WO2017188299A1 - 酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜 - Google Patents

酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜 Download PDF

Info

Publication number
WO2017188299A1
WO2017188299A1 PCT/JP2017/016493 JP2017016493W WO2017188299A1 WO 2017188299 A1 WO2017188299 A1 WO 2017188299A1 JP 2017016493 W JP2017016493 W JP 2017016493W WO 2017188299 A1 WO2017188299 A1 WO 2017188299A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide
represented
oxide sintered
tft
Prior art date
Application number
PCT/JP2017/016493
Other languages
English (en)
French (fr)
Inventor
井上 一吉
太 宇都野
重和 笘井
雅敏 柴田
麻美 糸瀬
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US16/096,641 priority Critical patent/US11078120B2/en
Priority to KR1020187027443A priority patent/KR102382128B1/ko
Priority to JP2017545433A priority patent/JP6266853B1/ja
Priority to CN201780025317.2A priority patent/CN109071359B/zh
Publication of WO2017188299A1 publication Critical patent/WO2017188299A1/ja
Priority to US17/358,411 priority patent/US20210355033A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention manufactures a thin film transistor (TFT) used for a display device such as a liquid crystal display (LCD) or an organic electroluminescence (EL) display, an oxide semiconductor film that can be used for a TFT, and an oxide semiconductor film.
  • TFT thin film transistor
  • the present invention relates to a sputtering target that can be used at the time, and an oxide sintered body as a material thereof.
  • Amorphous (amorphous) oxide semiconductors used in thin film transistors have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be deposited at low temperatures. It is expected to be applied to next-generation displays that require high resolution and high-speed driving, and resin substrates with low heat resistance.
  • a-Si general-purpose amorphous silicon
  • a sputtering method of sputtering a sputtering target is preferably used. This is because the thin film formed by the sputtering method has a component composition, film thickness, etc. in the film surface direction (in the film surface) as compared with the thin film formed by the ion plating method, vacuum evaporation method, or electron beam evaporation method. This is because the internal uniformity is excellent and a thin film having the same component composition as the sputtering target can be formed.
  • Patent Document 1 discloses an oxide sintered body made of In, Y, and O, having Y / (Y + In) of 2.0 to 40 atom% and a volume resistivity of 5 ⁇ 10 ⁇ 2 ⁇ cm or less. It is described as being used as a target. As for the content of Sn element, there is a description that Sn / (In + Sn + other all metal atoms) is 2.8 to 20 atomic%.
  • Patent Document 2 describes an oxide sintered body composed of In, Sn, Y, and O and having Y / (In + Sn + Y) of 0.1 to 2.0 atomic%, and a sputtering target using the oxide sintered body. It is described that the thin film obtained from this target constitutes equipment such as a flat panel display and a touch panel.
  • Patent Document 3 describes a sintered body having a lattice constant intermediate between the lattice constants of YInO 3 and In 2 O 3 and using this as a sputtering target. Further, indium oxide, a composition consisting of yttrium oxide and tin oxide, a sintered body containing In 2 O 3 and Y 2 SnO 7 compounds are described. Further, a sintered body made of yttrium oxide, tin oxide, and zinc oxide and containing Y 2 Sn 2 O 7 and ZnO or a Zn 2 SnO 4 compound is described. This sintered body is fired under a special condition of an oxygen atmosphere using an atmosphere firing furnace.
  • the volume resistivity is low and the density is high, but it is brittle and cracks or causes chipping during the production of sputtering. In some cases, the production yield did not increase. In addition, since the strength is low, the sputtering may occur when sputtering with high power.
  • Patent Document 4 contains In, Sn, and Zn, and one or more elements selected from the group consisting of Mg, Si, Al, Sc, Ti, Y, Zr, Hf, Ta, La, Nd, and Sm. It describes oxide sinters and their use as sputtering targets.
  • This sintered body is a sintered body containing In 2 O 3 and a Zn 2 SnO 4 compound.
  • Patent Document 5 an element selected from In, Sn, Zn, and Mg, Al, Ga, Si, Ti, Y, Zr, Hf, Ta, La, Nd, and Sm is added.
  • a sputtering target comprising a spinel structure compound is described.
  • Patent Document 6 an element selected from In, Sn, Zn and Hf, Zr, Ti, Y, Nb, Ta, W, Mo and Sm is added, and an In 2 O 3 phase, a spinel phase, X 2 Sn is added.
  • 2 O 7 phase (pyrochlore phase) and ZnX sintered body from 2 O 6 comprising one or more layers selected is described.
  • An object of the present invention is to provide a TFT that exhibits excellent TFT performance, an oxide semiconductor film that can be used in the TFT, a sputtering target that can form the oxide semiconductor film, and an oxide sintered body that is a material thereof. It is to be.
  • the following oxide sintered bodies and the like are provided.
  • An oxide containing In element, Zn element, Sn element and Y element An oxide sintered body having a sintered body density of 100.00% or more of a theoretical density.
  • 3. The oxide sintered body according to 2, wherein any one or more of a Y element and a Zn element is solid solution substituted in the bixbite phase. 4). 4.
  • An oxide comprising an In element, a Zn element, a Sn element, and a Y element, wherein the atomic ratio of the Zn element and the In element is in the following range, and does not include a spinel phase represented by Zn 2 SnO 4 Sintered body. 0.01 ⁇ Zn / (In + Zn + Y + Sn) ⁇ 0.25 0.50 ⁇ In / (In + Zn + Y + Sn) 6). 6.
  • the oxide sintered body according to 5 comprising a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 . 7). 7.
  • the oxide sintered body according to 6 wherein any one or more of a Y element and a Zn element is substituted for a solid solution in the bixbite phase. 8).
  • Including In element, Zn element, Sn element and Y element, satisfying the atomic ratio of Zn element and In element is in the following range, Consisting of a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 , or It consists of a bixbite phase represented by In 2 O 3 , a pyrochlore phase represented by Y 2 Sn 2 O 7 , and an indium trizin coindate phase represented by In ((Zn 3 In) O 6 ).
  • Oxide sintered body 0.01 ⁇ Zn / (In + Zn + Y + Sn) ⁇ 0.25 0.50 ⁇ In / (In + Zn + Y + Sn) 10. 10.
  • a sputtering target comprising the oxide sintered body according to any one of 12.1 to 11.
  • a TFT that exhibits excellent TFT performance an oxide semiconductor film that can be used for the TFT, a sputtering target that can form the oxide semiconductor film, and an oxide sintered body that is a material thereof are provided. it can.
  • FIG. 2 is an X-ray diffraction pattern of an oxide sintered body produced in Example 1.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body produced in Example 2.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body produced in Example 3.
  • FIG. 2 is an X-ray diffraction pattern of an oxide sintered body produced in Comparative Example 1.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body produced in Comparative Example 2.
  • FIG. It is a figure which shows one Embodiment of TFT of this invention. It is a figure which shows one Embodiment of TFT of this invention.
  • the first aspect of the oxide sintered body of the present invention includes an oxide containing In element, Zn element, Sn element and Y element, and the sintered body density is 100.00% or more of the theoretical density.
  • the sintered body density is 100.00% or more of the theoretical density.
  • oxide A, oxide B, oxide C, and oxide D are used as the raw material powder of the oxide sintered body
  • charge amount is a (g), b (g), c (g), and d (g)
  • Theoretical density (a + b + c + d) / ((a / density of oxide A) + (b / density of oxide B) + (c / density of oxide C) + (d / density of oxide D))
  • the density of each oxide is almost the same as the density, the value of the specific gravity of the oxide described in the Chemistry Handbook Fundamentals I Nippon Chemistry Rev. 2 (Maruzen Co., Ltd.) was used. .
  • the sintered body density of the first aspect of the oxide sintered body of the present invention being 100.00% or more of the theoretical density means that there are few voids that can cause abnormal discharge and start nodules. Stable sputtering is possible with less occurrence of cracks during sputtering.
  • the sintered body density is preferably 100.01% or more, more preferably 100.1% or more of the theoretical density. There is no particular upper limit, but it is preferably 105% or less. If it exceeds 105%, a metal component may be contained, and it takes time to optimize the sputtering conditions and annealing conditions for making a semiconductor, or after the conditions are determined for each target, the semiconductor film is formed. You may have to do this.
  • the first aspect of the oxide sintered body of the present invention preferably includes a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 . Since the oxide sintered body includes a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 , a bixbite phase in which the zinc element is represented by In 2 O 3 and / Or It can be dissolved in the pyrochlore phase represented by Y 2 Sn 2 O 7 and the oxide sintered body can exhibit a high density.
  • the oxide sintered body includes a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 is to examine the crystal structure with an X-ray diffractometer (XRD). It can be confirmed with.
  • XRD X-ray diffractometer
  • the first aspect of the oxide sintered body of the present invention may include indium trizincodate represented by In ((Zn 3 In) O 6 ) as long as the effects of the present invention are not impaired.
  • the crystal phase of the first aspect of the oxide sintered body of the present invention includes a bixbite phase represented by In 2 O 3 , a pyrochlore phase represented by Y 2 Sn 2 O 7 , and any In ((Zn It may consist only of the indium tolidine coindate phase represented by 3 In) O 6 ).
  • a bixbite compound composed of indium oxide and a hexagonal crystal represented by In 2 O 3 (ZnO) m (where m is an integer of 1 to 20) are usually used.
  • ZnO In 2 O 3
  • a layered compound is formed. This indicates that the zinc element reacts with indium oxide without being dissolved in indium oxide.
  • yttrium oxide is added to this composition, a hexagonal layered compound represented by indium oxide and / or In 2 O 3 (ZnO) 2 in which the yttrium element is dissolved is produced.
  • the abundance ratio of the bixbite phase represented by In 2 O 3 is 50 to 50% in the oxide sintered body. It is preferably 99 wt%, more preferably 60 to 98 wt%.
  • the pyrochlore phase or the indium trizin coindate phase is contained in the sintered body mainly composed of the bixbite phase represented by In 2 O 3.
  • Application to fluorescent materials other than the target material can also be considered by dispersing and doping rare earth elements.
  • a bixbite phase represented by In 2 O 3 is preferably a main component.
  • the bixbite phase represented by In 2 O 3 is the main component means that the existence ratio of the bixbite phase represented by In 2 O 3 is 50 wt% or more in the oxide sintered body. , Preferably 60 wt% or more, more preferably 70 wt% or more, and even more preferably 80 wt% or more.
  • the oxide sintered body of the present invention contains a bixbite phase represented by In 2 O 3, preferably any one or more of Y element and Zn element in the bixbyite phase is a solid solution substitution. Thereby, it becomes easy to improve the density of a sintered compact.
  • the fact that zinc element is solid solution substituted in the bixbite phase represented by In 2 O 3 means that the lattice constant of the bixbite structure of indium oxide in the sintered body is smaller than the lattice constant of indium oxide alone. Can be confirmed.
  • the fact that the yttrium element is substituted for the bixbite phase represented by In 2 O 3 is that the lattice constant of the bixbite structure of indium oxide in the sintered body is larger than the lattice constant of indium oxide alone.
  • the solid solution substitution of the zinc element and the yttrium element can be adjusted by the amount of yttrium oxide used for manufacturing the sintered body. By adding a small amount of yttrium oxide, indium oxide with a bixbite structure in which zinc element is replaced by solid solution can be generated. By increasing the amount of yttrium oxide added, a bixbite structure in which yttrium element is replaced by solid solution Indium oxide can be produced.
  • the “lattice constant” is defined as the length of the lattice axis of the unit cell, and can be determined by the X-ray diffraction method.
  • the lattice constant of the bixbyite structure of indium oxide is 10.118 ⁇ .
  • the atomic ratio of Zn, Y, Sn, and In is preferably as follows.
  • the atomic ratio represented by Zn / (In + Zn + Y + Sn) is preferably 0.01 to 0.25, more preferably 0.03 to 0.25.
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is preferably 0.03 to 0.25, more preferably 0.05 to 0.20.
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) is preferably 0.03 to 0.30, more preferably 0.05 to 0.30.
  • the atomic ratio represented by In / (In + Zn + Y + Sn) is preferably 0.20 to 0.93, more preferably 0.25 to 0.87.
  • the first aspect of the oxide sintered body of the present invention is obtained by manufacturing a sintered body using raw materials so as to satisfy the above composition.
  • the atomic ratio represented by Zn / (In + Zn + Y + Sn) is preferably 0.01 to 0.25. If it is less than 0.01, the effect of increasing the density by the zinc element cannot be obtained, and only a low-density sintered body may be obtained. If it exceeds 0.25, the zinc element cannot be dissolved in the pyrochlore compound represented by indium oxide or Y 2 Sn 2 O 7 , so that it is precipitated as zinc oxide, or a hexagonal crystal layer such as In 2 O 3 (ZnO) 2. A compound may appear.
  • the atomic ratio represented by Zn / (In + Zn + Y + Sn) is preferably 0.03 to 0.25, more preferably 0.05 to 0.22, and still more preferably 0.08 to 0.20. .
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is preferably 0.03 to 0.25. If it is less than 0.03, when a semiconductor layer of a thin film transistor (TFT) is formed using a sputtering target manufactured from a sintered body, it may be a conductor without being made into a semiconductor, and only a TFT lacking stability can be obtained. There may not be. In the case of exceeding 0.25, when a semiconductor layer of a thin film transistor (TFT) is formed using a sputtering target manufactured from a sintered body, the semiconductor layer may be formed as an insulator without being formed into a semiconductor.
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is preferably 0.05 to 0.22, more preferably 0.05 to 0.20, and still more preferably 0.07 to 0.20. .
