WO2018043323A1 - 新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット - Google Patents

新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット Download PDF

Info

Publication number
WO2018043323A1
WO2018043323A1 PCT/JP2017/030508 JP2017030508W WO2018043323A1 WO 2018043323 A1 WO2018043323 A1 WO 2018043323A1 JP 2017030508 W JP2017030508 W JP 2017030508W WO 2018043323 A1 WO2018043323 A1 WO 2018043323A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
oxide
present
target
Prior art date
Application number
PCT/JP2017/030508
Other languages
English (en)
French (fr)
Inventor
井上 一吉
重和 笘井
雅敏 柴田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020197003871A priority Critical patent/KR102475939B1/ko
Priority to US16/325,170 priority patent/US11447398B2/en
Priority to JP2017562794A priority patent/JP6426309B2/ja
Priority to CN201780050211.8A priority patent/CN109641757B/zh
Publication of WO2018043323A1 publication Critical patent/WO2018043323A1/ja
Priority to US17/860,678 priority patent/US11987504B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials

Definitions

  • the present invention relates to a novel garnet compound, a sintered body containing it, and a sputtering target.
  • Amorphous (amorphous) oxide semiconductors used for thin film transistors (TFTs) have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be formed at low temperatures. It is expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance.
  • a sputtering method of sputtering a sputtering target is preferably used. This is because the thin film formed by the sputtering method has a component composition, film thickness, etc. in the film surface direction (in the film surface) as compared with the thin film formed by the ion plating method, vacuum evaporation method, or electron beam evaporation method. This is because the internal uniformity is excellent and a thin film having the same component composition as the sputtering target can be formed.
  • Patent Document 1 describes a method for producing a garnet compound represented by A 3 B 2 C 3 O 12 .
  • Patent Document 1 exemplifies Y 3 In 2 Ga 3 O 12 compounds containing indium oxide.
  • Patent Document 2 describes a sputtering target containing a compound having an A 3 B 5 O 12 garnet structure obtained by sintering a raw material containing indium oxide, yttrium oxide, and aluminum oxide or gallium oxide. . It is described that this target includes a garnet structure, thereby reducing electrical resistance and reducing abnormal discharge during sputtering. In addition, there is a description regarding application to a high mobility TFT element.
  • JP 2008-7340 A International Publication No. 2015-098060
  • An object of the present invention is to provide a novel garnet compound, a sputtering target capable of forming a thin film exhibiting excellent TFT performance when used in a TFT, and an oxide sintered body as a material thereof.
  • the following novel garnet compound, oxide sintered body, sputtering target and the like are provided.
  • X is 0 ⁇ X ⁇ 3.
  • a novel garnet compound, a sputtering target capable of forming a thin film exhibiting excellent TFT performance when used in a thin film transistor (TFT), and an oxide sintered body as a material thereof can be provided.
  • FIG. 2 is an X-ray diffraction pattern of the oxide sintered body of Example 1.
  • FIG. 2 is an X-ray diffraction pattern of an oxide sintered body of Example 2.
  • FIG. 4 is an X-ray diffraction pattern of an oxide sintered body of Example 3.
  • FIG. 4 is an X-ray diffraction pattern of an oxide sintered body of Example 4.
  • 6 is an X-ray diffraction pattern of an oxide sintered body of Example 5.
  • FIG. 7 is an X-ray diffraction pattern of an oxide sintered body of Example 6.
  • FIG. 7 is an X-ray diffraction pattern of an oxide sintered body of Example 7.
  • FIG. 7 is an X-ray diffraction pattern of an oxide sintered body of Example 8.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a bottom-gate thin film transistor manufactured in Example 9.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body of Example 10.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body of Example 11.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body of Example 12.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a bottom-gate thin film transistor manufactured in Example 9.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered body of Example 10.
  • FIG. 3 is an X-ray diffraction pattern of an oxide sintered
  • the present inventors have eagerly searched to find a new substance based on indium oxide containing a lanthanoid metal element that can be used as a target material, and include the lanthanoid metal element.
  • a new garnet compound has been found.
  • a sputtering target including an oxide sintered body containing the garnet compounds bixbyite phase represented by (garnet phase) and In 2 O 3 has a high sintered density, bulk resistance is low, less warpage of the target It has been found that it has advantageous properties as a target material such as a high bonding rate. Due to these target characteristics, abnormal discharge hardly occurs even when sputtering is performed with high power, and stable sputtering is possible.
  • the thin film obtained by sputtering this sputtering target has excellent TFT performance when used in a TFT (characteristic change due to heating when a protective film or insulating film is formed by chemical vapor deposition (CVD) is small) It has been found that high-speed response, etc. is exhibited.
  • CVD chemical vapor deposition
  • the garnet compound according to one embodiment of the present invention (hereinafter referred to as the garnet compound of the present invention) Ln 3 In 2 Ga 3-X Al X O 12 (I) (Where Ln represents one or more metal elements selected from La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. X is 0 ⁇ X ⁇ 3. ) It is a novel compound represented by these.
  • garnet compound means a compound having a garnet structure (meteorite structure) crystal structure type.
  • Ln in the formula (I) is La (lanthanum), Nd (neodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er It is one or more metal elements selected from (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium). Of these, Sm and Nd are preferable.
  • Ln preferably contains one or both of Nd and Sm, and more preferably is either Nd or Sm.
  • the garnet compound of the present invention may have a single crystal structure or a polycrystalline structure.
  • An oxide sintered body according to an embodiment of the present invention (hereinafter referred to as a first oxide sintered body of the present invention) has a general formula (I): Ln 3 In 2 Ga 3-X Al X O 12 (I) (Where Ln represents one or more metal elements selected from La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. X is 0 ⁇ X ⁇ 3. ) It is a novel substance characterized by containing the garnet phase represented by these.
  • the oxide sintered body may be composed of only the novel garnet compound (garnet phase) or may contain a compound (phase) other than the novel garnet compound (garnet phase).
  • An oxide sintered body according to an embodiment of the present invention (hereinafter referred to as a second oxide sintered body of the present invention) has a general formula (I): Ln 3 In 2 Ga 3-X Al X O 12 (I) (Where Ln represents one or more metal elements selected from La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. X is 0 ⁇ X ⁇ 3. ) And a bixbite phase represented by In 2 O 3 .
  • the first oxide sintered body and the second oxide sintered body of the present invention may be collectively referred to as the oxide sintered body of the present invention.
  • Ln in the garnet phase represented by the general formula (I) in the oxide sintered body of the present invention preferably contains either one or both of Nd and Sm, and more preferably one of Nd and Sm. preferable.
  • a sputtering target according to an embodiment of the present invention (hereinafter referred to as a sputtering target of the present invention) has the second oxide sintered body of the present invention.
  • the sputtering target of the present invention is manufactured by bonding the second oxide sintered body of the present invention to a backing plate as a target material. A method for manufacturing the sputtering target will be described later.
  • the second oxide sintered body of the present invention includes a garnet phase represented by the general formula (I) and a bixbite phase represented by In 2 O 3 , thereby obtaining a sintered density (relative density). ) And volume resistivity (bulk resistance).
  • the linear expansion coefficient can be reduced and the thermal conductivity can be increased.
  • oxide sintered bodies with low volume resistivity and high sintered body density even when fired by a special method such as under an oxygen atmosphere using an atmosphere firing furnace or by a simple method such as performed in the air It can be.
  • the 2nd oxide sintered compact of this invention which has the said characteristic is preferable as a target material.
  • the strength of the target is high.
  • thermal conductivity is high and the coefficient of linear expansion is small, thermal stress can be suppressed, and as a result, generation of microcracks and chipping of the target can be suppressed, and generation of nodules and abnormal discharge can be suppressed.
  • a sputtering target capable of sputtering with high power can be obtained.
  • a chemical vapor deposition process (CVD process) performed after the oxide semiconductor layer is stacked in the TFT manufacturing process process with high mobility.
  • CVD process chemical vapor deposition process
  • the garnet compound of the present invention, the garnet phase in the oxide sintered body, and the bixbite phase represented by In 2 O 3 can be detected from the XRD chart by, for example, the X-ray diffraction (XRD) method.
  • XRD X-ray diffraction
  • the abundance ratio of the bixbite phase represented by In 2 O 3 is preferably 1 to 99 wt%, and more preferably 10 to 98 wt%. If the abundance ratio of the bixbite phase represented by In 2 O 3 is in the above range, the novel compound Ln 3 In 2 (Ga 3 -x Al x ) 3 O 12 is dispersed in the In 2 O 3 crystal. Furthermore, application to fluorescent materials other than the target material, which will be described later, is also possible by doping with rare earth elements.
  • a bixbite phase represented by In 2 O 3 is preferably a main component. If a crystal structure other than the bixbite structure is precipitated as a main component, the mobility may be lowered.
  • the bixbite phase represented by In 2 O 3 is a main component means that the existence ratio of the bixbite phase represented by In 2 O 3 is more than 50 wt%, preferably 70 wt%. As mentioned above, More preferably, it is 80 wt% or more, More preferably, it is 90 wt% or more.
  • the oxide sintered body used for the sputtering target of the present invention preferably has a sintered density in the range of 6.5 to 7.1 g / cm 3 , preferably in the range of 6.6 to 7.1 g / cm 3 . It is more preferable that When the sintered density is in the range of 6.5 to 7.1 g / cm 3 , voids that cause abnormal discharge and start nodules can be reduced when used as a target.
  • the sintered density can be measured by, for example, the Archimedes method.
  • the oxide sintered body used for the sputtering target of the present invention has a bixbite phase represented by In 2 O 3 and a metal element represented by Ln (La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; hereinafter referred to as “Ln”), one or more of Al element and Ga element may be dissolved. It is preferable that Ln and Ga, or Ln, Ga and Al are in solid solution. The solid solution is preferably a substitutional solid solution. Thereby, stable sputtering can be performed.
  • the solid solution of Ln and Ga, or Ln, Ga and Al can be identified from the lattice constant of the bixbite phase using, for example, XRD measurement.
  • lattice constant bixbite phase represented by O 3 for example, if smaller than the lattice constant of the bixbyite phase only represented by In 2 O 3, Ga, or a solid solution of Ga and Al If it is larger than the lattice constant of only the bixbite phase represented by In 2 O 3 , the solid solution of Ln is dominant.
  • the “lattice constant” is defined as the length of the lattice axis of the unit cell, and can be obtained by, for example, the X-ray diffraction method.
  • Ln and Ga or Ln, Ga, and Al may be dissolved in the garnet phase represented by general formula (I). Thereby, stable sputtering can be performed.
  • the average particle size of the garnet phase represented by the general formula (I) is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 8 ⁇ m or less. And particularly preferably 5 ⁇ m or less. Although there is no restriction
  • the average particle diameter of the garnet phase represented by the general formula (I) is determined by, for example, identifying the garnet phase represented by the general formula (I) by an electron probe microanalyzer (EPMA), and determining the maximum diameter as the diameter. Assuming a circle to perform, it can be obtained as an average value of its diameter.
