
  • the digital power supply circuit and the liquid crystal driving device of the present invention increase the voltage of the enable terminal by adding a control module to the output end of the existing power management module to increase the output voltage of the power management module when the rate of change of the output voltage is greater than a preset threshold.
  • the power management module is turned off, effectively preventing overshoot of the output voltage, thereby avoiding damage to the timing controller and reducing production costs.
  • the acquisition unit 13 includes a first comparator OP1 and a capacitor C1, a first resistor R1, and a second resistor R2, the first The comparator OP1 includes a first input terminal 21 (negative electrode), a second input terminal 22 (positive electrode), and a second output terminal 23 (output), and further includes a power input terminal and a ground terminal, the power input terminal VCC being used for input Power supply VCC, the access terminal GND is grounded;
  • the first input end 21 can be connected to the first output end 30 through the capacitor C1, and the first resistor R1 is further connected between the capacitor C1 and the first output end 30.
  • the second input terminal 22 is grounded; the capacitor C1 and the first input terminal 21 can be connected to the second output terminal 23 through the second resistor R2; the first input terminal 21 inputs a digital power supply voltage;
  • the second output terminal 23 is configured to output a rate of change of the digital power supply voltage.
  • the comparison unit 14 includes a second comparator OP2, which includes a third input terminal 24 (negative electrode), a fourth input terminal 25 (positive electrode), and a third output terminal 26 (output), in addition to The power input terminal and the ground terminal are included, and the power input terminal VCC is used for inputting the power source VCC, and the access terminal GND is grounded;
  • the third input terminal 24 inputs the preset threshold (k1)
  • the fourth input terminal 25 is connected to the second output terminal 23, and the third output terminal 26 is for outputting the control signal.
  • the buck unit 15 includes a control terminal G (gate), a fifth input terminal D (drain), and a fourth output terminal S (source);
  • the fifth input terminal D is connected to the enable terminal EN; the control terminal G is connected to the third output terminal 26, and the fourth output terminal S is grounded.
  • the digital power supply voltage OVDD outputted by the first output terminal 30 of the power management module 11 is input to the first comparator OP1, and after the processing of the first comparator OP1, the slope k2 of the OVDD is output, and then the second comparison is performed.
  • OP2 compares k2 with k1. If k2 is greater than k1, the second comparator OP2 outputs a positive voltage, thereby turning on the transistor. Since the output end of the transistor is grounded, the input terminal is connected to the enable terminal, thereby enabling the enable terminal. The voltage is pulled low, which in turn stops the power management module. If k2 is less than k1, the second comparator OP2 outputs a negative voltage at this time, thereby turning off the transistor, so that the voltage of the enable terminal is not pulled down, and the power management module 11 continues to operate.
  • the power management module 11 specifically includes a switching power supply chip, and the switching power supply chip is mainly used for bucking, that is, the switching power supply chip includes a BS pin, a GND pin, an FB pin, an LX pin, an IN pin, and an EN pin; BS pin for input self-supplied capacitors;
  • the FB pin is used to input the feedback voltage;
  • the LX pin is used to input the switching signal;
  • the IN pin is used to input the power supply;
  • the EN pin is used to input the enable signal;
  • the BS pin is connected to the LX pin through the capacitor C6; GND
  • the pin is grounded;
  • the IN pin is connected to the EN pin through the resistor R3, the EN pin is also grounded through the capacitor C2, the IN pin is grounded through the capacitor C3, and the LX pin is connected to the first output terminal 30 through the inductor L, the first output The terminal 30 outputs a digital power supply voltage, and the first node Q1 between the inductor L and the first output terminal
  • the switching power supply chip utilizes the energy storage characteristics of the capacitor and the inductor, and performs the operation of the high frequency switch through the controllable switch, and stores the input electric energy in the capacitor or the inductor, and then releases the electric energy to the load when the switch is turned off, Energy is supplied, the ability of its output voltage is related to the duty cycle (i.e., the ratio of the switch on time to the period of the entire switch).
  • the ratio of the feedback voltage input to the FB pin is adjusted by the ratio of the resistor R4 and the resistor R5 to implement the step-down function.
  • the present invention also provides a liquid crystal driving device including the above-described digital power supply circuit,
