WO2017187799A1 - 表面処理鋼材 - Google Patents

表面処理鋼材 Download PDF

Info

Publication number
WO2017187799A1
WO2017187799A1 PCT/JP2017/009035 JP2017009035W WO2017187799A1 WO 2017187799 A1 WO2017187799 A1 WO 2017187799A1 JP 2017009035 W JP2017009035 W JP 2017009035W WO 2017187799 A1 WO2017187799 A1 WO 2017187799A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
plating layer
content
steel material
coating film
Prior art date
Application number
PCT/JP2017/009035
Other languages
English (en)
French (fr)
Inventor
坂本 聡明
洋一 戸崎
野村 広正
知成 浜村
秀明 那須
Original Assignee
日本ペイント・インダストリアルコーティングス株式会社
日鉄住金鋼板株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NZ741908A priority Critical patent/NZ741908A/en
Priority to CA3005266A priority patent/CA3005266C/en
Priority to KR1020177037903A priority patent/KR101868530B1/ko
Priority to ES17789088T priority patent/ES2850627T3/es
Priority to US15/766,639 priority patent/US11136659B2/en
Priority to SG11201801742XA priority patent/SG11201801742XA/en
Application filed by 日本ペイント・インダストリアルコーティングス株式会社, 日鉄住金鋼板株式会社 filed Critical 日本ペイント・インダストリアルコーティングス株式会社
Priority to AU2017257044A priority patent/AU2017257044B2/en
Priority to MX2018009384A priority patent/MX2018009384A/es
Priority to CN201780002354.1A priority patent/CN108026648A/zh
Priority to EP17789088.6A priority patent/EP3354772B1/en
Publication of WO2017187799A1 publication Critical patent/WO2017187799A1/ja
Priority to PH12018500849A priority patent/PH12018500849A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention is a technique related to chromate-free hot-dip plated steel sheets.
  • molten Zn—Al-based plated steel materials have been widely used for applications such as building materials, materials for automobiles, and materials for home appliances.
  • high aluminum (25-75% by mass) and zinc alloy plated steel sheets represented by 55% aluminum / zinc alloy plated steel sheets, are superior in corrosion resistance compared to normal hot dip galvanized steel sheets, and demand has continued to expand. Yes.
  • improvement of corrosion resistance and the like of hot-dip Zn-Al-based plated steel materials has been achieved by adding Mg or the like to the plating layer (for example, , See Patent Document 1).
  • Patent Document 2 discloses a hot-dip plated steel material in which an aluminum / zinc alloy plating layer is plated on the surface of a steel material, and the aluminum / zinc alloy plating layer has Al, Zn as a constituent element. Si and Mg, and the Mg content is 0.1 to 10% by mass, and the aluminum / zinc alloy plating layer contains 0.2 to 15% by volume of Si—Mg phase, and the Si—Mg phase.
  • the surface of the plated steel sheet is usually subjected to a rust-proofing treatment because the surface is rusted and looks bad.
  • chromate treatment using chromate which is an excellent anticorrosive agent, has been common as rust prevention treatment.
  • hexavalent chromium contained in the chromate treatment liquid is concerned about adverse environmental effects, and its use is being restricted.
  • various coatings containing vanadium compounds such as metal vanadate have been proposed so far.
  • Patent Documents 3 and 4 disclose the use of a rust preventive pigment that is a combination of a compound that releases phosphate ions and a compound that releases vanadate ions.
  • the coating film formed using the rust preventive pigment not containing hexavalent chromium has a problem that the corrosion resistance is not sufficient for application to outdoor applications such as outdoor units.
  • Patent Documents 5 and 6 as anticorrosive pigments, an antirust paint composition containing (1) a vanadium compound, (2) a metal silicate, and (3) an anticorrosive pigment composed of a phosphate metal salt. Things are disclosed. However, these rust preventive coating compositions also have room for improvement because the corrosion resistance is not sufficient for application to outdoor use, as with the rust preventive paints disclosed in Patent Documents 1 and 2.
  • the coating film As a means for improving the corrosion resistance of the rust preventive coating composition, it is effective to increase the content of the vanadium compound which is a rust preventive pigment.
  • vanadium compounds particularly monovalent or divalent cation salts of vanadic acid, have high water solubility, the coating film tends to absorb moisture when incorporated in a large amount. As a result, there has been a problem that the moisture resistance of the coating film is lowered and the swelling is generated in the coating film. Such swelling of the coating film also causes a decrease in corrosion resistance.
  • Patent Document 7 describes the electrical conductivity of a 1% by mass aqueous solution of a calcium vanadate (c) containing a paint-forming resin (a), a crosslinking agent (b) and calcium vanadate (c). 200 to 2,000 ⁇ S / cm, and the content of calcium vanadate (c) is 50 to 150% by mass with respect to 100% by mass of the total solid content of the paint-forming resin (a) and the crosslinking agent (b).
  • a coating composition is disclosed, and a rust-proof coating composition that does not contain hexavalent chromium and has both corrosion resistance and moisture resistance has been proposed.
