WO2014114008A1 - 电流调节装置及其调节方法 - Google Patents

电流调节装置及其调节方法 Download PDF

Info

Publication number
WO2014114008A1
WO2014114008A1 PCT/CN2013/071077 CN2013071077W WO2014114008A1 WO 2014114008 A1 WO2014114008 A1 WO 2014114008A1 CN 2013071077 W CN2013071077 W CN 2013071077W WO 2014114008 A1 WO2014114008 A1 WO 2014114008A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
load
current
driving unit
constant current
Prior art date
Application number
PCT/CN2013/071077
Other languages
English (en)
French (fr)
Inventor
张华�
黎飞
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/813,454 priority Critical patent/US20150312981A1/en
Publication of WO2014114008A1 publication Critical patent/WO2014114008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of current regulation, and more particularly to a current regulating device for regulating the magnitude of a current output to a load.
  • a driving device for driving a light emitting diode is still a technical field of interest. Since the driving of the light-emitting diode by the direct current can make the light-emitting diode have better luminous efficiency, the driving device for driving the light-emitting diode is mostly DC driving, and the current value for driving the light-emitting diode is mostly set at the time of design. It is foreseeable that the inability to adjust the drive current will result in excess power loss and will not meet the current energy saving and carbon reduction requirements.
  • the present invention provides another current regulating device for regulating the current value of a current output to a load.
  • the current regulating device includes an ADIM voltage input unit, a constant current driving unit, and a boosting circuit.
  • the ADIM voltage input unit is configured to provide an ADIM voltage
  • the waveform of the ADIM voltage is a pulse wave having an adjustable duty ratio
  • the pulse wave is filtered into a DC voltage by a second filter circuit.
  • the constant current driving unit is electrically connected to the ADIM voltage input unit, a negative terminal of the load, and a first resistor, and the constant current driving unit includes a comparison component and a first switch component, and the constant Receiving, by the flow driving unit, the DC voltage to form a reference voltage, comparing, by the comparing component, the reference voltage and a voltage value on the first resistor to adjust an impedance of the first switch component to determine the load Current amplitude.
  • the current regulating device further includes a pulse width modulation (PWM) signal input unit electrically connected to the constant current driving unit, configured to input the PWM signal to the constant current driving unit, and the constant
  • PWM pulse width modulation
  • the stream drive unit receives a PWM signal to control the conduction or opening of the first switching component to control the waveform of the current of the load.
  • a voltage dividing circuit is further included to divide the DC voltage into the reference voltage.
  • the current regulating device further includes a boosting circuit electrically connected to the positive terminal of the load and an external power source, and the constant current driving unit detects the negative terminal voltage of the load to output a And a boosting signal of the duty ratio to the boosting circuit, boosting an external voltage provided by the external power source to drive the load, wherein a duty ratio of the boosting signal is driven according to the constant current
  • the negative voltage of the load detected by the unit is adjusted.
  • the present invention provides another current regulating device for adjusting a current value of a current output to a load.
  • the current regulating device includes a constant current driving unit and a boosting circuit.
  • the constant current driving unit is electrically connected to a negative end of the load and a first resistor, and the constant current driving unit includes a comparison component and a first switching component, and the constant current driving unit detects the The negative terminal of the load outputs a boost signal, and the constant current driving unit receives a pulse width modulation (PWM) signal to control the conduction or the opening of the first switch component to control the current of the load.
  • PWM pulse width modulation
  • the constant current driving unit receives an input voltage having an adjustable duty ratio to form a reference voltage and compares the reference voltage with a voltage value on the first resistor by the comparison component to adjust the The impedance of the first switching component in turn determines the magnitude of the current of the load.
  • the boosting circuit is electrically connected to the positive terminal of the load and an external power source, respectively, and boosts an external voltage provided by the external power source to drive the load according to the boosting signal.
  • a voltage dividing circuit is further included to divide the input voltage into the reference voltage.
  • the current regulating device further includes a voltage input unit and a PWM signal input unit.
  • the voltage input unit is electrically connected to the constant current driving unit for inputting the input voltage to the constant current driving unit.
  • the PWM signal input unit is electrically connected to the constant current driving unit for inputting the PWM signal to the constant current driving unit.
  • the voltage input unit has a second filter circuit, and the second filter circuit is configured to filter the pulse wave and input the constant current driving unit.
  • the constant current driving unit detects the negative terminal voltage of the load to output a boost signal having a duty ratio to the boosting circuit, and the duty ratio of the boosting signal is based on The negative terminal voltage of the load detected by the constant current driving unit is adjusted.