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) is preferably 0.03 to 0.30. If it is less than 0.03, the resistance value of the target does not decrease, the sintering density does not increase, the strength of the sintered body thereafter does not increase, and the linear expansion coefficient and thermal conductivity may be adversely affected.
  • a thin film transistor (TFT) semiconductor layer is formed using a sputtering target manufactured from a sintered body of less than 0.03, it dissolves in a mixed acid composed of phosphoric acid, nitric acid, and acetic acid, which is an etching solution for wiring metal. As a result, the back channel TFT which is the TFT structure may not be formed.
  • the density of the sintered body is easily improved.
  • etching may not be performed with an organic acid such as oxalic acid, and a TFT may not be formed.
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) is preferably 0.05 to 0.30, more preferably 0.08 to 0.28, and even more preferably 0.10 to 0.25. .
  • the atomic ratio represented by In / (In + Zn + Y + Sn) is preferably 0.20 to 0.93.
  • the composition ratio of the indium element in the sintered body is preferably higher because a TFT having high mobility, which is a characteristic of the TFT, can be obtained. However, the amount is determined from the added amount of each additive element considering the characteristics of the TFT to be obtained. Can be defined.
  • the atomic ratio represented by In / (In + Zn + Y + Sn) is preferably 0.25 to 0.87.
  • the content (atomic ratio) of each metal element in the sintered body can be determined by measuring the abundance of each element by, for example, ICP (Inductively Coupled Plasma) measurement. it can.
  • ICP Inductively Coupled Plasma
  • the oxide sintered body of the present invention may contain indium element, zinc element, tin element and yttrium element, and the metal element contained in the oxide sintered body of the present invention is substantially composed of indium element, zinc element, It may consist of tin element and yttrium element.
  • “substantially” means that the content ratio of indium element, zinc element, tin element and yttrium element in the metal element contained in the oxide sintered body is, for example, 90 atm% or more, 95 atm% or more, 98 atm% As mentioned above, it means 99 atm% or more or 100 atm%.
  • the oxide sintered body of the present invention may contain a gallium element as a metal element other than the indium element, the zinc element, the tin element, and the yttrium element as long as the effects of the present invention are not impaired.
  • the bulk resistance of the oxide sintered body of the present invention is preferably 10 m ⁇ cm or less, more preferably 8 m ⁇ cm or less, and particularly preferably 5 m ⁇ cm or less. Bulk resistance can be measured by the method described in the Examples. If the bulk resistance is large, the target may be charged during film formation with high power, causing abnormal discharge, or the plasma state may not be stable, and sparks may occur.
  • the three-point bending strength of the oxide sintered body of the present invention is preferably 120 MPa or more, more preferably 140 MPa or more, and further preferably 150 MPa or more. If the three-point bending strength is low, when the sputter film is formed with high power, the strength of the target is weak, so the target may be cracked or chipped, causing solids to scatter on the target and cause abnormal discharge. There is.
  • the three-point bending strength can be evaluated in accordance with JIS R 1601 “Room temperature bending strength test of fine ceramics”.
  • test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm
  • the test piece is placed on two fulcrums arranged at a fixed distance (30 mm), and the crosshead speed is 0 from the center between the fulcrums. It can be evaluated by applying a load of 0.5 mm / min and calculating the bending strength from the maximum load when it breaks.
  • the linear expansion coefficient of the oxide sintered body of the present invention is preferably 8.0 ⁇ 10 ⁇ 6 (K ⁇ 1 ) or less, and more preferably 7.5 ⁇ 10 ⁇ 6 (K ⁇ 1 ) or less. and further preferably 7.0 ⁇ 10 -6 (K -1) or less. If the coefficient of linear expansion is large, it is heated during sputtering with high power, the target expands, deformation occurs between the bonded copper plates, microcracks enter the target due to stress, and abnormalities occur due to cracking and chipping. May cause discharge.
  • a standard test piece with a width of 5 mm, a thickness of 5 mm, and a length of 10 mm is used. It can be evaluated by using a machine.
  • the thermal conductivity of the oxide sintered body of the present invention is preferably 5.0 (W / m ⁇ K) or more, more preferably 5.5 (W / m ⁇ K) or more, and 6.0. (W / m ⁇ K) or more is more preferable, and 6.5 (W / m ⁇ K) or more is most preferable.
  • the thermal conductivity is low, when sputtering film formation is performed with high power, the temperature of the sputtered surface and the bonded surface are different, and there is a possibility that microcracks, cracks, and chipping may occur in the target due to internal stress.
  • the thermal conductivity can be calculated by, for example, obtaining a specific heat capacity and a thermal diffusivity by a laser flash method using a standard test piece having a diameter of 10 mm and a thickness of 1 mm, and multiplying this by the density of the test piece.
  • the second aspect of the oxide sintered body of the present invention includes an In element, a Zn element, a Sn element, and a Y element, the atomic ratio of the Zn element and the In element is in the following range, and Zn 2 SnO 4 Does not include the spinel phase represented. 0.01 ⁇ Zn / (In + Zn + Y + Sn) ⁇ 0.25 0.50 ⁇ In / (In + Zn + Y + Sn)
  • a second aspect of the oxide sintered body of the present invention does not contain a spinel phase represented by Zn 2 SnO 4 can be confirmed by examining the crystal structure, for example, by X-ray diffraction measurement device (XRD).
  • XRD X-ray diffraction measurement device
  • the atomic ratio represented by Zn / (In + Zn + Y + Sn) is based on the viewpoint of improving the density of the sintered body and the crystallinity of the resulting oxide semiconductor film. From the viewpoint of control, it is preferably 0.03 to 0.25, more preferably 0.05 to 0.22, and still more preferably 0.08 to 0.20. Further, the atomic ratio represented by In / (In + Zn + Y + Sn) is preferably 0.50 to 0.93 from the viewpoint of improving the density of the sintered body and keeping the mobility of the obtained TFT high. Preferably it is 0.50 to 0.87.
  • a second aspect of the oxide sintered body of the present invention preferably contains a bixbite phase represented by an In 2 O 3, a pyrochlore phase which is represented by Y 2 Sn 2 O 7.
  • zinc element can be dissolved in the bixbite phase represented by In 2 O 3 and / or the pyrochlore phase represented by Y 2 Sn 2 O 7 , and the oxide sintered body can exhibit a high density.
  • the oxide sintered body includes a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 , for example, by the above-described X-ray diffraction measurement apparatus (XRD). You can check by checking.
  • XRD X-ray diffraction measurement apparatus
  • the second aspect of the oxide sintered body of the present invention is from the viewpoint of improving the density of the sintered body, and from the viewpoint of controlling the crystallinity of the resulting oxide semiconductor film and keeping the mobility of the TFT high. It is preferable that the atomic ratio of the Y element and the Sn element is in the following range. 0.03 ⁇ Y / (In + Zn + Y + Sn) ⁇ 0.25 0.03 ⁇ Sn / (In + Zn + Y + Sn) ⁇ 0.30
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is a viewpoint for controlling the compound in the oxide sintered body, and also a protective film or insulating film of the TFT. From the viewpoint of maintaining the heat resistance of the oxide semiconductor film in the CVD process in the manufacturing process and the subsequent heat treatment, it is preferably 0.05 to 0.22, more preferably 0.05 to 0.20. And more preferably 0.07 to 0.20.
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) improves the resistance to chemicals for etching the metal in the oxide semiconductor film obtained from the viewpoint of controlling the compound in the oxide sintered body. From the viewpoint, it is preferably 0.05 to 0.30, more preferably 0.08 to 0.28, and still more preferably 0.10 to 0.25.
  • the third aspect of the oxide sintered body of the present invention includes an In element, a Zn element, a Sn element, and a Y element, and satisfies an atomic ratio of the Zn element and the In element within the following range: Consisting of a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 , or It consists only of a bixbite phase represented by In 2 O 3 , a pyrochlore phase represented by Y 2 Sn 2 O 7 , and an indium trizin coindate phase represented by In ((Zn 3 In) O 6 ). 0.01 ⁇ Zn / (In + Zn + Y + Sn) ⁇ 0.25 0.50 ⁇ In / (In + Zn + Y + Sn)
  • a third aspect of the oxide sintered body of the present invention consists of pyrochlore phase represented by bixbyite phase and Y 2 Sn 2 O 7 is represented by In 2 O 3 alone, or, In 2 O 3 X in bixbyite phase represented, Y 2 Sn 2 O 7 represented by the pyrochlore phase and in ((Zn 3 in) O 6) by consisting of only indium tolidine coins dating phase represented, for example the above-mentioned This can be confirmed by examining the crystal structure with a line diffraction measurement device (XRD).
  • XRD line diffraction measurement device
  • the atomic ratio represented by Zn / (In + Zn + Y + Sn) controls the crystallinity of the oxide semiconductor film obtained from the viewpoint of improving the sintered body density. From this viewpoint, it is preferably 0.03 to 0.25, more preferably 0.05 to 0.22, and still more preferably 0.08 to 0.20.
  • the atomic ratio represented by In / (In + Zn + Y + Sn) is preferably 0.50 to 0.93, more preferably from the viewpoint of improving the density of the sintered body and keeping the mobility of the resulting TFT high. Is 0.50 to 0.87.
  • the third aspect of the oxide sintered body of the present invention is Y from the viewpoint of improving the density of the sintered body and controlling the crystallinity of the resulting oxide semiconductor film to keep the mobility of the TFT high.
  • the atomic ratio of the element and the Sn element is preferably in the following range. 0.03 ⁇ Y / (In + Zn + Y + Sn) ⁇ 0.25 0.03 ⁇ Sn / (In + Zn + Y + Sn) ⁇ 0.30
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is a viewpoint for controlling the compound in the oxide sintered body, and also a protective film or insulating film of the TFT. From the viewpoint of maintaining the heat resistance of the oxide semiconductor film in the CVD process in the manufacturing process and the subsequent heat treatment, it is preferably 0.05 to 0.22, more preferably 0.05 to 0.20. And more preferably 0.07 to 0.20.
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) improves the resistance to chemicals for etching the metal in the oxide semiconductor film obtained from the viewpoint of controlling the compound in the oxide sintered body. From the viewpoint, it is preferably 0.05 to 0.30, more preferably 0.08 to 0.28, and still more preferably 0.10 to 0.25.
  • the oxide sintered body of the present invention includes a step of preparing a mixed powder of raw material powders containing indium element, zinc element, tin element and yttrium element, a step of forming a mixed powder to produce a molded body, and a molded body. It can manufacture by passing through the process of baking.
  • the raw material powder is preferably an oxide powder, and indium oxide, zinc oxide, tin oxide and yttrium oxide are preferably used as the raw material powder.
  • the mixing ratio of the raw material powders should correspond to the atomic ratio of the sintered body to be obtained.
  • the oxide sintered body of the present invention it is preferable to mix at a mixing ratio satisfying the following atomic ratio: 0.01 ⁇ Zn / (In + Zn + Y + Sn) ⁇ 0.25 0.03 ⁇ Y / (In + Zn + Y + Sn) ⁇ 0.25 0.03 ⁇ Sn / (In + Zn + Y + Sn) ⁇ 0.30 0.20 ⁇ In / (In + Zn + Y + Sn) ⁇ 0.93
  • a more preferable mixing ratio etc. are the same as the atomic ratio demonstrated with the oxide sintered compact of each aspect.
  • the average particle diameter of the raw material powder is preferably 0.1 ⁇ m to 2 ⁇ m, more preferably 0.5 ⁇ m to 1.5 ⁇ m.
  • the average particle diameter of the raw material powder can be measured with a laser diffraction type particle size distribution apparatus or the like.
  • the method for mixing and forming the raw materials is not particularly limited, and can be performed using a known method.
  • a binder may be added when mixing.
  • the mixing of the raw materials can be performed using a known device such as a ball mill, a bead mill, a jet mill, or an ultrasonic device. Conditions such as the pulverization time may be adjusted as appropriate, but are preferably about 6 to 100 hours.
  • a mixed powder can be pressure-molded to form a molded body. By this step, the product is formed into a product shape (for example, a shape suitable as a sputtering target).
  • a molded product can be obtained by filling the mixed powder in a mold and molding the mold usually by a die press or cold isostatic press (CIP), for example, at a pressure of 100 Ma or more.
  • CIP cold isostatic press
  • molding aids such as polyvinyl alcohol, polyethylene glycol, methylcellulose, polywax, oleic acid, and stearic acid may be used.
  • the obtained molded product can be sintered at a sintering temperature of 1200 to 1650 ° C. for 10 hours or longer to obtain a sintered body.
  • the sintering temperature is preferably 1350 to 1600 ° C, more preferably 1400 to 1600 ° C, still more preferably 1450 to 1600 ° C.
  • the sintering time is preferably 10 to 50 hours, more preferably 12 to 40 hours, still more preferably 13 to 30 hours.
  • the sintering temperature is less than 1200 ° C. or the sintering time is less than 10 hours, the sintering does not proceed sufficiently, and the electrical resistance of the target is not sufficiently lowered, which may cause abnormal discharge.
  • the firing temperature exceeds 1650 ° C. or the firing time exceeds 50 hours, the average crystal grain size increases due to remarkable crystal grain growth, and coarse pores are generated, and the sintered body strength is reduced. May cause abnormal discharge.
  • the compact is sintered (fired) in an air atmosphere or an oxygen gas atmosphere.
  • the oxygen gas atmosphere is preferably an atmosphere having an oxygen concentration of, for example, 10 to 50% by volume.
  • the oxide sintered body of the present invention can increase the density of the sintered body even if the temperature raising process and the holding process (sintering process) are performed in an air atmosphere.
  • the heating rate during sintering is from 800 ° C. to a sintering temperature (1200 to 1650 ° C.) of 0.1 to 2 ° C./min.