  • Patent Document 8 discloses at least one vanadium compound selected from the group consisting of a film-forming resin (a), a crosslinking agent (b), vanadium pentoxide and an alkaline earth metal vanadate. (C) and a rust preventive accelerator (d), wherein the vanadium compound (c) has a conductivity of 200 ⁇ S / cm to 2,000 ⁇ S / cm at a temperature of 25 ° C. in a 1 mass% aqueous solution.
  • the total content of the vanadium compound (c) is 5 with respect to a total of 100% by mass of the solid content of the coating film-forming resin (a) and the solid content of the crosslinking agent (b).
  • the rust promoter (d) is at least one compound selected from the group consisting of a water-soluble compound (d-1) and a chelate-forming compound (d-2), Rust prevention accelerator (d)
  • the total content of the water-soluble compound (d-1) is 1 to 150% by mass based on 100% by mass of the solid content of the coating film-forming resin (a) and the solid content of the crosslinking agent (b).
  • the chelate-forming compound (d-2) has a plurality of coordination sites, and these coordinations Disclosed is a coating composition in which a site is a compound coordinated to one metal ion. Furthermore, the coating composition has excellent corrosion resistance and moisture resistance over a long period of time, and shows good results in a short-term corrosion resistance test.
  • the above coating composition is proposed It is.
  • Patent Document 9 discloses a coating composition containing (A) a hydroxyl group-containing coating film-forming resin, (B) a crosslinking agent, and (C) a rust-preventing pigment mixture, Phosphoric acid, phosphorous acid, wherein C) is (1) at least one vanadium compound selected from the group consisting of vanadium pentoxide, calcium vanadate, magnesium vanadate and ammonium metavanadate, (2) at least magnesium A phosphate metal salt which is a salt of at least one acid selected from the group consisting of acid and tripolyphosphoric acid, and (3) magnesium ion-exchanged silica, and the resin (A) and the cross-linking agent (B 3) to 50% by mass of the vanadium compound (1), 1 to 50% by mass of the phosphate metal salt (2), and the magnesium A quantity from 1 to 150% by weight of Ion exchange silica (3), and the amount of rustproof pigment mixture (C) is 10 to 150% by weight, the coating composition is disclosed.
  • C is (1) at
  • Patent Document 10 is a hot-dip plated steel material obtained by plating an aluminum / zinc alloy plating layer on the surface of a steel material, and the aluminum / zinc alloy plating layer contains Al, Zn, Si and Mg as constituent elements, And Mg content is 0.1-10 mass%,
  • the aluminum / zinc alloy plating layer contains 0.2 to 15% by volume of Si—Mg phase, and the mass ratio of Mg in the Si—Mg phase to the total amount of Mg is 3% or more.
  • a hot-dip galvanized steel material is disclosed in which the plating layer further contains 0.02 to 1.0 mass% of Cr as a constituent element.
  • acid rain causes corrosion of the coated steel sheet.
  • acid rain means that acid rain-derived substances originating from sulfur dioxide (SO 2 ), nitrogen oxides (NOx), etc. dissolve in rain, snow, fog, etc., and the atmosphere is more acidic than usual. It is a phenomenon in which the environment changes or the environment becomes more acidic than usual. In addition, several hundred to several thousand kilometers may be transported across the border from when acid rain-causing substances are released until it falls as acid rain. It is expected to increase in the future. Further, the acid rain-causing substance is absorbed by the water film in an environment with condensation and moisture, so that the environment may be oxidized and corrosion may proceed.
  • an object of the present invention is to provide a surface-treated steel material having end corrosion resistance equal to or higher than that of chromate treatment without using hexavalent chromium.
  • a surface-treated steel material is a surface-treated steel material in which a coating film is formed on a surface of a steel material through an underlayer containing at least an aluminum / zinc alloy plating layer,
  • the zinc alloy plating layer contains Al, Zn, Si, Cr and Mg as constituent elements, and the Mg content is 0.1 to 10% by mass and the Cr content is 0.02 to 1.0% by mass,
  • the aluminum / zinc alloy plating layer contains 0.2 to 15% by volume of Si—Mg phase, and the mass ratio of Mg in the Si—Mg phase to the total amount of Mg is 3% or more.
  • the vanadium compound (c) is a compound in which the conductivity of a 1 mass% aqueous solution at a temperature of 25 ° C.
  • the vanadium compound (c) Is more than 50% by mass and not more than 150% by mass with respect to 100% by mass in total of the coating film-forming resin (a) and the crosslinking agent (b), and the vanadium compound (c)
  • the pH of the mass% aqueous solution is 6.5 to 11, and the content of the tertiary magnesium phosphate (d) is 100% by mass with respect to a total of 100 mass% of the coating film-forming resin (a) and the crosslinking agent (b). 3 to 150% by mass.
  • the surface-treated steel material of the present embodiment is a coating film using a coating composition as an upper layer, in which a base layer including at least an aluminum / zinc alloy plating layer (hereinafter simply referred to as “plating layer”) is formed on the surface of the steel material. Is formed.