  • the present invention provides a current adjustment method for regulating a current amplitude outputted to a load, the method comprising: boosting an external voltage to a voltage sufficient to drive the load Forming a reference voltage according to an input voltage having an adjustable duty ratio; detecting a voltage value on a first resistor, wherein the first resistor is electrically connected to the load through a constant current driving unit; The reference voltage and a voltage value on the first resistor are used to adjust a current amplitude of the load.
  • the input voltage is a pulse wave having an adjustable duty ratio, and the input voltage is a divided voltage to become the reference voltage.
  • the pulse wave is generated by filtering.
  • the method further includes: controlling a waveform of the current of the load by a PWM signal.
  • the current regulating device of the invention can be double adjusted by the input voltage and the control signal, so that the current value and the duty ratio of the load current can be linearly adjusted, and then combined with various current values and duty ratio combinations, various types can be adjusted.
  • FIG. 1 is a block diagram of a current regulating device in accordance with an embodiment of the present invention.
  • FIG. 2 is a detailed circuit diagram of the current regulating device shown in FIG. 1;
  • FIG. 3 is a flow chart showing a current adjustment method according to another embodiment of the present invention.
  • the current regulating device 100 is used to drive the load 200 and can adjust the current value of the current passing through the load 200.
  • the load 200 can be, but is not limited to, a light emitting diode (LED) string.
  • the current adjustment device 100 includes a constant current driving unit 110, a voltage input unit 120, a pulse width modulation (PWM) signal input unit 130, and a boosting circuit 140.
  • the external portion of the constant current driving unit 110 may have a voltage input terminal 111, a signal input terminal 112, a signal output terminal 113, a first end 114, and a second end 115.
  • the voltage input unit 120 is electrically connected to the voltage input terminal 111, and the PWM signal input unit 130 is electrically connected to the signal input terminal 112.
  • the boosting circuit 140 is electrically connected to the positive terminal of the load 200 and the signal output terminal 113, respectively, and externally.
  • the power supply 300 is electrically connected.
  • the first end 114 is electrically connected to the negative end of the load 200, and the second end 115 is electrically connected to the first resistor 150.
  • the external power source 300 gives the first driving voltage V1 of the current regulating device 100
  • the first driving voltage V1 will not directly drive the load 200
  • the constant current driving unit 110 will pass through the first end 114.
  • the negative terminal voltage of the load 200 is detected. Since the load 200 has not been driven, the negative terminal voltage is zero.
  • the constant current driving unit 110 outputs the boosting signal SL to the boosting circuit 140 through the signal output terminal 113, and the boosting circuit 140 receives the boosting signal SL.
  • the first driving voltage V1 is boosted to a second driving voltage V2 sufficient to drive the load 200.
  • the boosting signal SL is a signal having a duty ratio.
  • the boosting circuit 140 performs charging and raises the first driving voltage V1 when the voltage is raised enough to drive the load.
  • the boosting signal SL is changed to a low level, at which time the boosting circuit 140 discharges to drive the load 200.
  • the voltage will gradually decrease.
  • the boosting signal SL will again transition to a high level, and the boosting circuit 140 begins to charge again to boost the voltage. In this way, the high level and the low level of the boost signal SL will form a signal having a fixed duty ratio.
  • the current adjustment device 100 further includes a first filter circuit 160.
  • the first filter circuit 160 can be disposed between the boost circuit 140 and the load 200 for filtering the second drive voltage V2 to make the second The driving voltage V2 is more stable.
  • the constant current driving unit 110 can receive the input voltage Vin having an adjustable duty ratio to form the reference voltage V and receive the PWM signal SP, and cooperate with the detection.
  • the magnitude of the voltage on the first resistor 150 compares the magnitude of the voltage between the reference voltage V and the first resistor 150 to determine the magnitude of the current of the load current IL.
  • the waveform of the load current IL of the load 200 is controlled by the PWM signal SP. In this way, the load current IL of various amplitudes and duty cycles can be adjusted.
  • FIG. 2 is a detailed circuit diagram of the current regulating device shown in FIG. 1 .
  • the boosting circuit 140 includes an inductor 1401 and a second switch component 1402.
  • the second switch component 1402 has a current input terminal 1402a, a current output terminal 1402b, and a signal input terminal 1402c.
  • One end of the inductor 1401 is electrically connected to the positive end of the external power source 300
  • the other end of the inductor 1401 is electrically connected to the current input end 1402a of the second switch component 1402
  • the current output end 1402b of the second switch component 1402 is connected to the external power source 300.
  • the negative terminal is electrically connected and grounded, and the signal input terminal 1402c of the second switch component is electrically connected to the signal output terminal 113 of the constant current driving unit 110.
  • the constant current driving unit 110 detects the negative terminal voltage of the load 200 according to the first end 114 and outputs the boosting signal SL to the signal input terminal 1402c of the second switching component by the signal output terminal 113 when the boosting signal SL is high.
  • the second switch component 1402 is turned on. At this time, the inductor 1401 is charged to boost the voltage.
  • the boost signal SL is low, the second switch component 1402 is open, and the inductor 1401 is discharged to drive the load 200.
  • the boosting circuit 140 can boost the voltage of the first driving voltage V1 and output the second driving voltage V2.
