WO2020087601A1 - 电源电路、显示面板的驱动电路及显示装置 - Google Patents

电源电路、显示面板的驱动电路及显示装置 Download PDF

Info

Publication number
WO2020087601A1
WO2020087601A1 PCT/CN2018/117061 CN2018117061W WO2020087601A1 WO 2020087601 A1 WO2020087601 A1 WO 2020087601A1 CN 2018117061 W CN2018117061 W CN 2018117061W WO 2020087601 A1 WO2020087601 A1 WO 2020087601A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
voltage
power
output
switch module
Prior art date
Application number
PCT/CN2018/117061
Other languages
English (en)
French (fr)
Inventor
何怀亮
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/427,325 priority Critical patent/US10516334B1/en
Publication of WO2020087601A1 publication Critical patent/WO2020087601A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present application relates to the technical field of power supply modules, in particular to a power supply circuit, a drive circuit of a display panel, and a display device.
  • the main purpose of the present application is to propose a power circuit, which aims to reduce the temperature of the existing power circuit.
  • the power supply circuit includes:
  • the power chip has a first control terminal and a second control terminal; the power chip outputs a first control signal through the first control terminal and a second control signal through the second control terminal;
  • a voltage divider module the input end of the voltage divider module is connected to the power input end; the voltage divider module divides and outputs the power input from the power input end;
  • a power converter the input end of the power converter is connected to the output end of the voltage dividing module, the controlled end of the power converter is connected to the first control end of the power chip; the power converter, Performing voltage conversion on the power supply voltage output by the voltage dividing module according to the first control signal and outputting it;
  • a first switch module and a power output end the input end of the first switch module is connected to the output end of the power converter, the output end of the first switch module is connected to the power output end, the first The controlled end of the switch module is connected to the second control end of the power chip; the first switch module adjusts the magnitude of the power voltage output by the power converter according to the second control signal.
  • the voltage-dividing module includes a common output terminal and a plurality of voltage-dividing resistors; the plurality of voltage-dividing resistors are connected in series between the power input terminal and ground in series, and between the two voltage-dividing resistors connected to each other
  • the connection node of constitutes a voltage-dividing output terminal, and the common output terminal is individually connected to any one of the voltage-dividing output terminals through a conductive member.
  • the conductive member is a resistor or a metal wire.
  • the number of the common output terminals is set corresponding to the number of the connecting terminals.
  • each of the common output terminals is adjacent to and corresponds to a position of the connecting terminal.
  • the power converter includes a second switch module and an energy storage module, the input terminal of the second switch module is connected to the output terminal of the voltage dividing module, and the output terminal of the second switch module is The output end of the power converter, the common connection end of the second switch module is connected to the output end of the energy storage module; the input end of the energy storage module is the controlled end of the power converter.
  • the second switch module includes a first diode and a second diode, an anode of the first diode is an input end of the second switch module, and the first diode Is connected to the anode of the second diode, the connection node of the first diode and the second diode is the common connection terminal of the second switch module, and the second diode
  • the cathode of the tube is the output of the second switch module
  • the energy storage module is the first capacitor
  • the first end of the first capacitor is the input of the energy storage module
  • the second end of the first capacitor is The output end of the energy storage module.
  • the first switch module is packaged in the power chip.
  • the power supply circuit further includes a first voltage stabilizing module, the input / output terminal of the first voltage stabilizing module is connected to the input terminal of the first switching module and the output terminal of the second switching module, respectively .
  • the first voltage stabilizing module is a second capacitor
  • the first end of the second capacitor is an input / output end of the first voltage stabilizing module
  • the second end of the second capacitor is grounded.
  • the energy storage module is a first capacitor, the first end of the first capacitor is the input end of the energy storage module, and the second end of the first capacitor is the output end of the energy storage module.
  • the first switch module includes a first transistor and a tenth resistor, the base of the first transistor is connected to the first end of the tenth resistor, and the first transistor
  • the connection node of the base of the first electrode and the first end of the tenth resistor is the controlled end of the first switch module, and the collector of the first transistor is the output end of the first switch module.
  • the emitter of the first transistor is connected to the second end of the tenth resistor, and the connection node between the emitter of the first transistor and the second end of the tenth resistor is the first switch module Input.
  • the power supply circuit further includes a second voltage stabilizing module and a third voltage stabilizing module, the first end of the second voltage stabilizing module is connected to the output end of the first switch module, and the second stable The second end of the voltage regulator module is grounded; the first end of the third voltage regulator module is connected to the output terminal of the voltage divider module, and the second end of the third voltage regulator module is grounded.
  • the present application also provides a driving circuit for a display panel, including the power supply circuit as described above.
  • the present application also proposes a display device including the drive circuit of the display panel as described above.
  • a power input terminal, a power output terminal, a power chip, a power converter, a first switch module, and a voltage divider module are provided in the power circuit.
  • the power chip outputs a first control signal through the first control terminal and outputs a second control signal through the second control terminal.
  • the power converter adjusts the output first voltage value according to the first control signal
  • the first switch module performs voltage conversion on the power supply voltage output by the voltage dividing module and outputs the voltage.
  • the voltage divider module adjusts the size of the power supply voltage output by the power converter, so that the flow through the first switch module decreases, thereby achieving the purpose of reducing the temperature of the power supply chip.
  • FIG. 1 is a schematic diagram of a module of a power circuit of this application
  • FIG. 2 is a schematic circuit diagram of the power circuit of the present application.
  • first”, “second”, etc. are for descriptive purposes only, and cannot be understood as instructions or hints Its relative importance or implicitly indicates the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of those skilled in the art to realize. When the combination of technical solutions contradicts or cannot be realized, it should be considered that the combination of such technical solutions does not exist , Nor within the scope of protection required by this application.
  • the present application proposes a power supply circuit for solving the technical problem of excessively high temperature of the existing power supply circuit.
  • the power circuit includes a power input terminal 101, a power output terminal 106, a power chip 105 having a first control terminal and a second control terminal, a power converter 103, a first switch module 104, and a voltage divider module 102.
  • the input terminal of the voltage dividing module 102 is connected to the power input terminal 101, the input terminal of the power converter 103 is connected to the output terminal of the voltage dividing module 102, and the controlled terminal of the power converter 103 is connected to the first control terminal of the power chip 105,
  • the input terminal of the first switch module 104 is connected to the output terminal of the power converter 103, the output terminal of the first switch module 104 is connected to the power output terminal 106, and the controlled terminal of the first switch module 104 is connected to the second control of the power chip 105 ⁇ ⁇ End connection.
  • the power chip 105 outputs the first control signal through the first control terminal and outputs the second control signal through the second control terminal.