  • the steel material include various members such as a thin steel plate, a thick steel plate, a die steel, a steel pipe, and a steel wire. That is, the shape of the steel material is not particularly limited.
  • the base layer is comprised by the plating layer and the chemical conversion treatment layer which performed the chromate free chemical conversion treatment on this plating layer. The content of the chemical conversion treatment layer is not particularly limited.
  • the plating layer is formed by a hot dipping process and includes Al, Zn, Si, Cr, and Mg as constituent elements.
  • the Mg content is 0.1 to 10% by mass.
  • the corrosion resistance of the surface of the plating layer is improved particularly by Al, and the edge creep at the cut end surface of the surface-treated steel material is particularly suppressed by the sacrificial anticorrosive action of Zn, and the corrosion resistance of the surface-treated steel material is enhanced.
  • excessive alloying between Al in the plating layer and the steel material is suppressed by Si, and an alloy layer (described later) interposed between the plating layer and the steel material is inhibited from impairing the workability of the surface-treated steel material. Is done.
  • the sacrificial anticorrosive action of the plating layer is strengthened and the corrosion resistance of the surface-treated steel material is further improved by appropriately containing Mg, which is a base metal than Zn.
  • the plating layer contains 0.2 to 15% by volume of Si—Mg phase.
  • the Si—Mg phase is a phase composed of an intermetallic compound of Si and Mg, and is dispersed in the plating layer. As the volume ratio of the Si—Mg phase in the plating layer is higher, the generation of wrinkles in the plating layer is suppressed. This is because in the process in which the hot-dip plated metal is solidified by cooling when the surface-treated steel is manufactured, the plated layer is formed, and before the hot-plated metal is completely solidified, the Si-Mg phase is in the hot-dip metal. It is considered that this Si—Mg phase precipitates and suppresses the flow of the hot dip metal.
  • the volume ratio of the Si—Mg phase is 0.2 to 15% by volume, preferably 0.2 to 10% by volume, more preferably 0.4 to 5%. % By volume.
  • the volume ratio of the Si—Mg phase in the plating layer is equal to the area ratio of the Si—Mg phase in the cut surface when the plating layer is cut in the thickness direction.
  • the Si—Mg phase on the cut surface of the plating layer can be clearly confirmed by observation with an electron microscope. Therefore, by measuring the area ratio of the Si—Mg phase on the cut surface, the volume ratio of the Si—Mg phase in the plating layer can be indirectly measured.
  • the plating layer is composed of a Si—Mg phase and other phases containing Zn and Al.
  • the phase containing Zn and Al is mainly composed of an ⁇ -Al phase (dendritic structure) and a Zn—Al—Mg eutectic phase (interdendrite structure).
  • Phase containing Zn and Al is more Mg-Zn 2 from configured phases depending on the composition of the plating layer (Mg-Zn 2 phase), and phase from the Si (Si phase), between Fe-Al metal
  • Various phases such as a phase composed of a compound (Fe—Al phase) may be included. Therefore, the volume ratio of the phase containing Zn and Al in the plating layer is 99.8 to 85% by volume, preferably 99.8 to 90% by volume, more preferably 99.6 to 95% by volume. .
  • the mass ratio of Mg in the Si—Mg phase to the total amount of Mg in the plating layer is 3% by mass or more.
  • Mg not contained in the Si—Mg phase is contained in the phase containing Zn and Al.
  • Mg is contained in the ⁇ -Al phase, in the Zn-Al-Mg eutectic phase, in the Mg-Zn 2 phase, in the Mg-containing oxide film formed on the plating surface, etc. .
  • Mg is contained in the ⁇ -Al phase
  • Mg is dissolved in the ⁇ -Al phase.
  • the mass ratio of Mg in the Si—Mg phase to the total amount of Mg in the plating layer can be calculated after the Si—Mg phase is regarded as having a stoichiometric composition of Mg 2 Si.
  • the Si—Mg phase may contain a small amount of elements such as Al, Zn, Cr, and Fe other than Si and Mg, and the composition ratio of Si and Mg in the Si—Mg phase is also stoichiometric. Although there may be some variation from the composition, it is very difficult to strictly determine the amount of Mg in the Si—Mg phase in consideration of these.
  • the mass ratio of Mg in the Si—Mg phase to the total amount of Mg in the plating layer is determined, as described above, the stoichiometric composition of the Si—Mg phase is Mg 2 Si. Is considered to have
  • the mass ratio of Mg in the Si—Mg phase to the total amount of Mg in the plating layer can be calculated by the following equation (1).
  • R A / (M ⁇ CMG / 100) ⁇ 100 (1)
  • R represents the mass ratio (mass%) of Mg in the Si—Mg phase with respect to the total amount of Mg in the plating layer.
  • A represents the Mg content (g / m 2 ) contained in the Si—Mg phase in the plating layer per unit area in plan view of the plating layer.
  • M represents the mass (g / m 2 ) of the plating layer per unit area in plan view of the plating layer.
  • CMG indicates the total Mg content (% by mass) in the plating layer.
  • A can be calculated from the following equation (2).