  • the temperature range above 800 ° C. is the range where the sintering proceeds most. If the rate of temperature rise in this temperature range is slower than 0.1 ° C./min, crystal grain growth becomes significant, and there is a possibility that densification cannot be achieved.
  • the rate of temperature increase is faster than 2 ° C./min, a temperature distribution is generated in the molded body, and the sintered body may be warped or cracked.
  • the rate of temperature increase from 800 ° C. to the sintering temperature is preferably 0.5 to 2.0 ° C./min, more preferably 1.0 to 1.8 ° C./min.
  • the obtained sintered body is cut and polished, and bonded to a backing plate to obtain the sputtering target of the present invention.
  • the surface of the sintered body often has a sintered portion in a highly oxidized state or has an uneven surface, and needs to be cut into a specified size.
  • the surface may be polished with # 200, # 400, or # 800.
  • bonding with metal indium is preferable.
  • the sputtering target of the present invention can be applied to DC sputtering, RF sputtering, AC sputtering, pulsed DC sputtering, and the like.
  • An oxide semiconductor film can be obtained by film formation using the above sputtering target.
  • the oxide semiconductor film can be formed by a vapor deposition method, a sputtering method, an ion plating method, a pulse laser vapor deposition method, or the like using the above target.
  • the oxide semiconductor film of the present invention has the following atomic ratio. 0.01 ⁇ Zn / (In + Zn + Y + Sn) ⁇ 0.25 0.03 ⁇ Y / (In + Zn + Y + Sn) ⁇ 0.25 0.03 ⁇ Sn / (In + Zn + Y + Sn) ⁇ 0.30 0.20 ⁇ In / (In + Zn + Y + Sn) ⁇ 0.93
  • the mobility may be reduced when the oxide semiconductor film is crystallized to generate an interface of large crystal grains to form a TFT. If it exceeds 0.25, the etching rate of the oxide semiconductor film becomes too high and the etching rate cannot be controlled, or the chemical resistance to the resist stripping solution decreases and the surface of the oxide semiconductor film dissolves. There is. On the other hand, when the thickness exceeds 0.25, when a semiconductor layer of a thin film transistor (TFT) is formed using a sputtering target manufactured from a sintered body, only a TFT lacking stability may be obtained.
  • the atomic ratio represented by Zn / (In + Zn + Y + Sn) is preferably 0.03 to 0.25, more preferably 0.05 to 0.22, and still more preferably 0.08 to 0.20. .
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is less than 0.03, it may not be a semiconductor and may be a conductor, and only a TFT lacking stability may be obtained. On the other hand, if it exceeds 0.25, there is a case where it is not made into a semiconductor but an insulator.
  • the atomic ratio represented by Y / (In + Zn + Y + Sn) is preferably 0.05 to 0.22, more preferably 0.05 to 0.20, and still more preferably 0.07 to 0.20. .
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) is less than 0.03, it is dissolved in a mixed acid composed of phosphoric acid, nitric acid and acetic acid which is an etching solution for wiring metal, and the back channel TFT which is a TFT structure is formed. It may not be possible to form. On the other hand, if it exceeds 0.30, etching may not be possible with an organic acid such as oxalic acid, and a TFT may not be formed.
  • the atomic ratio represented by Sn / (In + Zn + Y + Sn) is preferably 0.05 to 0.30, more preferably 0.08 to 0.28, and even more preferably 0.10 to 0.25. .
  • the atomic ratio represented by In / (In + Zn + Y + Sn) is 0.20 to 0.93.
  • the composition ratio of the indium element in the oxide semiconductor film is preferably higher because a TFT having high mobility, which is a characteristic of the TFT, is obtained.
  • the amount of each additive element added in consideration of the desired TFT characteristics What is necessary is just to prescribe
  • the atomic ratio represented by In / (In + Zn + Y + Sn) is preferably 0.25 to 0.87, more preferably 0.50 to 0.87.
  • the content (atomic ratio) of each metal element in the oxide semiconductor film can be obtained by measuring the abundance of each element by, for example, ICP (Inductively Coupled Plasma) measurement. it can.
  • ICP Inductively Coupled Plasma
  • the oxide semiconductor film of the present invention may be amorphous.
  • the oxide semiconductor film of the present invention can be manufactured using the sputtering target of the present invention.
  • the oxide thin film obtained from the sputtering target of the present invention can be used for a TFT, and can be particularly suitably used as a channel layer.
  • the element configuration of the TFT is not particularly limited, and various known element configurations can be employed.
  • FIG. 6 shows an example of the TFT of the present invention.
  • a semiconductor film 40 which is an oxide semiconductor of the present invention is formed on a gate insulating film 30 on a silicon wafer (gate electrode) 20, and interlayer insulating films 70 and 70a are formed.
  • 70a on the semiconductor film 40 also functions as a channel layer protective layer.
  • a source electrode 50 and a drain electrode 60 are provided on the semiconductor film.
  • FIG. 7 shows an example of the TFT of the present invention.
  • a semiconductor film 40 which is an oxide semiconductor of the present invention is formed on a gate insulating film (for example, SiO 2 ) 30 on a silicon wafer (gate electrode) 20, and a source electrode 50 and a drain are formed on the semiconductor film 40.
  • An electrode 60 is provided, and a protective layer 70 b (for example, a SiO 2 film formed by CVD) is provided on the semiconductor film 40, the source electrode 50, and the drain electrode 60.
  • a protective layer 70 b for example, a SiO 2 film formed by CVD
  • the silicon wafer 20 and the gate insulating film 30 may be a silicon wafer with a thermal oxide film, the silicon wafer may be used as a gate electrode, and the thermal oxide film (SiO 2 ) may be used as a gate insulating film.
  • the gate electrode 20 may be formed on a substrate such as glass.
  • the band gap of the oxide semiconductor film of the present invention is preferably 3.0 eV or more.
  • the band gap is 3.0 eV or more, light on the long wavelength side from a wavelength near 420 nm is not absorbed.
  • light from the light source of the organic EL or TFT-LCD is not absorbed, and when used as a TFT channel layer, there is no malfunction due to the light of the TFT, and light stability can be improved. it can.
  • it is 3.1 eV or more, More preferably, it is 3.3 eV or more.
  • the material for forming each of the drain electrode, the source electrode and the gate electrode is not particularly limited, and a commonly used material can be arbitrarily selected.
  • transparent electrodes such as indium tin oxide (ITO), indium zinc oxide (IZO), ZnO, SnO 2 , metal electrodes such as Al, Ag, Cu, Cr, Ni, Mo, Au, Ti, Ta, or these
  • metal electrode or a laminated electrode of an alloy containing can be used.
  • a silicon wafer may be used as a substrate, and in that case, the silicon wafer also acts as an electrode.
  • the material for forming the insulating film and the protective film is not particularly limited, and a commonly used material can be arbitrarily selected. Specifically, for example, SiO 2, SiNx, Al 2 O 3, Ta 2 O 5, TiO 2, MgO, ZrO 2, CeO 2, K 2 O, Li 2 O, Na 2 O, Rb 2 O, Sc Compounds such as 2 O 3 , Y 2 O 3 , HfO 2 , CaHfO 3 , PbTiO 3 , BaTa 2 O 6 , SrTiO 3 , Sm 2 O 3 , and AlN can be used.
  • a protective film on the drain electrode, the source electrode, and the channel layer.
  • the durability is easily improved even when the TFT is driven for a long time.
  • a top gate type TFT has a structure in which a gate insulating film is formed on a channel layer, for example.
  • the protective film or the insulating film can be formed by, for example, CVD, but at that time, the process may be performed at a high temperature.
  • the protective film or the insulating film often contains an impurity gas immediately after film formation, and it is preferable to perform heat treatment (annealing treatment).
  • the oxide semiconductor film of the present invention By removing these impurity gases by heat treatment, a stable protective film or insulating film is obtained, and a highly durable TFT element can be easily formed.
  • the oxide semiconductor film of the present invention it becomes difficult to be affected by the temperature in the CVD process and the subsequent heat treatment. Therefore, even when the protective film or the insulating film is formed, the TFT characteristics are stabilized. Can be improved.
  • Examples 1 to 9 Zinc oxide powder, yttrium oxide powder, tin oxide powder and indium oxide powder were weighed so as to have the atomic ratio shown in Table 1 (Table 1-1 and Table 1-2 are collectively referred to as Table 1).
  • the mixture was put into a pot and mixed and ground for 72 hours by a dry ball mill to prepare a mixed powder.
  • This mixed powder was put into a mold and formed into a press-molded body at a pressure of 500 kg / cm 2 .
  • This molded body was densified by CIP at a pressure of 2000 kg / cm 2 .
  • this molded body was placed in a firing furnace, held at 350 ° C. for 3 hours under an atmospheric pressure atmosphere, heated at 100 ° C./hour, and sintered at 1450 ° C. for 20 hours. Thereafter, it was left to cool to obtain an oxide sintered body.
  • XRD charts of the sintered bodies of Examples 1 to 3 are shown in FIGS. 1 to 3, respectively.
  • a bixbite phase represented by In 2 O 3 and a pyrochlore phase represented by Y 2 Sn 2 O 7 were confirmed.
  • an indium trizincodate phase represented by In ((Zn 3 In) O 6 ) was further confirmed.
  • the lattice constants of the bixbyite structure represented by In 2 O 3 are 10.06889 ⁇ and 10.09902 ⁇ ⁇ ⁇ ⁇ , respectively. Therefore, in Examples 1 and 2, the lattice constant is represented by In 2 O 3. It can be seen that zinc element is replaced by solid solution in the bixbite phase. In Example 3, since the lattice constant of the bixbite structure represented by In 2 O 3 is 10.13330 ⁇ , in Example 3, yttrium element was dissolved in the bixbite phase represented by In 2 O 3. It turns out that it is replacing.
  • the XRD measurement conditions are as follows. The lattice constant was determined from the obtained X-ray diffraction. Apparatus: Rigaku Co., Ltd. Smartlab X-ray: Cu-K ⁇ ray (wavelength 1.5418 mm, monochromatized with graphite monochromator) 2 ⁇ - ⁇ reflection method, continuous scan (2.0 ° / min) Sampling interval: 0.02 ° Slit DS (divergence slit), SS (scattering slit), RS (light receiving slit): 1 mm
  • the sintered body obtained in Examples 1 to 9 was evaluated as follows. The results are shown in Table 1.
  • Element composition ratio (atomic ratio)
  • the elemental composition in the sintered body was measured by an induction plasma emission analyzer (ICP-AES).
  • the relative density was calculated by measuring the measured density of the manufactured oxide sintered body by the Archimedes method and dividing the measured density by the calculated density of the oxide sintered body. The calculated density was calculated by dividing the total weight of the raw material powder used for manufacturing the oxide sintered body by the total volume of the raw material powder used for manufacturing the oxide sintered body.
  • the bulk resistance (conductivity) of the sintered body was measured based on the four-probe method using a resistivity meter (Loresta AX MCP-T370, manufactured by Mitsubishi Chemical Corporation).
  • Comparative Examples 1 to 4 Examples 1 to 9 were used except that yttrium oxide powder, tin oxide powder, indium oxide powder, and zinc oxide powder were used so that the atomic ratios shown in Table 2 were obtained (comparative examples 1 and 2 did not use zinc oxide powder). In the same manner as above, a sintered body was produced and evaluated. The results are shown in Table 2.
  • Examples 10, 11, 14, 15, 16 Manufacture of thin film transistor (TFT)>
  • Film-forming process A sputtering target was produced using the sintered body shown in Table 3 obtained in Examples 2, 3, 1, 6, and 7.
  • a thin film (semiconductor film) having a thickness of 50 nm was formed on a silicon wafer (gate electrode) with a thermal oxide film (gate insulating film) by sputtering using these sputtering targets through a metal mask.
  • a mixed gas of high purity argon and high purity oxygen was used as the sputtering gas. The results are shown in Table 3.
  • Titanium metal was formed by sputtering using a metal mask as the source / drain electrodes.
  • the obtained laminate was heat-treated at 350 ° C. for 30 minutes in the atmosphere to complete a TFT.
  • a SiO 2 film (protective insulating film) is formed on the semiconductor film after the heat treatment by chemical vapor deposition (CVD) at a substrate temperature of 350 ° C. Then, heat treatment was performed at 350 ° C. for 30 minutes as post-annealing.
  • a film was formed with an ion coater using a metal mask so that the size was less than 2 mm, and indium solder was placed on the Au metal to improve the contact, thereby obtaining a sample for measuring the Hall effect.
  • ABC-G manufactured by Nippon Electric Glass Co., Ltd. was used for the glass substrate.
  • the sample for Hall effect measurement was set in a Hall effect / specific resistance measuring apparatus (ResiTest 8300 type, manufactured by Toyo Technica Co., Ltd.), the Hall effect was evaluated at room temperature, and the carrier density and mobility were obtained.
  • a SiO 2 film was formed with a CVD apparatus at a substrate temperature of 350 ° C., and then Hall measurement was performed. Further, the hole measurement was performed after the heat treatment at 350 ° C. for 30 minutes. A SiO 2 film was pierced with a measuring needle up to a gold layer and contacted.
  • -Band gap of semiconductor film A semiconductor film was formed on a quartz substrate by sputtering using a sputtering target manufactured from the sintered body shown in Table 3 in Examples 2, 3, 1, 6, and 7, and the temperature was 350 ° C.
  • the transmission spectrum of a thin film sample subjected to heat treatment for 5 minutes was measured. After converting the wavelength on the horizontal axis to energy (eV) and the transmittance on the vertical axis to ( ⁇ h ⁇ ) 2 (where ⁇ is an absorption coefficient, h is a Planck's constant, and v is a frequency), absorption occurs. Fitting was performed on the rising portion, and the eV value where it intersected with the baseline was calculated.
  • the density of the sintered body is less likely to be higher than a technique using a HIP, spark plasma sintering (SPS) or oxygen atmosphere firing furnace.
  • SPS spark plasma sintering
  • Table 1 it can be seen that the sintered body of the present example has a high density even when firing in a simple air atmosphere.
  • An oxide semiconductor film having the composition shown in Table 3 is useful as a thin film transistor.
  • the sintered body of the present invention can be used as a sputtering target, and the obtained sputtering target can be used when an oxide semiconductor thin film of a thin film transistor is produced by a vacuum process such as a sputtering method.