  • EPMA electron probe microanalyzer
  • the atomic ratio In / (In + Ln + Ga + Al) is preferably 0.60 or more and 0.97 or less, more preferably 0.70 or more and 0.96 or less, More preferably, it is 0.75 or more and 0.95 or less.
  • the mobility of the TFT including the oxide semiconductor thin film to be formed may be reduced. If it exceeds 0.97, the stability of the TFT may not be obtained, or it may be difficult to become a semiconductor by making it conductive.
  • the atomic ratio (Ga + Al) / (In + Ln + Ga + Al) when Al is contained is preferably 0.01 or more and 0.20 or less, and 0.02 or more and 0. .15 or less is more preferable, and 0.02 or more and 0.12 or less is more preferable.
  • (Ga + Al) / (In + Ln + Ga + Al) is less than 0.01, the garnet phase represented by the general formula (I) is not formed, the bulk resistance of the oxide sintered body is increased, the sintering density and the sintering are increased.
  • the body strength is low, there is a possibility that cracking due to heat during sputtering is likely to occur, or that stable sputtering cannot be performed.
  • it exceeds 0.20 the mobility of the TFT including the oxide semiconductor thin film to be formed may be reduced.
  • the atomic ratio Ga / (In + Ln + Ga) when Al is not included is preferably 0.01 or more and 0.40 or less.
  • the atomic ratio Ln / (In + Ln + Ga + Al) is preferably 0.02 or more and 0.20 or less, and 0.02 or more. 0.18 or less is more preferable, and 0.03 or more and 0.16 or less is more preferable. If it is less than 0.02, the garnet phase represented by the general formula (I) is not formed, and the bulk resistance of the oxide sintered body becomes high, or the sintered density and the sintered body strength are low. There is a risk that cracks and the like due to heat will easily occur and stable sputtering cannot be performed. On the other hand, when it exceeds 0.20, the mobility of the TFT including the oxide semiconductor thin film to be formed may be reduced.
  • the oxide sintered body of the present invention and the oxide sintered body used for the sputtering target of the present invention may further contain a positive tetravalent metal element.
  • the oxide sintered body used in the oxide sintered body of the present invention and the sputtering target of the present invention preferably contains a positive tetravalent metal element. Thereby, sputtering can be performed more stably.
  • Examples of the positive tetravalent metal element include Si, Ge, Sn, Ti, Zr, Hf, and Ce, and Sn is preferable. Bulk resistance decreases due to the Sn doping effect, and sputtering can be performed more stably.
  • the positive tetravalent metal element is dissolved in the bixbite phase represented by In 2 O 3 or the garnet phase represented by the general formula (I). It is preferable that it is dissolved in the bixbite phase represented by In 2 O 3 .
  • the solid solution is preferably a substitutional solid solution. Thereby, sputtering can be performed more stably.
  • the solid solution of the positive tetravalent metal element can be identified, for example, from the lattice constant of XRD measurement.
  • the solid solution of Ln and Ga or Ln, Ga and Al is represented by, for example, the above-described In 2 O 3. Similar to the solid solution in the bixbite phase, it can be identified from the lattice constant of the bixbite phase using XRD measurement.
  • the content of the positive tetravalent metal element is preferably 100 to 10,000 ppm in terms of atomic concentration with respect to all the metal elements in the oxide sintered body, and more preferably. Is 500 ppm or more and 8000 ppm or less, more preferably 800 ppm or more and 6000 ppm or less. If it is less than 100 ppm, the bulk resistance may increase. On the other hand, if it exceeds 10,000 ppm, the TFT including the oxide semiconductor thin film to be formed may become conductive, and the on / off value may be reduced.
  • the oxide sintered body used for the sputtering target of the present invention preferably has a bulk resistance of 30 m ⁇ ⁇ cm or less, more preferably 15 m ⁇ ⁇ cm or less, and further preferably 10 m ⁇ ⁇ cm or less.
  • a bulk resistance of 30 m ⁇ ⁇ cm or less, more preferably 15 m ⁇ ⁇ cm or less, and further preferably 10 m ⁇ ⁇ cm or less.
  • it is 1 mohm * cm or more, or 5 mohm * cm or more.
  • the thickness is 30 m ⁇ ⁇ cm or less, abnormal discharge due to charging of the target is less likely to occur during film formation with high power, and the plasma state is stabilized and spark is less likely to occur.
  • the plasma is further stabilized, and it becomes possible to perform sputtering stably without problems such as abnormal discharge.
  • the bulk resistance can be measured based on, for example, a four-probe method.
  • the oxide sintered body used for the sputtering target of the present invention preferably has a three-point bending strength of 120 MPa or more, more preferably 140 MPa or more, and further preferably 150 MPa or more.
  • the upper limit is not particularly limited, but is usually 200 MPa or less.
  • the three-point bending strength can be tested in accordance with, for example, JIS R 1601 “Room temperature bending strength test of fine ceramics”. Specifically, using a standard test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm, the test piece is placed on two fulcrums arranged at a fixed distance (30 mm), and the crosshead speed is 0 from the center between the fulcrums. The bending strength can be calculated from the maximum load when a load is applied at a rate of 0.5 mm / min and the material is broken.
  • the oxide sintered body used for the sputtering target of the present invention preferably has a linear expansion coefficient of 8.0 ⁇ 10 ⁇ 6 K ⁇ 1 or less, more preferably 7.5 ⁇ 10 ⁇ 6 K ⁇ 1 or less. It is more preferably 7.0 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the lower limit is not particularly limited, but is usually 5.0 ⁇ 10 ⁇ 6 K ⁇ 1 or more. If it exceeds 8.0 ⁇ 10 ⁇ 6 K ⁇ 1 , it may be heated during sputtering with high power, and microcracks may enter the target due to stress, or cause abnormal discharge due to cracking or chipping.
  • the linear expansion coefficient is, for example, a standard test piece having a width of 5 mm, a thickness of 5 mm, and a length of 10 mm.
  • the temperature increase rate is set to 5 ° C./min. It can be obtained by detecting with a detector.
  • the oxide sintered body used for the sputtering target of the present invention preferably has a thermal conductivity of 5.0 W / m ⁇ K or more, more preferably 5.5 W / m ⁇ K or more, and 6.0 W / m ⁇ K. K or higher is more preferable, and 6.5 W / m ⁇ K or higher is most preferable.
  • the upper limit is not particularly limited, but is usually 10 W / m ⁇ K or less. In the case of less than 5.0 W / m ⁇ K, when sputtering film formation is performed with high power, the temperature of the sputtered surface and the bonded surface is different, and microcracks, cracks, and chipping may occur in the target due to internal stress. .
  • the thermal conductivity can be calculated by, for example, obtaining a specific heat capacity and a thermal diffusivity by a laser flash method using a standard test piece having a diameter of 10 mm and a thickness of 1 mm, and multiplying this by the density of the test piece.
  • the metal element of the oxide sintered body used for the sputtering target of the present invention consists essentially of In, Ln, Ga, and optionally Sn, or consists essentially of In, Ln, Ga, Al and It is optionally made of Sn and may contain other inevitable impurities as long as the effects of the sputtering target of the present invention are not impaired.
  • 90 atomic% or more, 95 atomic% or more, 98 atomic% or more, 99 atomic% or more, or 100 atomic% of the metal element of the oxide sintered body used for the sputtering target of the present invention is In, Ln and Ga, Alternatively, it may consist of In, Ln, Ga and Al, In, Ln, Ga and Sn, or In, Ln, Ga, Al and Sn.
  • the garnet compound of the present invention and the oxide sintered body of the present invention include a mixed powder of a raw material powder containing indium, a raw material powder containing the element Ln in the general formula (I), and a raw material powder containing Ga, or indium.
  • the raw material powder is preferably an oxide powder.
  • the mixing ratio of the raw material powders may correspond to, for example, the atomic ratio of the oxide sintered body to be obtained. Furthermore, when manufacturing the oxide sintered compact containing the said arbitrary components, such as Sn, what is necessary is just to add the raw material powder containing the said arbitrary components, such as Sn, to mixed powder.
  • the average particle diameter of the raw material powder is preferably 0.1 to 1.2 ⁇ m, more preferably 0.5 to 1.0 ⁇ m or less.
  • the average particle diameter of the raw material powder can be measured with a laser diffraction type particle size distribution apparatus or the like.
  • Material mixing and forming methods are not particularly limited, and can be performed using known methods. For example, an aqueous solvent is blended into the mixed raw material powder, and the obtained raw material powder slurry is mixed for 12 hours or more, followed by solid-liquid separation, drying and granulation. Subsequently, the granulated product is placed in a mold. Mold.
  • a wet or dry ball mill, vibration mill, bead mill, or the like can be used.
  • the mixing time by the ball mill is preferably 15 hours or longer, more preferably 19 hours or longer.
  • binder polyvinyl alcohol, vinyl acetate, or the like can be used.
  • granulated powder is obtained from the raw material powder slurry.
  • the obtained mixed powder can be pressure-molded to form a molded body.
  • a product shape for example, a shape suitable as a sputtering target.
  • the granulated powder is filled into a molding die such as a rubber die, and is usually molded by a mold press or cold isostatic pressing (CIP), for example, at a pressure of 100 MPa or more to obtain a molded body.
  • CIP cold isostatic pressing
  • the obtained molded body can be sintered at a sintering temperature of 1200 to 1650 ° C. for 10 hours or more to obtain an oxide sintered body.
  • the sintering temperature is preferably 1350 to 1600 ° C, more preferably 1400 to 1600 ° C, still more preferably 1450 to 1600 ° C.
  • the sintering time is preferably 10 to 50 hours, more preferably 12 to 40 hours, still more preferably 13 to 30 hours.
  • the sintering temperature is less than 1200 ° C. or the sintering time is less than 10 hours, the sintering does not proceed sufficiently, and the electrical resistance of the target is not sufficiently lowered, which may cause abnormal discharge.
  • the firing temperature exceeds 1650 ° C. or the firing time exceeds 50 hours, the average crystal grain size increases due to remarkable crystal grain growth, and coarse pores are generated, and the sintered body strength is reduced. May cause abnormal discharge.
  • a pressure sintering method such as hot press, oxygen pressurization, hot isostatic pressurization and the like can be employed in addition to the atmospheric pressure sintering method.
  • the compact is sintered in an air atmosphere or an oxidizing gas atmosphere, preferably an oxidizing gas atmosphere.
  • the oxidizing gas atmosphere is preferably an oxygen gas atmosphere.
  • the oxygen gas atmosphere is preferably an atmosphere having an oxygen concentration of, for example, 10 to 100% by volume.
  • the density of the sintered body can be further increased by introducing an oxygen gas atmosphere in the temperature raising process.
  • the heating rate during sintering is from 800 ° C. to a sintering temperature (1200 to 1650 ° C.) of 0.1 to 2 ° C./min.
  • the temperature range above 800 ° C. is the range where the sintering proceeds most. If the rate of temperature rise in this temperature range is slower than 0.1 ° C./min, crystal grain growth becomes significant, and there is a possibility that densification cannot be achieved.
  • the rate of temperature increase is faster than 2 ° C./min, a temperature distribution is generated in the molded body, and the oxide sintered body may be warped or cracked.
  • the heating rate from 800 ° C. to the sintering temperature is preferably 0.1 to 1.3 ° C./min, more preferably 0.1 to 1.1 ° C./min.
  • the sputtering target of the present invention is obtained by cutting and polishing the second oxide sintered body of the present invention into a plate shape, a cylindrical shape, a semi-cylindrical shape, etc., and a target member made of a copper plate or the like. It can be obtained by bonding to a shaped backing plate (target support) with metal indium or the like. For example, by cutting, it is possible to remove a highly oxidized sintered portion or an uneven surface on the surface of the oxide sintered body. Also, it can be specified size. The surface may be polished with # 200, # 400, or # 800. Thereby, abnormal discharge and generation of particles during sputtering can be suppressed. As a bonding method, for example, bonding with metal indium can be mentioned.