  • the digital power supply circuit of the present invention includes a power management module 11 and a control module 12;
  • the control module 12 includes an acquisition unit 13, a comparison unit 14, and a voltage reduction unit 15;
  • the power management module 11 is configured to provide a digital power supply voltage to the timing controller, the power management module having a first output end and an enable end (ie, an EN pin in FIG. 5), the first output end being used for output a digital power supply voltage, the enable end is configured to control whether the power management module is turned on or off;
  • the obtaining unit 13 is configured to acquire a rate of change of the digital power supply voltage in an initial phase (ie, a soft start phase);
  • the comparing unit 14 is configured to compare the rate of change with a preset threshold to obtain a comparison result, and generate a control signal according to the comparison result;
  • the buck unit 15 is configured to: when the rate of change exceeds the preset threshold, pull down an input voltage of the enable end by the control signal, so that the power management module is in a closed state.
  • the control module 12 detects the digital power output from the power management module 11.
  • the voltage growth rate is greater than k1
  • the voltage of the enable terminal is pulled down. Since the power management module 11 is at the high level of the enable terminal, it can work normally. Therefore, when the voltage of the enable terminal is pulled down, the power management is inevitably turned off. Module 11, to avoid the occurrence of overshoot, thereby preventing damage to the timing controller.
  • the maximum value of the output voltage is m, that is, no overshoot occurs.
  • the acquisition unit 13 includes a first comparator OP1 and a capacitor C1, a first resistor R1, and a second resistor R2, the first The comparator OP1 includes a first input terminal 21 (negative electrode), a second input terminal 22 (positive electrode), and a second output terminal 23 (output), and further includes a power input terminal and a ground terminal, the power input terminal VCC being used for input Power supply VCC, the access terminal GND is grounded;
  • the first input end 21 can be connected to the first output end 30 through the capacitor C1, and the first resistor R1 is further connected between the capacitor C1 and the first output end 30.
  • the second input terminal 22 is grounded; the capacitor C1 and the first input terminal 21 can be connected to the second output terminal 23 through the second resistor R2; the first input terminal 21 inputs a digital power supply voltage;
  • the second output terminal 23 is configured to output a rate of change of the digital power supply voltage.
  • the comparison unit 14 includes a second comparator OP2, which includes a third input terminal 24 (negative electrode), a fourth input terminal 25 (positive electrode), and a third output terminal 26 (output), in addition to The power input terminal and the ground terminal are included, and the power input terminal VCC is used for inputting the power source VCC, and the access terminal GND is grounded;
  • the third input terminal 24 inputs the preset threshold (k1)
  • the fourth input terminal 25 is connected to the second output terminal 23, and the third output terminal 26 is for outputting the control signal.
  • the buck unit 15 includes a control terminal G (gate), a fifth input terminal D (drain), and a fourth output terminal S (source);
  • the fifth input terminal D is connected to the enable terminal EN; the control terminal G is connected to the third output terminal 26, and the fourth output terminal S is grounded.
  • the digital power supply voltage OVDD outputted by the first output terminal 30 of the power management module 11 is input to the first comparator OP1, and after the processing of the first comparator OP1, the slope k2 of the OVDD is output, and then the second comparison is performed.
  • OP2 compares k2 with k1. If k2 is greater than k1, the second comparator OP2 outputs a positive voltage, thereby turning on the transistor. Since the output end of the transistor is grounded, the input terminal is connected to the enable terminal, thereby enabling the enable terminal. The voltage is pulled low, which in turn stops the power management module. If k2 is less than k1, the second comparator OP2 outputs a negative voltage at this time, thereby turning off the transistor, so that the voltage of the enable terminal is not pulled down, and the power management module 11 continues to operate.
  • liquid crystal driving device of the present invention by adding a control module to the output end of the existing power management module, when the rate of change of the output voltage of the power management module is greater than a preset threshold, the voltage of the enable terminal is pulled down, so that the power management module It is in the off state, effectively preventing overshoot of the output voltage, thereby avoiding damage to the timing controller and reducing production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种数字电源提供电路及液晶驱动装置,所述数字电源提供电路包括:控制模块(12),其包括:获取单元(13),用于获取数字电源电压在初始阶段的变化率;比较单元(14),用于将该变化率与预设阈值进行比较,并根据比较结果生成控制信号;降压单元(15),用于当该变化率超过该预设阈值时,通过该控制信号拉低该使能端的输入电压。