  • the voltage dividing module 102 divides and outputs the power input from the power input terminal 101, and the power converter 103 According to the first control signal, the power voltage output by the voltage divider module 102 is converted after voltage conversion, and finally, the first switch module 104 adjusts the size of the power voltage output by the power converter 103 according to the second control signal to reduce the first
  • the voltage drop of the switch module 104 reduces the temperature of the first switch module 104 which is easy to generate heat, and achieves the effect of reducing the temperature of the power supply circuit.
  • the first control signal output by the power chip 105 adjusts the magnitude of the first voltage value output by the power converter 103, and the second control signal output by the power chip 105 adjusts the magnitude of the second voltage value output by the first switch module 104, thereby reducing the
  • the voltage difference of a switch module 104 causes the first switch module 104 to generate less heat, which can reduce the temperature of the first switch module 104 and thus the temperature of the power circuit. It should be noted that if the first switch module 104 is integrated into the power chip 105, the temperature raised by the integration of the first switch module 104 into the power chip 105 can also be reduced, thereby protecting the power chip 105 and the power chip 105 The power supply circuit achieves a good cooling effect.
  • the driving object of the power circuit is LCD (Liquid Crystal Display) , LCD driver board as an example, in the LCD driver board the first switch module 104 is an electronic switch, TFT (Thin Film Transistor (thin film transistor) is defined as VGH.
  • VGH the turn-on voltage of the TFT
  • LX the high level of the second voltage value
  • VI2 the voltage of the voltage dividing module 102
  • VT the voltage difference between the input terminal and the output terminal of the first switch module 104.
  • the voltage of the first switch module 104 can be changed by changing the voltage of the voltage divider module 102, thereby reducing the voltage of the first switch module 104 to reduce the temperature of the first switch module 104, from the hardware level To achieve a good cooling effect.
  • the voltage divider module 102 includes a common output terminal and a plurality of voltage divider resistors; the plurality of voltage divider resistors are connected in series between the power input terminal 101 and ground in series, and a connection node between the two voltage divider resistors connected A voltage-dividing output terminal, the common output terminal is individually connected to any voltage-dividing output terminal through a conductive member.
  • the voltage dividing effect is different, so in the specific production process, you can choose to connect different ports according to different needs, and only need to produce the corresponding
  • the voltage-dividing resistor can achieve better voltage-dividing effect and save materials.
  • the number of output terminals of the voltage dividing module 102 can also be increased, and various options can be added.
  • the output terminals of different voltage dividing modules 102 correspond to different voltage reducing ranges, and selecting an appropriate voltage reducing range can make the first switching module
  • the pressure drop of 104 is smaller to achieve a better cooling effect.
  • the pressure drop range and the output end of the voltage divider module 102 are selected by experiment.
  • different products correspond to different output terminals of the voltage dividing module 102.
  • the conductive member is a resistor or a metal wire.
  • the number of common output terminals corresponds to the number of connection terminals. On the circuit substrate carried by the voltage dividing module 102, each common output terminal is adjacent to and corresponds to a position of a connection terminal.
  • the voltage dividing module 102 includes a first resistor R1, a second resistor R2, a third resistor R3 and a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8 and a first Nine resistors R9.
  • the common output terminal includes a first output terminal, a second output terminal, a third output terminal, and a fourth output terminal.
  • the first terminal of the first resistor R1 is the first output terminal of the voltage divider module 102.
  • the first resistor The second end of R1, the first end of the second resistor R2 and the first end of the third resistor R3 are connected.
  • the second terminal of the second resistor R2 is connected to the power input terminal 101
  • the first terminal of the fourth resistor R4 is connected to the second terminal of the third resistor R3
  • the second terminal of the fourth resistor R4 is the second terminal of the voltage divider module 102 Output.
  • the first terminal of the sixth resistor R6 is the third output terminal of the voltage divider module 102
  • the second terminal of the sixth resistor R6, the first terminal of the fifth resistor R5 and the first terminal of the seventh resistor R7 are connected
  • the second terminal of R5 is connected to the power input terminal 101.
  • the first terminal of the eighth resistor R8 and the second terminal of the seventh resistor R7 are connected to the first terminal of the ninth resistor R9.
  • the second terminal of the eighth resistor R8 is the fourth output terminal of the voltage dividing module 102.
  • the ninth resistor The second terminal of R9 is grounded, and the third output terminal of the voltage dividing module 102 is connected to the input terminal of the power converter 103.
  • the fourth output terminal of the voltage dividing module 102 is connected to the input terminal of the power converter 103.
  • the voltage dividing module 102 When the input terminal of the voltage dividing module 102 is connected to the first output terminal of the voltage dividing module 102, the voltage dividing module 102 is composed of a first resistor R1 and a second resistor R2, and the voltage input by the power input terminal 101 passes through the second resistor R2, the third resistor R3, the fifth resistor R5, the seventh resistor R7 and the ninth resistor R9 divide the voltage, when the input terminal of the voltage dividing module 102 is connected to the first output terminal of the voltage dividing module 102, the output voltage is the second The resistor R2 is divided into voltages and output via the first resistor R1.
  • the output voltage is the divided voltage of the second resistor R2 and the third resistor R3, and is output via the fourth resistor R4.
  • the output voltage is the divided voltage of the second resistor R2, the third resistor R3, and the fifth resistor R5, and is output via the sixth resistor R6.
  • the output voltage is the divided voltage of the second resistor R2, the third resistor R3, the fifth resistor R5, and the seventh resistor R7.
  • the resistance values of the first resistor R1, the fourth resistor R4, the sixth resistor R6, and the eighth resistor R8 may be 0 ohms.
  • the first resistor R1, the fourth resistor R4, the sixth resistor R6, and the eighth resistor R8 play a role of connection and conduction, so they can be 0-ohm resistors.
  • the power converter 103 includes a second switch module 1031 and an energy storage module 1032, the input terminal of the second switch module 1031 is connected to the output terminal of the voltage dividing module 102, and the output terminal of the second switch module 1031 is a power converter At the output end of 103, the common connection end of the second switch module 1031 is connected to the output end of the energy storage module 1032; the input end of the energy storage module 1032 is the controlled end of the power converter 103.
  • the second switch module 1031 is one of two switches. When the control signal input from the common connection terminal of the second switch module 1031 is high, the output terminal of the second switch module 1031 is connected to the input terminal of the first switch module 104 The common connection terminal of the second switch module 1031 is connected to the output terminal of the energy storage module 1032, and the energy storage module 1032 is discharged. When the control signal input to the common connection terminal of the second switch module 1031 is low, the input terminal of the second switch module 1031 is connected to the output terminal of the voltage dividing module 102, and the common connection terminal of the second switch module 1031 is connected to the energy storage module The output of 1032 is connected to charge the energy storage module 1032.
  • the voltage output by the power converter 103 is stable at a value, so that the value input to the first switch module 104 is stable, and the voltage drop or boost of the power converter 103 needs to be compensated, so that the Excessive increase and decrease amplitude causes heat generation, thereby stabilizing the power of the first switch module 104 and achieving a good cooling effect.
  • the power supply circuit further includes a first voltage stabilizing module 107, and the input / output terminal of the first voltage stabilizing module 107 is connected to the output terminal of the second switch module 1031 and the input terminal of the first switch module 104, respectively.
  • the power converter 103 charges the first voltage regulator module 107.