  • the bonding rate is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more.
  • the bonding rate here refers to the area ratio of the surface where the target member and the target support are bonded via the bonding layer with respect to the area of the overlapping surface of the target member and the target support.
  • the bonding rate can usually be measured with an ultrasonic flaw detector or the like.
  • a method for joining the target member and the target support will be described.
  • Surface treatment is performed on the joint surface of the target member processed into a predetermined shape with the target support.
  • a device used for the surface treatment a commercially available blasting device can be used.
  • the product name “Pneuma Blaster SGF-5-B” manufactured by Fuji Seisakusho can be mentioned.
  • Glass, alumina, zirconia, SiC, or the like can be used as the powder used in the blasting method, and these are appropriately selected according to the composition, hardness, etc. of the target member.
  • a bonding material such as metal indium solder is applied to the bonding surface.
  • a bonding material such as metal indium solder is applied to the bonding surface of the backing plate that has been subjected to a cleaning treatment if necessary.
  • the target member is made of a material that is not directly welded to the bonding material, a thin film layer such as copper or nickel having excellent wettability with the bonding material is previously formed on the bonding surface of the target member by a sputtering method. After forming by a plating method or the like, the target material is heated to a temperature higher than the melting point of the bonding material using the target member, or the bonding material is applied directly to the bonding surface of the target member using ultrasonic waves. Also good.
  • the target support to which the bonding material is applied is heated to a temperature equal to or higher than the melting point of the used bonding material to melt the surface bonding material layer, and then the above-described powder is disposed on the surface, and the target member and the target After joining a support body, it can cool to room temperature and a sputtering target can be obtained.
  • the sputtering target of the present invention can be applied to a direct current (DC) sputtering method, a radio frequency (RF) sputtering method, an alternating current (AC) sputtering method, a pulsed DC sputtering method, and the like.
  • DC direct current
  • RF radio frequency
  • AC alternating current
  • DC pulsed DC
  • an oxide semiconductor thin film can be obtained without causing abnormal discharge or the like.
  • the oxide semiconductor thin film formed using the sputtering target of the present invention can be suitably used as, for example, a TFT channel layer, and exhibits excellent TFT performance when used in a TFT.
  • the element structure of the TFT using the oxide semiconductor thin film is not particularly limited, and various known element structures can be employed.
  • the obtained TFT can be used for an electronic apparatus such as a display device such as a liquid crystal display or an organic electroluminescence display.
  • FIG. 1 shows an example of a TFT to which an oxide semiconductor thin film formed using the sputtering target of the present invention can be applied.
  • an oxide semiconductor thin film 40 obtained by using the sputtering target of the present invention is formed on a gate insulating film 30 on a silicon wafer (gate electrode) 20, and interlayer insulating films 70 and 70a are formed.
  • . 70a on the oxide semiconductor thin film 40 also functions as a channel layer protective layer.
  • a source electrode 50 and a drain electrode 60 are provided on the oxide semiconductor thin film.
  • FIG. 2 shows another example of a TFT to which an oxide semiconductor thin film formed using the sputtering target of the present invention can be applied.
  • an oxide semiconductor thin film 40 obtained by using the sputtering target of the present invention is formed on a gate insulating film (for example, SiO 2 ) 30 on a silicon wafer (gate electrode) 20, and the oxide semiconductor thin film 40 is formed.
  • a source electrode 50 and a drain electrode 60 are provided, and a protective layer 70b (for example, a SiO 2 film formed by CVD) is provided on the oxide semiconductor thin film 40, the source electrode 50, and the drain electrode 60.
  • a protective layer 70b for example, a SiO 2 film formed by CVD
  • the silicon wafer 20 and the gate insulating film 30 may be a silicon wafer with a thermal oxide film, the silicon wafer may be used as a gate electrode, and the thermal oxide film (SiO 2 ) may be used as a gate insulating film.
  • the gate electrode 20 may be formed on a substrate such as glass.
  • the oxide semiconductor thin film preferably has a band gap of 3.0 eV or more.
  • the band gap is 3.0 eV or more, light on the long wavelength side from a wavelength near 420 nm is not absorbed.
  • light from the light source of the organic EL or TFT-LCD is not absorbed, and when used as a TFT channel layer, there is no malfunction due to the light of the TFT, and light stability can be improved.
  • it can.
  • it is 3.1 eV or more, More preferably, it is 3.3 eV or more.
  • the material for forming each of the drain electrode, the source electrode, and the gate electrode there is no particular limitation on the material for forming each of the drain electrode, the source electrode, and the gate electrode, and a commonly used material is used. Can be arbitrarily selected.
  • transparent electrodes such as indium tin oxide (ITO), indium zinc oxide (IZO), ZnO, SnO 2 , metal electrodes such as Al, Ag, Cu, Cr, Ni, Mo, Au, Ti, Ta, or these
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO ZnO
  • SnO 2 metal electrodes
  • metal electrodes such as Al, Ag, Cu, Cr, Ni, Mo, Au, Ti, Ta, or these
  • a silicon wafer may be used as a substrate, and in that case, the silicon wafer also acts as an electrode.
  • a protective film is provided over the drain electrode, the source electrode, and the channel layer. It is preferable. By providing the protective film, the durability is easily improved even when the TFT is driven for a long time.
  • a top gate type TFT has a structure in which a gate insulating film is formed on a channel layer, for example.
  • the protective film or the insulating film can be formed by, for example, CVD, but at that time, the process may be performed at a high temperature.
  • the protective film or the insulating film often contains an impurity gas immediately after film formation, and it is preferable to perform heat treatment (annealing treatment). By removing these impurity gases by heat treatment, a stable protective film or insulating film is obtained, and a highly durable TFT element can be easily formed.
  • heat treatment annealing treatment
  • an oxide semiconductor thin film formed using the sputtering target of the present invention it is less susceptible to the effects of temperature in the CVD process and the subsequent heat treatment, so a protective film or insulating film is formed Even so, the stability of the TFT characteristics can be improved.
  • Examples 1 to 5 [Production of sintered oxide]
  • the lanthanoid oxide powder, indium oxide powder, aluminum oxide powder and gallium oxide powder are weighed so as to have the ratio shown in Table 1, put into a polyethylene pot, and mixed and ground for 72 hours by a dry ball mill. Produced.
  • This mixed powder was put into a mold and formed into a press-molded body at a pressure of 500 kg / cm 2 .
  • This molded body was densified by CIP at a pressure of 2000 kg / cm 2 .
  • this molded body was placed in a normal pressure firing furnace, held at 350 ° C. for 3 hours in an air atmosphere, then heated at 50 ° C./hour, and sintered at 1450 ° C. for 20 hours. Then, it was left to cool to obtain an oxide sintered body.
  • FIGS. 3 to 7 XRD charts of the oxide sintered bodies obtained in Examples 1 to 7 are shown in FIGS. 3 to 7, respectively. 3 to 7, it was found that the oxide sintered body obtained in each example had the garnet phase shown in Table 1, or the garnet phase and the bixbite phase.
  • the XRD charts of Example 1 and Example 4 are peaks that do not exist in the JCPDS card, and are considered to be new compounds, and are compared with atomic composition ratios and XRD-like patterns and from structural analysis of the obtained XRD patterns. , Identified as Sm 3 In 2 Ga 3 O 12 and Sm 3 In 2 AL 1.5 Ga 1.5 O 12 , respectively.
  • Examples 6-8 Oxide sintered bodies were produced and evaluated in the same manner as in Examples 1 to 5 except that the raw material oxides were mixed in the proportions shown in Table 2 below. XRD charts of the oxide sintered bodies obtained in Examples 6 to 8 are shown in FIGS. 8 to 10, respectively. Further, for the obtained oxide sintered body, a bulk resistance (m ⁇ ⁇ cm) is measured by a four-probe method (JISR1637) using a resistivity meter Loresta (Mitsubishi Chemical Co., Ltd., Loresta AX MCP-T370). Measured based on The results are shown in Table 2.
  • the surfaces of the oxide sintered bodies obtained in Examples 6 to 8 were ground with a surface grinder in the order of # 40, # 200, # 400, and # 1000, the sides were cut with a diamond cutter, and the backing plate was made of metal. Bonding was performed using indium to prepare a sputtering target having a diameter of 4 inches.
  • the bonding rate (%) of the obtained target was measured by the following method.
  • the bonding rate was determined by measuring the void portion that was not bonded by an ultrasonic flaw detector and measuring the ratio of the portion bonded based on the target area. The results are shown in Table 2.
  • Example 9 A thin film transistor having the structure shown in FIG. 11 was manufactured through the following steps.
  • Film-forming process A 50 nm thin film is formed on a silicon wafer (gate electrode 20) with a thermal oxide film (gate insulating film 30) by sputtering using the sputtering target manufactured in Example 8 through a metal mask.
  • (Oxide semiconductor layer 40) was formed.
  • As a sputtering gas a mixed gas of high purity argon and high purity oxygen (impurity concentration: 0.01% by volume) was used, and sputtering was performed under the following film formation conditions.
  • Atmospheric gas Ar + O 2
  • Oxygen partial pressure during film formation 20%
  • Back pressure before film formation 5.0 ⁇ 10 ⁇ 4 Pa
  • Sputtering pressure during film formation 0.3 Pa
  • Substrate temperature at the time of film formation room temperature No abnormal discharge was observed during sputtering.
  • a SiO 2 film (protective insulating film; interlayer insulating film 70, channel part interlayer insulating film 70a) is formed on the semiconductor thin film after the heat treatment by a chemical vapor deposition method (CVD) at a substrate temperature of 350 ° C. (However, there is no contact hole at this point, and it is a continuous film)), and heat treatment was performed at 350 ° C. for 60 minutes in the atmosphere.
  • CVD chemical vapor deposition method
  • the saturation mobility was obtained from the transfer characteristics when 5 V was applied to the drain voltage. Specifically, a graph of the transfer characteristic Id-Vg was created, the transconductance (Gm) of each Vg was calculated, and the saturation mobility was derived from an equation in the linear region. Gm is expressed by ⁇ (Id) / ⁇ (Vg), Vg was applied from ⁇ 15 to 25V, and the maximum mobility in the range was defined as saturation mobility. Unless otherwise specified in the present invention, the saturation mobility was evaluated by this method.
  • Id is the current between the source and drain electrodes
  • Vg is the gate voltage when the voltage Vd is applied between the source and drain electrodes.
  • the saturation mobility of the obtained TFT was 41.6 cm 2 / (V ⁇ sec).
  • the threshold voltage of the obtained TFT was -0.2V.
  • the obtained TFT had an On / Off ratio of> 10 8 and an Off current value of ⁇ 10 ⁇ 12 A.
  • Examples 10-12 [Production of sintered oxide] Using a neodymium oxide powder, an indium oxide powder, and a gallium powder so as to have the ratio shown in Table 3, the same operation as in Examples 1 to 5 was performed to obtain an oxide sintered body. Evaluation was performed in the same manner as in Examples 1 to 5, and the results are shown in Table 3.
  • the XRD chart of Example 10 is a peak that does not exist in the JCPDS card, and is considered to be a new compound. From the comparison of the atomic composition ratio and the XRD-like pattern and the structural analysis of the obtained XRD pattern, Nd 3 In 2 It was identified as Ga 3 O 12.
  • the oxide sintered body of the present invention can be used as a sputtering target, and is useful for producing an oxide semiconductor thin film of a thin film transistor (TFT) used for a display device such as a liquid crystal display or an organic EL display.
  • TFT thin film transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一般式(I): LnInGa3-XAl12 (I)(式中、Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。Xは、0≦X<3である。)で表されるガーネット化合物。