Description

一种数字电源提供电路及液晶驱动装置 技术领域
本发明涉及液晶显示器技术领域,特别是涉及一种数字电源提供电路及液晶驱动装置。
背景技术
现有液晶显示装置包括时序控制器和电源管理模块,时序控制器通过电源管理模块提供的数字电源电压产生时钟信号,然而现有的电源管理模块在软启动(soft start)阶段,由于其对应的保护功能在该阶段还未开启,因此导致输出端出现过冲的现象。图1给出,现有电源管理模块的输出电压的波形图,其横坐标表示时间,纵坐标表示电压值,在0-t1时段,输出电压的增长率(斜率)为k1,到达t1时电压值已经等于m,m比如为3.3v,但是在t1之后输出电压继续增长,之后再降到m,也即在t1-t2阶段的电压值大于3.3v,出现了过冲现象,且在这个阶段电压增长过程中的增长率明显大于k1,如果电源管理模块的输出电压出现过冲,很容易损坏时序控制器,从而增大了生产成本。
因此,有必要提供一种数字电源提供电路及液晶驱动装置,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种数字电源提供电路及液晶驱动装置,以解决现有技术中由于在软启动阶段没有设置对时序控制器的保护机制,因此当电源管理模块输出电压出现过冲时,容易损坏时序控制器,导致生产成本较高的技术问题。
技术解决方案
为解决上述技术问题,本发明构造了一种数字电源提供电路,其包括:
电源管理模块,用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端,所述第一输出端用于输出所述数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
控制模块,包括:
获取单元,用于获取所述数字电源电压在初始阶段的变化率;
比较单元,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;以及
降压单元,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态;
其中,所述获取单元包括第一比较器和电容,所述第一比较器包括第一输入端、第二输入端、以及第二输出端;所述第一输入端通过所述电容与所述第一输出端连接,所述第二输入端接地;所述第一输入端还与所述第二输出端连接;所述第二输出端用于输出所述数字电源电压的变化率;
所述比较单元包括第二比较器,所述第二比较器包括第三输入端、第四输入端、以及第三输出端;所述第三输入端输入所述预设阈值,所述第四输入端与所述第二输出端连接、所述第三输出端用于输出所述控制信号。
在本发明的数字电源提供电路中,所述获取单元还包括第一电阻;所述第一电阻连接在所述电容和所述第一输出端之间。
在本发明的数字电源提供电路中,所述获取单元还包括第二电阻;所述第二电阻的一端连接在所述电容和所述第一输入端之间,所述第二电阻的另一端与所述第二输出端连接。
在本发明的数字电源提供电路中,所述降压单元包括控制端、第五输入端、第四输出端;所述第五输入端与所述使能端连接;所述控制端与所述第三输出端连接,所述第四输出端接地。
为解决上述技术问题,本发明构造了一种数字电源提供电路,其包括:
电源管理模块,用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端,所述第一输出端用于输出所述数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
控制模块,包括:
获取单元,用于获取所述数字电源电压在初始阶段的变化率;
比较单元,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;
降压单元,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态。
在本发明的数字电源提供电路中,所述获取单元包括第一比较器,所述第一比较器包括第一输入端、第二输入端、以及第二输出端;
所述第一输入端与所述第一输出端连接,所述第二输入端接地;所述第一输入端还与所述第二输出端连接;所述第二输出端用于输出所述数字电源电压的变化率。
在本发明的数字电源提供电路中,所述获取单元还包括电容,所述电容的一端与所述第一输出端连接,所述电容的另一端与所述第一输入端连接。
在本发明的数字电源提供电路中,所述获取单元还包括第一电阻;所述第一电阻连接在所述电容和所述第一输出端之间。