  • the first filter circuit 160 is electrically connected to the booster circuit 140 and the load 200, and the first filter circuit 160 includes a rectifier diode 1601 and a capacitor 1602.
  • the first filter circuit 160 is used to boost the circuit 140.
  • the boosted voltage is filtered.
  • the constant current driving unit 110 includes a voltage dividing circuit 1101 , a comparison circuit 1102 , and a first switching component 1103 .
  • One end of the voltage dividing circuit 1101 and the voltage input terminal 111 are electrically connected.
  • the other end of the voltage dividing circuit 1101 is grounded, the comparison circuit 1102 is electrically connected to the voltage dividing circuit 1101 and the signal input terminal 112, and the first switching component 1103 is respectively connected with the comparing circuit 1102, the first end 114 and the second end.
  • the voltage input unit 120 is electrically connected to the voltage input terminal 111, and the PWM signal input unit 130 is electrically connected to the signal input terminal 112.
  • the voltage input unit 120 inputs an input voltage Vin from the voltage input terminal 111 to the constant current driving unit 110, and the input voltage Vin is divided by the voltage dividing circuit 1101 into a reference voltage V.
  • the input voltage Vin is ADIM (analog) Dimming) voltage
  • voltage input 111 is the ADIM end.
  • the input voltage Vin is a pulse wave or a rectangular wave with an adjustable duty ratio
  • the voltage input unit 120 includes a second filter circuit 1201.
  • the second filter circuit 1201 may include a resistor and a capacitor, but Limited.
  • the second filter circuit 1201 is configured to filter the input voltages Vin having different duty ratios into different DC voltages. Therefore, the reference voltage V is also adjustable.
  • the second end 115 of the constant current driving unit 110 is electrically connected to the first resistor 150.
  • the constant current driving unit 110 detects the voltage value of the first resistor 150 through the second end 115, and the load current IL and the load through the load 200.
  • the product of the resistance value of a resistor 150 is a comparison voltage VR.
  • the comparison circuit 1102 compares the reference voltage V with the comparison voltage VR. If the comparison voltage VR is smaller than the reference voltage V, it indicates that the load current IL is small, and the internal constant current driving unit 110 is first reduced. The on-resistance of the switch component 1103 increases the load current IL. If the comparison voltage VR is greater than the reference voltage V, it indicates that the load current IL is too large, and the conduction of the first switch component 1103 inside the constant current drive unit 110 is increased. The impedance reduces the load current IL. This allows the load current IL to reach the default current value and remain stable.
  • the input voltage Vin of the adjustable duty ratio is filtered into stable voltage values of various sizes, thereby obtaining various kinds of different Reference voltage V.
  • the current value of the load current IL can be adjusted within a range that the load 200 can withstand.
  • the LED string can withstand a current value ranging from 0 to 350 milliamps (mA). In this way, the range of current values of the load current IL can be effectively increased.
  • the PWM signal input unit 130 will input a PWM signal SP to the constant current driving unit 110 through the signal input terminal 112.
  • the first switching component 1103 When the PWM signal SP is at a high level, the first switching component 1103 is turned on, and the load 200 has a load current IL.
  • the first switching component 1103 When the PWM signal SP is at a low level, the first switching component 1103 is open, and the load 200 has no load current IL flowing.
  • the load current IL can also be a rectangular wave having the same duty ratio as the PWM signal SP, and the current value of the load current IL can be effectively adjusted to achieve current regulation.
  • FIG. 3 is a flow chart of a current adjustment method according to another embodiment of the present invention.
  • step S1 an external voltage is boosted to a voltage required to drive a load.
  • the external voltage can be boosted by the boosting circuit to be sufficient to drive the load.
  • step S2 an input voltage having an adjustable duty ratio is received and a reference voltage is formed.
  • the input voltage is a pulse wave with an adjustable duty ratio.
  • the wave may be a rectangular voltage waveform, and the input voltage is a reference voltage by transmitting a divided voltage.
  • the input voltage is filtered into stable voltage values of various sizes, so that various reference voltages can be obtained.
  • step S3 a voltage value on a first resistor is detected.
  • the first resistor is electrically connected to the load through a constant current driving unit.
  • step S4 the voltage value of the reference voltage and the voltage value on the first resistor is compared to adjust the current amplitude of the load current.
  • the comparison voltage is less than the reference voltage, indicating that the load current is too small, the load current will increase; if the comparison voltage is greater than the reference voltage, the load current is too large, and the load current will be reduced. Thereby the current amplitude of the required load current is adjusted.
  • the current adjustment method may further include step S5.
  • step S5 a PWM signal input is received to control a waveform of a load current of the load.
  • the PWM signal is a pulse wave with adjustable duty ratio.
  • the wave can be a rectangular voltage waveform, and the load current is controlled by the PWM signal high level or low level. For the rectangular wave with the same duty cycle as the PWM signal, the current value of the load current is effectively adjusted to achieve current regulation.
  • the current regulating device and method of the invention can be adjusted by the input voltage and the PWM signal, so that the load current value and the duty ratio can be linearly adjusted, and then combined with various current values and duty ratio combinations, various types can be adjusted. Load current for amplitude and duty cycle.