Description

新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット
 本発明は、新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲットに関する。
 薄膜トランジスタ(TFT)に用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリヤー移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板等への適用が期待されている。
 上記酸化物半導体(膜)の形成に当たっては、スパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。これは、スパッタリング法で形成された薄膜が、イオンプレーティング法や真空蒸着法、電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成や膜厚等の面内均一性に優れており、スパッタリングターゲットと同じ成分組成の薄膜を形成できるためである。
 特許文献1には、A12で表されるガーネット化合物の製造方法が記載されている。
 また、特許文献1には、酸化インジウムを含有するYInGa12化合物が例示されている。
 特許文献2には、酸化インジウム、酸化イットリウム、及び酸化アルミニウム又は酸化ガリウムを含む原料を焼結して得られる、A12型ガーネット構造の化合物を含有するスパッタリングターゲットが記載されている。このターゲットは、ガーネット構造を含むことにより、電気抵抗が小さくなり、スパッタリング中の異常放電が少なくなると記載されている。また、高移動度のTFT素子への適用に関する記載がある。
特開2008-7340号公報 国際公開第2015-098060号
 しかし一方で、さらなる高性能なTFTへの要求が強くあり、高移動度で、保護膜又は絶縁膜を化学蒸着法(CVD)で形成する際の加熱等での特性変化の小さい材料への要望は大きい。
 本発明の目的は、新規なガーネット化合物、TFTに用いたときに優れたTFT性能が発揮される薄膜を形成できるスパッタリングターゲット、及びその材料である酸化物焼結体を提供することである。
 本発明によれば、以下の新規なガーネット化合物、酸化物焼結体及びスパッタリングターゲット等が提供される。
1.一般式(I):
   LnInGa3-XAl12     (I)
(式中、
 Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
 Xは、0≦X<3である。)
で表されるガーネット化合物。
2.Lnが、Nd及びSmのいずれか一方又は両方を含む、1に記載のガーネット化合物。
3.一般式(I):
   LnInGa3-XAl12     (I)
(式中、
 Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
 Xは、0≦X<3である。)
で表されるガーネット相を含む酸化物焼結体。
4.Lnが、Nd及びSmのいずれか一方又は両方を含む、3に記載の酸化物焼結体。
5.一般式(I):
   LnInGa3-XAl12     (I)
(式中、
 Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
 Xは、0≦X<3である。)
で表されるガーネット相、及び、Inで表されるビックスバイト相を含む酸化物焼結体。
6.Lnが、Nd及びSmのいずれか一方又は両方を含む、5に記載の酸化物焼結体。
7.5又は6に記載の酸化物焼結体を用いて作製されたスパッタリングターゲット。
 本発明によれば、新規なガーネット化合物、薄膜トランジスタ(TFT)に用いたときに優れたTFT性能が発揮される薄膜を形成できるスパッタリングターゲット、及びその材料である酸化物焼結体を提供できる。
本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を適用できるTFTの一例を示す。 本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を適用できるTFTの別の例を示す。 実施例1の酸化物焼結体のX線回折パターンである。 実施例2の酸化物焼結体のX線回折パターンである。 実施例3の酸化物焼結体のX線回折パターンである。 実施例4の酸化物焼結体のX線回折パターンである。 実施例5の酸化物焼結体のX線回折パターンである。 実施例6の酸化物焼結体のX線回折パターンである。 実施例7の酸化物焼結体のX線回折パターンである。 実施例8の酸化物焼結体のX線回折パターンである。 実施例9で製造したボトムゲート型薄膜トランジスタの構造を示す概略断面図である。 実施例10の酸化物焼結体のX線回折パターンである。 実施例11の酸化物焼結体のX線回折パターンである。 実施例12の酸化物焼結体のX線回折パターンである。
 酸化インジウムをベースとするターゲット材に、ランタノイド系金属の様な原子半径の大きな元素を添加すると、酸化インジウムの格子定数が変化したり、焼結密度が上がらずターゲット材の強度が低下したり、大パワーでのスパッタリング中に熱応力によりマイクロクラックを発生したり、チッピングや異常放電が発生したりする場合がある。これらの現象は得られる酸化物薄膜に欠陥を発生させTFT性能の劣化を引き起こす。
 本発明者らは、上記問題点を解決するため、ターゲット材として用いることができるランタノイド系金属元素を含む酸化インジウムをベースとする新たな物質を見出すべく鋭意探索を行い、ランタノイド系金属元素を含む新規なガーネット化合物を見出した。そして、前記ガーネット化合物(ガーネット相)とInで表されるビックスバイト相を含む酸化物焼結体を用いたスパッタリングターゲットは焼結密度が高い、バルク抵抗が低い、ターゲットの反りが少ない、ボンディング率が高い等のターゲット材として有利な特性を有することを見出した。これらのターゲット特性により、大パワーでのスパッタリングでも異常放電が生じ難く安定したスパッタリングが可能となる。また、このスパッタリングターゲットをスパッタして得られる薄膜は、TFTに用いたときに優れたTFT性能(保護膜又は絶縁膜を化学蒸着法(CVD)で形成する際の加熱等での特性変化が小さい、高速応答性等)を発揮することを見出した。
 本発明の一実施形態に係るガーネット化合物(以下、本発明のガーネット化合物という)は、
   LnInGa3-XAl12     (I)
(式中、
 Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
 Xは、0≦X<3である。)
で表される新規化合物である。
 本発明において、「ガーネット化合物」とは、ガーネット構造(柘榴石型構造)の結晶構造型を有する化合物をいうものとする。
 式(I)中のLnは、La(ランタン)、Nd(ネオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホロミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)及びLu(ルテチウム)から選ばれた一種以上の金属元素である。これらのうち、Sm、Ndが好ましい。
 Lnは、Nd及びSmのいずれか一方又は両方を含むことが好ましく、Nd及びSmのいずれかであることがより好ましい。
 本発明のガーネット化合物は、単結晶構造でも多結晶構造でもよい。
 本発明の一実施形態に係る酸化物焼結体(以下、本発明の第1の酸化物焼結体という)は、一般式(I):
   LnInGa3-XAl12     (I)
(式中、
 Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
 Xは、0≦X<3である。)
で表されるガーネット相を含むことを特徴とする新規物質である。
 当該酸化物焼結体は、上記新規なガーネット化合物(ガーネット相)のみからなっていてもよいし、上記新規なガーネット化合物(ガーネット相)以外の化合物(相)を含んでいてもよい。
 本発明の一実施形態に係る酸化物焼結体(以下、本発明の第2の酸化物焼結体という)は、一般式(I):
   LnInGa3-XAl12     (I)
(式中、
 Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
 Xは、0≦X<3である。)
で表されるガーネット相、及び、Inで表されるビックスバイト相を含むことを特徴とする新規物質である。
 上記本発明の第1の酸化物焼結体及び第2の酸化物焼結体をまとめて本発明の酸化物焼結体ということがある。
 本発明の酸化物焼結体における一般式(I)で表されるガーネット相におけるLnは、Nd及びSmのいずれか一方又は両方を含むことが好ましく、Nd及びSmのいずれかであることがより好ましい。
 本発明の一実施形態に係るスパッタリングターゲット(以下、本発明のスパッタリングターゲットという)は、上記本発明の第2の酸化物焼結体を有していることを特徴とする。
 本発明のスパッタリングターゲットは、本発明の第2の酸化物焼結体を、ターゲット材としてバッキングプレートに貼り合わせて製造される。スパッタリングターゲットの製造方法は後述する。
 本発明の第2の酸化物焼結体は、前記一般式(I)で表されるガーネット相、及び、Inで表されるビックスバイト相を含むことにより、焼結密度(相対密度)及び体積抵抗率(バルク抵抗)を向上させることができる。また、線膨張係数を小さく、熱伝導度を大きくすることができる。また、雰囲気焼成炉を用いて酸素雰囲気下という特殊な条件下や、大気下等で行うような簡便な方法で焼成した場合でも、体積抵抗率も低く焼結体密度も高い酸化物焼結体とすることができる。上記特性を有する本発明の第2の酸化物焼結体は、ターゲット材として好ましい。
 本発明の第2の酸化物焼結体をターゲット材として用いることにより、ターゲットの強度が高い。また熱伝導率が高く、線膨張係数が小さいため、熱応力を抑えることができ、その結果、ターゲットのマイクロクラックやチッピングの発生を抑制し、ノジュールや異常放電の発生を抑制することができ、大パワーでのスパッタリングが可能なスパッタリングターゲットを得ることができる。
 加えて、本発明の第2の酸化物焼結体をターゲット材として用いることにより、高移動度で、TFT製造プロセス過程で酸化物半導体層の積層後に行われる化学気相成長プロセス(CVDプロセス)やTFT作製後の加熱処理等での熱による特性への劣化が少なく、高性能のTFTを得ることができる。
 本発明のガーネット化合物、酸化物焼結体中のガーネット相及びInで表されるビックスバイト相は、例えば、X線回折(XRD)法により、XRDチャートから検出することができる。
 本発明の第2の酸化物焼結体における、Inで表されるビックスバイト相の存在比率は、1~99wt%であることが好ましく、10~98wt%であることがより好ましい。Inで表されるビックスバイト相の存在比率が上記範囲であれば、新規化合物であるLnIn(Ga3-xAl12がIn結晶中に分散しており、さらに希土類元素をドーピングする等により、後述するターゲット素材以外の蛍光材料等への応用も考えられる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、Inで表されるビックスバイト相が主成分であることが好ましい。ビックスバイト構造以外の結晶構造が主成分として析出すると、移動度の低下を招くおそれがある。「Inで表されるビックスバイト相が主成分である」とは、Inで表されるビックスバイト相の存在比率が50wt%超であることを意味し、好ましくは70wt%以上、より好ましくは80wt%以上、さらに好ましくは90wt%以上である。
 本発明のスパッタリングターゲットに用いる酸化物焼結体は、焼結密度が6.5~7.1g/cmの範囲内であることが好ましく、6.6~7.1g/cmの範囲内であることがより好ましい。焼結密度が6.5~7.1g/cmの範囲内であれば、ターゲットとして用いた際に、異常放電の原因やノジュール発生の起点となる空隙を減少させることができる。
 焼結密度は、例えば、アルキメデス法で測定することができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体は、Inで表されるビックスバイト相に、前記Lnで表される金属元素(La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu;以下、「Ln」と表す。)、Al元素及びGa元素のうちの一種以上が固溶していてもよい。Ln及びGa、又はLn、Ga及びAlが固溶していることが好ましい。固溶は、置換型固溶が好ましい。
 これにより、安定したスパッタを行うことができる。
 Ln及びGa、又はLn、Ga及びAlの固溶は、例えばXRD測定を用いて、ビックスバイト相の格子定数から同定することができる。
 Inで表されるビックスバイト相の格子定数が、例えば、Inで表されるビックスバイト相のみの格子定数よりも小さくなっていれば、Ga、又はGa及びAlの固溶が優位的に作用しており、Inで表されるビックスバイト相のみの格子定数よりも大きくなっていれば、Lnの固溶が優位的に作用している。
 ここで、「格子定数」とは、単位格子の格子軸の長さと定義され、例えばX線回折法によって求めることができる。
 また、本発明のスパッタリングターゲットに用いる酸化物焼結体においては、一般式(I)で表されるガーネット相に、Ln及びGa、又はLn、Ga及びAlが固溶していてもよい。
 これにより、安定したスパッタを行うことができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、一般式(I)で表されるガーネット相の平均粒径は、15μm以下が好ましく、より好ましくは10μm以下であり、さらに好ましくは8μm以下であり、特に好ましくは5μm以下である。下限値に特に制限はないが、通常0.1μm以上である。