  • V 2 V 2 ⁇ ⁇ 2 ⁇ ⁇ (2)
  • V 2 represents the volume (m 3 / m 2 ) of the Si—Mg phase in the plating layer per unit area in plan view of the plating layer.
  • ⁇ 2 indicates the density of the Si—Mg phase, and its value is 1.94 ⁇ 10 6 (g / m 3 ).
  • represents the mass ratio of Mg in the Si—Mg phase, and its value is 0.63.
  • V 2 can be calculated from the following equation (3).
  • V 2 V 1 ⁇ R 2 /100 ... (3) V 1 was shown per plan view unit area of the plating layer, the whole volume of the plating layer (m 3 / m 2). R 2 represents the volume ratio (volume%) of the Si—Mg phase in the plating layer.
  • V 1 can be calculated from the following equation (4).
  • V 1 M / ⁇ 1 (4) ⁇ 1 indicates the density (g / m 3 ) of the entire plating layer. [rho 1 values can be calculated by the density at room temperature of the constituent elements of the plating layer is a weighted average based on the composition of the plating layer.
  • Mg in the plating layer is contained in the Si—Mg phase at a high ratio as described above. For this reason, the amount of Mg present in the surface layer of the plating layer is reduced, thereby suppressing the formation of the Mg-based oxide film on the surface layer of the plating layer. Therefore, wrinkles of the plating layer due to the Mg-based oxide film are suppressed.
  • This ratio is more preferably 5% by mass or more, further preferably 20% by mass or more, and particularly preferably 50% by mass or more.
  • the upper limit of the ratio of Mg in the Si—Mg phase to the total amount of Mg is not particularly limited, and this ratio may be 100% by mass.
  • the Mg content is preferably less than 60% by mass in any region having a diameter of 4 mm and a depth of 50 nm.
  • the Mg content in the outermost layer of the plating layer can be measured by glow discharge emission spectroscopy (GD-OES: Glow-Discharge--Optical-Emission-Spectroscopy).
  • GD-OES glow discharge emission spectroscopy
  • the oxide film of MgO alone should not be recognized in the outermost layer of the plating layer by comparing the concentration curves of multiple elements contained in the plating layer Please confirm.
  • the Mg content in the outermost layer of the plating layer decreases, wrinkles due to the Mg-based oxide film are suppressed.
  • the Mg content is more preferably less than 40% by mass, further preferably less than 20% by mass, and particularly preferably less than 10% by mass.
  • the portion where the Mg content is 60% by mass or more is preferably absent, and it is preferable that the portion where the Mg content is 40% by mass or more is not present, It is more preferable if there is no portion where the Mg content is 20% by mass or more.
  • the physical meaning of Mg content will be described.
  • the Mg content in the stoichiometric MgO oxide is about 60% by mass. That is, when the Mg content is less than 60% by mass, the stoichiometric MgO (MgO single oxide film) does not exist in the outermost layer of the plating layer, or the formation of MgO having this stoichiometric composition is not possible. It means that it is remarkably suppressed. In this embodiment, excessive oxidation of Mg in the outermost layer of the plating layer is suppressed, whereby formation of an oxide film of MgO alone is suppressed.
  • a composite oxide containing a small amount or a large amount of an oxide of an element other than Mg such as Al, Zn, Sr, etc. is formed, so that the Mg content in the surface layer of the plating layer is relatively lowered. it seems to do.
  • the area ratio of the Si—Mg phase on the surface of the plating layer is 30% or less.
  • the Si—Mg phase is likely to be formed thin and network-like on the surface of the plating layer.
  • the area ratio of this Si—Mg phase is large, the appearance of the plating layer changes.
  • the distribution surface of the plating surface of the Si—Mg phase is not uniform, uneven gloss is visually observed on the plating layer. This unevenness of gloss is an appearance defect called sagging.
  • the area ratio of the Si—Mg phase on the surface of the plating layer is 30% or less, sagging is suppressed and the appearance of the plating layer is improved.
  • the fact that there is little Si—Mg phase on the surface of the plating layer is also effective for maintaining the corrosion resistance of the plating layer over a long period of time.
  • the amount of precipitation of the Si—Mg phase in the plating layer relatively increases. Therefore, the amount of Mg inside the plating layer increases, and thereby the sacrificial anticorrosive action of Mg in the plating layer is exhibited over a long period of time, so that the high corrosion resistance of the plating layer is maintained over a long period of time. become.
  • the area ratio of the Si—Mg phase on the surface of the plating layer is preferably 20% or less, more preferably 10% or less, 5% or less is particularly preferable.
  • the Mg content in the plating layer is in the range of 0.1 to 10% by mass. If the Mg content is less than 0.1% by mass, the corrosion resistance of the plating layer is not sufficiently ensured. When this content exceeds 10 mass%, corrosion resistance will fall and it will become easy to generate
  • the Mg content is preferably 0.5% by mass or more, more preferably 1.0% by mass or more.
  • the Mg content is particularly preferably 5.0% by mass or less, and more preferably 3.0% by mass or less.
  • the Mg content is particularly preferably in the range of 1.0 to 3.0% by mass.