Abstract

一种电流调节装置及其调节方法,用于调节输出予负载的电流的电流值。电流调节装置包括恒流驱动单元(110)及升压电路(140)。恒流驱动单元(110)分别与负载(200)的负端及第一电阻(150)电性连接,且恒流驱动单元(110)包含比较组件以及第一开关组件,其中恒流驱动单元(110)侦测负载(200)的负端以输出升压讯号,且恒流驱动单元(110)接收脉冲宽度调制(PWM)信号来控制第一开关组件的导通或开路进而控制负载(200)的电流的波形,以及恒流驱动单元(110)接收一具有可调节占空比的输入电压以形成一基准电压,并通过比较组件比较基准电压与第一电阻上的电压值以调节第一开关组件的阻抗进而决定负载的电流幅值。升压电路分别与负载的正端及外部电源电性连接,且根据升压讯号,将外部电源提供的外部电压进行升压以驱动负载。

Description

电流调节装置及其调节方法 技术领域
本发明涉及电流调节领域,特别涉及一种用于调节输出予负载的电流幅值的电流调节装置。
背景技术
现今发光二极管的技术已臻于成熟,发光二极管亦已被应用于许多产品领域中,已然成为现代人不可或缺的一项产品。
然而,用以驱动发光二极管的驱动装置仍为值得关注的一项技术领域。由于利用直流电驱动发光二极管可使得发光二极管具有较好的发光效率,因此现在用以驱动发光二极管的驱动装置多为直流驱动,用以驱动发光二极管的电流值多半已于设计时就已设定完成,可预见地,无法调整驱动电流的情况将会造成多余的电能损耗,无法符合现今节能减碳的要求。
因此,如何发展出一种解决上述问题的技术,实为目前迫切需要解决的问题。
技术问题
本发明的一个目的在于提供一种电流调节装置,其可同时调节负载的驱动电流的电流幅值及其占空比。
技术解决方案
本发明提供了另一种电流调节装置,用于调节输出予负载的电流的电流值。电流调节装置包括ADIM电压输入单元、恒流驱动单元及升压电路。ADIM电压输入单元用于提供一ADIM电压,所述ADIM电压的波形为一具有可调节占空比的脉波,且通过一第二滤波电路将所述脉波滤波为一直流电压。恒流驱动单元分别与所述ADIM电压输入单元、所述负载的一负端及一第一电阻电性连接,且所述恒流驱动单元包含一比较组件以及一第一开关组件,所述恒流驱动单元接收所述直流电压后以形成一基准电压,通过所述比较组件比较所述基准电压与所述第一电阻上的电压值以调节所述第一开关组件的阻抗进而决定所述负载的电流幅值。
在上述电流调节装置中,还包括一脉冲宽度调制(PWM)信号输入单元,与所述恒流驱动单元电性连接,用于输入所述PWM信号至所述恒流驱动单元,且所述恒流驱动单元接收一PWM信号来控制所述第一开关组件的导通或开路进而控制所述负载的电流的波形。
在上述电流调节装置中,还包括一分压电路,将所述直流电压分压为所述基准电压。
在上述电流调节装置中,还包括一升压电路,分别与所述负载的正端及一外部电源电性连接,且所述恒流驱动单元侦测所述负载的负端电压以输出一具有占空比的升压讯号至所述升压电路,将所述外部电源提供的一外部电压进行升压以驱动所述负载,其中所述升压讯号的占空比是依据所述恒流驱动单元侦测到的所述负载的负端电压来进行调整。
为解决上述问题,本发明提供了另一种电流调节装置,用于调节输出予负载的电流的电流值。电流调节装置包括恒流驱动单元及升压电路。恒流驱动单元分别与所述负载的一负端及一第一电阻电性连接,且所述恒流驱动单元包含一比较组件以及一第一开关组件,所述恒流驱动单元侦测所述负载的所述负端以输出一升压讯号,且所述恒流驱动单元接收一脉冲宽度调制(PWM)信号来控制所述第一开关组件的导通或开路进而控制所述负载的电流的波形,以及所述恒流驱动单元接收一具有可调节占空比的输入电压以形成一基准电压并通过所述比较组件比较所述基准电压与所述第一电阻上的电压值以调节所述第一开关组件的阻抗进而决定所述负载的电流幅值。升压电路分别与所述负载的正端及一外部电源电性连接,且根据所述升压讯号,将所述外部电源提供的一外部电压进行升压以驱动所述负载。
在上述电流调节装置中,还包括一分压电路,将所述输入电压分压为所述基准电压。
在上述电流调节装置中,还包括电压输入单元及PWM信号输入单元。电压输入单元与所述恒流驱动单元电性连接,用于输入所述输入电压至所述恒流驱动单元。PWM信号输入单元与所述恒流驱动单元电性连接,用于输入所述PWM信号至所述恒流驱动单元。
在上述电流调节装置中,所述电压输入单元中具有一第二滤波电路,所述第二滤波电路用以将所述脉波进行滤波后输入所述恒流驱动单元。
在上述电流调节装置中,述恒流驱动单元侦测所述负载的负端电压,以输出具有占空比的升压讯号至所述升压电路,所述升压讯号的占空比是依据所述恒流驱动单元侦测到的所述负载的负端电压来进行调整。