 一般式(I)で表されるガーネット相の平均粒径が15μm以下の場合、放電を安定化しやすくなる。
 一般式(I)で表されるガーネット相の平均粒径は、例えば、電子プローブ微小分析器(EPMA)により、一般式(I)で表されるガーネット相を特定し、その最大径を直径とする円を仮定し、その直径の平均値として、求めることができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、原子比In/(In+Ln+Ga+Al)は、0.60以上0.97以下であることが好ましく、0.70以上0.96以下がより好ましく、0.75以上0.95以下がさらに好ましい。
 0.60未満の場合、形成する酸化物半導体薄膜を含むTFTの移動度が小さくなるおそれがある。0.97超の場合、TFTの安定性が得られないおそれや、導電化して半導体になりにくいおそれがある。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、Alを含む場合の原子比(Ga+Al)/(In+Ln+Ga+Al)は、0.01以上0.20以下であることが好ましく、0.02以上0.15以下がより好ましく、0.02以上0.12以下がさらに好ましい。
 (Ga+Al)/(In+Ln+Ga+Al)が0.01未満の場合、一般式(I)で表されるガーネット相が形成されず、酸化物焼結体のバルク抵抗が高くなったり、焼結密度及び焼結体強度が低く、そのためスパッタ時の熱による割れ等が発生しやすくなったり、安定したスパッタリングができなくなるおそれがある。一方、0.20超の場合、形成する酸化物半導体薄膜を含むTFTの移動度が小さくなるおそれがある。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、Alを含まない場合の原子比Ga/(In+Ln+Ga)は、0.01以上0.40以下であることが好ましい。
 本発明の酸化物焼結体及び本発明のスパッタリングターゲットに用いる酸化物焼結体において、原子比Ln/(In+Ln+Ga+Al)は、0.02以上0.20以下であることが好ましく、0.02以上0.18以下がより好ましく、0.03以上0.16以下がさらに好ましい。
 0.02未満の場合、一般式(I)で表されるガーネット相が形成されず、酸化物焼結体のバルク抵抗が高くなったり、焼結密度及び焼結体強度が低く、そのためスパッタ時の熱による割れ等が発生しやすくなったり、安定したスパッタリングができなくなるおそれがある。一方、0.20超の場合、形成する酸化物半導体薄膜を含むTFTの移動度が小さくなるおそれがある。
 また、本発明の酸化物焼結体及び本発明のスパッタリングターゲットに用いる酸化物焼結体は、さらに正四価の金属元素を含有していてもよい。
 本発明の酸化物焼結体及び本発明のスパッタリングターゲットに用いる酸化物焼結体は、正四価の金属元素を含むことが好ましい。
 これにより、より安定的にスパッタリングを行うことができる。
 正四価の金属元素としては、Si、Ge、Sn、Ti、Zr、Hf及びCeが挙げられ、Snが好ましい。Snのドーピング効果によりバルク抵抗が低下し、より安定的にスパッタリングを行うことができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、正四価の金属元素は、Inで表されるビックスバイト相又は一般式(I)で表されるガーネット相に固溶していることが好ましく、Inで表されるビックスバイト相に固溶していることがより好ましい。固溶は、置換型固溶が好ましい。
 これにより、より安定的にスパッタリングを行うことができる。
 正四価の金属元素の固溶については、例えばXRD測定の格子定数から同定することができる。
 また、正四価の金属元素が固溶したInで表されるビックスバイト相について、Ln及びGa、又はLn、Ga及びAlの固溶を、例えば上述のInで表されるビックスバイト相への固溶と同様に、XRD測定を用いて、ビックスバイト相の格子定数から、同定できる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体においては、正四価の金属元素の含有量は、酸化物焼結体中の全金属元素に対して、原子濃度で100~10000ppmが好ましく、より好ましくは500ppm以上8000ppm以下であり、さらに好ましくは800ppm以上6000ppm以下である。
 100ppm未満の場合、バルク抵抗が上昇するおそれがある。一方、10000ppm超の場合、形成する酸化物半導体薄膜を含むTFTが導通するおそれや、オン/オフ値が小さくなるおそれがある。
 本発明のスパッタリングターゲットに用いる酸化物焼結体は、バルク抵抗が、30mΩ・cm以下であることが好ましく、より好ましくは15mΩ・cm以下であり、さらに好ましくは10mΩ・cm以下である。下限値に、特に制限はないが、通常1mΩ・cm以上、又は5mΩ・cm以上である。
 30mΩ・cm以下の場合、大パワーでの成膜時に、ターゲットの帯電による異常放電が発生しにくく、また、プラズマ状態が安定し、スパークが発生しにくくなる。また、パルスDCスパッタ装置を用いる場合、さらにプラズマが安定し、異常放電等の問題もなく、安定してスパッタできるようになる。
 バルク抵抗は、例えば、四探針法に基づき測定することができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体は、3点曲げ強度が、120MPa以上であることが好ましく、140MPa以上がより好ましく、150MPa以上がさらに好ましい。
 上限値は、特に制限はないが、通常200MPa以下である。
 120MPa未満の場合、大パワーでスパッタ成膜した際に、ターゲットの強度が弱く、ターゲットが割れたり、チッピングを起こして、チッピングした破片がターゲット上に飛散し、異常放電の原因となるおそれがある。
 3点曲げ強度は、例えばJIS R 1601「ファインセラミックスの室温曲げ強さ試験」に準じて、試験することができる。
 具体的には、幅4mm、厚さ3mm、長さ40mmの標準試験片を用いて、一定距離(30mm)に配置された2支点上に試験片を置き、支点間の中央からクロスヘッド速度0.5mm/分にて荷重を加え、破壊した時の最大荷重より、曲げ強さを算出することができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体は、線膨張係数が8.0×10-6-1以下であることが好ましく、7.5×10-6-1以下がより好ましく、7.0×10-6-1以下がさらに好ましい。下限値に、特に制限はないが、通常5.0×10-6-1以上である。
 8.0×10-6-1を超える場合、大パワーでスパッタリング中に加熱され、応力によりターゲットにマイクロクラックが入ったり、割れやチッピングにより、異常放電の原因となるおそれがある。
 線膨張係数は、例えば幅5mm、厚さ5mm、長さ10mmの標準試験片を用いて、昇温速度を5℃/分にセットし、300℃に到達した時の熱膨張による変位を、位置検出機で検出することにより求めることができる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体は、熱伝導率が5.0W/m・K以上であることが好ましく、5.5W/m・K以上がより好ましく、6.0W/m・K以上がさらに好ましく、6.5W/m・K以上が最も好ましい。
 上限値は、特に制限はないが、通常10W/m・K以下である。
 5.0W/m・K未満の場合、大パワーでスパッタリング成膜した際に、スパッタ面とボンディングされた面の温度が異なり、内部応力によりターゲットにマイクロクラックや割れ、チッピングが発生するおそれがある。
 熱伝導率は、例えば直径10mm、厚さ1mmの標準試験片を用いて、レーザーフラッシュ法により比熱容量と熱拡散率を求め、これに試験片の密度を乗算することにより算出できる。
 本発明のスパッタリングターゲットに用いる酸化物焼結体の金属元素は、本質的に、In、Ln、Ga、及び任意にSnからなっているか、あるいは、本質的に、In、Ln、Ga、Al及び任意にSnからなっており、本発明のスパッタリングターゲットの効果を損なわない範囲で他に不可避不純物を含んでもよい。
 本発明のスパッタリングターゲットに用いる酸化物焼結体の金属元素の、例えば、90原子%以上、95原子%以上、98原子%以上、99原子%以上又は100原子%が、In、Ln及びGa、あるいは、In、Ln、Ga及びAl、あるいは、In、Ln、Ga及びSn、あるいは、In、Ln、Ga、Al及びSnからなっていてもよい。
 本発明のガーネット化合物及び本発明の酸化物焼結体は、インジウムを含む原料粉末、前記一般式(I)における元素Lnを含む原料粉末、及びGaを含む原料粉末の混合粉末、又はインジウムを含む原料粉末、前記一般式(I)における元素Lnを含む原料粉末、Gaを含む原料粉末、及びAlを含む原料粉末の混合粉末を調製する工程、混合粉末を成形して成形体を製造する工程、及び成形体を焼成する工程を経ることで製造できる。具体的には実施例に示す方法に準拠して製造すればよい。
 原料粉末は、酸化物粉末が好ましい。
 原料粉末の混合比は、例えば得ようとする酸化物焼結体の原子比に対応させればよい。
 さらにSn等の上記任意成分を含む酸化物焼結体を製造する場合には、Sn等の上記任意成分を含む原料粉末を混合粉末に添加すればよい。
 原料粉末の平均粒径は、好ましくは0.1~1.2μmであり、より好ましくは0.5~1.0μm以下である。原料粉末の平均粒径はレーザー回折式粒度分布装置等で測定することができる。
 原料の混合、成形方法は特に限定されず、公知の方法を用いて行うことができる。例えば、混合した原料粉末に、水系溶媒を配合し、得られた原料粉末スラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形する。
 混合については、湿式又は乾式によるボールミル、振動ミル、ビーズミル等を用いることができる。
 ボールミルによる混合時間は、好ましくは15時間以上、より好ましくは19時間以上とする。
 また、混合する際にはバインダーを任意量だけ添加し、同時に混合を行うと好ましい。バインダーには、ポリビニルアルコール、酢酸ビニル等を用いることができる。
 次に、原料粉末スラリーから造粒粉を得る。造粒に際しては、スプレイドライやフリーズドライを行うことが好ましく、スプレイドライを行うのがより好ましい。
 得られた混合粉末(造粒粉)を加圧成形して成形体とすることができる。この工程により、製品の形状(例えば、スパッタリングターゲットとして好適な形状)に成形することができる。
 具体的には、造粒粉をゴム型等の成形型に充填し、通常、金型プレス又は冷間静水圧プレス(CIP)により、例えば100MPa以上の圧力で成形を施して成形体を得る。
 得られた成形体を1200~1650℃の焼結温度で10時間以上焼結して酸化物焼結体を得ることができる。
 焼結温度は好ましくは1350~1600℃、より好ましくは1400~1600℃、さらに好ましくは1450~1600℃である。焼結時間は好ましくは10~50時間、より好ましくは12~40時間、さらに好ましくは13~30時間である。
 焼結温度が1200℃未満又は焼結時間が10時間未満であると、焼結が十分進行しないため、ターゲットの電気抵抗が十分下がらず、異常放電の原因となるおそれがある。一方、焼成温度が1650℃を超えるか、又は、焼成時間が50時間を超えると、著しい結晶粒成長により平均結晶粒径の増大や、粗大空孔の発生を来たし、焼結体強度の低下や異常放電の原因となるおそれがある。
 本発明で用いる焼結方法としては、常圧焼結法の他、ホットプレス、酸素加圧、熱間等方圧加圧等の加圧焼結法も採用することができる。
 常圧焼結法では、成形体を大気雰囲気、又は酸化ガス雰囲気、好ましくは酸化ガス雰囲気にて焼結する。酸化ガス雰囲気とは、好ましくは酸素ガス雰囲気である。酸素ガス雰囲気は、酸素濃度が、例えば10~100体積%の雰囲気であることが好ましい。上記酸化物焼結体の製造方法においては、昇温過程にて酸素ガス雰囲気を導入することで、焼結体密度をより高くすることができる。
 さらに、焼結に際しての昇温速度は、800℃から焼結温度(1200~1650℃)までを0.1~2℃/分とすることが好ましい。
 本発明の酸化物焼結体において800℃から上の温度範囲は、焼結が最も進行する範囲である。この温度範囲での昇温速度が0.1℃/分より遅くなると、結晶粒成長が著しくなって、高密度化を達成することができないおそれがある。一方、昇温速度が2℃/分より速くなると、成形体に温度分布が生じ、酸化物焼結体が反ったり割れたりするおそれがある。
 800℃から焼結温度における昇温速度は、好ましくは0.1~1.3℃/分、より好ましくは0.1~1.1℃/分である。
 本発明のスパッタリングターゲットは、前記本発明の第2の酸化物焼結体を切削研磨して、板状や円筒状、半円筒状等に加工したターゲット部材を、銅板等からなる板状や円筒状のバッキングプレート(ターゲット支持体)に金属インジウム等によりボンディングして得ることができる。
 例えば、切断加工することで、酸化物焼結体表面の、高酸化状態の焼結部や、凸凹した面を除くことができる。また、指定の大きさにすることができる。
 表面を#200番、もしくは#400番、さらには#800番の研磨を行ってもよい。これにより、スパッタリング中の異常放電やパーティクルの発生を抑えることができる。
 ボンディングの方法としては、例えば金属インジウムにより接合することが挙げられる。
 スパッタリング時の冷却効率を保つ上でボンディング率は、90%以上とすることが好ましく、95%以上がより好ましく、99%以上がさらに好ましい。ここでいうボンディング率とは、ターゲット部材とターゲット支持体との重なり合った面の面積に対して、ターゲット部材とターゲット支持体とが接合層を介して接合されている面の面積割合を示す。ボンディング率は、通常、超音波探傷装置等により測定することができる。