Abstract

In元素、Zn元素、Sn元素及びY元素を含む酸化物を含み、焼結体密度が理論密度の100.00%以上であることを特徴とする酸化物焼結体。

Description

酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜
 本発明は、液晶ディスプレイ(LCD)や有機エレクトロルミネッセンス(EL)ディスプレイ等の表示装置等に用いられる薄膜トランジスタ(TFT)、TFTに用いることのできる酸化物半導体膜、さらに酸化物半導体膜等を製造する際に用いることのできるスパッタリングターゲット、及びその材料となる酸化物焼結体に関するものである。
 薄膜トランジスタに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリヤー移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板等への適用が期待されている。
 上記酸化物半導体(膜)の形成に当たっては、スパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。これは、スパッタリング法で形成された薄膜が、イオンプレーティング法や真空蒸着法、電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成や膜厚等の面内均一性に優れており、スパッタリングターゲットと同じ成分組成の薄膜を形成できるためである。
 特許文献1には、In,Y及びOからなり、Y/(Y+In)が2.0~40原子%であって、体積抵抗率が5×10-2Ωcm以下である酸化物焼結体をターゲットとして用いることが記載されている。Sn元素の含有量は、Sn/(In+Sn+他の全金属原子)が2.8~20原子%であるとの記載がある。
 特許文献2には、In,Sn,Y及びOからなり、Y/(In+Sn+Y)が0.1~2.0原子%である酸化物焼結体、これを用いたスパッタリングターゲットが記載されている。このターゲットから得られる薄膜は、フラットパネルディスプレイ、タッチパネル等の機器を構成することが記載されている。
 特許文献3には、YInOとInの格子定数の中間の格子定数を有する焼結体、及びこれをスパッタリングターゲットとして用いることが記載されている。また、酸化インジウム、酸化イットリウム及び酸化スズからなる組成で、InとYSnO化合物を含む焼結体が記載されている。また、酸化イットリウム、酸化スズ、酸化亜鉛からなり、YSnとZnO又はZnSnO化合物を含む焼結体が記載されている。この焼結体は、雰囲気焼成炉を用いて酸素雰囲気下という特殊な条件下で焼成して、体積抵抗率も低く密度も高いが、脆く、スパッタリングの製造途中で割れたり、チッピングを起こしたりすることがあり、製造歩留まりが上がらない場合があった。また、強度が低いために、大パワーでスパッタリングする場合に、割れる場合があった。
 特許文献4には、In、Sn及びZnと、Mg,Si,Al,Sc,Ti,Y,Zr,Hf,Ta,La,Nd及びSmからなる群より選択される1以上の元素を含有する酸化物焼結体、及びこれをスパッタリングターゲットとして用いることが記載されている。この焼結体はInとZnSnO化合物を含む焼結体である。
 特許文献5には、In、Sn、Znと、Mg、Al、Ga、Si、Ti、Y、Zr、Hf、Ta、La、Nd及びSmから選択される元素が添加され、ビックスバイト構造化合物とスピネル構造化合物を含むスパッタリングターゲットが記載されている。
 特許文献6には、In、Sn、ZnとHf、Zr、Ti、Y、Nb、Ta、W、Mo及びSmから選択される元素が添加され、In相、スピネル相、XSn相(パイロクロア相)及びZnXから選択される1以上の層を含む焼結体が記載されている。
 一方でさらなる高性能なTFTへの要求が強くあり、高移動度で、保護膜又は絶縁膜を化学蒸着法(CVD)で形成する際の加熱等での特性変化の小さい材料への要望は大きい。
特開平09-209134号公報 特開2000-169219号公報 国際公開2010/032432号 国際公開2012/153507号 特開2014-111818号公報 特開2015-214436号公報
 酸化インジウムをベースとするターゲット材に、イットリウムの様な原子半径の大きな元素を添加すると、酸化インジウムの格子定数が変化し、焼結密度が上がらずターゲット材の強度が低下したり、大パワーでのスパッタリング中に熱応力によりマイクロクラックを発生したり、チッピングを起こして異常放電が発生したりする場合がある。これら現象は欠陥を発生させ、TFT性能の劣化を引き起こす。
 本発明の目的は、優れたTFT性能を発揮するTFT、当該TFTに用いることのできる酸化物半導体膜、当該酸化物半導体膜を形成できるスパッタリングターゲット、及びその材料である酸化物焼結体を提供することである。
 本発明によれば、以下の酸化物焼結体等が提供される。
1.In元素、Zn元素、Sn元素及びY元素を含む酸化物を含み、
 焼結体密度が理論密度の100.00%以上であることを特徴とする酸化物焼結体。
2.Inで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことを特徴とする1に記載の酸化物焼結体。
3.前記ビックスバイト相に、Y元素及びZn元素のいずれか1以上が固溶置換していることを特徴とする2に記載の酸化物焼結体。
4.前記Zn元素、Y元素、Sn元素及びIn元素の原子比が下記範囲であることを特徴とする1~3のいずれか一項に記載の酸化物焼結体。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
 0.20≦In/(In+Zn+Y+Sn)≦0.93
5.In元素、Zn元素、Sn元素及びY元素を含み、前記Zn元素、及びIn元素の原子比が下記範囲であり、ZnSnOで表されるスピネル相を含まないことを特徴とする酸化物焼結体。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.50≦In/(In+Zn+Y+Sn)
6.Inで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことを特徴とする5に記載の酸化物焼結体。
7.前記ビックスバイト相に、Y元素及びZn元素のいずれか1以上が固溶置換していることを特徴とする6に記載の酸化物焼結体。
8.前記Y元素及びSn元素の原子比が下記範囲であることを特徴とする5~7のいずれか一項に記載の酸化物焼結体。
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
9.In元素、Zn元素、Sn元素及びY元素を含み、前記Zn元素及びIn元素の原子比が下記範囲であることを満たし、
 Inで表されるビックスバイト相及びYSnで表されるパイロクロア相のみからなる、又は、
 Inで表されるビックスバイト相、YSnで表されるパイロクロア相及びIn((ZnIn)O)で表されるインジウムトリジンコインデート相のみからなることを特徴とする酸化物焼結体。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.50≦In/(In+Zn+Y+Sn)
10.前記ビックスバイト相に、Y元素及びZn元素のいずれか1以上が固溶置換していることを特徴とする9に記載の酸化物焼結体。
11.前記Y元素及びSn元素の原子比が下記範囲であることを特徴とする9又は10に記載の酸化物焼結体。
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
12.1~11のいずれか一項に記載の酸化物焼結体を含むことを特徴とするスパッタリングターゲット。
13.Zn元素、Y元素、Sn元素及びIn元素の原子比が下記範囲であることを特徴とする酸化物半導体膜。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
 0.20≦In/(In+Zn+Y+Sn)≦0.93
14.非晶質であることを特徴とする13に記載の酸化物半導体膜。
15.13又は14に記載の酸化物半導体膜を含むことを特徴とする薄膜トランジスタ。
 本発明によれば、優れたTFT性能を発揮するTFT、当該TFTに用いることのできる酸化物半導体膜、当該酸化物半導体膜を形成できるスパッタリングターゲット、及びその材料である酸化物焼結体が提供できる。
実施例1で作製した酸化物焼結体のX線回折パターンである。 実施例2で作製した酸化物焼結体のX線回折パターンである。 実施例3で作製した酸化物焼結体のX線回折パターンである。 比較例1で作製した酸化物焼結体のX線回折パターンである。 比較例2で作製した酸化物焼結体のX線回折パターンである。 本発明のTFTの一実施形態を示す図である。 本発明のTFTの一実施形態を示す図である。
 以下、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」を意味する。
 本発明の酸化物焼結体の第1の態様は、In元素、Zn元素、Sn元素及びY元素を含む酸化物を含み、焼結体密度が理論密度の100.00%以上である。
 本発明の酸化物焼結体の第1の態様、後述の本発明の酸化物焼結体の第2の態様及び後述の本発明の酸化物焼結体の第3の態様を総括して、本発明の酸化物焼結体という。
 ここで「焼結体密度が理論密度の100.00%以上」とは、アルキメデス法により測定される酸化物焼結体の実測密度を、酸化物焼結体の理論密度で除した値が百分率で100.00%以上であることを意味する。本発明において、理論密度は以下のように算出されるものである。
  理論密度=酸化物焼結体に用いた原料粉末の総重量/酸化物焼結体に用いた原料粉末の総体積
 例えば、酸化物焼結体の原料粉末として酸化物A、酸化物B、酸化物C、酸化物Dを用いた場合において、酸化物A、酸化物B、酸化物C、酸化物Dの使用量(仕込量)をそれぞれa(g)、b(g)、c(g)、d(g)とすると、理論密度は、以下のように当てはめることで算出できる。
  理論密度=(a+b+c+d)/((a/酸化物Aの密度)+(b/酸化物Bの密度)+(c/酸化物Cの密度)+(d/酸化物Dの密度))
 尚、各酸化物の密度は、密度と比重はほぼ同等であることから、化学便覧 基礎編I日本化学編 改定2版(丸善株式会社)に記載されている酸化物の比重の値を用いた。
 本発明の酸化物焼結体の第1の態様の焼結体密度が理論密度の100.00%以上であることは、異常放電の原因やノジュール発生の起点となりうる空隙が少ないことを意味し、スパッタリング時の割れ等の発生が少なく安定したスパッタリングが可能となる。
 焼結体密度は、理論密度の好ましくは100.01%以上であり、より好ましくは100.1%以上である。上限は特にないが、105%以下がよい。105%超になると、金属成分が含有される場合があり、半導体化するスパッタ条件やアニール条件を適正化するのに時間を要するようになったり、ターゲット毎に条件を決定してから半導体成膜をしなければならなくなる場合がある。
 本発明の酸化物焼結体の第1の態様は、Inで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むと好ましい。酸化物焼結体がInで表されるビックスバイト相とYSnで表されるパイロクロア相を含むことで、亜鉛元素がInで表されるビックスバイト相及び/又はYSnで表されるパイロクロア相に固溶し、酸化物焼結体が高い密度を示すことができる。
 酸化物焼結体がInで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことは、X線回折測定装置(XRD)により結晶構造を調べることで確認できる。
 本発明の酸化物焼結体の第1の態様は、本発明の効果を損なわない範囲でIn((ZnIn)O)で表されるインジウムトリジンコインデート(Indium Trizincoindate)を含んでもよい。
 本発明の酸化物焼結体の第1の態様の結晶相は、Inで表されるビックスバイト相、YSnで表されるパイロクロア相、及び任意のIn((ZnIn)O)で表されるインジウムトリジンコインデート相のみからなってもよい。
 尚、酸化インジウムと酸化亜鉛を含む焼結体では、通常、酸化インジウムからなるビックスバイト化合物とIn(ZnO)(ここで、mは1~20の整数)で表される六方晶層状化合物が生成する。これは、亜鉛元素が酸化インジウムに固溶することなく、酸化インジウムと反応することを示している。この組成に酸化イットリウムを添加しても、イットリウム元素が固溶した、酸化インジウム及び/又はIn(ZnO)で表される六方晶層状化合物が生成する。
 酸化インジウムと酸化亜鉛及び酸化スズを含む焼結体では、通常、酸化インジウムからなるビックスバイト化合物とIn(ZnO)(ここで、mは1~20の整数)で表される六方晶層状化合物、及びZnSnOで表されるスピネル化合物が生成することがある。
 一方で、酸化インジウム、酸化イットリウム及び酸化スズを含む焼結体は、Inで表されるビックスバイト化合物とYSnで表されるパイロクロア化合物が出現することが知られている。
 本発明の酸化物焼結体では、Inで表されるビックスバイト相を含む場合、Inで表されるビックスバイト相の存在比率は、酸化物焼結体中、50~99wt%であることが好ましく、60~98wt%であることがより好ましい。
 Inで表されるビックスバイト相の存在比率が上記範囲の場合、パイロクロア相又はインジウムトリジンコインデート相がInで表されるビックスバイト相を主成分とする焼結体中に分散しており、希土類元素をドーピングする等により、ターゲット素材以外の蛍光材料等への応用も考えることができる。
 本発明の酸化物焼結体においては、Inで表されるビックスバイト相が主成分であることが好ましい。これにより、焼結体のバルク抵抗が低減され、好適にスパッタリングターゲットに使用できるようになる。また、このスパッタリングターゲットから得られる半導体薄膜の移動度を向上させやすくなる。
 「Inで表されるビックスバイト相が主成分である」とは、Inで表されるビックスバイト相の存在比率が、酸化物焼結体中、50wt%以上であることを意味し、好ましくは60wt%以上、より好ましくは70wt%以上、さらに好ましくは80wt%以上である。
 本発明の酸化物焼結体がInで表されるビックスバイト相を含む場合、当該ビックスバイト相にY元素及びZn元素のいずれか1以上が固溶置換していると好ましい。これにより、焼結体の密度を向上させやすくなる。
 Inで表されるビックスバイト相に亜鉛元素が固溶置換していることは、焼結体中の酸化インジウムのビックスバイト構造の格子定数が、酸化インジウムのみの格子定数より小さくなっていることにより確認できる。また、Inで表されるビックスバイト相にイットリウム元素が固溶置換していることは、焼結体中の酸化インジウムのビックスバイト構造の格子定数が、酸化インジウムのみの格子定数より大きくなっていることにより確認できる。
 亜鉛元素とイットリウム元素の固溶置換は、焼結体の製造に用いる酸化イットリウムの添加量により調整できる。酸化イットリウムの添加量を少量にすることで、亜鉛元素が固溶置換したビックスバイト構造の酸化インジウムを生成でき、酸化イットリウムの添加量を多くすることで、イットリウム元素が固溶置換したビックスバイト構造の酸化インジウムを生成できる。
 ここで、「格子定数」とは、単位格子の格子軸の長さと定義され、X線回折法によって決定することができる。酸化インジウムのビックスバイト構造の格子定数は10.118Åである。
 薄膜トランジスタの場合、原子間の距離が短いほど軌道の重なりが大きくなり、高移動度のトランジスタが得やすくなると考えられる。このため、酸化インジウムのビックスバイト構造の格子定数は、通常の格子定数10.118Åより小さい方が高性能の薄膜トランジスタを製造しやすくなると考えられる。
 本発明の酸化物焼結体の第1の態様は、Zn、Y、Sn、Inの原子比は好ましくは以下の通りである。
 Zn/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.01~0.25、より好ましくは0.03~0.25である。
 Y/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.03~0.25、より好ましくは0.05~0.20である。
 Sn/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.03~0.30、より好ましくは0.05~0.30である。
 In/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.20~0.93、より好ましくは0.25~0.87である。
 上記組成を満たすように原料を用いて焼結体の製造を行うことで、本発明の酸化物焼結体の第1の態様が得られる。