在本发明的数字电源提供电路中,所述获取单元还包括第二电阻;所述第二电阻的一端连接在所述电容和所述第一输入端之间,所述第二电阻的另一端与所述第二输出端连接。
在本发明的数字电源提供电路中,所述比较单元包括第二比较器,所述第二比较器包括第三输入端、第四输入端、以及第三输出端;
所述第三输入端输入所述预设阈值,所述第四输入端与所述第二输出端连接、所述第三输出端用于输出所述控制信号。
在本发明的数字电源提供电路中,所述降压单元包括控制端、第五输入端、第四输出端;所述第五输入端与所述使能端连接;所述控制端与所述第三输出端连接,所述第四输出端接地。
本发明还提供一种液晶驱动装置,其包括:
数字电源提供电路,其包括:
电源管理模块,用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端,所述第一输出端用于输出所述数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
控制模块,包括:
获取单元,用于获取所述数字电源电压在初始阶段的变化率;
比较单元,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;
降压单元,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态。
在本发明的液晶驱动装置中,所述获取单元包括第一比较器,所述第一比较器包括第一输入端、第二输入端、以及第二输出端;
所述第一输入端与所述第一输出端连接,所述第二输入端接地;所述第一输入端还与所述第二输出端连接;所述第二输出端用于输出所述数字电源电压的变化率。
在本发明的液晶驱动装置中,所述获取单元还包括电容,所述电容的一端与所述第一输出端连接,所述电容的另一端与所述第一输入端连接。
在本发明的液晶驱动装置中,所述获取单元还包括第一电阻;所述第一电阻连接在所述电容和所述第一输出端之间。
在本发明的液晶驱动装置中,所述获取单元还包括第二电阻;所述第二电阻的一端连接在所述电容和所述第一输入端之间,所述第二电阻的另一端与所述第二输出端连接。
在本发明的液晶驱动装置中,所述比较单元包括第二比较器,所述第二比较器包括第三输入端、第四输入端、以及第三输出端;
所述第三输入端输入所述预设阈值,所述第四输入端与所述第二输出端连接、所述第三输出端用于输出所述控制信号。
在本发明的液晶驱动装置中,所述降压单元包括控制端、第五输入端、第四输出端;所述第五输入端与所述使能端连接;所述控制端与所述第三输出端连接,所述第四输出端接地。
有益效果
本发明的数字电源提供电路及液晶驱动装置,通过在现有的电源管理模块的输出端增加控制模块,以在电源管理模块的输出电压的变化率大于预设阈值时,拉低使能端的电压,使电源管理模块处于关闭状态,有效地防止输出电压出现过冲现象,从而避免损坏时序控制器,降低了生产成本。
附图说明
图1为现有电源管理模块的输出电压的波形图;
图2为现有技术的电源管理模块的电路图;
图3为本发明的数字电源提供电路的结构示意图;
图4为本发明的电源管理模块的输出电压的波形图;
图5为本发明的数字电源提供电路的优选电路图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
请参照图2,图2为现有技术的电源管理模块的电路图。
现有技术的电源管理模块具体包括开关电源芯片,该开关电源芯片主要用于降压,即该开关电源芯片包括BS引脚、GND引脚、FB引脚、LX引脚、IN引脚、EN引脚,BS引脚用于连接自给电容; FB引脚,用于输入反馈电压;LX引脚,用于输入开关信号;IN引脚,用于输入电源VCC;EN引脚,用于输入使能信号;该BS引脚通过电容C6与LX引脚连接,GND引脚接地,IN引脚通过电阻R3与EN引脚连接,EN引脚还通过电容C2接地,IN引脚通过电容C3接地,LX引脚通过电感L与输出端连接,输出端输出数字电源电压,电感L与输出端之间的第一节点Q1通过电阻R4和电阻R5的串联支路接地,电阻R4还与电容C4并联;电感L与输出端之间的第二节点Q2通过电容C5接地、该节点与输出端之间还通过电容C7接地。
也即开关电源芯片利用电容、电感的储能的特性,通过可控开关进行高频开关的动作,将输入的电能储存在电容或者电感里,当开关断开时再将电能释放给负载,以提供能量,其输出的电压的能力与占空比(也即由开关导通时间与整个开关的周期的比值)有关。另外,通过电阻R4和电阻R5的比值,调整FB引脚输入的反馈电压的大小,以实现降压功能。