 ターゲット部材とターゲット支持体との接合方法について説明する。
 所定の形状に加工したターゲット部材における、ターゲット支持体との接合面に対して、表面処理を行う。表面処理に使用される装置は、一般に市販されているブラスト装置を使用することができる。例えば、不二製作所製、商品名「ニューマブラスター・SGF-5-B」を挙げることができる。ブラスト法に用いられる粉末としては、ガラス、アルミナ、ジルコニア、SiC、等が使用できるが、これらはターゲット部材の組成、硬度等に併せて適宜選択される。
 得られた表面処理済みのターゲット部材表面を、必要に応じて洗浄した後、接合面に金属インジウム半田等の接合材料を塗布する。同じく必要に応じて洗浄処理を施したバッキングプレートの接合面に、金属インジウム半田等の接合材料を塗布する。この際に、ターゲット部材が直接接合材料に溶着しない材料で構成されている場合には、予めターゲット部材の接合面に接合材料との濡れ性に優れた銅、ニッケル等の薄膜層を、スパッタリング法、メッキ法等により形成した後、このターゲット部材を使用する接合材料の融点以上に加熱して接合材料を塗布するか、あるいは超音波を用いてターゲット部材の接合面に直接接合材料を塗布してもよい。
 次に、接合材料を塗布したターゲット支持体を、使用された接合材料の融点以上に加熱して表面の接合材料層を融解させた後、上述の粉末をその表面に配置し、ターゲット部材とターゲット支持体を接合した後、室温まで冷却してスパッタリングターゲットを得ることができる。
 本発明のスパッタリングターゲットは、直流(DC)スパッタリング法、高周波(RF)スパッタリング法、交流(AC)スパッタリング法、パルスDCスパッタリング法等に適用することができる。
 上記本発明のスパッタリングターゲットを用いて成膜することにより、異常放電等が発生することなく、酸化物半導体薄膜を得ることができる。
 上記本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜は、例えばTFTのチャネル層として好適に使用でき、TFTに用いたときに優れたTFT性能が発揮される。
 上記酸化物半導体薄膜を用いるTFTの素子構成は特に限定されず、公知の各種の素子構成を採用することができる。
 得られるTFTは、例えば液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等の表示装置等の電子機器に用いることができる。
 図1に、本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を適用できるTFTの一例を示す。このTFTでは、シリコンウエハー(ゲート電極)20上にあるゲート絶縁膜30に、本発明のスパッタリングターゲットを用いて得られる酸化物半導体薄膜40を形成し、層間絶縁膜70,70aが形成されている。酸化物半導体薄膜40上の70aはチャネル層保護層としても作用するものである。酸化物半導体薄膜上にソース電極50とドレイン電極60が設けられている。
 図2に、本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を適用できるTFTの別の例を示す。このTFTでは、シリコンウエハー(ゲート電極)20上にあるゲート絶縁膜(例えばSiO)30に、本発明のスパッタリングターゲットを用いて得られる酸化物半導体薄膜40を形成し、酸化物半導体薄膜40上にソース電極50とドレイン電極60を設け、酸化物半導体薄膜40、ソース電極50及びドレイン電極60上に保護層70b(例えばCVD成膜したSiO膜)が設けられている。
 シリコンウエハー20及びゲート絶縁膜30は、熱酸化膜付きシリコンウエハーを用いて、シリコンウエハーをゲート電極とし、熱酸化膜(SiO)をゲート絶縁膜としてもよい。
 また、図1及び図2において、ガラス等の基板上にゲート電極20を形成してもよい。
 酸化物半導体薄膜は、バンドギャップが3.0eV以上であることが好ましい。バンドギャップが3.0eV以上の場合、波長が420nm付近から長波長側の光を吸収しなくなる。これにより、有機ELやTFT-LCDの光源からの光を光吸収することがなく、TFTのチャネル層として用いた際に、TFTの光による誤作動等がなく、光安定性を向上させることができる。好ましくは3.1eV以上、より好ましくは3.3eV以上である。
 本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を適用できるTFTにおいて、ドレイン電極、ソース電極及びゲート電極の各電極を形成する材料に特に制限はなく、一般に用いられている材料を任意に選択することができる。例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、ZnO、SnO等の透明電極や、Al、Ag、Cu、Cr、Ni、Mo、Au、Ti、Ta等の金属電極、又はこれらを含む合金の金属電極や積層電極を用いることができる。また、シリコンウエハーを基板として用いてもよく、その場合はシリコンウエハーが電極としても作用する。
 本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を適用できるTFTにおいて、バックチャネルエッチ型(ボトムゲート型)のTFTの場合、ドレイン電極、ソース電極及びチャネル層上に保護膜を設けることが好ましい。保護膜を設けることにより、TFTの長時間駆動した場合でも耐久性が向上しやすくなる。尚、トップゲート型のTFTの場合、例えばチャネル層上にゲート絶縁膜を形成した構造となる。
 保護膜又は絶縁膜は、例えばCVDにより形成することができるが、その際に高温度によるプロセスになる場合がある。また、保護膜又は絶縁膜は、成膜直後は不純物ガスを含有していることが多く、加熱処理(アニール処理)を行うことが好ましい。加熱処理によりそれらの不純物ガスを取り除くことにより安定した保護膜又は絶縁膜となり、耐久性の高いTFT素子を形成しやすくなる。
 本発明のスパッタリングターゲットを用いて成膜された酸化物半導体薄膜を用いることにより、CVDプロセスにおける温度の影響、及びその後の加熱処理による影響を受けにくくなるため、保護膜又は絶縁膜を形成した場合であっても、TFT特性の安定性を向上させることができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
実施例1~5
[酸化物焼結体の製造]
 表1に示す割合となるようにランタノイド系酸化物粉末、酸化インジウム粉末、酸化アルミニウム粉末及び酸化ガリウム粉末を秤量し、ポリエチレン製のポットに入れて、乾式ボールミルにより72時間混合粉砕し、混合粉末を作製した。
 この混合粉末を金型に入れ、500kg/cmの圧力でプレス成型体とした。この成型体を2000kg/cmの圧力でCIPにより緻密化を行った。次に、この成型体を常圧焼成炉に設置して、大気雰囲気下で、350℃で3時間保持した後に、50℃/時間にて昇温し、1450℃にて、20時間焼結し、その後、放置して冷却して酸化物焼結体を得た。
(酸化物焼結体の特性評価)
(1)XRDの測定
 得られた酸化物焼結体について、X線回折測定装置Smartlabにより、以下の条件で、酸化物焼結体のX線回折(XRD)を測定した。得られたXRDチャートを粉末X線回折パターン総合回析ソフトウェアJADE6(株式会社リガク)により分析し、酸化物焼結体中の結晶相を求めた。結果を表1に示す。
・装置:Smartlab(株式会社リガク製)
・X線:Cu-Kα線(波長1.5418Å、グラファイトモノクロメータにて単色化)
・2θ-θ反射法、連続スキャン(2.0°/分)
・サンプリング間隔:0.02°
・スリットDS(発散スリット)、SS(散乱スリット)、RS(受光スリット):1.0mm
 実施例1~7で得た酸化物焼結体のXRDチャートをそれぞれ図3~7に示す。
 図3~7から、各実施例で得た酸化物焼結体が表1に示したガーネット相、又はガーネット相及びビックスバイト相を有することがわかった。
(2)得られた酸化物焼結体についてInの存在比率(wt%)は、XRDチャートから、全パターンフィッティング(WPF)法によりInの存在比として求めた。結果を表1に示す。
(3)得られた酸化物焼結体について、アルキメデス法で焼結密度(g/cm)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、及び実施例4のXRDチャートは、JCPDSカードには存在しないピークであり、新規化合物と考えられ、原子組成比及びXRD類似のパターンとの比較や得られたXRDパターンの構造解析より、それぞれ、SmInGa12、及びSmInAL1.5Ga1.512と同定した。
[スパッタリングターゲットの製造]
実施例6~8
 下記表2に示す割合で原料酸化物を混合した他は実施例1~5と同様にして酸化物焼結体を製造し、評価した。
 実施例6~8で得た酸化物焼結体のXRDチャートをそれぞれ図8~10に示す。
 さらに、得られた酸化物焼結体について、バルク抵抗(mΩ・cm)を、抵抗率計ロレスタ(三菱化学株式会社製、ロレスタAX MCP-T370)を使用して、四探針法(JISR1637)に基づき測定した。結果を表2に示す。
 実施例6~8で得られた酸化物焼結体の表面を平面研削盤で♯40、♯200、♯400、♯1000の順に研削し、側辺をダイヤモンドカッターで切断し、バッキングプレートに金属インジウムを用いて貼り合わせ、直径4インチのスパッタリングターゲットを作製した。
(スパッタリングターゲットの特性評価)
(1)得られたターゲットについて、反り(mm)を下記方法により測定した。結果を表2に示す。
 反りは、ストレートエッジをバッキングプレート裏面に当て、隙間ゲージにて隙間を計測した。
(2)得られたターゲットについて、ボンディング率(%)を下記方法により測定した。
 ボンディング率は、超音波探傷機によりボンディングされていないボイド部分を計測し、ターゲット面積基準にボンディングされている部分の比率を計測した。
結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[酸化物薄膜の製造]
実施例9
 以下の工程で図11に示す構造を有する薄膜トランジスタを製造した。
(1)成膜工程
 実施例8で製造したスパッタリングターゲットを用いて、スパッタリングによって、熱酸化膜(ゲート絶縁膜30)付きのシリコンウエハー(ゲート電極20)上に、メタルマスクを介して50nmの薄膜(酸化物半導体層40)を形成した。スパッタガスとして、高純度アルゴン及び高純度酸素の混合ガス(不純物濃度:0.01体積%)を用い、下記成膜条件でスパッタリングを行った。
 雰囲気ガス:Ar+O
 成膜時の酸素分圧:20%
 成膜前の背圧:5.0×10-4Pa
 成膜時のスパッタ圧:0.3Pa
 成膜時の基板温度:室温
 尚、スパッタリング中に異常放電は観察されなかった。
(2)加熱工程
 得られた積層体を大気中にて、昇温速度10℃/分で昇温し、温度350℃にて120分間保持して加熱処理した。
(3)保護絶縁膜の形成
 加熱処理後の半導体薄膜の上に、基板温度350℃で化学蒸着法(CVD)により、SiO膜(保護絶縁膜;層間絶縁膜70、チャネル部層間絶縁膜70a(ただし、この時点ではコンタクトホールはなく連続した膜である))を形成し、大気中にて、350℃で60分間加熱処理を行った。
(4)ソース・ドレイン電極の形成
 加熱処理後のSiO膜の上に、コンタクトホールを形成し、メタルマスクを用いてソース・ドレイン電極50,60としてモリブデン金属をスパッタ成膜で付けた後、各種熱処理を行って、薄膜トランジスタ(TFT)を完成し、下記のTFTの特性を評価した。
<TFTの特性評価>
 得られたTFTの下記特性について評価を行った。
・飽和移動度は、ドレイン電圧に5V印加した場合の伝達特性から求めた。具体的には、伝達特性Id-Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、線形領域の式により飽和移動度を導いた。尚、Gmは∂(Id)/∂(Vg)によって表され、Vgは-15~25Vまで印加し、その範囲での最大移動度を飽和移動度と定義した。本発明において特に断らない限り、飽和移動度はこの方法で評価した。上記Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
 得られたTFTの飽和移動度は、41.6cm/(V・sec)であった。
・閾値電圧(Vth)は、伝達特性のグラフよりId=10-9AでのVgと定義した。
 得られたTFTの閾値電圧は、-0.2Vであった。
・on-off比は、Vg=-10VのIdの値をOff電流値とし、Vg=20VのIdの値をOn電流値として比[On/Off]を決めた。
 得られたTFTのOn/Off比は、>10であり、Off電流値は<10-12Aであった。
実施例10~12
[酸化物焼結体の製造]
 表3に示す割合となるように酸化ネオジム粉末、酸化インジウム粉末及びガリウム粉末を用いて、実施例1~5の方法と同様に操作して、酸化物焼結体を得た。評価も実施例1~5と同様に実施し、結果を表3に示した。実施例10のXRDチャートは、JCPDSカードには存在しないピークであり、新規化合物と考えられ、原子組成比及びXRD類似のパターンとの比較や得られたXRDパターンの構造解析より、NdInGa12と同定した。
Figure JPOXMLDOC01-appb-T000003
 本発明の酸化物焼結体はスパッタリングターゲットに利用でき、液晶ディスプレイや有機ELディスプレイ等の表示装置等に用いられる薄膜トランジスタ(TFT)の酸化物半導体薄膜等の製造に有用である。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (7)