 Zn/(In+Zn+Y+Sn)で表される原子比は0.01~0.25が好ましい。0.01未満では、亜鉛元素による高密度化の効果が得られず、低密度の焼結体しか得られない場合がある。0.25超では、亜鉛元素が酸化インジウムやYSnで表されるパイロクロア化合物に固溶できなくなり、酸化亜鉛として析出したり、In(ZnO)等の六方晶層状化合物が出現する場合がある。また、0.25超の場合、焼結体から製造されたスパッタリングターゲットを用いて薄膜トランジスタ(TFT)の半導体層を形成した場合、安定性に欠けるTFTしか得られない場合がある。
 Zn/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.03~0.25であり、より好ましくは0.05~0.22であり、さらに好ましくは0.08~0.20である。
 Y/(In+Zn+Y+Sn)で表される原子比は0.03~0.25が好ましい。0.03未満では、焼結体から製造されたスパッタリングターゲットを用いて薄膜トランジスタ(TFT)の半導体層を形成した場合、半導体化せず導電体である場合があり、安定性に欠けるTFTしか得られない場合がある。また、0.25超の場合、焼結体から製造されたスパッタリングターゲットを用いて薄膜トランジスタ(TFT)の半導体層を形成した場合、半導体化せず、絶縁体化する場合がある。
 Y/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.05~0.22であり、より好ましくは0.05~0.20であり、さらに好ましくは0.07~0.20である。
 Sn/(In+Zn+Y+Sn)で表される原子比は0.03~0.30が好ましい。0.03未満では、ターゲットの抵抗値が下がらなかったり、焼結密度が上がらず、その後の焼結体の強度が上がらなかったり、線膨張係数や熱伝導性に悪影響を及ぼす場合がある。また、0.03未満の焼結体から製造されたスパッタリングターゲットを用いて薄膜トランジスタ(TFT)の半導体層を形成した場合、配線金属のエッチング液であるリン酸・硝酸・酢酸からなる混酸に溶解するようになり、TFTの構造であるバックチャンネルTFTを形成できなくなる場合がある。一方、0.30超の場合、焼結体の密度を向上させやすくなる。また、焼結体から製造されたスパッタリングターゲットを用いて薄膜トランジスタ(TFT)の半導体層を形成した場合、蓚酸等の有機酸でエッチングできなくなる場合が有り、TFTを形成できなくなる場合がある。
 Sn/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.05~0.30であり、より好ましくは0.08~0.28であり、さらに好ましくは0.10~0.25である。
 In/(In+Zn+Y+Sn)で表される原子比は0.20~0.93が好ましい。
 焼結体中のインジウム元素の組成割合は、多い方がTFTの特性である移動度が高いTFTが得られることから好ましいが、得たいTFTの特性を考慮した各添加元素の添加量からその量を規定すればよい。
 In/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.25~0.87である。
 本発明の酸化物焼結体において、焼結体中の各金属元素の含有量(原子比)は、例えばICP(Inductively Coupled Plasma)測定により、各元素の存在量を測定することで求めることができる。
 本発明の酸化物焼結体は、インジウム元素、亜鉛元素、スズ元素及びイットリウム元素を含めばよく、本発明の酸化物焼結体に含まれる金属元素は、実質的にインジウム元素、亜鉛元素、スズ元素及びイットリウム元素からなってもよい。
 本発明において「実質的」とは、酸化物焼結体中に含まれる金属元素に占めるインジウム元素、亜鉛元素、スズ元素及びイットリウム元素の含有割合が、例えば90atm%以上、95atm%以上、98atm%以上、99atm%以上又は100atm%であることを意味する。
 本発明の酸化物焼結体は、本発明の効果を損なわない範囲で、インジウム元素、亜鉛元素、スズ元素及びイットリウム元素以外の金属元素として、ガリウム元素を含んでもよい。
 本発明の酸化物焼結体のバルク抵抗は、10mΩcm以下であると好ましく、8mΩcm以下であるとより好ましく、5mΩcm以下であると特に好ましい。バルク抵抗は実施例に記載の方法で測定できる。
 バルク抵抗が大きいと、大パワーでの成膜時に、ターゲットが帯電し、異常放電を起こしたり、プラズマ状態が安定せず、スパークが発生したりするおそれがある。
 本発明の酸化物焼結体の3点曲げ強度は、120MPa以上であると好ましく、140MPa以上であるとより好ましく、150MPa以上であるとさらに好ましい。
 3点曲げ強度が小さいと、大パワーでスパッタ成膜した場合、ターゲットの強度が弱いために、ターゲットが割れたり、チッピングを起こして、固体がターゲット上に飛散し、異常放電の原因となるおそれがある。3点曲げ強度は、JIS R 1601「ファインセラミックスの室温曲げ強さ試験」に準じて評価できる。具体的には、幅4mm、厚さ3mm、長さ40mmの標準試験片を用いて、一定距離(30mm)に配置された2支点上に試験片を置き、支点間の中央からクロスヘッド速度0.5mm/min荷重を加え、破壊した時の最大荷重より、曲げ強さを算出することで評価できる。
 本発明の酸化物焼結体の線膨張係数は、8.0×10-6(K-1)以下であると好ましく、7.5×10-6(K-1)以下であるとより好ましく、7.0×10-6(K-1)以下であるとさらに好ましい。
 線膨張係数が大きいと、大パワーでスパッタリング中に加熱され、ターゲットが膨張し、ボンディングされている銅版との間で変形が起こり、応力によりターゲットにマイクロクラックが入ったり、割れやチッピングにより、異常放電の原因となるおそれがある。
 線膨張係数は、例えば幅5mm、厚さ5mm、長さ10mmの標準試験片を用いて、昇温速度を5℃/分にセットし、300℃に到達した時の熱膨張による変位を位置検出機を用いることにより評価できる。
 本発明の酸化物焼結体の熱伝導率は、5.0(W/m・K)以上であると好ましく、5.5(W/m・K)以上であるとより好ましく、6.0(W/m・K)以上であるとさらに好ましく、6.5(W/m・K)以上であると最も好ましい。
 熱伝導率が小さいと、大パワーでスパッタリング成膜した場合に、スパッタ面とボンディングされた面の温度が異なり、内部応力によりターゲットにマイクロクラックや割れ、チッピングが発生するおそれがある。
 熱伝導率は、例えば直径10mm、厚さ1mmの標準試験片を用いて、レーザーフラッシュ法により比熱容量と熱拡散率を求め、これに試験片の密度を乗算することにより算出できる。
 本発明の酸化物焼結体の第2の態様は、In元素、Zn元素、Sn元素及びY元素を含み、前記Zn元素、及びIn元素の原子比が下記範囲であり、ZnSnOで表されるスピネル相を含まない。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.50≦In/(In+Zn+Y+Sn)
 これにより、酸化物焼結体の製造途中での割れが少なく、スパッタリングターゲットをバッキングプレートに貼り合せるボンディング工程での割れが少なく、スパッタ中に大パワーで成膜する際にマイクロクラックの発生が少ないスパッタリングターゲットが得ることができる。
 本発明の酸化物焼結体の第2の態様が、ZnSnOで表されるスピネル相を含まないことは、例えばX線回折測定装置(XRD)により結晶構造を調べることで確認できる。
 本発明の酸化物焼結体の第2の態様では、Zn/(In+Zn+Y+Sn)で表される原子比は、焼結体の密度を向上させる観点、また、得られる酸化物半導体膜の結晶性を制御する観点から、好ましくは0.03~0.25、より好ましくは0.05~0.22であり、さらに好ましくは0.08~0.20である。
 また、In/(In+Zn+Y+Sn)で表される原子比は、焼結体の密度を向上させる観点、また、得られるTFTの移動度を高く保つ観点から、好ましくは0.50~0.93、より好ましくは0.50~0.87である。
 本発明の酸化物焼結体の第2の態様は、Inで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことが好ましい。
 これにより、亜鉛元素がInで表されるビックスバイト相及び/又はYSnで表されるパイロクロア相に固溶し、酸化物焼結体が高い密度を示すことができる。
 酸化物焼結体がInで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことは、例えば上述したX線回折測定装置(XRD)により結晶構造を調べることで確認できる。
 本発明の酸化物焼結体の第2の態様は、焼結体の密度を向上させる観点、また、得られる酸化物半導体膜の結晶性を制御し、TFTの移動度を高く保つ観点から、Y元素及びSn元素の原子比が下記範囲であることが好ましい。
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
 本発明の酸化物焼結体の第2の態様では、Y/(In+Zn+Y+Sn)で表される原子比は、酸化物焼結体中の化合物を制御する観点、また、TFTの保護膜又は絶縁膜の製造工程でのCVDプロセス、及びその後の加熱処理における酸化物半導体膜の耐熱性を維持する観点から、好ましくは0.05~0.22であり、より好ましくは0.05~0.20であり、さらに好ましくは0.07~0.20である。
 また、Sn/(In+Zn+Y+Sn)で表される原子比は、酸化物焼結体中の化合物を制御する観点、また、得られる酸化物半導体膜の金属をエッチングするための薬液への耐性を向上させる観点から、好ましくは0.05~0.30であり、より好ましくは0.08~0.28であり、さらに好ましくは0.10~0.25である。
 本発明の酸化物焼結体の第3の態様は、In元素、Zn元素、Sn元素及びY元素を含み、前記Zn元素及びIn元素の原子比が下記範囲であることを満たし、
 Inで表されるビックスバイト相及びYSnで表されるパイロクロア相のみからなる、又は、
 Inで表されるビックスバイト相、YSnで表されるパイロクロア相及びIn((ZnIn)O)で表されるインジウムトリジンコインデート相のみからなる。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.50≦In/(In+Zn+Y+Sn)
 これにより、酸化物焼結体の製造途中での割れが少なく、スパッタリングターゲットをバッキングプレートに貼り合せるボンディング工程での割れが少なく、スパッタ中に大パワーで成膜する際にマイクロクラックの発生が少ないスパッタリングターゲットが得ることができる。
 本発明の酸化物焼結体の第3の態様が、Inで表されるビックスバイト相及びYSnで表されるパイロクロア相のみからなること、又は、Inで表されるビックスバイト相、YSnで表されるパイロクロア相及びIn((ZnIn)O)で表されるインジウムトリジンコインデート相のみからなることは、例えば上述したX線回折測定装置(XRD)により結晶構造を調べることで確認できる。
 本発明の酸化物焼結体の第3の態様では、Zn/(In+Zn+Y+Sn)で表される原子比は、焼結体密度を向上させる観点、また、得られる酸化物半導体膜の結晶性を制御する観点から、好ましくは0.03~0.25、より好ましくは0.05~0.22であり、さらに好ましくは0.08~0.20である。
 また、In/(In+Zn+Y+Sn)で表される原子比は、焼結体密度を向上させる観点、また、得られるTFTの移動度を高く保つ観点から、好ましくは0.50~0.93、より好ましくは0.50~0.87である。
 本発明の酸化物焼結体の第3の態様は、焼結体密度を向上させる観点、また、得られる酸化物半導体膜の結晶性を制御し、TFTの移動度を高く保つ観点から、Y元素及びSn元素の原子比が下記範囲であることが好ましい。
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
 本発明の酸化物焼結体の第3の態様では、Y/(In+Zn+Y+Sn)で表される原子比は、酸化物焼結体中の化合物を制御する観点、また、TFTの保護膜又は絶縁膜の製造工程でのCVDプロセス、及びその後の加熱処理における酸化物半導体膜の耐熱性を維持する観点から、好ましくは0.05~0.22であり、より好ましくは0.05~0.20であり、さらに好ましくは0.07~0.20である。
 また、Sn/(In+Zn+Y+Sn)で表される原子比は、酸化物焼結体中の化合物を制御する観点、また、得られる酸化物半導体膜の金属をエッチングするための薬液への耐性を向上させる観点から、好ましくは0.05~0.30であり、より好ましくは0.08~0.28であり、さらに好ましくは0.10~0.25である。
 本発明の酸化物焼結体は、インジウム元素、亜鉛元素、スズ元素及びイットリウム元素を含む原料粉末の混合粉末を調製する工程、混合粉末を成形して成形体を製造する工程、及び成形体を焼成する工程を経ることで、製造できる。
 原料粉末は、酸化物粉末が好ましく、酸化インジウム、酸化亜鉛、酸化スズ及び酸化イットリウムを原料粉末として用いると好ましい。
 原料粉末の混合比は、得ようとする焼結体の原子比に対応させるとよく、本発明の酸化物焼結体の第1の態様では、下記原子比を満たす混合比で混合すると好ましい:
  0.01≦Zn/(In+Zn+Y+Sn)≦0.25
  0.03≦Y /(In+Zn+Y+Sn)≦0.25
  0.03≦Sn/(In+Zn+Y+Sn)≦0.30
  0.20≦In/(In+Zn+Y+Sn)≦0.93
 また、本発明の酸化物焼結体の第2及び第3の態様では、下記原子比を満たす混合比で混合すると好ましい:
  0.01≦Zn/(In+Zn+Y+Sn)≦0.25
  0.50≦In/(In+Zn+Y+Sn)
 上記混合比について、より好ましい混合比等は各態様の酸化物焼結体で説明した原子比と同じである。
 原料粉末の平均粒径は、好ましくは0.1μm~2μmであり、より好ましくは0.5μm~1.5μmである。原料粉末の平均粒径はレーザー回折式粒度分布装置等で測定することができる。
 原料の混合、成形方法は特に限定されず、公知の方法を用いて行うことができる。また、混合する際にはバインダーを添加してもよい。
 原料の混合は、例えば、ボールミル、ビーズミル、ジェットミル又は超音波装置等の公知の装置を用いて行うことができる。粉砕時間等の条件は、適宜調整すればよいが、6~100時間程度が好ましい。成形方法は、例えば、混合粉末を加圧成形して成形体とすることができる。この工程により、製品の形状(例えば、スパッタリングターゲットとして好適な形状)に成形する。
 混合粉末を成形型に充填し、通常、金型プレス又は冷間静水圧プレス(CIP)により、例えば100Ma以上の圧力で成形を施すことで成形体を得ることができる。
 尚、成形処理に際しては、ポリビニルアルコールやポリエチレングリコール、メチルセルロース、ポリワックス、オレイン酸、ステアリン酸等の成形助剤を用いてもよい。
 得られた成形物を1200~1650℃の焼結温度で10時間以上焼結して焼結体を得ることができる。
 焼結温度は好ましくは1350~1600℃、より好ましくは1400~1600℃、さらに好ましくは1450~1600℃である。焼結時間は好ましくは10~50時間、より好ましくは12~40時間、さらに好ましくは13~30時間である。
 焼結温度が1200℃未満又は焼結時間が10時間未満であると、焼結が十分進行しないため、ターゲットの電気抵抗が十分下がらず、異常放電の原因となるおそれがある。一方、焼成温度が1650℃を超えるか、又は、焼成時間が50時間を超えると、著しい結晶粒成長により平均結晶粒径の増大や、粗大空孔の発生を来たし、焼結体強度の低下や異常放電の原因となるおそれがある。
 常圧焼結法では、成形体を大気雰囲気、又は酸素ガス雰囲気にて焼結(焼成)する。酸素ガス雰囲気は、酸素濃度が、例えば10~50体積%の雰囲気であることが好ましい。本発明の酸化物焼結体は昇温過程及び保持過程(焼結過程)を大気雰囲気下で行ったとしても、焼結体の密度を高くすることができる。
 さらに、焼結に際しての昇温速度は、800℃から焼結温度(1200~1650℃)までを0.1~2℃/分とすることが好ましい。
 本発明の焼結体において800℃から上の温度範囲は、焼結が最も進行する範囲である。この温度範囲での昇温速度が0.1℃/分より遅くなると、結晶粒成長が著しくなって、高密度化を達成することができないおそれがある。一方、昇温速度が2℃/分より速くなると、成形体に温度分布が生じ、焼結体が反ったり割れたりするおそれがある。
 800℃から焼結温度における昇温速度は、好ましくは0.5~2.0℃/分、より好ましくは1.0~1.8℃/分である。
 得られた焼結体を切削・研磨加工し、バッキングプレートにボンディングすることにより本発明のスパッタリングターゲットが得られる。
 焼結体表面は、高酸化状態の焼結部が存在したり、面が凸凹であることが多く、また、指定の大きさに切断加工する必要がある。スパッタリング中の異常放電やパーティクルの発生を抑えるために、表面を#200番、もしくは#400番、さらには#800番の研磨を行ってもよい。ボンディング法としては、金属インジウムにより接合するのがよい。