请参照图3,图3为本发明的数字电源提供电路的结构示意图。
如图3所示,本发明的数字电源提供电路包括电源管理模块11、控制模块12;该控制模块12包括获取单元13、比较单元14、降压单元15;
电源管理模块11用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端(也即图5中的EN引脚),所述第一输出端用于输出数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
获取单元13用于获取所述数字电源电压在初始阶段(也即软启动阶段)的变化率;
比较单元14,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;
降压单元15,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态。
结合图1,由于当电源管理模块出现过冲时,其避免出现过高的增长率,也即斜率大于未出现过冲时的斜率k1,当控制模块12检测到电源管理模块11输出的数字电源电压的增长率大于k1时,便拉低使能端的电压,由于电源管理模块11在使能端为高电平时,才能正常工作,因此当使能端的电压被拉低后,必然会关闭电源管理模块11,避免过冲现象的产生,从而防止损坏时序控制器。如图4所示,电源管理模块的输出电压经过控制模块处理后,其输出电压的最大值为m,即不会出现过冲现象。
本发明的数字电源提供电路及液晶驱动装置,通过在现有的电源管理模块的输出端增加控制模块,以在电源管理模块的输出电压的变化率大于预设阈值时,拉低使能端的电压,使电源管理模块处于关闭状态,有效地防止输出电压出现过冲现象,从而避免损坏时序控制器,降低生产成本。
具体地,如图5所示,给出数字电源提供电路的一种优选电路图;所述获取单元13包括第一比较器OP1和电容C1、第一电阻R1、第二电阻R2,所述第一比较器OP1包括第一输入端21(负极)、第二输入端22(正极)、以及第二输出端23(output),此外还包括电源输入端和接地端,该电源输入端VCC用于输入电源VCC,该接入端GND接地;
所述第一输入端21可以通过所述电容C1与所述第一输出端30连接,所述电容C1和所述第一输出端30之间还连接有所述第一电阻R1,所述第二输入端22接地;所述电容C1和所述第一输入端21之间可以通过所述第二电阻R2与所述第二输出端23连接;所述第一输入端21输入数字电源电压;所述第二输出端23用于输出所述数字电源电压的变化率。
所述比较单元14包括第二比较器OP2,所述第二比较器OP2包括第三输入端24(负极)、第四输入端25(正极)、以及第三输出端26(output),此外还包括电源输入端和接地端,该电源输入端VCC用于输入电源VCC,该接入端GND接地;
所述第三输入端24输入所述预设阈值(k1),所述第四输入端25与所述第二输出端23连接、所述第三输出端26用于输出所述控制信号。
所述降压单元15包括控制端G(栅极)、第五输入端D(漏极)、第四输出端S(源极);
所述第五输入端D与所述使能端EN连接;所述控制端G与所述第三输出端26连接,所述第四输出端S接地。
在具体工作过程中,电源管理模块11的第一输出端30输出的数字电源电压OVDD输入到第一比较器OP1中,经过第一比较器OP1的处理后输出OVDD的斜率k2,之后第二比较器OP2将k2与k1进行比较,如果k2大于k1,此时第二比较器OP2输出正电压,从而使三极管导通,由于三极管的输出端接地,输入端连接使能端,从而将使能端的电压拉低,进而使电源管理模块停止工作。如果k2小于k1,此时第二比较器OP2输出负电压,从而使三极管截止,因此使能端的电压不会被拉低,电源管理模块11继续工作。
电源管理模块11具体包括开关电源芯片,该开关电源芯片主要用于降压,即该开关电源芯片包括BS引脚、GND引脚、FB引脚、LX引脚、IN引脚、EN引脚;BS引脚,用于输入自给电容; FB引脚用于输入反馈电压;LX引脚用于输入开关信号;IN引脚用于输入电源;EN引脚用于输入使能信号;该BS引脚通过电容C6与LX引脚连接;GND引脚接地;IN引脚通过电阻R3与EN引脚连接,EN引脚还通过电容C2接地,IN引脚通过电容C3接地,LX引脚通过电感L与第一输出端30连接,第一输出端30输出数字电源电压,电感L与第一输出端30之间的第一节点Q1还通过电阻R4和电阻R5的串联支路接地,电阻R4还与电容C4并联;电感L与第一输出端30之间的第二节点Q2通过电容C5接地。