  1.  一般式(I):
       LnInGa3-XAl12     (I)
    (式中、
     Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
     Xは、0≦X<3である。)
    で表されるガーネット化合物。
  2.  Lnが、Nd及びSmのいずれか一方又は両方を含む、請求項1に記載のガーネット化合物。
  3.  一般式(I):
       LnInGa3-XAl12     (I)
    (式中、
     Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
     Xは、0≦X<3である。)
    で表されるガーネット相を含む酸化物焼結体。
  4.  Lnが、Nd及びSmのいずれか一方又は両方を含む、請求項3に記載の酸化物焼結体。
  5.  一般式(I):
       LnInGa3-XAl12     (I)
    (式中、
     Lnは、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれた一種以上の金属元素を表す。
     Xは、0≦X<3である。)
    で表されるガーネット相、及び、Inで表されるビックスバイト相を含む酸化物焼結体。
  6.  Lnが、Nd及びSmのいずれか一方又は両方を含む、請求項5に記載の酸化物焼結体。
  7.  請求項5又は6に記載の酸化物焼結体を有するスパッタリングターゲット。
PCT/JP2017/030508 2016-08-31 2017-08-25 新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット WO2018043323A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197003871A KR102475939B1 (ko) 2016-08-31 2017-08-25 신규 가닛 화합물, 그것을 함유하는 소결체 및 스퍼터링 타깃
US16/325,170 US11447398B2 (en) 2016-08-31 2017-08-25 Garnet compound, sintered body and sputtering target containing same
JP2017562794A JP6426309B2 (ja) 2016-08-31 2017-08-25 新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット
CN201780050211.8A CN109641757B (zh) 2016-08-31 2017-08-25 石榴石型化合物、含有该化合物的烧结体以及溅射靶
US17/860,678 US11987504B2 (en) 2016-08-31 2022-07-08 Garnet compound, sintered body and sputtering target containing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016169427 2016-08-31
JP2016-169427 2016-08-31
JP2016196257 2016-10-04
JP2016-196257 2016-10-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/325,170 A-371-Of-International US11447398B2 (en) 2016-08-31 2017-08-25 Garnet compound, sintered body and sputtering target containing same
US17/860,678 Division US11987504B2 (en) 2016-08-31 2022-07-08 Garnet compound, sintered body and sputtering target containing same