  • the content of Al in the plating layer is preferably in the range of 25 to 75% by mass. If this content is 25% by mass or more, the Zn content in the plating layer does not become excessive, and the corrosion resistance on the surface of the plating layer is sufficiently ensured. If this content is 75 mass% or less, the sacrificial anticorrosive effect by Zn will be fully exhibited, and the hardening of a plating layer will be suppressed and the bending property of a surface-treated steel material will become high. Furthermore, the content of Al is preferably 75% by mass or less from the viewpoint of further suppressing wrinkles of the plating layer by preventing the fluidity of the hot-dip plated metal from becoming excessively low during the production of the plated steel material.
  • the Al content is particularly preferably 45% by mass or more.
  • the Al content is particularly preferably 65% by mass or less. It is particularly preferable if the Al content is in the range of 45 to 65% by mass.
  • the Si content in the plating layer is preferably in the range of 0.5 to 10% by mass with respect to the Al content.
  • the Si content is particularly preferably 1.0% by mass or more.
  • the Si content is particularly preferably 5.0% by mass or less.
  • the Si content is particularly preferably in the range of 1.0 to 5.0% by mass.
  • the mass ratio of Si: Mg in the plating layer is preferably in the range of 100: 50 to 100: 300. In this case, the formation of the Si—Mg layer in the plating layer is particularly accelerated, and the generation of wrinkles in the plating layer is further suppressed.
  • the mass ratio of Si: Mg is preferably 100: 70 to 100: 250, more preferably 100: 100 to 100: 200.
  • the plating layer contains Cr as a constituent element.
  • the growth of the Si—Mg phase in the plating layer is promoted by Cr, the volume ratio of the Si—Mg phase in the plating layer is increased, and the amount of Mg in the Si—Mg phase with respect to the total amount of Mg in the plating layer is increased.
  • the ratio is high. Thereby, wrinkles of the plating layer are further suppressed.
  • the Cr content in the plating layer is in the range of 0.02 to 1.0 mass%. If the content of Cr in the plating layer is less than 0.02%, it is difficult to sufficiently secure the corrosion resistance of the plating layer and it is difficult to sufficiently suppress wrinkles and sagging of the plating layer.
  • the Cr content in the plating layer exceeds 1.0% by mass, not only the above-mentioned action is saturated, but also dross is likely to occur in the hot dipping bath during the production of the plated steel material, and the coating smoothness after coating is improved. descend.
  • the Cr content is preferably 0.05% by mass or more.
  • the Cr content is preferably 0.5% by mass or less.
  • the Cr content is particularly preferably in the range of 0.07 to 0.2% by mass.
  • the content of Cr in the outermost layer having a depth of 50 nm in the plating layer is preferably 100 to 500 ppm by mass. In this case, the corrosion resistance of the plating layer is further improved. This is presumably because, when Cr is present in the outermost layer, a passive film is formed on the plating layer, which suppresses anodic dissolution of the plating layer.
  • the Cr content is preferably 150 to 450 ppm by mass, more preferably 200 to 400 ppm by mass.
  • an alloy layer containing Al and Cr is interposed between the plating layer and the steel material.
  • the alloy layer is regarded as a layer different from the plating layer.
  • the alloy layer may contain various metal elements such as Mn, Fe, Co, Ni, Cu, Zn, and Sn in addition to Al and Cr as constituent elements.
  • the Cr in the alloy layer promotes the growth of the Si—Mg phase in the plating layer, the volume ratio of the Si—Mg phase in the plating layer increases, and the Mg in the plating layer increases. The ratio of Mg in the Si—Mg phase with respect to the total amount is increased. Thereby, wrinkles and sagging of the plating layer are further suppressed.
  • the ratio of the Cr content (mass ratio) in the alloy layer to the Cr content (mass ratio) in the plating layer is preferably in the range of 2-50.
  • the growth of the Si—Mg phase is promoted in the vicinity of the alloy layer in the plating layer, so that the area ratio of the Si—Mg phase on the surface of the plating layer is reduced, and thus sagging is further suppressed.
  • the corrosion resistance of the plating layer is maintained for a longer period.
  • the ratio of the Cr content in the alloy layer to the Cr content in the plating layer is preferably 3 to 40, more preferably 4 to 25.
  • the amount of Cr in the alloy layer can be derived by measuring the cross section of the plating layer using an energy dispersive X-ray analyzer (EDS).
  • EDS energy dispersive X-ray analyzer
  • the thickness of the alloy layer is preferably in the range of 0.05 to 5 ⁇ m. If this thickness is 0.05 ⁇ m or more, the above-described action by the alloy layer is effectively exhibited. When the thickness is 5 ⁇ m or less, the workability of the surface-treated steel material is hardly impaired by the alloy layer.
  • the corrosion resistance after bending deformation of the plating layer is also improved.
  • the reason is considered as follows.
  • cracks may occur in the plating layer and the coating film on the plating layer. At that time, water and oxygen enter the plating layer through the crack, and the alloy in the plating layer is directly exposed to the corrosion factor.