  • the control signal input to the common connection terminal of the second switch module 1031 is at a low level, and the first voltage regulator module 107 is discharged. In this way, a better effect of stabilizing the output of the power converter 103 can be achieved, making the circuit operation more smooth and stable.
  • the energy storage module 1032 is a first capacitor C1, the first end of the first capacitor C1 is the input end of the energy storage module 1032, and the second end of the first capacitor C1 is the output end of the energy storage module 1032.
  • the energy storage module 1032 is the first capacitor C1
  • the working delay is relatively small, so that the overall response of the circuit is rapid, and the role of direct current can be isolated, so that the input to the second switch module 1031 is alternating current, which can directly control the second switch
  • the corresponding path of module 1031 is opened and closed, and at the same time, the first capacitor C1 can also store the corresponding DC power when there is DC power, and realize the voltage difference between the corresponding DC power input end and the other end, so that the voltage value of the DC power input end It is the sum of the direct current voltage value and the alternating current voltage value, so as to realize the voltage stabilizing effect.
  • the first voltage stabilizing module 107 is a second capacitor C2, the first end of the second capacitor C2 is the input / output end of the first voltage stabilizing module 107, and the second end of the second capacitor C2 is grounded.
  • the output voltage after passing through the power converter 103 is DC power
  • the second capacitor C2 stores the corresponding DC power, so that the voltage value between the input / output terminal and the ground terminal of the second capacitor C2 is a DC voltage, so that the power converter
  • the output voltage of 103 is stable, so as to achieve a better voltage regulation effect.
  • the second switch module 1031 includes a first diode D1 and a second diode D2, the anode of the first diode D1 is the input terminal of the second switch module 1031, and the cathode of the first diode D1 It is connected to the anode of the second diode D2, the connection node of the first diode D1 and the second diode D2 is the common connection terminal of the second switch module 1031, and the cathode of the second diode D2 is the second switch The output of module 1031.
  • the second diode D2 When the common connection terminal of the second switch module 1031 is at a positive level, the second diode D2 is turned on. When the common connection terminal of the second switch module 1031 is at a negative level, the second diode D2 is turned off. Setting the first diode D1 and the second diode D2 here realizes the function of selecting one of the two switches. This process does not require additional control signal control, and can be achieved only by means of a signal supplying the rated voltage in the circuit. Control, the control process is simple and easy to implement. and. Compared with the prior art, the control process is easier to control, and together with the energy storage module 1032 and the first voltage stabilizing module 107 in this application, a better technical effect is achieved.
  • the energy storage module 1032 is a first capacitor C1, the first end of the first capacitor C1 is an input end of the energy storage module, and the second end of the first capacitor C1 is an output end of the energy storage module.
  • the first voltage stabilizing module 107 is the second capacitor C2, the first end of the second capacitor C2 is the input / output terminal of the first voltage stabilizing module 107, and the second end of the second capacitor C2 is grounded.
  • the first capacitor C1 When the first capacitor C1 stores energy, the second capacitor C2 releases energy. Conversely, when the first capacitor C1 releases energy, the second capacitor C2 stores energy.
  • the combination of the two has the effect of stabilizing the output voltage of the circuit where the first capacitor C1 and the second capacitor C2 are located.
  • the realized structure is simple, the voltage stabilizing effect is good, the response is fast, and it has good practicability.
  • the cost for industrial production is also low, which is suitable for mass production.
  • the first capacitor C1 functions to store charge and boost voltage.
  • the first switching module 104 includes a first transistor Q1 and a tenth resistor R10, the base of the first transistor Q1 is connected to the first end of the tenth resistor R10, and the base of the first transistor Q1
  • the connection node between the pole and the first end of the tenth resistor R10 is the controlled end of the first switch module 104
  • the collector of the first transistor Q1 is the output end of the first switch module 104
  • the The emitter is connected to the second end of the tenth resistor R10
  • the connection node between the emitter of the first transistor Q1 and the second end of the tenth resistor R10 is the input end of the first switch module 104.
  • the voltage between the emitter and the base of the first transistor Q1 can be adjusted by adjusting the current of the base So that the first transistor Q1 can adjust the output voltage according to needs, so that after the first transistor Q1 is divided, the output voltage can be adjusted only by adjusting the base current without replacing other tubes. It makes the working process easier and more convenient to use.
  • the presence of the tenth resistor R10 causes a voltage difference between the base and the emitter of the first transistor Q1 to reach the conduction condition, and keeps the first transistor Q1 when the first transistor Q1 is turned off The closed state is stable.
  • the power supply circuit further includes a second voltage stabilizing module 108 and a third voltage stabilizing module 109, the first end of the second voltage stabilizing module 108 is connected to the output end of the first switching module 104, and the second voltage stabilizing module 108 The second end is grounded, the first end of the third voltage stabilizing module 109 is connected to the output end of the voltage dividing module 102, and the second end of the third voltage stabilizing module 109 is grounded.
  • the second voltage stabilizing module 108 and the third voltage stabilizing module 109 are connected to the circuit, and respectively play a role of stabilizing the voltage input to the power converter 103 and the voltage at the output end of the first switching module 104.
  • the operation of the entire circuit is smoother.
  • the second voltage stabilizing module is a third capacitor C3
  • the third voltage stabilizing module is a fourth capacitor C4.
  • the power chip 105 outputs a first control signal through the first control terminal, and outputs a second control signal through the second control terminal.
  • the first control signal is a square wave voltage switched between high and low levels.
  • the first When the control signal is low (0V) both the first diode D1 and the second diode D2 are turned on, and the voltage at the power input terminal 101 is divided by the voltage dividing resistor to charge the first capacitor C1 and the second capacitor C2 At this time, the voltages of the first terminal of the first capacitor C1 and the first terminal of the second capacitor C2 are both the output voltage VI2 of the voltage dividing module 102.
  • the first control signal When the first control signal is high (set high level to VLX), the voltage at the second terminal of the first capacitor C1 is VLX + VI2, at this time the first diode D1 is turned off, and the second diode D2 is turned on , The first capacitor C1 charges the second capacitor C2, and the voltage at the first end of the second capacitor C2 becomes VLX + VI2.
  • the above loop makes the voltage of the first terminal of the second capacitor C2 always be VLX + VI2. In this way, the effect of stable voltage division is achieved.
  • the output voltage of the first transistor Q1 is controlled by the second control signal output by the power chip 105.
  • the power chip 105 collects that the output first transistor Q1 is too high, that is, the power circuit voltage When it is too high, a new control signal is output to the base of the first transistor Q1 to form feedback.
  • the base current of the first transistor Q1 is adjusted, and then the voltage across the emitter and collector of the first transistor Q1 is adjusted, so that the power supply circuit is always stable at the set value, so that the power supply circuit can achieve a stable Output and achieve good cooling effect.
  • the present application also proposes a driving circuit for a display panel, including the power supply circuit as described above.
  • the driving circuit of the display panel of the present application includes all the embodiments of the above power supply circuit, the driving circuit of the display panel of the present application has all the technical effects of the above power supply circuit, which will not be repeated here.
  • the present application also proposes a display device including the drive circuit of the display panel as described above.
  • the display device of the present application includes all the embodiments of the driving circuit of the display panel described above, the display device of the present application has all the technical effects of the driving circuit of the display panel described above, which will not be repeated here.