也即开关电源芯片利用电容、电感的储能的特性,通过可控开关进行高频开关的动作,将输入的电能储存在电容或者电感里,当开关断开时再将电能释放给负载,以提供能量,其输出电压的能力与占空比(也即由开关导通时间与整个开关的周期的比值)有关。另外,通过电阻R4和电阻R5的比值,调整FB引脚输入的反馈电压的大小,以实现降压功能。
本发明还提供一种液晶驱动装置,该液晶驱动装置包括上述的数字电源提供电路,
如图3所示,本发明的数字电源提供电路包括电源管理模块11、控制模块12;该控制模块12包括获取单元13、比较单元14、降压单元15;
电源管理模块11用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端(也即图5中的EN引脚),所述第一输出端用于输出数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
获取单元13用于获取所述数字电源电压在初始阶段(也即软启动阶段)的变化率;
比较单元14,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;
降压单元15,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态。
结合图1,由于当电源管理模块出现过冲时,其避免出现过高的增长率,也即斜率大于未出现过冲时的斜率k1,当控制模块12检测到电源管理模块11输出的数字电源电压的增长率大于k1时,便拉低使能端的电压,由于电源管理模块11在使能端为高电平时,才能正常工作,因此当使能端的电压被拉低后,必然会关闭电源管理模块11,避免过冲现象的产生,从而防止损坏时序控制器。如图4所示,电源管理模块的输出电压经过控制模块处理后,其输出电压的最大值为m,即不会出现过冲现象。
具体地,如图5所示,给出数字电源提供电路的一种优选电路图;所述获取单元13包括第一比较器OP1和电容C1、第一电阻R1、第二电阻R2,所述第一比较器OP1包括第一输入端21(负极)、第二输入端22(正极)、以及第二输出端23(output),此外还包括电源输入端和接地端,该电源输入端VCC用于输入电源VCC,该接入端GND接地;
所述第一输入端21可以通过所述电容C1与所述第一输出端30连接,所述电容C1和所述第一输出端30之间还连接有所述第一电阻R1,所述第二输入端22接地;所述电容C1和所述第一输入端21之间可以通过所述第二电阻R2与所述第二输出端23连接;所述第一输入端21输入数字电源电压;所述第二输出端23用于输出所述数字电源电压的变化率。
所述比较单元14包括第二比较器OP2,所述第二比较器OP2包括第三输入端24(负极)、第四输入端25(正极)、以及第三输出端26(output),此外还包括电源输入端和接地端,该电源输入端VCC用于输入电源VCC,该接入端GND接地;
所述第三输入端24输入所述预设阈值(k1),所述第四输入端25与所述第二输出端23连接、所述第三输出端26用于输出所述控制信号。
所述降压单元15包括控制端G(栅极)、第五输入端D(漏极)、第四输出端S(源极);
所述第五输入端D与所述使能端EN连接;所述控制端G与所述第三输出端26连接,所述第四输出端S接地。
在具体工作过程中,电源管理模块11的第一输出端30输出的数字电源电压OVDD输入到第一比较器OP1中,经过第一比较器OP1的处理后输出OVDD的斜率k2,之后第二比较器OP2将k2与k1进行比较,如果k2大于k1,此时第二比较器OP2输出正电压,从而使三极管导通,由于三极管的输出端接地,输入端连接使能端,从而将使能端的电压拉低,进而使电源管理模块停止工作。如果k2小于k1,此时第二比较器OP2输出负电压,从而使三极管截止,因此使能端的电压不会被拉低,电源管理模块11继续工作。
本发明的液晶驱动装置,通过在现有的电源管理模块的输出端增加控制模块,以在电源管理模块的输出电压的变化率大于预设阈值时,拉低使能端的电压,使电源管理模块处于关闭状态,有效地防止输出电压出现过冲现象,从而避免损坏时序控制器,降低生产成本。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (18)