  • Cr present in the plating layer, particularly in the surface layer, and Cr present in the alloy layer suppress the corrosion reaction of the plating layer, thereby suppressing the expansion of corrosion starting from cracks.
  • the content of Cr in the outermost layer having a depth of 50 nm in the plated layer is preferably 300 ppm by mass or more, particularly 200 to 400 ppm by mass. It is preferable that it is the range of these.
  • ratio of the content rate (mass ratio) of Cr in an alloy layer with respect to the content rate (mass ratio) of Cr in a plating layer is 20 or more. In particular, the range of 20 to 30 is preferable.
  • the plating layer preferably further contains Sr as a constituent element.
  • Sr as a constituent element.
  • the formation of the Si—Mg layer in the plating layer is particularly promoted by Sr.
  • the formation of Mg-based oxide film on the surface layer of the plating layer is suppressed by Sr. This is considered to be because the Sr oxide film is more preferentially formed than the Mg-based oxide film, thereby inhibiting the formation of the Mg-based oxide film. Thereby, generation
  • the Sr content in the plating layer is preferably in the range of 1 to 1000 ppm by mass.
  • the Sr content is particularly preferably 5 ppm by mass or more.
  • the Sr content is particularly preferably 500 ppm by mass or less, and more preferably 300 ppm by mass or less.
  • the Sr content is preferably in the range of 20 to 50 ppm by mass.
  • the plating layer preferably further contains Fe as a constituent element.
  • Fe contributes to the refinement of the microstructure and spangle structure of the plating layer, thereby improving the appearance and workability of the plating layer.
  • the Fe content in the plating layer is preferably in the range of 0.1 to 1.0% by mass. When the Fe content is less than 0.1% by mass, the microstructure and spangle structure of the plating layer are coarsened to deteriorate the appearance of the plating layer and the workability.
  • the Fe content is particularly preferably 0.2% by mass or more.
  • the Fe content is particularly preferably 0.5% by mass or less. It is particularly preferable if the Fe content is in the range of 0.2 to 0.5 mass%.
  • the plating layer may further contain an element selected from alkaline earth elements, Sc, Y, lanthanoid elements, Ti and B as constituent elements.
  • Alkaline earth elements Be, Ca, Ba, Ra
  • Sc Y
  • lanthanoid elements La, Ce, Pr, Nd, Pm, Sm, Eu, etc.
  • the total content of these components in the plating layer is preferably 1.0% by mass or less in terms of mass ratio.
  • the ⁇ -Al phase (dendritic structure) of the plating layer is refined, so that the spangle is refined, thereby improving the appearance of the plated layer by the spangle. Further, the generation of wrinkles in the plating layer is further suppressed by at least one of Ti and B. This is because the Si-Mg phase is also refined by the action of Ti and B, and this refined Si-Mg phase effectively flows the hot-dip metal in the process where the hot-dip metal is solidified to form a plating layer. It is thought that it is to suppress.
  • the refinement of the plating structure reduces the concentration of stress in the plating layer during bending, thereby suppressing the occurrence of large cracks and the like, and further improving the bending workability of the plating layer.
  • the total content of Ti and / or B in the hot dipping bath 2 is preferably in the range of 0.0005 to 0.1% by mass.
  • the total content of Ti and / or B is particularly preferably 0.001% by mass or more.
  • the total content of Ti and / or B is particularly preferably 0.05% by mass or less. It is particularly preferable if the total content of Ti and / or B is in the range of 0.001 to 0.05 mass%.
  • Zn occupies the remainder excluding constituent elements other than Zn among the constituent elements of the plating layer.
  • the plating layer does not contain an element other than the above as a constituent element.
  • the plating layer contains only Al, Zn, Si, Mg, Cr, Sr and Fe as constituent elements, or these elements, alkaline earth elements, Sc, Y, lanthanoid elements, Ti and B It is preferable to contain only an element selected from as a constituent element.
  • the plating layer may contain inevitable impurities such as Pb, Cd, Cu, and Mn.
  • the content of the inevitable impurities is preferably as small as possible, and the total content of the inevitable impurities is particularly preferably 1% by mass or less with respect to the plating layer.
  • Platinum layer manufacturing method implements by immersing steel materials in the hot dipping bath which has a composition corresponding to the composition of the constituent element of a plating layer. Although an alloy layer is formed between the steel material and the plating layer by the hot dipping process, the variation in the composition is negligibly small.
  • a hot dipping bath containing 1-1000 mass ppm Sr, 0.1-1.0 mass% Fe, and Zn is prepared.
  • the mass ratio of Si: Mg in the hot dipping bath is preferably in the range of 100: 50 to 100: 300.
  • Al is 25 to 75% by mass
  • Cr is 0.02 to 1.0% by mass
  • Si is 0.5 to 10% by mass with respect to Al
  • Mg is 0.1 to 0% by mass. 0.5% by mass, Fe 0.1 to 0.6% by mass, Sr 1 to 500 ppm by mass, or a component selected from alkaline earth elements, lanthanoid elements, Ti and B
  • a hot dip plating bath with the balance being Zn can be prepared.
  • Wrinkles are less likely to occur in the plating layer formed by the hot dipping process.