 本発明のスパッタリングターゲットは、DCスパッタリング法、RFスパッタリング法、ACスパッタリング法、パルスDCスパッタリング法等に適用することができる。
 上記スパッタリングターゲットを用いて成膜することにより、酸化物半導体膜を得ることができる。
 酸化物半導体膜は、上記ターゲットを用いて、蒸着法、スパッタリング法、イオンプレーティング法、パルスレーザー蒸着法等により作製することができる。
 本発明の酸化物半導体膜は、以下の原子比を有する。
 0.01≦Zn/(In+Zn+Y+Sn)≦0.25
 0.03≦Y /(In+Zn+Y+Sn)≦0.25
 0.03≦Sn/(In+Zn+Y+Sn)≦0.30
 0.20≦In/(In+Zn+Y+Sn)≦0.93
 Zn/(In+Zn+Y+Sn)で表される原子比が0.01未満では、酸化物半導体膜が結晶化して大きな結晶粒子の界面を生成しTFTにした時の移動度が小さくなる場合がある。0.25超では、酸化物半導体膜のエッチング速度が大きくなりすぎて、エッチング速度を制御できなくなったり、レジストの剥離液に対する耐薬品性が低下して、酸化物半導体膜の表面が溶解する場合がある。また、0.25超の場合、焼結体から製造されたスパッタリングターゲットを用いて薄膜トランジスタ(TFT)の半導体層を形成した場合、安定性に欠けるTFTしか得られない場合がある。
 Zn/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.03~0.25であり、より好ましくは0.05~0.22であり、さらに好ましくは0.08~0.20である。
 Y/(In+Zn+Y+Sn)で表される原子比が0.03未満では、半導体化せず導電体である場合があり、安定性に欠けるTFTしか得られない場合がある。また、0.25超の場合、半導体化せず、絶縁体化する場合がある。
 Y/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.05~0.22であり、より好ましくは0.05~0.20であり、さらに好ましくは0.07~0.20である。
 Sn/(In+Zn+Y+Sn)で表される原子比が0.03未満では、配線金属のエッチング液であるリン酸・硝酸・酢酸からなる混酸に溶解するようになり、TFTの構造であるバックチャンネルTFTを形成できなくなる場合がある。一方、0.30超の場合、蓚酸等の有機酸でエッチングできなくなる場合が有り、TFTを形成できなくなる場合がある。
 Sn/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.05~0.30であり、より好ましくは0.08~0.28であり、さらに好ましくは0.10~0.25である。
 In/(In+Zn+Y+Sn)で表される原子比は0.20~0.93である。
 酸化物半導体膜中のインジウム元素の組成割合は、多い方がTFTの特性である移動度が高いTFTが得られることから好ましいが、所望のTFTの特性を考慮した各添加元素の添加量からその量を規定すればよい。
 In/(In+Zn+Y+Sn)で表される原子比は、好ましくは0.25~0.87、より好ましくは0.50~0.87である。
 本発明の酸化物半導体膜において、酸化物半導体膜中の各金属元素の含有量(原子比)は、例えばICP(Inductively Coupled Plasma)測定により、各元素の存在量を測定することで求めることができる。
 本発明の酸化物半導体膜は非晶質であってもよい、
 本発明の酸化物半導体膜は、本発明のスパッタリングターゲットを用いて製造できる。その場合、RFスパッタ法、DCスパッタ法やイオンプレーティング法等あるが、DCスパッタ法により成膜することが好ましい。
 上記の酸化物半導体膜等の、本発明のスパッタリングターゲットから得られる酸化物薄膜は、TFTに使用でき、特にチャネル層として好適に使用できる。TFTの素子構成は特に限定されず、公知の各種の素子構成を採用することができる。
 図6に本発明のTFTの一例を示す。このTFTでは、シリコンウエハー(ゲート電極)20上にあるゲート絶縁膜30に、本発明の酸化物半導体である半導体膜40を形成し、層間絶縁膜70,70aが形成されている。半導体膜40上の70aはチャネル層保護層としても作用するものである。半導体膜上にソース電極50とドレイン電極60が設けられている。
 図7に本発明のTFTの一例を示す。このTFTでは、シリコンウエハー(ゲート電極)20上にあるゲート絶縁膜(例えばSiO)30に、本発明の酸化物半導体である半導体膜40を形成し、半導体膜40上にソース電極50とドレイン電極60を設け、半導体膜40、ソース電極50及びドレイン電極60上に保護層70b(例えばCVD成膜したSiO膜)が設けられている。
 シリコンウエハー20及びゲート絶縁膜30は、熱酸化膜付きシリコンウエハーを用いて、シリコンウエハーをゲート電極とし、熱酸化膜(SiO)をゲート絶縁膜としてもよい。
 また、図6及び図7において、ガラス等の基板上にゲート電極20を形成してもよい。
 本発明の酸化物半導体膜は、バンドギャップが3.0eV以上であることが好ましい。バンドギャップが3.0eV以上の場合、波長が420nm付近から長波長側の光を吸収しなくなる。これにより、有機ELやTFT-LCDの光源からの光を光吸収することがなく、TFTのチャネル層として用いた際に、TFTの光による誤作動等がなく、光安定性を向上させることができる。好ましくは3.1eV以上、より好ましくは3.3eV以上である。
 本発明のTFTにおいて、ドレイン電極、ソース電極及びゲート電極の各電極を形成する材料に特に制限はなく、一般に用いられている材料を任意に選択することができる。例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、ZnO、SnO等の透明電極や、Al、Ag、Cu、Cr、Ni、Mo、Au、Ti、Ta等の金属電極、又はこれらを含む合金の金属電極や積層電極を用いることができる。また、シリコンウエハーを基板として用いてもよく、その場合はシリコンウエハーが電極としても作用する。
 本発明のTFTにおいて、絶縁膜及び保護膜を形成する材料にも特に制限はなく、一般に用いられている材料を任意に選択できる。具体的には、例えば、SiO、SiNx、Al、Ta、TiO、MgO、ZrO、CeO、KO、LiO、NaO、RbO、Sc、Y、HfO、CaHfO、PbTiO、BaTa2O、SrTiO、Sm、AlN等の化合物を用いることができる。
 本発明のTFTにおいて、バックチャネルエッチ型(ボトムゲート型)のTFTの場合、ドレイン電極、ソース電極及びチャネル層上に保護膜を設けることが好ましい。保護膜を設けることにより、TFTの長時間駆動した場合でも耐久性が向上しやすくなる。尚、トップゲート型のTFTの場合、例えばチャネル層上にゲート絶縁膜を形成した構造となる。
 保護膜又は絶縁膜は、例えばCVDにより形成することができるが、その際に高温度によるプロセスになる場合がある。また、保護膜又は絶縁膜は、成膜直後は不純物ガスを含有していることが多く、加熱処理(アニール処理)を行うことが好ましい。加熱処理によりそれらの不純物ガスを取り除くことにより安定した保護膜又は絶縁膜となり、耐久性の高いTFT素子を形成しやすくなる。
 本発明の酸化物半導体膜を用いることにより、CVDプロセスにおける温度の影響、及びその後の加熱処理による影響を受けにくくなるため、保護膜又は絶縁膜を形成した場合であっても、TFT特性の安定性を向上させることができる。
 以下、本発明を実施例と比較例を用いて説明する。しかしながら、本発明はこれら実施例に限定されない。
実施例1~9
 表1(表1-1及び表1-2を総括して、表1という)に示す原子比となるように、酸化亜鉛粉末、酸化イットリウム粉末、酸化スズ粉末及び酸化インジウム粉末を秤量し、ポリエチレン製のポットに入れて、乾式ボールミルにより72時間混合粉砕し、混合粉末を作製した。
 この混合粉末を金型に入れ、500kg/cmの圧力でプレス成型体とした。この成型体を2000kg/cmの圧力でCIPにより緻密化を行った。次に、この成型体を焼成炉に設置して、大気圧雰囲気下で、350℃で3時間保持した後に、100℃/時間にて昇温し、1450℃にて、20時間焼結した。その後、放置冷却して酸化物焼結体を得た。
 得られた焼結体について、X線回折測定装置(XRD)により結晶構造を調べた。実施例1~3の焼結体のXRDチャートをそれぞれ図1~3に示す。
 チャートをJADE6により分析した結果、実施例1~9の焼結体では、Inで表されるビックスバイト相、YSnで表されるパイロクロア相が確認された。実施例2~4,6,8,9の焼結体ではさらにIn((ZnIn)O)で表されるインジウムトリジンコインデート(Indium Trizincoindate)相も確認された。
 実施例1及び2において、Inで表されるビックスバイト構造の格子定数はそれぞれ10.06889Å及び10.09902Å、であることから、実施例1及び2ではInで表されるビックスバイト相に亜鉛元素が固溶置換していることが分かる。実施例3においては、Inで表されるビックスバイト構造の格子定数が10.13330Åであることから、実施例3ではInで表されるビックスバイト相にイットリウム元素が固溶置換していることが分かる。
 尚、XRDの測定条件は以下の通りである。格子定数は得られたX線回折より求めた。
装置:(株)リガク製SmartlabX線:Cu-Kα線(波長1.5418Å、グラファイトモノクロメータにて単色化)
2θ-θ反射法、連続スキャン(2.0°/分)
サンプリング間隔:0.02°
スリットDS(発散スリット)、SS(散乱スリット)、RS(受光スリット):1mm
 実施例1~9で得られた焼結体について、以下の評価を行った。結果を表1に示す。
(1)元素組成比(原子比)
 誘導プラズマ発光分析装置(ICP-AES)により焼結体中の元素組成を測定した。
(2)ビックスバイト構造の格子定数
 結晶構造の確認に用いたXRDの結果から、ビックスバイト構造の格子定数を確認した。
(3)相対密度
 相対密度は、製造した酸化物焼結体についてアルキメデス法により実測密度を測定し、当該実測密度を酸化物焼結体の計算密度で除することにより算出した。計算密度は、酸化物焼結体の製造に用いた原料粉末の総重量を酸化物焼結体の製造に用いた原料粉末の総体積で除することで算出した。
(4)バルク抵抗
 焼結体のバルク抵抗(導電性)を抵抗率計(三菱化学(株)製、ロレスタAX MCP-T370)を使用して四探針法に基づき測定した。
(5)各結晶相の存在比率
 得られた焼結体について各結晶相の存在比率(wt%)は、XRDチャートから、全パターンフィッティング(WPF)法により存在比として求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
比較例1~4
 表2に示す原子比となるように、酸化イットリウム粉末、酸化スズ粉末、酸化インジウム粉末、酸化亜鉛粉末を用いた(比較例1,2は酸化亜鉛粉末は用いず)他は実施例1~9と同様にして焼結体を製造し、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
実施例10,11,14,15,16
<薄膜トランジスタ(TFT)の製造>
(1)成膜工程
 実施例2,3,1,6,7で得られた、表3に示す焼結体を用いてスパッタリングターゲットを作製した。熱酸化膜(ゲート絶縁膜)付きのシリコンウエハー(ゲート電極)上に、これらスパッタリングターゲットを用いて、スパッタリングにより、メタルマスクを介して50nmの薄膜(半導体膜)を形成した。スパッタガスとして、高純度アルゴン及び高純度酸素の混合ガスを用いた。結果を表3に示す。
(2)ソース・ドレイン電極の形成
 ソース・ドレイン電極として、メタルマスクを用いてチタン金属をスパッタ成膜した。得られた積層体を大気中にて350℃30分加熱処理して、TFTを完成した。
(3)保護絶縁膜の形成
 (2)で得られたTFTにおいて、加熱処理後の半導体膜の上に、基板温度350℃で化学蒸着法(CVD)により、SiO膜(保護絶縁膜)を形成し、その後、後アニールとして350℃30分加熱処理を行った。
<半導体膜の製造と特性評価>
・原子比
 誘導プラズマ発光分析装置(ICP-AES)により半導体膜中の元素組成を測定した。結果を表3に示す。
・ホール効果測定
 半導体膜のみをガラス基板に載せたサンプルを成膜し、上記TFT製造の各段階でホール測定を行い、キャリヤー密度の増減を測定した。具体的には以下の通りである。結果を表3に示す。
 TFT製造工程と同様にガラス基板上に厚さ50nmの半導体膜を成膜し、350℃30分の加熱処理を行った後、1cm角の正方形に切り出して、4角に金(Au)を2mm×2mm以下の大きさ位になるようにメタルマスクを用いてイオンコーターで成膜し、Au金属上にインジウムはんだを乗せて接触を良くしてホール効果測定用サンプルとした。
 ガラス基板には、日本電気硝子株式会社製ABC-Gを用いた。
 ホール効果測定用サンプルをホール効果・比抵抗測定装置(ResiTest8300型、東陽テクニカ社製)にセットし、室温においてホール効果を評価し、キャリヤー密度及び移動度を求めた。
 上記ホール効果測定用サンプルの半導体膜上に、基板温度350℃でCVD装置によりSiO膜を成膜したのち、ホール測定を実施した。さらに350℃30分の加熱処理後にもホール測定を行った。SiO膜に測定用針を金の層まで突き刺し、コンタクトを取った。
・半導体膜の結晶特性
 スパッタ後(膜堆積後)の加熱していない膜及び加熱した後の膜の結晶質をX線回折(XRD)測定によって評価した。その結果、加熱前はアモルファスであり、加熱後もアモルファスであった。
・半導体膜のバンドギャップ
 実施例2,3,1,6,7の、表3に示す焼結体から製造したスパッタリングターゲットを用いてスパッタリングにより石英基板上に半導体膜を成膜し、350℃30分の加熱処理した薄膜試料の透過スペクトルを測定した。横軸の波長をエネルギー(eV)に、縦軸の透過率を(αhν)(ここで、αは吸収係数、hはプランク定数、vは振動数である。)に変換したあと、吸収が立ち上がる部分にフィッティングし、それをベースラインと交わるところのeV値を算出した。
<TFTの特性評価>
 上記(2)で得られたTFTと、上記(3)でSiO保護膜を形成したTFTの下記特性について、評価を行った。(3)で得られたTFTについては、SiO膜に測定用針を金属チタンの層まで突き刺し評価を行った。結果を表3に示す。
・飽和移動度
 飽和移動度は、ドレイン電圧に5V印加した場合の伝達特性から求めた。具体的に、伝達特性Id-Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、線形領域の式により飽和移動度を導いた。尚、Gmは∂(Id)/∂(Vg)によって表され、Vgは-15~25Vまで印加し、その範囲での最大移動度を飽和移動度と定義した。本発明において特に断らない限り、飽和移動度はこの方法で評価した。上記Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
・閾値電圧
 閾値電圧(Vth)は、伝達特性のグラフよりId=10-9AでのVgと定義した。
・on-off比
 Vg=-10VのIdの値をOff電流値とし、Vg=20VのIdの値をOn電流値として比[On/Off]を決めた。
Figure JPOXMLDOC01-appb-T000004
実施例12,13、比較例5
 実施例2,3及び比較例1で得られた焼結体を用いてスパッタリングターゲットを作製した。スパッタリングターゲットについて以下のように耐久性試験を行った。
 表3に示す半導体膜を成膜するスパッタ条件で、DC成膜パワーを400Wとして連続10時間の運転を行った後のターゲット表面を観察した。実施例2,3の焼結体を用いたターゲット表面には、エロージョンの発生以外大きな変化は見られなかった。一方、比較例1の焼結体を用いたターゲットでは、エロージョン部に黒色の異物が多数みられた。また、ヘアーラインクラックが観察された。さらに、マイクロアークカウンターで異常放電の回数を計測したところ、実施例2,3の焼結体を用いたターゲットでは、アークはほぼ計測できなかったが、比較例1の焼結体を用いたターゲットでは多数頻発していた。
 大気雰囲気下で焼成すると、HIP、放電プラズマ焼結(SPS)又は酸素雰囲気焼成炉を用いた技術よりも、焼結体の密度が高くなりにくい。しかしながら、表1が示すように、簡便な大気雰囲気下での焼成であっても、本願実施例の焼結体は高密度であることが分かる。また、表3に示す組成を有する酸化物半導体膜は、薄膜トランジスタとして有用である。
 本発明の焼結体はスパッタリングターゲットとして利用でき、得られるスパッタリングターゲットは、薄膜トランジスタの酸化物半導体薄膜を、スパッタリング法等の真空プロセスで製造する際に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (15)