为解决上述问题,本发明提供了一种一种电流调节方法,用于调节输出予一负载的电流幅值,所述方法包括:将一外部电压升压至足以驱动所述负载所需的电压;根据一具有可调节占空比的输入电压来形成一基准电压;侦测一第一电阻上的电压值,所述第一电阻透过一恒流驱动单元与所述负载电性连接;比较所述基准电压与所述第一电阻上的电压值以调节所述负载的电流幅值。
在上述电流调节方法中,所述输入电压为一具有可调节占空比的脉波,且所述输入电压为透过分压而成为所述基准电压。
在上述电流调节方法中,通过滤波产生所述脉波。
在上述电流调节方法中,所述方法还包括:通过一PWM信号来控制所述负载的电流的波形。
有益效果
本发明的电流调节装置可通过输入电压以及控制信号双重调节,使得负载电流的电流值和占空比都可以线性调节,再搭配上各种电流值及占空比组合,即可调节出各种幅值及占空比的负载电流。
附图说明
图1为绘示根据本发明一实施例的电流调节装置的方块图;
图2为绘示图1所示的电流调节装置的细部电路图;
图3为绘示根据本发明另一实施例的电流调节方法的流程图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。
参考图1,图1为绘示根据本发明一实施例的电流调节装置的方块图。在本发明中,电流调节装置100为用以驱动负载200,并可调节通过负载200的电流的电流值,于本实施例中,负载200可为但不限为发光二极管(LED)串。电流调节装置100包括恒流驱动单元110、电压输入单元120、脉冲宽度调制(PWM)信号输入单元130及升压电路140。于本实施例中,恒流驱动单元110的外部可具有电压输入端111、信号输入端112、信号输出端113、第一端114及第二端115。电压输入单元120与电压输入端111电性连接,PWM信号输入单元130与信号输入端112电性连接,升压电路140分别与负载200的正端及信号输出端113电性连接,并与外部电源300电性连接,第一端114与负载200的负端电性连接,第二端115与第一电阻150电性连接。
当外部电源300给予电流调节装置100第一驱动电压V1时,若负载200的阻抗过大,则第一驱动电压V1将无法直接驱动负载200,此时恒流驱动单元110将通过第一端114侦测负载200的负端电压。由于负载200尚未被驱动,因此负端电压为零,此时恒流驱动单元110将通过信号输出端113输出升压信号SL至升压电路140,升压电路140收到升压信号SL后会将第一驱动电压V1升压为足以驱动负载200的第二驱动电压V2。
于本实施例中,升压信号SL为具有占空比的信号,当升压信号SL为高电平时,升压电路140进行充电并将第一驱动电压V1提升,当电压提升至足以驱动负载200的第二驱动电压V2时,升压信号SL改为低电平,此时升压电路140进行放电以驱动负载200。当升压电路140放电以驱动负载200时,电压将会逐渐下降,当电压下降至无法驱动负载200时,升压信号SL将又转变为高电平,升压电路140又开始充电以提升电压,如此一来,升压信号SL的高电平及低电平将形成具有固定占空比的信号。
于本实施例中,电流调节装置100还包括第一滤波电路160,第一滤波电路160可设置于升压电路140及负载200之间,用以将第二驱动电压V2进行滤波,使第二驱动电压V2更为稳定。
于本实施例中,通过电压输入单元120及PWM信号输入单元130,恒流驱动单元110可接收具有可调节占空比的输入电压Vin以形成基准电压V以及接收PWM信号SP,并配合侦测第一电阻150上的电压大小,比较基准电压V与第一电阻150上的电压值大小以决定负载电流IL的电流幅值,另外,通过PWM信号SP来控制负载200的负载电流IL的波形,如此即可调节出各种幅值及占空比的负载电流IL。
请参照图2并配合图1,图2为绘示图1所示的电流调节装置的细部电路图。于本实施例中,升压电路140中包括电感1401及第二开关组件1402,第二开关组件1402具有电流输入端1402a、电流输出端1402b及信号输入端1402c。电感1401的一端与外部电源300的正端电性连接,电感1401的另一端与第二开关组件1402的电流输入端1402a电性连接,第二开关组件1402的电流输出端1402b与外部电源300的负端电性连接且接地,第二开关组件的信号输入端1402c与恒流驱动单元110的信号输出端113电性连接。恒流驱动单元110是依据第一端114侦测负载200的负端电压并由信号输出端113输出升压讯号SL至第二开关组件的信号输入端1402c,当升压讯号SL为高电平时,第二开关组件1402导通,此时电感1401将进行充电以提升电压,当升压讯号SL为低电平时,第二开关组件1402开路,此时电感1401将进行放电以驱动负载200。通过升压讯号SL的控制,升压电路140可将第一驱动电压V1的电压提升后输出第二驱动电压V2。