  1. 一种数字电源提供电路,其包括:
    电源管理模块,用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端,所述第一输出端用于输出所述数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
    控制模块,包括:
    获取单元,用于获取所述数字电源电压在初始阶段的变化率;
    比较单元,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;以及
    降压单元,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态;
    其中,所述获取单元包括第一比较器和电容,所述第一比较器包括第一输入端、第二输入端、以及第二输出端;所述第一输入端通过所述电容与所述第一输出端连接,所述第二输入端接地;所述第一输入端还与所述第二输出端连接;所述第二输出端用于输出所述数字电源电压的变化率;
    所述比较单元包括第二比较器,所述第二比较器包括第三输入端、第四输入端、以及第三输出端;所述第三输入端输入所述预设阈值,所述第四输入端与所述第二输出端连接、所述第三输出端用于输出所述控制信号。
  2. 根据权利要求1所述的数字电源提供电路,其中
    所述获取单元还包括第一电阻;所述第一电阻连接在所述电容和所述第一输出端之间。
  3. 根据权利要求1所述的数字电源提供电路,其中
    所述获取单元还包括第二电阻;所述第二电阻的一端连接在所述电容和所述第一输入端之间,所述第二电阻的另一端与所述第二输出端连接。
  4. 根据权利要求1所述的数字电源提供电路,其中
    所述降压单元包括控制端、第五输入端、第四输出端;所述第五输入端与所述使能端连接;所述控制端与所述第三输出端连接,所述第四输出端接地。
  5. 一种数字电源提供电路,其包括:
    电源管理模块,用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端,所述第一输出端用于输出所述数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
    控制模块,包括:
    获取单元,用于获取所述数字电源电压在初始阶段的变化率;
    比较单元,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;以及
    降压单元,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态。
  6. 根据权利要求5所述的数字电源提供电路,其中
    所述获取单元包括第一比较器,所述第一比较器包括第一输入端、第二输入端、以及第二输出端;
    所述第一输入端与所述第一输出端连接,所述第二输入端接地;所述第一输入端还与所述第二输出端连接;所述第二输出端用于输出所述数字电源电压的变化率。
  7. 根据权利要求6所述的数字电源提供电路,其中
    所述获取单元还包括电容,所述电容的一端与所述第一输出端连接,所述电容的另一端与所述第一输入端连接。
  8. 根据权利要求7所述的数字电源提供电路,其中
    所述获取单元还包括第一电阻;所述第一电阻连接在所述电容和所述第一输出端之间。
  9. 根据权利要求7所述的数字电源提供电路,其中
    所述获取单元还包括第二电阻;所述第二电阻的一端连接在所述电容和所述第一输入端之间,所述第二电阻的另一端与所述第二输出端连接。
  10. 根据权利要求6所述的数字电源提供电路,其中
    所述比较单元包括第二比较器,所述第二比较器包括第三输入端、第四输入端、以及第三输出端;
    所述第三输入端输入所述预设阈值,所述第四输入端与所述第二输出端连接、所述第三输出端用于输出所述控制信号。
  11. 根据权利要求10所述的数字电源提供电路,其中
    所述降压单元包括控制端、第五输入端、第四输出端;所述第五输入端与所述使能端连接;所述控制端与所述第三输出端连接,所述第四输出端接地。
  12. 一种液晶驱动装置,其包括:
    数字电源提供电路,其包括:
    电源管理模块,用于向时序控制器提供数字电源电压,所述电源管理模块具有第一输出端和使能端,所述第一输出端用于输出所述数字电源电压,所述使能端用于控制所述电源管理模块的开启或者关闭;
    控制模块,包括:
    获取单元,用于获取所述数字电源电压在初始阶段的变化率;
    比较单元,用于将所述变化率与预设阈值进行比较,以得到比较结果,并根据所述比较结果生成控制信号;以及
    降压单元,用于当所述变化率超过所述预设阈值时,通过所述控制信号拉低所述使能端的输入电压,以使所述电源管理模块处于关闭状态。
  13. 根据权利要求12所述的液晶驱动装置,其中所述获取单元包括第一比较器,所述第一比较器包括第一输入端、第二输入端、以及第二输出端;
    所述第一输入端与所述第一输出端连接,所述第二输入端接地;所述第一输入端还与所述第二输出端连接;所述第二输出端用于输出所述数字电源电压的变化率。
  14. 根据权利要求13所述的液晶驱动装置,其中所述获取单元还包括电容,所述电容的一端与所述第一输出端连接,所述电容的另一端与所述第一输入端连接。
  15. 根据权利要求14所述的液晶驱动装置,其中所述获取单元还包括第一电阻;所述第一电阻连接在所述电容和所述第一输出端之间。
  16. 根据权利要求14所述的液晶驱动装置,其中所述获取单元还包括第二电阻;所述第二电阻的一端连接在所述电容和所述第一输入端之间,所述第二电阻的另一端与所述第二输出端连接。
  17. 根据权利要求13所述的液晶驱动装置,其中
    所述比较单元包括第二比较器,所述第二比较器包括第三输入端、第四输入端、以及第三输出端;
    所述第三输入端输入所述预设阈值,所述第四输入端与所述第二输出端连接、所述第三输出端用于输出所述控制信号。
  18. 根据权利要求17所述的液晶驱动装置,其中
    所述降压单元包括控制端、第五输入端、第四输出端;所述第五输入端与所述使能端连接;所述控制端与所述第三输出端连接,所述第四输出端接地。
PCT/CN2016/087797 2016-05-20 2016-06-30 一种数字电源提供电路及液晶驱动装置 WO2017197732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/305,211 US10210824B2 (en) 2016-05-20 2016-06-30 Digital power supply circuit and liquid crystal driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610341031.2 2016-05-20
CN201610341031.2A CN105958985B (zh) 2016-05-20 2016-05-20 一种数字电源提供电路及液晶驱动装置