  1.  In元素、Zn元素、Sn元素及びY元素を含む酸化物を含み、
     焼結体密度が理論密度の100.00%以上であることを特徴とする酸化物焼結体。
  2.  Inで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことを特徴とする請求項1に記載の酸化物焼結体。
  3.  前記ビックスバイト相に、Y元素及びZn元素のいずれか1以上が固溶置換していることを特徴とする請求項2に記載の酸化物焼結体。
  4.  前記Zn元素、Y元素、Sn元素及びIn元素の原子比が下記範囲であることを特徴とする請求項1~3のいずれか一項に記載の酸化物焼結体。
     0.01≦Zn/(In+Zn+Y+Sn)≦0.25
     0.03≦Y /(In+Zn+Y+Sn)≦0.25
     0.03≦Sn/(In+Zn+Y+Sn)≦0.30
     0.20≦In/(In+Zn+Y+Sn)≦0.93
  5.  In元素、Zn元素、Sn元素及びY元素を含み、前記Zn元素、及びIn元素の原子比が下記範囲であり、ZnSnOで表されるスピネル相を含まないことを特徴とする酸化物焼結体。
     0.01≦Zn/(In+Zn+Y+Sn)≦0.25
     0.50≦In/(In+Zn+Y+Sn)
  6.  Inで表されるビックスバイト相と、YSnで表されるパイロクロア相を含むことを特徴とする請求項5に記載の酸化物焼結体。
  7.  前記ビックスバイト相に、Y元素及びZn元素のいずれか1以上が固溶置換していることを特徴とする請求項6に記載の酸化物焼結体。
  8.  前記Y元素及びSn元素の原子比が下記範囲であることを特徴とする請求項5~7のいずれか一項に記載の酸化物焼結体。
     0.03≦Y /(In+Zn+Y+Sn)≦0.25
     0.03≦Sn/(In+Zn+Y+Sn)≦0.30
  9.  In元素、Zn元素、Sn元素及びY元素を含み、前記Zn元素及びIn元素の原子比が下記範囲であることを満たし、
     Inで表されるビックスバイト相及びYSnで表されるパイロクロア相のみからなる、又は、
     Inで表されるビックスバイト相、YSnで表されるパイロクロア相及びIn((ZnIn)O)で表されるインジウムトリジンコインデート相のみからなることを特徴とする酸化物焼結体。
     0.01≦Zn/(In+Zn+Y+Sn)≦0.25
     0.50≦In/(In+Zn+Y+Sn)
  10.  前記ビックスバイト相に、Y元素及びZn元素のいずれか1以上が固溶置換していることを特徴とする請求項9に記載の酸化物焼結体。
  11.  前記Y元素及びSn元素の原子比が下記範囲であることを特徴とする請求項9又は10に記載の酸化物焼結体。
     0.03≦Y /(In+Zn+Y+Sn)≦0.25
     0.03≦Sn/(In+Zn+Y+Sn)≦0.30
  12.  請求項1~11のいずれか一項に記載の酸化物焼結体を含むことを特徴とするスパッタリングターゲット。
  13.  Zn元素、Y元素、Sn元素及びIn元素の原子比が下記範囲であることを特徴とする酸化物半導体膜。
     0.01≦Zn/(In+Zn+Y+Sn)≦0.25
     0.03≦Y /(In+Zn+Y+Sn)≦0.25
     0.03≦Sn/(In+Zn+Y+Sn)≦0.30
     0.20≦In/(In+Zn+Y+Sn)≦0.93
  14.  非晶質であることを特徴とする請求項13に記載の酸化物半導体膜。
  15.  請求項13又は14に記載の酸化物半導体膜を含むことを特徴とする薄膜トランジスタ。
PCT/JP2017/016493 2016-04-26 2017-04-26 酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜 WO2017188299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/096,641 US11078120B2 (en) 2016-04-26 2017-04-26 Oxide sintered body, sputtering target and oxide semiconductor film
KR1020187027443A KR102382128B1 (ko) 2016-04-26 2017-04-26 산화물 소결체, 스퍼터링 타깃 및 산화물 반도체막
JP2017545433A JP6266853B1 (ja) 2016-04-26 2017-04-26 酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜
CN201780025317.2A CN109071359B (zh) 2016-04-26 2017-04-26 氧化物烧结体、溅射靶以及氧化物半导体膜
US17/358,411 US20210355033A1 (en) 2016-04-26 2021-06-25 Oxide sintered body, sputtering target and oxide semiconductor film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016088123 2016-04-26
JP2016-088123 2016-04-26
JP2016251809 2016-12-26
JP2016-251809 2016-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/096,641 A-371-Of-International US11078120B2 (en) 2016-04-26 2017-04-26 Oxide sintered body, sputtering target and oxide semiconductor film
US17/358,411 Continuation US20210355033A1 (en) 2016-04-26 2021-06-25 Oxide sintered body, sputtering target and oxide semiconductor film