Abstract

一种电源电路、显示面板的驱动电路及显示装置,分压模块(102)连接于电源输入端(101)与电源变换器(103)的输入端之间,电源变换器(103)的受控端与电源芯片(105)的第一控制端连接,第一开关模块(104)的输入端与电源变换器(103)的输出端连接,第一开关模块(104)的输出端与电源输出端(106)连接,第一开关模块(104)的受控端与电源芯片(105)的第二控制端连接,此时,分压模块(102)对电源输入端(101)的电源进行分压。

Description

电源电路、显示面板的驱动电路及显示装置
相关申请
本申请要求2018年11月01日申请的,申请号为201821796249.8,名称为“电源电路、显示面板的驱动电路及显示装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电源模块技术领域,特别涉及电源电路、显示面板的驱动电路及显示装置。
背景技术
现有技术中,随着电子技术的发展,各种各样的电子设备越来越多,与此同时,因为供电标准的统一,以及与不同电子设备工作电压的不同,所有的电子设备的电源电路中均会设立一个电源芯片和电子开关来调节和管路输入的电源并输出至应用电路。
大多数电源芯片都会采用电子开关来输出电源进行调节,工作时,电子开关温度较高,温度过高会影响元件性能和寿命。
申请内容
本申请的主要目的是提出一种电源电路,旨在实现降低现有的电源电路温度的目的。
为实现上述目的,本申请提出一种电源电路,所述电源电路包括:
电源输入端;
电源芯片,具有第一控制端和第二控制端;所述电源芯片,通过第一控制端输出第一控制信号,并通过第二控制端输出第二控制信号;
分压模块,所述分压模块的输入端与所述电源输入端连接;所述分压模块,对所述电源输入端输入的电源进行分压后输出;
电源变换器,所述电源变换器的输入端与所述分压模块的输出端连接,所述电源变换器的受控端与所述电源芯片的第一控制端连接;所述电源变换器,根据所述第一控制信号对所述分压模块输出的电源电压进行电压变换后输出;
第一开关模块及电源输出端,所述第一开关模块的输入端与所述电源变换器的输出端连接,所述第一开关模块的输出端与所述电源输出端连接,所述第一开关模块的受控端与所述电源芯片的第二控制端连接;所述第一开关模块,根据所述第二控制信号,对所述电源变换器输出的电源电压进行大小调节。
可选地,所述分压模块包括公共输出端、多个分压电阻;多个分压电阻依次串联连接于所述电源输入端与地之间,相互连接的两所述分压电阻之间的连接节点构成一分压输出端,所述公共输出端通过导电件与任意一个所述分压输出端单独连接。
可选地,所述导电件为电阻或者金属导线。
可选地,所述公共输出端的数量对应所述连接端的数量设置,在所述分压模块所承载的电路基板上,每一所述公共输出端邻近且对应一所述连接端的位置设置。
可选地,所述电源变换器包括第二开关模块和储能模块,所述第二开关模块的输入端与所述分压模块的输出端连接,所述第二开关模块的输出端为所述电源变换器的输出端,所述第二开关模块的公共连接端与所述储能模块的输出端连接;所述储能模块的输入端为所述电源变换器的受控端。
可选地,所述第二开关模块包括第一二极管和第二二极管,所述第一二极管的阳极为所述第二开关模块的输入端,所述第一二极管的阴极与所述第二二极管的阳极连接,所述第一二极管与所述第二二极管的连接节点为所述第二开关模块的公共连接端,所述第二二极管的阴极为所述第二开关模块的输出端所述储能模块为第一电容,所述第一电容的第一端为所述储能模块的输入端,第一电容的第二端为所述储能模块的输出端。
可选地,所述第一开关模块封装于所述电源芯片内。
可选地,所述电源电路还包括第一稳压模块,所述第一稳压模块的输入/输出端分别与所述第一开关模块的输入端及所述第二开关模块的输出端连接。
可选地,所述第一稳压模块为第二电容,所述第二电容的第一端为所述第一稳压模块的输入/输出端,所述第二电容的第二端接地。
可选地,储能模块为第一电容,所述第一电容的第一端为所述储能模块的输入端,第一电容的第二端为所述储能模块的输出端。
可选地,所述第一开关模块包括第一三极管和第十电阻,所述第一三极管的基极与所述第十电阻的第一端连接,所述第一三极管的基极与所述第十电阻的第一端的连接节点为所述第一开关模块的受控端,所述第一三极管的集电极为所述第一开关模块的输出端,所述第一三极管的发射极与所述第十电阻的第二端连接,所述第一三极管的发射极与所述第十电阻的第二端的连接节点为所述第一开关模块的输入端。
可选地,所述电源电路还包括第二稳压模块和第三稳压模块,所述第二稳压模块的第一端与所述第一开关模块的输出端连接,所述第二稳压模块的第二端接地;所述第三稳压模块的第一端与所述分压模块的输出端连接,所述第三稳压模块的第二端接地。
为实现上述目的,本申请还提出一种显示面板的驱动电路,包括如上所述的电源电路。
为实现上述目的,本申请还提出一种显示装置,包括如上所述的显示面板的驱动电路。
本申请通过在电源电路设置电源输入端、电源输出端、电源芯片、电源变换器、第一开关模块和分压模块。其中,所述电源芯片通过第一控制端输出第一控制信号,并通过第二控制端输出第二控制信号,然后,所述电源变换器根据所述第一控制信号调节输出的第一电压值,所述第一开关模块根据所述第二控制信号,对所述分压模块输出的电源电压进行电压变换后输出。最后所述分压模块对所述电源变换器输出的电源电压进行大小调节,使得流经第一开关模块减小,从而达到降低所述电源芯片的温度的目的。本申请解决现有的电源电路温度过高的技术问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电源电路的模块示意图;
图2为本申请电源电路的电路示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种电源电路,用于解决现有的电源电路温度过高的技术问题。
在本申请的一实施例中,电源电路包括电源输入端101、电源输出端106、具有第一控制端和第二控制端的电源芯片105、电源变换器103、第一开关模块104和分压模块102。分压模块102的输入端与电源输入端101连接,电源变换器103的输入端与分压模块102的输出端连接,电源变换器103的受控端与电源芯片105的第一控制端连接,第一开关模块104的输入端与电源变换器103的输出端连接,第一开关模块104的输出端与电源输出端106连接,第一开关模块104的受控端与电源芯片105的第二控制端连接。
其中,电源芯片105通过第一控制端输出第一控制信号,并通过第二控制端输出第二控制信号,分压模块102对电源输入端101输入的电源进行分压后输出,电源变换器103根据第一控制信号对分压模块102输出的电源电压进行电压变换后输出,最后,第一开关模块104根据第二控制信号,对电源变换器103输出的电源电压进行大小调节,以降低第一开关模块104的压降,从而降低容易发热的第一开关模块104的温度,实现降低电源电路的温度的效果。