于本实施例中,第一滤波电路160分别与升压电路140及负载200电性连接,且第一滤波电路160包括整流二极管1601及电容1602,第一滤波电路160用以将升压电路140提升后的电压进行滤波。
本发明的目的在于调节输出予负载200的负载电流IL的电流值,使其可调节出各种幅值及占空比的负载电流IL。
请再次参照图2并配合图1,于本实施例中,恒流驱动单元110中包括分压电路1101、比较电路1102及第一开关组件1103,分压电路1101的一端与电压输入端111电性连接,分压电路1101的另一端为接地,比较电路1102与分压电路1101及信号输入端112电性连接,而第一开关组件1103分别与比较电路1102、第一端114及第二端115 电性连接。而电压输入单元120与电压输入端111电性连接,PWM信号输入单元130与信号输入端112电性连接。电压输入单元120由电压输入端111输入一输入电压Vin至恒流驱动单元110,而输入电压Vin会由分压电路1101分压为一基准电压V。于本实施例中,输入电压Vin为ADIM(analog dimming)电压,而电压输入端111即为ADIM端。
于本实施例中,输入电压Vin为可调节占空比的脉波或矩形波,且电压输入单元120中包括第二滤波电路1201,第二滤波电路1201可包括电阻及电容,但不以此为限。第二滤波电路1201用以将具有不同占空比的输入电压Vin滤成不同的直流电压,因此,基准电压V亦为可调整的。恒流驱动单元110的第二端115与第一电阻150电性连接,恒流驱动单元110通过第二端115侦测第一电阻150上的电压值,而通过负载200的负载电流IL与第一电阻150的电阻值的乘积为一比较电压VR。当负载200导通时,透过比较电路1102比较基准电压V与比较电压VR,若比较电压VR小于基准电压V,表示负载电流IL偏小,此时将减小恒流驱动单元110内部第一开关组件1103的导通阻抗,使负载电流IL增大;若比较电压VR大于基准电压V,表示负载电流IL偏大,此时将增大恒流驱动单元110内部第一开关组件1103的导通阻抗,使负载电流IL减小。藉此可使得负载电流IL达到默认的电流值并保持稳定。
另外,藉由输入可调节占空比的输入电压Vin,并通过选择匹配的第二滤波电路1201的参数,将输入电压Vin滤成各种大小的稳定电压值,如此即可得到各种不同的基准电压V。基于不同的基准电压V电压值,即可在负载200可承受的范围内调节负载电流IL的电流值,以发光二极管串为例,可承受的电流值范围为0~350毫安(mA)。如此一来,将可有效地增加负载电流IL的电流值范围。
再者,PWM信号输入单元130将会通过信号输入端112输入一PWM信号SP至恒流驱动单元110,当PWM信号SP为高电平时,第一开关组件1103导通,负载200有负载电流IL流过,PWM信号SP为低电平时,第一开关组件1103开路,负载200没有负载电流IL流过。如此将可使得负载电流IL亦成为与PWM信号SP具有相同占空比的矩形波,有效的调节负载电流IL的电流值,达到电流调节作用。
请参照图3,图3为绘示根据本发明另一实施例的电流调节方法的流程图。
于步骤S1中,将一外部电压升压至驱动一负载所需的电压。于本实施例中,可藉由升压电路对外部电压进行升压,使其足以驱动负载。
于步骤S2中,接收具有可调节占空比的一输入电压并形成一基准电压。于本实施例中,输入电压为可调节占空比的脉波,于本实施例中,所述派波可为一矩形电压波形,且输入电压为透过分压而成为基准电压。另外,藉由输入可调节占空比的输入电压,并通过选择匹配的滤波电路的参数,将输入电压滤成各种大小的稳定电压值,如此即可得到各种不同的基准电压。
于步骤S3中,侦测一第一电阻上的电压值。所述第一电阻透过一恒流驱动单元与所述负载电性连接。
于步骤S4中,比较基准电压与第一电阻上的电压值的电压值以调节负载电流的电流幅值。于本实施例中,若比较电压小于基准电压,表示负载电流偏小,此时将使负载电流增大;若比较电压大于基准电压,表示负载电流偏大,此时将使负载电流减小,藉此调节出所需的负载电流的电流幅值。
于本实施例中,电流调节方法更可包含步骤S5。于步骤S5中,接收一PWM信号输入来控制负载的一负载电流的波形。于本实施例中,PWM信号为可调节占空比的脉波,于本实施例中,所述派波可为一矩形电压波形,通过PWM信号高电平或低电平,将负载电流控制为与PWM信号具有相同占空比的矩形波,有效的调节负载电流的电流值,达到电流调节作用。
本发明的电流调节装置及方法可通过输入电压以及PWM信号双重调节,使得负载电流值和占空比都可以线性调节,再搭配上各种电流值及占空比组合,即可调节出各种幅值及占空比的负载电流。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (13)