Publications (1)

Publication Number Publication Date
WO2017188299A1 true WO2017188299A1 (ja) 2017-11-02

Family

ID=60160856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016493 WO2017188299A1 (ja) 2016-04-26 2017-04-26 酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜

Country Status (6)

Country Link
US (2) US11078120B2 (ja)
JP (3) JP6266853B1 (ja)
KR (1) KR102382128B1 (ja)
CN (1) CN109071359B (ja)
TW (2) TWI754426B (ja)
WO (1) WO2017188299A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042997A1 (ja) * 2022-08-25 2024-02-29 株式会社ジャパンディスプレイ 酸化物半導体膜、薄膜トランジスタ、および電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266853B1 (ja) 2016-04-26 2018-01-24 出光興産株式会社 酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜
CN111943650B (zh) * 2020-07-22 2022-11-29 长沙壹纳光电材料有限公司 一种用于活化等离子沉积技术的iwo靶材及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269702A (ja) * 1995-03-31 1996-10-15 Hitachi Metals Ltd モリブデンシリサイドターゲット材およびその製造方法
JPH10110265A (ja) * 1996-08-13 1998-04-28 Hitachi Metals Ltd 金属シリサイドタ−ゲット材
JP2012031508A (ja) * 2010-06-28 2012-02-16 Hitachi Metals Ltd Cu−Ga合金ターゲット材およびその製造方法
JP2013082998A (ja) * 2011-09-26 2013-05-09 Hitachi Metals Ltd MoTiターゲット材およびその製造方法
JP2014099493A (ja) * 2012-11-14 2014-05-29 Idemitsu Kosan Co Ltd スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP2014111818A (ja) * 2012-11-09 2014-06-19 Idemitsu Kosan Co Ltd スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803132B2 (ja) 1996-01-31 2006-08-02 出光興産株式会社 ターゲットおよびその製造方法
JP4233641B2 (ja) * 1998-08-31 2009-03-04 出光興産株式会社 透明導電膜用ターゲットおよび透明導電ガラスならびに透明導電フィルム
EP2610229A3 (en) 1998-08-31 2015-02-18 Idemitsu Kosan Co., Ltd. Transparent electroconductive glass coated with transparent electroconductive film containing IZTO
JP2000169219A (ja) 1998-12-09 2000-06-20 Jiomatetsuku Kk 金属酸化物焼結体およびその用途
JP2008277326A (ja) * 2007-04-25 2008-11-13 Canon Inc アモルファス酸化物半導体、半導体デバイス及び薄膜トランジスタ
KR101164728B1 (ko) 2007-07-03 2012-07-12 더 게이츠 코포레이션 동력 전달 벨트 및 이를 포함하는 가변속 벨트 구동 장치
KR100889688B1 (ko) * 2007-07-16 2009-03-19 삼성모바일디스플레이주식회사 반도체 활성층 제조 방법, 그를 이용한 박막 트랜지스터의제조 방법 및 반도체 활성층을 구비하는 박막 트랜지스터
JPWO2010032432A1 (ja) * 2008-09-19 2012-02-02 出光興産株式会社 酸化イットリウムを含有する焼結体及びスパッタリングターゲット
US8643931B2 (en) * 2009-06-22 2014-02-04 Gentex Corporation Vehicle rearview mirror with spotter mirror
JP5780902B2 (ja) * 2010-10-12 2015-09-16 出光興産株式会社 半導体薄膜、薄膜トランジスタ及びその製造方法
JP2012153507A (ja) 2011-01-27 2012-08-16 Toshiba Elevator Co Ltd エレベータおよびエレベータの非常時運転方法
US9214519B2 (en) 2011-05-10 2015-12-15 Idemitsu Kosan Co., Ltd. In2O3—SnO2—ZnO sputtering target
JP6307344B2 (ja) 2014-05-08 2018-04-04 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
JP6266853B1 (ja) 2016-04-26 2018-01-24 出光興産株式会社 酸化物焼結体、スパッタリングターゲット及び酸化物半導体膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269702A (ja) * 1995-03-31 1996-10-15 Hitachi Metals Ltd モリブデンシリサイドターゲット材およびその製造方法
JPH10110265A (ja) * 1996-08-13 1998-04-28 Hitachi Metals Ltd 金属シリサイドタ−ゲット材
JP2012031508A (ja) * 2010-06-28 2012-02-16 Hitachi Metals Ltd Cu−Ga合金ターゲット材およびその製造方法
JP2013082998A (ja) * 2011-09-26 2013-05-09 Hitachi Metals Ltd MoTiターゲット材およびその製造方法
JP2014111818A (ja) * 2012-11-09 2014-06-19 Idemitsu Kosan Co Ltd スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP2014099493A (ja) * 2012-11-14 2014-05-29 Idemitsu Kosan Co Ltd スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042997A1 (ja) * 2022-08-25 2024-02-29 株式会社ジャパンディスプレイ 酸化物半導体膜、薄膜トランジスタ、および電子機器

Also Published As

Publication number Publication date
CN109071359B (zh) 2022-02-15
JP2021038143A (ja) 2021-03-11
JP6917880B2 (ja) 2021-08-11
KR20180136939A (ko) 2018-12-26
TWI754426B (zh) 2022-02-01
US11078120B2 (en) 2021-08-03
JPWO2017188299A1 (ja) 2018-05-10
US20210355033A1 (en) 2021-11-18
CN109071359A (zh) 2018-12-21
KR102382128B1 (ko) 2022-04-01
JP6266853B1 (ja) 2018-01-24
US20200325072A1 (en) 2020-10-15
TWI720188B (zh) 2021-03-01
TW202114960A (zh) 2021-04-16
JP2018104271A (ja) 2018-07-05
TW201806908A (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6006202B2 (ja) In2O3−SnO2−ZnO系スパッタリングターゲット
WO2009148154A1 (ja) 酸化物薄膜用スパッタリングターゲットおよびその製造法
WO2011061939A1 (ja) スパッタリングターゲット及びそれを用いた薄膜トランジスタ
JP2014098211A (ja) 酸化物焼結体及びスパッタリングターゲット
WO2012153522A1 (ja) In2O3-ZnO系スパッタリングターゲット
US20210355033A1 (en) Oxide sintered body, sputtering target and oxide semiconductor film
KR101960233B1 (ko) 스퍼터링 타겟
KR20170049630A (ko) 산화물 소결체 및 그 제조 방법, 스퍼터 타겟, 그리고 반도체 디바이스
US10128108B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
WO2018043323A1 (ja) 新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット
WO2017122618A1 (ja) 非晶質複合金属酸化物の製造方法
KR102353398B1 (ko) 산화물 소결체 및 스퍼터링 타깃
TWI547573B (zh) 氧化物燒結體、濺鍍用靶、及使用其而獲得之氧化物半導體薄膜
WO2018143005A1 (ja) 酸化物半導体膜、薄膜トランジスタ、酸化物焼結体及びスパッタリングターゲット
US20190062900A1 (en) Oxide sintered body and sputtering target
JP2017178740A (ja) 酸化物焼結体及びスパッタリングターゲット
JP2019077594A (ja) 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ
JP2017222526A (ja) 酸化物焼結体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017545433

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187027443

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789581

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789581

Country of ref document: EP

Kind code of ref document: A1