在上述实施例中, 电源芯片105输出的第一控制信号调节电源变换器103输出的第一电压值的大小,电源芯片105输出的第二控制信号调节第一开关模块104输出的第二电压值的大小,从而降低第一开关模块104的电压差,进而使得第一开关模块104的发热较少,从而可以降低第一开关模块104的温度,进而降低电源电路的温度。需要注意的是,若将第一开关模块104集成于电源芯片105中,还可以降低因第一开关模块104集成于电源芯片105而升高的温度,从而保护了电源芯片105与电源芯片105所在的电源电路,实现了较好的降温效果。
在一实施例中,电源电路的驱动对象以LCD( Liquid Crystal Display ,液晶显示屏)驱动板为例,在LCD驱动板中第一开关模块104为电子开关,TFT(Thin Film Transistor,薄膜晶体管)的开启电压定义为VGH。在本实施例中, VGH(TFT的开启电压)=LX(第二电压值的高电平)+VI2(分压模块102的电压)-VT(第一开关模块104输入端以及输出端之间的压差)。所以在本实施例中,通过改变分压模块102的电压可以改变第一开关模块104的电压,从而减小第一开关模块104的电压,以降低第一开关模块104的温度,从硬件层面上实现良好的降温效果。
可选地,分压模块102包括公共输出端、多个分压电阻;多个分压电阻依次串联连接于电源输入端101与地之间,相互连接的两分压电阻之间的连接节点构成一分压输出端,公共输出端通过导电件与任意一个分压输出端单独连接。
其中,分压模块102的输入端与分压模块102的任意一个分压输出端连接时分压效果不同,因此,在具体生产过程中可以根据不同需要选择连接不同的端口,而且仅需要生产相应的分压电阻即可实现更好的分压效果,还可以节省材料。另外,还可以增加分压模块102的输出端数目,增加多种选择,此时,不同的分压模块102的输出端对应不同的降压范围,选择合适的降压范围可以使得第一开关模块104的压降更小,实现更好的降温效果,具体地选择压降范围与分压模块102的输出端由实验测得。特别注意的是,当选择相应的分压模块102的输出端时,只需要将这个分压模块102的输入端接入电路中,其他分压模块102的输入端空置连接即可。可选地,在生产过程中,不同的产品对应不同的分压模块102的输出端,在生产某一具体地产品时,若测得最适合的分压模块102的输出端时,只需生产对应的分压模块102的输出端与电源变换器103之间的部分,将将对应的分压模块102的输出端与电源变换器103的输入端焊接,如此,可以实现最好范围的分压降温效果的取得,使得生产的产品得到最大限度的降温效果的优化。可选地,导电件为电阻或者金属导线。可选地,公共输出端的数量对应连接端的数量设置,在分压模块102所承载的电路基板上,每一公共输出端邻近且对应一连接端的位置设置。
可选地,分压模块102包括第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8和第九电阻R9,公共输出端包括第一输出端、第二输出端、第三输出端和第四输出端,第一电阻R1的第一端为分压模块102的第一输出端,第一电阻R1的第二端、第二电阻R2的第一端及第三电阻R3的第一端连接。第二电阻R2的第二端与电源输入端101连接,第四电阻R4的第一端与第三电阻R3的第二端连接,第四电阻R4的第二端为分压模块102的第二输出端。第六电阻R6的第一端为分压模块102的第三输出端,第六电阻R6的第二端、第五电阻R5的第一端及第七电阻R7的第一端连接,第五电阻R5的第二端与电源输入端101连接。第八电阻R8的第一端、第七电阻R7的第二端与第九电阻R9的第一端连接,第八电阻R8的第二端为分压模块102的第四输出端,第九电阻R9的第二端接地,分压模块102的第三输出端与电源变换器103的输入端连接。或者,分压模块102的第四输出端与电源变换器103的输入端连接。
其中,当分压模块102的输入端与分压模块102的第一输出端连接时,分压模块102由第一电阻R1和第二电阻R2组成,由电源输入端101输入的电压经由第二电阻R2、第三电阻R3、第五电阻R5、第七电阻R7和第九电阻R9分压,当分压模块102的输入端与分压模块102的第一输出端连接时,输出电压大小为第二电阻R2分压大小,经由第一电阻R1输出。当分压模块102的输入端与分压模块102的第二输出端连接时,输出电压大小为第二电阻R2和第三电阻R3的分压大小,经由第四电阻R4输出。当分压模块102的输入端与分压模块102的第三输出端连接时,输出电压大小为第二电阻R2、第三电阻R3和第五电阻R5的分压大小,经由第六电阻R6输出。当分压模块102的输入端与分压模块102的第四输出端连接时,输出电压大小为第二电阻R2、第三电阻R3、第五电阻R5和第七电阻R7的分压大小,经由第八电阻R8输出。。如此,在具体的电路上实现了连接不同输出端时的不同分压效果,使得分压的过程更加直观和可控。值得注意的是,可以通过调节电阻值大小以及设计更多组分压电阻使得分压效果更好,更为稳定,达到更好的降温效果。可选地,所述第一电阻R1、第四电阻R4、第六电阻R6和第八电阻R8的阻值可为0欧姆。此时第一电阻R1、第四电阻R4、第六电阻R6和第八电阻R8起到连接导通作用,因此可为0欧姆电阻。
可选地,电源变换器103包括第二开关模块1031和储能模块1032,第二开关模块1031的输入端与分压模块102的输出端连接,第二开关模块1031的输出端为电源变换器103的输出端,第二开关模块1031的公共连接端与储能模块1032的输出端连接;储能模块1032的输入端为电源变换器103的受控端。
其中,第二开关模块1031为二选一开关,当第二开关模块1031的公共连接端输入的控制信号为高电平时,第二开关模块1031的输出端与第一开关模块104的输入端连接,第二开关模块1031的公共连接端与储能模块1032的输出端连接,储能模块1032放电。当第二开关模块1031的公共连接端输入的控制信号为低电平时,第二开关模块1031的输入端与分压模块102的输出端连接,第二开关模块1031的公共连接端与储能模块1032的输出端连接,从而给储能模块1032充电。从而可以保证电源变换器103输出的电压稳定在一个数值,从而使得输入第一开关模块104的数值稳定,不会因为需要补偿电源变换器103的降压或者升压,使得第一开关模块104的升降幅度过大而导致发热,从而稳定第一开关模块104的功率,达到良好的降温效果。
可选地,电源电路还包括第一稳压模块107,第一稳压模块107的输入/输出端分别与第二开关模块1031的输出端及第一开关模块104的输入端连接。
其中,当第二开关模块1031的公共连接端输入的控制信号为高电平时,电源变换器103给第一稳压模块107充电。第二开关模块1031的公共连接端输入的控制信号为低电平,第一稳压模块107放电。如此,可以实现较好的稳定电源变换器103输出的效果,使得电路运行更加流畅和稳定。
可选地,储能模块1032为第一电容C1,第一电容C1的第一端为储能模块1032的输入端,第一电容C1的第二端为储能模块1032的输出端。
其中,当储能模块1032为第一电容C1时,工作时延比较小,使得电路整体反应迅速,还可以隔绝直流电的作用,使得输入第二开关模块1031的为交流电,可以直接控制第二开关模块1031相应通路的开启与关闭,同时第一电容C1还可以在有直流电的时候,第一电容C1存储相应的直流电,在相应直流电输入端与另一端实现电压差,从而使得直流电输入端的电压值为直流电电压值与交流电电压值之和,从而实现稳压效果。