  1. 一种电流调节装置,用于调节输出予一负载的电流幅值,其中所述电流调节装置包括:
    一ADIM电压输入单元,用于提供一ADIM电压,所述ADIM电压的波形为一具有可调节占空比的脉波,且通所述脉波被滤波为一直流电压;以及
    一恒流驱动单元,分别与所述ADIM电压输入单元、所述负载的一负端及一第一电阻电性连接,且所述恒流驱动单元包含一比较组件以及一第一开关组件,其中所述恒流驱动单元接收所述直流电压后以形成一基准电压,通过所述比较组件比较所述基准电压与所述第一电阻上的电压值以调节所述第一开关组件的阻抗进而决定所述负载的电流幅值。
  2. 根据权利要求1所述的电流调节装置,还包括一脉冲宽度调制(PWM)信号输入单元,与所述恒流驱动单元电性连接,用于输入一PWM信号至所述恒流驱动单元,且所述恒流驱动单元接收所述PWM信号来控制所述第一开关组件的导通或开路进而控制所述负载的电流的波形。
  3. 根据权利要求1所述的电流调节装置,还包括一分压电路,将所述直流电压分压为所述基准电压。
  4. 根据权利要求1所述的电流调节装置,还包括一升压电路,分别与所述负载的正端及一外部电源电性连接,且所述恒流驱动单元侦测所述负载的负端电压以输出一具有占空比的升压讯号至所述升压电路,将所述外部电源提供的一外部电压进行升压以驱动所述负载,其中所述升压讯号的占空比是依据所述恒流驱动单元侦测到的所述负载的负端电压来进行调整。
  5. 一种电流调节装置,用于调节输出予一负载的电流幅值,所述电流调节装置包括:
    一恒流驱动单元,分别与所述负载的一负端及一第一电阻电性连接,且所述恒流驱动单元包含一比较组件以及一第一开关组件,其中所述恒流驱动单元侦测所述负载的所述负端的电压以输出一升压讯号,且所述恒流驱动单元接收一PWM信号来控制所述第一开关组件的导通或开路进而控制所述负载的电流的波形,以及所述恒流驱动单元接收一具有可调节占空比的输入电压以形成一基准电压并通过所述比较组件比较所述基准电压与所述第一电阻上的电压值以调节所述第一开关组件的阻抗进而决定所述负载的电流幅值;以及
    一升压电路,分别与所述负载的正端及一外部电源电性连接,且根据所述升压讯号,将所述外部电源提供的一外部电压进行升压以驱动所述负载。
  6. 根据权利要求5所述的电流调节装置,还包括一分压电路,将所述输入电压分压为所述基准电压。
  7. 根据权利要求5所述的电流调节装置,还包括:
    一电压输入单元,与所述恒流驱动单元电性连接,用于输入所述输入电压至所述恒流驱动单元,所述输入电压的波形为一具有可调节占空比的脉波;以及
    一PWM信号输入单元,与所述恒流驱动单元电性连接,用于输入所述PWM信号至所述恒流驱动单元。
  8. 根据权利要求7所述的电流调节装置,其中所述电压输入单元中具有一第二滤波电路,所述第二滤波电路用以将所述脉波进行滤波后输入所述恒流驱动单元。
  9. 根据权利要求5所述的电流调节装置,其中所述恒流驱动单元侦测所述负载的负端电压以输出具有占空比的升压讯号至所述升压电路,所述升压讯号的占空比是依据所述恒流驱动单元侦测到的所述负载的负端电压来进行调整。
  10. 一种电流调节方法,用于调节输出予一负载的电流幅值,其中所述方法包括:
    将一外部电压升压至足以驱动所述负载所需的电压;
    接收一具有可调节占空比的输入电压来形成一基准电压;
    侦测一第一电阻上的电压值,所述第一电阻透过一恒流驱动单元与所述负载电性连接;以及
    比较所述基准电压与所述第一电阻上的电压值以调节所述负载的电流幅值。
  11. 根据权利要求10所述的电流调节方法,其中所述输入电压为一具有可调节占空比的脉波,且所述输入电压为透过分压而成为所述基准电压。
  12. 根据权利要求11所述的电流调节方法,其中通过滤波产生所述脉波。
  13. 根据权利要求10所述的电流调节方法,其中所述方法还包括:通过一PWM信号来控制所述负载的电流的波形。
PCT/CN2013/071077 2013-01-22 2013-01-29 电流调节装置及其调节方法 WO2014114008A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/813,454 US20150312981A1 (en) 2013-01-22 2013-01-29 Current adjusting device and adjustment method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013100232451A CN103107697A (zh) 2013-01-22 2013-01-22 电流调节装置及其调节方法
CN201310023245.1 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014114008A1 true WO2014114008A1 (zh) 2014-07-31