  • Mg tends to concentrate on the surface layer of the hot-plated metal, and an Mg-based oxide film is formed.
  • the plating layer was likely to wrinkle due to the Mg-based oxide film.
  • the concentration of Mg in the surface layer of the hot dipping metal adhering to the steel material is suppressed, and even if the hot dipping metal flows, the plating layer Wrinkles are less likely to occur on the surface. Further, the fluidity inside the hot-dip plated metal is reduced, and the flow of the hot-plated metal itself is suppressed, so that the wrinkles are less likely to occur.
  • the ⁇ -Al phase first precipitates as primary crystals and grows in a dendritic form.
  • the Mg and Si concentrations in the remaining hot-dipped metal that is, in the components that are not yet solidified in the hot-dipped metal
  • Si—Mg phase Si-containing phase
  • This Si—Mg phase is a phase composed of an alloy of Mg and Si as described above.
  • This Si—Mg phase is promoted by Cr, Fe and Sr.
  • Mg in the hot-dipped metal By incorporating Mg in the hot-dipped metal into the Si—Mg phase, the movement of Mg to the surface layer of the hot-dipped metal is inhibited, and the concentration of Mg in the surface layer of the hot-dipped metal is suppressed.
  • Sr in the hot dipped metal also contributes to suppression of Mg concentration. This is because, in hot-dip plated metal, Sr is an element that is easily oxidized like Mg, so Sr forms an oxide film on the plating surface competitively with Mg, and as a result, formation of an Mg-based oxide film is suppressed. This is probably because of this.
  • the Si—Mg phase solidifies and grows in the remaining hot dip metal other than the ⁇ -Al phase which is the primary crystal, so that the hot dip metal becomes a solid-liquid mixed phase. As a result, the generation of wrinkles on the surface of the plating layer is suppressed.
  • Fe is important in controlling the microstructure and spangle of the plating layer. The reason why Fe affects the structure of the plating layer is not necessarily clear at the present time, but Fe is alloyed with Si in the hot-dip metal, and this alloy becomes a solidification nucleus during solidification of the hot-dip metal. Conceivable.
  • Sr is a base element like Mg
  • the sacrificial anticorrosive action of the plating layer is further strengthened by Sr, and the corrosion resistance of the surface-treated steel material is further improved.
  • Sr also exerts an action of suppressing the acicular formation of the Si phase and Si—Mg phase precipitates. For this reason, the Si phase and the Si—Mg phase are spheroidized, and the occurrence of cracks in the plating layer is suppressed.
  • an alloy layer containing a part of Al in the hot dip metal is also formed between the plating layer and the steel material.
  • an Fe—Al-based alloy layer mainly composed of Al in the plating bath and Fe in the steel material is formed.
  • pre-plating is applied to the steel material, an alloy layer containing Al in the plating bath and part or all of the constituent elements of the pre-plating, or further containing Fe in the steel material is formed.
  • the alloy layer further contains Cr as a constituent element together with Al.
  • the alloy layer is made of Si, Mn, Fe, Co, Ni, Cu, Zn, Sn, etc. as constituent elements depending on the composition of the plating bath, the presence or absence of pre-plating, the composition of the steel material 1, and the like. Various metal elements can be contained.
  • the alloy layer a part of Cr in the hot dipped metal is contained at a higher concentration than in the plated layer.
  • the growth of the Si—Mg phase in the plating layer is promoted by the Cr in the alloy layer, the volume ratio of the Si—Mg phase in the plating layer is increased, and the plating layer
  • the ratio of Mg in the Si—Mg phase to the total amount of Mg becomes higher. Since the effect has been described above, the description will not be repeated.
  • the thickness of the alloy layer is preferably in the range of 0.05 to 5 ⁇ m. When the thickness of the alloy layer is within the above range, the corrosion resistance of the surface-treated steel material is sufficiently improved and the workability is also sufficiently improved.
  • the Cr concentration is maintained within a certain range near the surface, and accordingly, the corrosion resistance of the plating layer is further improved.
  • the reason for this is not clear, but it is presumed that a composite oxide film is formed near the surface of the plating layer by combining Cr with oxygen.
  • the content of Cr in the outermost layer having a depth of 50 nm in the plating layer is preferably 100 to 500 ppm by mass.
  • the corrosion resistance after bending deformation of the plating layer is also improved.
  • the reason is considered as follows. When subjected to severe bending deformation, cracks may occur in the plating layer and the coating film on the plating layer. At that time, water and oxygen enter the plating layer through the crack, and the alloy in the plating layer is directly exposed to the corrosion factor.
  • Cr present in the plating layer, particularly in the surface layer, and Cr present in the alloy layer suppress the corrosion reaction of the plating layer, thereby suppressing the expansion of corrosion starting from cracks.
  • the hot-dip plated metal treated in the preferred embodiment is a multi-component molten metal containing elements of seven or more components, and its solidification process is extremely complicated and difficult to predict theoretically.
  • the hot dipping bath contains Ca in particular, dross generation in the hot dipping bath is remarkably suppressed.