可选地,第一稳压模块107为第二电容C2,第二电容C2的第一端为第一稳压模块107的输入/输出端,第二电容C2的第二端接地。
其中,在经过电源变换器103后输出的电压为直流电,同时第二电容C2存储相应直流电,从而使得第二电容C2输入/输出端与接地端之间的电压值为直流电压,使得电源变换器103的输出端电压稳定,从而实现较好稳压效果。
可选地,第二开关模块1031包括第一二极管D1和第二二极管D2,第一二极管D1的阳极为第二开关模块1031的输入端,第一二极管D1的阴极与第二二极管D2的阳极连接,第一二极管D1与第二二极管D2的连接节点为第二开关模块1031的公共连接端,第二二极管D2的阴极为第二开关模块1031的输出端。
其中,当第二开关模块1031的公共连接端为正电平时,第二二极管D2导通。当第二开关模块1031的公共连接端为负电平时,第二二极管D2断开。在此处设置第一二极管D1和第二二极管D2实现了二选一开关的功能,这个过程无需额外的控制信号控制,仅仅借助于电路中的一个供给额定电压的信号即可实现控制,控制过程简单,容易实现。而且。控制的过程相比于现有技术来说,比较容易控制,和本申请中的储能模块1032和第一稳压模块107一起实现了较好的技术效果。
可选地,储能模块1032为第一电容C1,第一电容C1的第一端为储能模块的输入端,第一电容C1的第二端为储能模块的输出端。第一稳压模块107为第二电容C2,第二电容C2的第一端为第一稳压模块107的输入/输出端,第二电容C2的第二端接地。
其中,在第一电容C1储能时,第二电容C2释放能量。相反的,在第一电容C1释放能量时,第二电容C2储存能量。两者结合作用,起到了稳定第一电容C1和第二电容C2所在电路的输出电压的效果。实现的结构简单,稳压效果较好,反应快速,具备良好的实用性,用于工业化生产成本也较低,适宜大批量生产。此时第一电容C1起到存储电荷和抬升电压的作用。
可选地,第一开关模块104包括第一三极管Q1和第十电阻R10,第一三极管Q1的基极与第十电阻R10的第一端连接,第一三极管Q1的基极与第十电阻R10的第一端的连接节点为第一开关模块104的受控端,第一三极管Q1的集电极为第一开关模块104的输出端,第一三极管Q1的发射极与第十电阻R10的第二端连接,第一三极管Q1的发射极与第十电阻R10的第二端的连接节点为第一开关模块104的输入端。
其中,当第一三极管Q1的基极的电压使得第一三极管Q1导通时,可以通过调节基极的电流去调节第一三极管Q1的发射极与基极之间的电压,使得第一三极管Q1可以根据需要调节输出电压的大小,从而使得第一三极管Q1被分压后,无需通过更换其他管子,仅仅通过调节基极电流便可实现输出电压的调节,使得工作过程更加简单,使用起来更为方便。同时,第十电阻R10的存在使得第一三极管Q1的基极与发射极之间产生压差,达到导通条件,并在第一三极管Q1关闭时,保持第一三极管Q1的关闭状态稳定。
可选地,电源电路还包括第二稳压模块108和第三稳压模块109,第二稳压模块108的第一端与第一开关模块104的输出端连接,第二稳压模块108的第二端接地,第三稳压模块109的第一端与分压模块102的输出端连接,第三稳压模块109的第二端接地。
其中,第二稳压模块108和第三稳压模块109接入电路中,分别起到稳定输入电源变换器103的电压和第一开关模块104的输出端的电压的作用。从而确保电源电路输出的电压达到驱动外接用电器的电压大小,使得整个电路的运行更加流畅。可选地,第二稳压模块为第三电容C3,第三稳压模块为第四电容C4。
以下结合图1、2对本申请的原理进行说明:
电源芯片105通过第一控制端输出第一控制信号,并通过第二控制端输出第二控制信号,第一控制信号是一个高低电平切换的方波电压,当电路为初始状态时,第一控制信号为低电平时(0V),第一二极管D1和第二二极管D2都导通,电源输入端101电压经过分压电阻分压后对第一电容C1和第二电容C2充电,此时第一电容C1的第一端和第二电容C2的第一端的电压均为分压模块102输出电压VI2。
当第一控制信号高电平时(设高电平为VLX),第一电容C1的第二端的电压为VLX+VI2,此时第一二极管D1断开,第二二极管D2导通,第一电容C1给第二电容C2充电,第二电容C2的第一端的电压变为VLX+VI2。
当第一控制信号再为低电平时,第一二极管D1的导通,第二二极管D2断开,第二电容C2的第一端的电压靠第二电容C2维持在VLX+VI2。
当第一控制信号再为高电平时,此时第一二极管D1断开,第二二极管D2导通,第二电容C2的第一端的电压再充电依然为VLX+VI2。
如上循环,使得第二电容C2的第一端的电压始终为VLX+VI2。如此实现稳定分压的效果,此时第一三极管Q1输出电压由电源芯片105输出的第二控制信号控制,当电源芯片105采集到输出第一三极管Q1过高,即电源电路电压过高时,输出新的控制信号给第一三极管Q1的基极,形成反馈。从而调整第一三极管Q1的基极电流,进而调整第一三极管Q1的发射极和集电极之间的跨压,使电源电路一直稳定在设定值,从而电源电路可以实现稳定的输出,并达到良好的降温效果。
以上阐述了经由不同的分压支路实现的分压效果的工作过程,,从电路上实现了对电源电路的降温,能在含有开关模块的电源电路中使用,结构简单,实现的效果好,具有极高的经济价值。
为了解决上述问题,本申请还提出一种显示面板的驱动电路,包括如上所述的电源电路。
值得注意的是,因为本申请显示面板的驱动电路包含了上述电源电路的全部实施例,因此本申请显示面板的驱动电路具有上述电源电路的所有技术效果,此处不再赘述。
为了解决上述问题,本申请还提出一种显示装置,包括如上所述的显示面板的驱动电路。
值得注意的是,因为本申请显示装置包含了上述显示面板的驱动电路的全部实施例,因此本申请显示装置具有上述显示面板的驱动电路的所有技术效果,此处不再赘述。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种电源电路,其中,所述电源电路包括:
    电源输入端;
    电源芯片,具有第一控制端和第二控制端;所述电源芯片,通过第一控制端输出第一控制信号,通过第二控制端输出第二控制信号;
    分压模块,所述分压模块的输入端与所述电源输入端连接;所述分压模块,对所述电源输入端输入的电源进行分压后输出;
    电源变换器,所述电源变换器的输入端与所述分压模块的输出端连接,所述电源变换器的受控端与所述电源芯片的第一控制端连接;所述电源变换器,根据所述第一控制信号对所述分压模块输出的电源电压进行电压变换后输出;
    第一开关模块及电源输出端,所述第一开关模块的输入端与所述电源变换器的输出端连接,所述第一开关模块的输出端与所述电源输出端连接,所述第一开关模块的受控端与所述电源芯片的第二控制端连接;所述第一开关模块,根据所述第二控制信号,对所述电源变换器输出的电源电压进行大小调节。
  2. 如权利要求1所述的电源电路,其中,所述分压模块包括公共输出端、多个分压电阻;多个分压电阻依次串联连接于所述电源输入端与地之间,相互连接的两所述分压电阻之间的连接节点构成一分压输出端,所述公共输出端通过导电件与任意一个所述分压输出端单独连接。