Family

ID=48315323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071077 WO2014114008A1 (zh) 2013-01-22 2013-01-29 电流调节装置及其调节方法

Country Status (3)

Country Link
US (1) US20150312981A1 (zh)
CN (1) CN103107697A (zh)
WO (1) WO2014114008A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271361B2 (en) 2013-05-28 2016-02-23 Shenzhen China Star Optoelectronics Technology Co., Ltd Backlight driving circuit, LCD device, and method for driving the backlight driving circuit
CN103280193B (zh) * 2013-05-28 2015-11-25 深圳市华星光电技术有限公司 一种背光驱动电路、液晶显示装置和背光驱动方法
CN103327696B (zh) * 2013-07-02 2016-01-27 深圳市华星光电技术有限公司 一种led背光驱动电路及其驱动方法、液晶显示装置
US9373284B2 (en) 2013-07-02 2016-06-21 Shenzhen China Star Optoelectronics Technology Co., Ltd LED backlight driving circuit, LCD device, and method for driving the LED backlight driving circuit
KR102282401B1 (ko) * 2015-01-02 2021-07-26 삼성전자주식회사 기준 전압 트레이닝 장치 및 방법
CN104993698B (zh) * 2015-06-24 2017-06-06 西安三馀半导体有限公司 具有恒流输出保护功能的dc‑dc转换器
CN106936332B (zh) * 2015-12-31 2019-11-05 研能科技股份有限公司 驱动电路及其所适用的压电致动泵
TWI584574B (zh) * 2015-12-31 2017-05-21 研能科技股份有限公司 驅動電路及其所適用之壓電致動泵浦
CN106253670A (zh) * 2016-08-23 2016-12-21 深圳市华星光电技术有限公司 升压电路及背光光源
CN108231014B (zh) * 2018-02-08 2020-08-04 深圳创维-Rgb电子有限公司 一种区域调光恒流控制电路、驱动电源和电视机
CN108665859B (zh) * 2018-08-01 2023-12-29 合肥惠科金扬科技有限公司 背光源控制电路及背光源
CN112051838A (zh) * 2020-09-16 2020-12-08 奇瑞汽车股份有限公司 Eps控制器的测试系统和方法
CN112946353B (zh) * 2021-02-05 2024-04-19 上海拿森汽车电子有限公司 一种电流检测装置及电磁阀控制系统
CN113671324B (zh) * 2021-08-13 2023-11-24 中广核核电运营有限公司 用于测试中低压配电盘性能的自动测试装置及其测试方法
CN114205970A (zh) * 2021-12-13 2022-03-18 英飞特电子(杭州)股份有限公司 一种驱动电路
TWI831296B (zh) * 2022-07-15 2024-02-01 光寶科技股份有限公司 電子電路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244790A1 (en) * 2009-03-31 2010-09-30 Stmicroelectronics S.R.L. Constant current driving device having an improved accuracy
CN201854486U (zh) * 2010-11-11 2011-06-01 重庆三弓科技发展有限公司 恒流式led驱动电源
US20120081018A1 (en) * 2006-05-22 2012-04-05 Exclara Inc. Digitally controlled current regulator for high power solid state lighting
CN102595680A (zh) * 2011-01-07 2012-07-18 英飞特电子(杭州)有限公司 一种多输出的发光二极管恒流驱动电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018171B1 (en) * 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US7804256B2 (en) * 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US8253352B2 (en) * 2008-08-05 2012-08-28 O2Micro, Inc. Circuits and methods for powering light sources
US8076867B2 (en) * 2008-12-12 2011-12-13 O2Micro, Inc. Driving circuit with continuous dimming function for driving light sources
CN101562933B (zh) * 2009-05-04 2012-09-05 深圳华映显示科技有限公司 一种背光模块的驱动电路
US8476836B2 (en) * 2010-05-07 2013-07-02 Cree, Inc. AC driven solid state lighting apparatus with LED string including switched segments
US8502461B2 (en) * 2010-05-25 2013-08-06 Green Solution Technology Co., Ltd. Driving circuit and control circuit
CN202085347U (zh) * 2011-04-02 2011-12-21 英飞特电子(杭州)有限公司 一种调整led电流的电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081018A1 (en) * 2006-05-22 2012-04-05 Exclara Inc. Digitally controlled current regulator for high power solid state lighting
US20100244790A1 (en) * 2009-03-31 2010-09-30 Stmicroelectronics S.R.L. Constant current driving device having an improved accuracy
CN201854486U (zh) * 2010-11-11 2011-06-01 重庆三弓科技发展有限公司 恒流式led驱动电源
CN102595680A (zh) * 2011-01-07 2012-07-18 英飞特电子(杭州)有限公司 一种多输出的发光二极管恒流驱动电路

Also Published As

Publication number Publication date
US20150312981A1 (en) 2015-10-29
CN103107697A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2014114008A1 (zh) 电流调节装置及其调节方法
TWI523569B (zh) Adjustable LED driver circuit and drive method
TWI492659B (zh) 開關電源及其控制電路和調光方法
TWI556686B (zh) 光源調光控制器、控制方法及其電子系統
US8736185B2 (en) SCR dimming circuit and method
TWI581657B (zh) 控制發光二極體光源的調光控制器及其驅動電路
TWI479780B (zh) 降壓轉換器
TWI611725B (zh) 用於發光二極體照明系統中的電流調節的系統和方法
US10869372B2 (en) Current source circuit and LED driving circuit
JP2008288207A (ja) Ledアレイ駆動装置
CN103716934A (zh) 驱动光源的驱动电路、方法及控制器
CN102291874A (zh) 对光源进行电能控制的调光控制器、光源驱动电路和方法
CN101754541A (zh) 适用于多路并联led的直流母线电压跟随型控制电路
CN102833916B (zh) 一种直流调光型led驱动电路
US8901832B2 (en) LED driver system with dimmer detection
CN107172750B (zh) 控制电路及照明装置
US10492259B2 (en) Dimmable LED driver and dimming method
US9560709B2 (en) LED driver and LED lighting device
CN201781654U (zh) 适用于多路并联led的直流母线电压跟随型控制电路
WO2016029512A1 (zh) 用于液晶显示设备的led背光源及液晶显示设备
CN112996186A (zh) 脉冲控制的电路单元、驱动电路、集成电路和照明装置
CN106954307B (zh) 一种用于高功率因数原边反馈led驱动电源的pwm调光电路
US11116058B2 (en) LED dimming control circuit, dimming control method and LED power system thereof
TW201510692A (zh) 可以調整流經一元件之一直流電流的電子裝置與控制方法
CN103796389A (zh) 最大亮度提升模块、可控硅调光led驱动电路及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13813454

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873101

Country of ref document: EP

Kind code of ref document: A1