Publications (1)

Publication Number Publication Date
WO2017197732A1 true WO2017197732A1 (zh) 2017-11-23

Family

ID=56910145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087797 WO2017197732A1 (zh) 2016-05-20 2016-06-30 一种数字电源提供电路及液晶驱动装置

Country Status (3)

Country Link
US (1) US10210824B2 (zh)
CN (1) CN105958985B (zh)
WO (1) WO2017197732A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544452B (zh) * 2018-05-28 2021-08-17 京东方科技集团股份有限公司 供电时序控制电路及控制方法、显示驱动电路、显示装置
KR20210103043A (ko) * 2020-02-12 2021-08-23 삼성디스플레이 주식회사 전원 전압 생성 장치, 이의 제어 방법 및 이를 포함하는 표시 장치
CN113511108A (zh) * 2020-04-09 2021-10-19 宁德时代新能源科技股份有限公司 控制电路、方法以及系统
CN112698708A (zh) * 2020-11-27 2021-04-23 深圳微步信息股份有限公司 一种数字电源主板及终端设备
CN112701926B (zh) * 2021-01-12 2022-04-15 飞依诺科技(苏州)有限公司 反激式开关电源及其控制方法、超声设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352664A (ja) * 2000-06-06 2001-12-21 Denyo Co Ltd インバータの過電圧保護装置
CN102710243A (zh) * 2012-06-25 2012-10-03 深圳青铜剑电力电子科技有限公司 一种绝缘栅器件的保护电路及其方法
CN103595018A (zh) * 2013-11-07 2014-02-19 深圳市华星光电技术有限公司 过压保护电路、led背光驱动电路以及液晶显示器
JP2014127728A (ja) * 2012-12-25 2014-07-07 Nissan Motor Co Ltd 短絡故障保護装置及び短絡故障保護方法
CN105262057A (zh) * 2015-11-27 2016-01-20 深圳市华星光电技术有限公司 Pmic的保护电路、显示面板及显示装置
CN105388957A (zh) * 2015-12-21 2016-03-09 深圳市华星光电技术有限公司 一种反馈控制电路及电源管理模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125800B2 (en) * 2007-10-17 2012-02-28 Texas Instruments Incorporated Secondary-side amplifier with soft start
CN101841238B (zh) * 2010-04-12 2012-11-21 无锡中星微电子有限公司 一种升压dc/dc转换器及其内的逻辑控制电路
JP2014235187A (ja) * 2013-05-30 2014-12-15 シャープ株式会社 液晶表示装置および液晶表示装置の駆動方法
KR102231774B1 (ko) * 2014-09-24 2021-03-25 삼성디스플레이 주식회사 전원 전압의 변동을 보상하는 표시 장치
CN104319996B (zh) * 2014-10-30 2018-06-19 武汉大学 一种具有高精度电流检测的同步整流降压转换器芯片
CN104753330B (zh) * 2015-04-08 2018-02-23 深圳市英特源电子有限公司 一种电源管理软启动电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352664A (ja) * 2000-06-06 2001-12-21 Denyo Co Ltd インバータの過電圧保護装置
CN102710243A (zh) * 2012-06-25 2012-10-03 深圳青铜剑电力电子科技有限公司 一种绝缘栅器件的保护电路及其方法
JP2014127728A (ja) * 2012-12-25 2014-07-07 Nissan Motor Co Ltd 短絡故障保護装置及び短絡故障保護方法
CN103595018A (zh) * 2013-11-07 2014-02-19 深圳市华星光电技术有限公司 过压保护电路、led背光驱动电路以及液晶显示器
CN105262057A (zh) * 2015-11-27 2016-01-20 深圳市华星光电技术有限公司 Pmic的保护电路、显示面板及显示装置
CN105388957A (zh) * 2015-12-21 2016-03-09 深圳市华星光电技术有限公司 一种反馈控制电路及电源管理模块

Also Published As

Publication number Publication date
US20180166027A1 (en) 2018-06-14
US10210824B2 (en) 2019-02-19
CN105958985B (zh) 2018-12-11
CN105958985A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2015113344A1 (zh) 电池充电装置及电池充电保护控制方法
WO2019015168A1 (zh) 一种电平位移电路及显示装置
WO2016074269A1 (zh) 一种扫描驱动电路
WO2017215040A1 (zh) 栅极驱动电路及液晶显示装置
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
WO2015113333A1 (zh) 电子设备充电控制装置及方法
WO2018053957A1 (zh) 扫描驱动电路及显示装置
WO2017015982A1 (zh) 一种液晶显示面板及装置
WO2012122701A1 (zh) 一种电流检测电路及其控制电路和电源转换电路
WO2017219659A1 (zh) 适配器
WO2019019503A1 (zh) 一种像素补偿电路
WO2015113341A1 (zh) 电子设备充电装置及其电源适配器
WO2016187893A1 (zh) 一种多相位时钟产生电路及液晶显示面板
WO2017054260A1 (zh) 一种显示装置、tft基板及goa驱动电路
WO2019109454A1 (zh) 一种 goa 电路
WO2013023385A1 (zh) 用于锁相环的高速占空比调节和双端转单端电路
WO2014114008A1 (zh) 电流调节装置及其调节方法
WO2020056870A1 (zh) 驱动电路、升压芯片及显示装置
WO2020048009A1 (zh) 过流保护驱动电路及显示装置
CN101097456A (zh) 电压调节器
WO2017020327A1 (zh) 一种扫描驱动电路
WO2020087601A1 (zh) 电源电路、显示面板的驱动电路及显示装置
WO2018027502A1 (zh) 开关机电路与雾滴检测仪
WO2017045216A1 (zh) 一种液晶显示装置及其栅极驱动电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15305211

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902112

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902112

Country of ref document: EP

Kind code of ref document: A1