  3. 如权利要求2所述的电源电路,其中,所述导电件为电阻或者金属导线。
  4. 如权利要求2所述的电源电路,其中,所述公共输出端的数量对应所述连接端的数量设置,在所述分压模块所承载的电路基板上,每一所述公共输出端邻近且对应一所述连接端的位置设置。
  5. 如权利要求1所述的电源电路,其中,所述电源变换器包括第二开关模块和储能模块,所述第二开关模块的输入端与所述分压模块的输出端连接,所述第二开关模块的输出端为所述电源变换器的输出端,所述第二开关模块的公共连接端与所述储能模块的输出端连接;所述储能模块的输入端为所述电源变换器的受控端。
  6. 如权利要求5所述的电源电路,其中,所述第二开关模块包括第一二极管和第二二极管,所述第一二极管的阳极为所述第二开关模块的输入端,所述第一二极管的阴极与所述第二二极管的阳极连接,所述第一二极管与所述第二二极管的连接节点为所述第二开关模块的公共连接端,所述第二二极管的阴极为所述第二开关模块的输出端。
  7. 如权利要求1所述的电源电路,其中,所述第一开关模块封装于所述电源芯片内。
  8. 如权利要求1所述的电源电路,其中,所述第一开关模块包括第一三极管和第十电阻,所述第一三极管的基极与所述第十电阻的第一端连接,所述第一三极管的基极与所述第十电阻的第一端的连接节点为所述第一开关模块的受控端,所述第一三极管的集电极为所述第一开关模块的输出端,所述第一三极管的发射极与所述第十电阻的第二端连接,所述第一三极管的发射极与所述第十电阻的第二端的连接节点为所述第一开关模块的输入端。
  9. 如权利要求5所述的电源电路,其中,所述储能模块为第一电容,所述第一电容的第一端为所述储能模块的输入端,所述第一电容的第二端为所述储能模块的输出端。
  10. 如权利要求1所述的电源电路,其中,所述电源电路还包括第一稳压模块,所述第一稳压模块的输入/输出端分别与所述第一开关模块的输入端连接,所述第一稳压模块的输入/输出端分别与所述第二开关模块的输出端连接。
  11. 如权利要求10所述的电源电路,其中,所述第一稳压模块包括第二电容,所述第二电容的第一端为所述第一稳压模块的输入/输出端,所述第二电容的第二端接地。
  12. 如权利要求1所述的电源电路,其中,所述电源电路还包括第二稳压模块和第三稳压模块,所述第二稳压模块的第一端与所述第一开关模块的输出端连接,所述第二稳压模块的第二端接地;所述第三稳压模块的第一端与所述分压模块的输出端连接,所述第三稳压模块的第二端接地。
  13. 如权利要求12所述的电源电路,其中,第二稳压模块为第三电容,第三稳压模块为第四电容。
  14. 一种显示面板的驱动电路,其中,所述显示面板的驱动电路包括电源电路,所述电源电路包括:
    电源输入端;
    电源芯片,具有第一控制端和第二控制端;所述电源芯片,通过第一控制端输出第一控制信号,通过第二控制端输出第二控制信号;
    分压模块,所述分压模块的输入端与所述电源输入端连接;所述分压模块,对所述电源输入端输入的电源进行分压后输出;
    电源变换器,所述电源变换器的输入端与所述分压模块的输出端连接,所述电源变换器的受控端与所述电源芯片的第一控制端连接;所述电源变换器,根据所述第一控制信号对所述分压模块输出的电源电压进行电压变换后输出;
    第一开关模块及电源输出端,所述第一开关模块的输入端与所述电源变换器的输出端连接,所述第一开关模块的输出端与所述电源输出端连接,所述第一开关模块的受控端与所述电源芯片的第二控制端连接;所述第一开关模块,根据所述第二控制信号,对所述电源变换器输出的电源电压进行大小调节。
  15. 如权利要求14所述的显示面板的驱动电路,其中,所述分压模块包括公共输出端和多个分压电阻;多个所述分压电阻依次串联连接于所述电源输入端与地之间,相互连接的两所述分压电阻之间的连接节点构成一分压输出端,所述公共输出端通过导电件与任意一个所述分压输出端单独连接。
  16. 如权利要求15所述的显示面板的驱动电路,其中,导电件为电阻或者金属导线。
  17. 如权利要求15所述的显示面板的驱动电路,其中,所述公共输出端的数量对应所述连接端的数量设置,在所述分压模块所承载的电路基板上,每一所述公共输出端邻近且对应一所述连接端的位置设置。
  18. 如权利要求14所述的显示面板的驱动电路,其中,所述电源变换器包括第二开关模块和储能模块,所述第二开关模块的输入端与所述分压模块的输出端连接,所述第二开关模块的输出端为所述电源变换器的输出端,所述第二开关模块的公共连接端与所述储能模块的输出端连接;所述储能模块的输入端为所述电源变换器的受控端。
  19. 如权利要求18所述的显示面板的驱动电路,其中,所述第二开关模块包括第一二极管和第二二极管,所述第一二极管的阳极为所述第二开关模块的输入端,所述第一二极管的阴极与所述第二二极管的阳极连接,所述第一二极管与所述第二二极管的连接节点为所述第二开关模块的公共连接端,所述第二二极管的阴极为所述第二开关模块的输出端。
  20. 一种显示装置,其中,包括显示面板的驱动电路,所述显示面板的驱动电路包括电源电路,所述电源电路包括:
    电源输入端;
    电源芯片,具有第一控制端和第二控制端;所述电源芯片,通过第一控制端输出第一控制信号,通过第二控制端输出第二控制信号;
    分压模块,所述分压模块的输入端与所述电源输入端连接;所述分压模块,对所述电源输入端输入的电源进行分压后输出;
    电源变换器,所述电源变换器的输入端与所述分压模块的输出端连接,所述电源变换器的受控端与所述电源芯片的第一控制端连接;所述电源变换器,根据所述第一控制信号对所述分压模块输出的电源电压进行电压变换后输出;
    第一开关模块及电源输出端,所述第一开关模块的输入端与所述电源变换器的输出端连接,所述第一开关模块的输出端与所述电源输出端连接,所述第一开关模块的受控端与所述电源芯片的第二控制端连接;所述第一开关模块,根据所述第二控制信号,对所述电源变换器输出的电源电压进行大小调节。
PCT/CN2018/117061 2018-11-01 2018-11-23 电源电路、显示面板的驱动电路及显示装置 WO2020087601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/427,325 US10516334B1 (en) 2018-11-01 2019-05-30 Power circuit, driving circuit for display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821796249.8 2018-11-01
CN201821796249.8U CN209170195U (zh) 2018-11-01 2018-11-01 电源电路、显示面板的驱动电路及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/427,325 Continuation US10516334B1 (en) 2018-11-01 2019-05-30 Power circuit, driving circuit for display panel, and display device