Publications (1)

Publication Number Publication Date
WO2018043323A1 true WO2018043323A1 (ja) 2018-03-08

Family

ID=61300766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030508 WO2018043323A1 (ja) 2016-08-31 2017-08-25 新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット

Country Status (6)

Country Link
US (2) US11447398B2 (ja)
JP (1) JP6426309B2 (ja)
KR (1) KR102475939B1 (ja)
CN (1) CN109641757B (ja)
TW (1) TWI786060B (ja)
WO (1) WO2018043323A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210106462A (ko) 2018-12-28 2021-08-30 이데미쓰 고산 가부시키가이샤 소결체
KR20210144707A (ko) 2019-03-28 2021-11-30 이데미쓰 고산 가부시키가이샤 결정 산화물 박막, 적층체 및 박막 트랜지스터
WO2023063348A1 (ja) 2021-10-14 2023-04-20 出光興産株式会社 結晶酸化物薄膜、積層体及び薄膜トランジスタ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311756B (zh) * 2016-06-17 2022-07-22 出光兴产株式会社 氧化物烧结体以及溅射靶
WO2021215376A1 (ja) * 2020-04-23 2021-10-28 東ソー株式会社 イットリウムインゴット及びそれを用いたスパッタリングターゲット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099145A1 (ja) * 2013-12-27 2015-07-02 国立大学法人京都大学 蛍光体、及び蛍光体の製造方法
WO2015098060A1 (ja) * 2013-12-27 2015-07-02 出光興産株式会社 酸化物焼結体、その製造方法及びスパッタリングターゲット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678479A (en) * 1971-03-12 1972-07-18 North American Rockwell Conductor arrangement for propagation in magnetic bubble domain systems
US4202930A (en) * 1978-02-10 1980-05-13 Allied Chemical Corporation Lanthanum indium gallium garnets
JPH0629134B2 (ja) * 1990-02-14 1994-04-20 科学技術庁無機材質研究所長 ガドリニウムインジウムガリウムガーネット
US5691279A (en) * 1993-06-22 1997-11-25 The United States Of America As Represented By The Secretary Of The Army C-axis oriented high temperature superconductors deposited onto new compositions of garnet
US6630077B2 (en) * 2001-10-11 2003-10-07 General Electric Company Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation
JP4860368B2 (ja) 2006-06-27 2012-01-25 富士フイルム株式会社 ガーネット型化合物とその製造方法
WO2008114588A1 (ja) 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
JP5763064B2 (ja) 2010-06-02 2015-08-12 出光興産株式会社 スパッタリングターゲット
CN103459655B (zh) 2011-03-24 2016-02-03 出光兴产株式会社 烧结体及其制造方法
JP5301021B2 (ja) 2011-09-06 2013-09-25 出光興産株式会社 スパッタリングターゲット
US10544363B2 (en) 2014-09-18 2020-01-28 Nec Corporation Ceramic emitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099145A1 (ja) * 2013-12-27 2015-07-02 国立大学法人京都大学 蛍光体、及び蛍光体の製造方法
WO2015098060A1 (ja) * 2013-12-27 2015-07-02 出光興産株式会社 酸化物焼結体、その製造方法及びスパッタリングターゲット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210106462A (ko) 2018-12-28 2021-08-30 이데미쓰 고산 가부시키가이샤 소결체
KR102492876B1 (ko) 2018-12-28 2023-01-27 이데미쓰 고산 가부시키가이샤 소결체
KR20210144707A (ko) 2019-03-28 2021-11-30 이데미쓰 고산 가부시키가이샤 결정 산화물 박막, 적층체 및 박막 트랜지스터
WO2023063348A1 (ja) 2021-10-14 2023-04-20 出光興産株式会社 結晶酸化物薄膜、積層体及び薄膜トランジスタ

Also Published As

Publication number Publication date
US11447398B2 (en) 2022-09-20
TWI786060B (zh) 2022-12-11
KR20190041465A (ko) 2019-04-22
US20220340442A1 (en) 2022-10-27
US11987504B2 (en) 2024-05-21
JPWO2018043323A1 (ja) 2018-09-06
JP6426309B2 (ja) 2018-11-21
CN109641757B (zh) 2022-02-25
KR102475939B1 (ko) 2022-12-08
CN109641757A (zh) 2019-04-16
US20190177176A1 (en) 2019-06-13
TW201815681A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6426309B2 (ja) 新規ガーネット化合物、それを含有する焼結体及びスパッタリングターゲット
US8598578B2 (en) Sputtering target and thin film transistor equipped with same
US20210355033A1 (en) Oxide sintered body, sputtering target and oxide semiconductor film
KR102003077B1 (ko) 도전성 산화물 및 그 제조 방법과 산화물 반도체막
JP6885940B2 (ja) 酸化物焼結体及びスパッタリングターゲット
JP2019064858A (ja) 酸化物焼結体、スパッタリングターゲット、非晶質酸化物半導体薄膜、および薄膜トランジスタ
WO2018143005A1 (ja) 酸化物半導体膜、薄膜トランジスタ、酸化物焼結体及びスパッタリングターゲット
JP6326560B1 (ja) 酸化物焼結体及びスパッタリングターゲット
JP2017178740A (ja) 酸化物焼結体及びスパッタリングターゲット
JP2017222526A (ja) 酸化物焼結体
JP2019077594A (ja) 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017562794

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003871

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846328

Country of ref document: EP

Kind code of ref document: A1