Publications (1)

Publication Number Publication Date
WO2020087601A1 true WO2020087601A1 (zh) 2020-05-07

Family

ID=67336311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117061 WO2020087601A1 (zh) 2018-11-01 2018-11-23 电源电路、显示面板的驱动电路及显示装置

Country Status (2)

Country Link
CN (1) CN209170195U (zh)
WO (1) WO2020087601A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631357A (zh) * 2020-12-22 2021-04-09 博科能源系统(深圳)有限公司 直流稳压电源电路
CN114296502A (zh) * 2021-12-30 2022-04-08 苏州汇川控制技术有限公司 稳压电路、装置及功率器件驱动系统
CN114582299A (zh) * 2022-03-24 2022-06-03 Tcl华星光电技术有限公司 极板电压的调节电路及方法
CN117097363A (zh) * 2023-10-17 2023-11-21 天津森普捷电子有限公司 一种换电射频交互模块、车载系统电路和换电站系统电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116369A (zh) * 1994-03-28 1996-02-07 松下电工株式会社 电源装置
US5627741A (en) * 1995-02-15 1997-05-06 Matsushita Electric Works, Ltd. Power supply apparatus
CN101840296A (zh) * 2010-03-17 2010-09-22 敦泰科技(深圳)有限公司 一种电容式触摸屏检测电路及其升压电路
CN107482905A (zh) * 2017-07-19 2017-12-15 深圳市华星光电半导体显示技术有限公司 直流电压转换电路及直流电压转换方法与液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116369A (zh) * 1994-03-28 1996-02-07 松下电工株式会社 电源装置
US5627741A (en) * 1995-02-15 1997-05-06 Matsushita Electric Works, Ltd. Power supply apparatus
CN101840296A (zh) * 2010-03-17 2010-09-22 敦泰科技(深圳)有限公司 一种电容式触摸屏检测电路及其升压电路
CN107482905A (zh) * 2017-07-19 2017-12-15 深圳市华星光电半导体显示技术有限公司 直流电压转换电路及直流电压转换方法与液晶显示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631357A (zh) * 2020-12-22 2021-04-09 博科能源系统(深圳)有限公司 直流稳压电源电路
CN114296502A (zh) * 2021-12-30 2022-04-08 苏州汇川控制技术有限公司 稳压电路、装置及功率器件驱动系统
CN114582299A (zh) * 2022-03-24 2022-06-03 Tcl华星光电技术有限公司 极板电压的调节电路及方法
CN114582299B (zh) * 2022-03-24 2023-02-07 Tcl华星光电技术有限公司 极板电压的调节电路及方法
CN117097363A (zh) * 2023-10-17 2023-11-21 天津森普捷电子有限公司 一种换电射频交互模块、车载系统电路和换电站系统电路

Also Published As

Publication number Publication date
CN209170195U (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020087601A1 (zh) 电源电路、显示面板的驱动电路及显示装置
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
EP1035637A2 (en) Power supply system comprising capacitors connected switchably
WO2013071842A1 (zh) 一种应用于功率因数校正器中的高压大电流驱动电路
WO2014183321A1 (zh) 一种发光半导体光源驱动电路及背光模组
WO2015113341A1 (zh) 电子设备充电装置及其电源适配器
WO2020056870A1 (zh) 驱动电路、升压芯片及显示装置
WO2018227965A1 (zh) 供电装置和照明系统
WO2020082547A1 (zh) 削角电路及显示装置
WO2021217733A1 (zh) 电压转换电路、电压转换方法及显示装置
US20180309952A1 (en) Tv power supply
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2020052137A1 (zh) 电源电路及测试装置
WO2014107926A1 (zh) Led驱动电路
US10516334B1 (en) Power circuit, driving circuit for display panel, and display device
CN116191630B (zh) 电池充放电无缝切换系统、方法、双象限电源及电子设备
CN115276192B (zh) 一种电流控制电路、充电电路及电子设备
WO2019015019A1 (zh) 液晶显示面板及其信号控制电路
WO2022103107A1 (ko) 전원 공급 회로
CN215733482U (zh) 一种多路不可控整流并联任意电流分配装置
CN100463341C (zh) 可调整电压的电压转换电路
WO2019134350A1 (zh) 显示面板的驱动电路、显示装置、驱动方法及计算机存储介质
WO2018040420A1 (zh) 背光驱动装置和电视机
WO2017020371A1 (zh) 一种液晶显示装置及其栅极驱动电路
CN210429272U (zh) 一种lcd显示屏的vcom电压调节电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18938561

Country of ref document: EP

Kind code of ref document: A1