  • the hot dipping bath contains Mg, it is inevitable that dross is generated to some extent even if the Mg content is 10% by mass or less, and in order to ensure a good appearance of the surface-treated steel material, plating is required.
  • the hot dipping bath further contains Ca, generation of dross due to Mg is remarkably suppressed. This further suppresses the appearance of the surface-treated steel material from being deteriorated by dross, and reduces the effort required to remove the dross from the hot dipping bath.
  • the Ca content in the hot dipping bath is preferably in the range of 100 to 5000 ppm by mass.
  • production of the dross in a hot dipping bath is effectively suppressed because this content is 100 mass ppm or more. If the Ca content is excessive, dross due to this Ca may occur, but if the Ca content is 5000 mass ppm or less, dross due to Ca is suppressed. This content is preferably in the range of 200 to 1000 ppm by mass.
  • the steepness is a value defined by (height of the ridge ( ⁇ m)) ⁇ (width of the bottom of the ridge ( ⁇ m)).
  • the bottom surface of the ridge is a portion where a virtual plane including a flat surface around the ridge and the ridge intersect.
  • the height of the ridge is the height from the bottom of the ridge to the tip of the ridge.
  • the adjustment of the degree of Mg concentration, the state of the Si-Mg phase, the thickness of the alloy layer, and the steepness of the surface of the plated layer is performed by hot-dip plating using a hot-dip plating bath having the above composition on the steel material. It can be achieved by applying.
  • the steel material on which a pre-plated layer containing at least one component selected from Cr, Mn, Fe, Co, Ni, Cu, Zn, and Sn is formed is melted to form a plated layer.
  • Plating treatment may be performed.
  • a pre-plating process is performed on the steel material before performing the said hot dipping process, and a pre-plating layer is formed on the surface of this steel material. This pre-plated layer improves the wettability between the steel material and the hot-dip plated metal during the hot-dipping process, and improves the adhesion between the steel material and the plated layer.
  • the pre-plating layer depends on the type of metal constituting the pre-plating layer, but also contributes to further improvement of the surface appearance and corrosion resistance of the plating layer.
  • a pre-plated layer containing Cr when a pre-plated layer containing Cr is formed, the formation of an alloy layer containing Cr is promoted between the steel material and the plated layer, and the corrosion resistance of the surface-treated steel material is further improved.
  • a pre-plated layer containing Fe or Ni is formed, the wettability between the steel material and the hot-dip plated metal is improved, the adhesion of the plated layer is greatly improved, and the precipitation of the Si-Mg phase is further promoted, The surface appearance of the plating layer is further improved.
  • the acceleration of precipitation of the Si—Mg phase is considered to occur due to the reaction between the pre-plated layer and the hot-dip plated metal.
  • the adhesion amount of the pre-plated layer is not particularly limited, but the adhesion amount on one side of the steel material is preferably in the range of 0.1 to 3 g / m 2 . If this adhesion amount is less than 0.1 g / m 2 , it is difficult to cover the steel surface with the pre-plating layer, and the improvement effect by the pre-plating is not sufficiently exhibited. Moreover, when this adhesion amount exceeds 3 g / m ⁇ 2 >, not only the improvement effect is saturated but also the manufacturing cost becomes high.
  • FIG. 1 is a schematic view showing an example of a hot dipping apparatus.
  • the steel material 1 to be treated is a member made of steel such as carbon steel, alloy steel, stainless steel, nickel chrome steel, nickel chrome molybdenum steel, chrome steel, chrome molybdenum steel, manganese steel.
  • Examples of the steel material 1 include various members such as a thin steel plate, a thick steel plate, a die steel, a steel pipe, and a steel wire. That is, the shape of the steel material 1 is not particularly limited.
  • the steel material 1 may be subjected to a flux treatment before the hot dipping treatment.
  • a flux treatment By this flux treatment, the wettability and adhesion of the steel material 1 to the hot dipping bath 2 can be improved.
  • the steel material 1 may be subjected to a heat annealing / reduction treatment before being immersed in the hot dipping bath 2, or this treatment may be omitted. As described above, the steel material 1 may be pre-plated before the hot dipping process.
  • the transport device includes a feeder 3, a winder 12, and a plurality of transport rolls 15.
  • the feeder 3 holds the coil 13 (first coil 13) of the long steel plate 1a.
  • the first coil 13 is unwound by the feeding machine 3, and the steel plate 1 a is conveyed to the winder 12 while being supported by the conveyance roll 15. Further, the winder 12 winds the steel plate 1a, and the winder 12 holds the coil 12 (second coil 12) of the steel plate 1a.
  • the heating furnace 4 heats the steel plate 1a.
  • the heating furnace 4 is constituted by a non-oxidizing furnace or the like.
  • the annealing / cooling unit 5 heat-anneales the steel sheet 1a and subsequently cools it.
  • the annealing / cooling section 5 is connected to the heating furnace 4, and an annealing furnace is provided on the upstream side, and a cooling zone (cooler) is provided on the downstream side.
  • the annealing / cooling section 5 is maintained in a reducing atmosphere.
  • the snout 6 is a cylindrical member in which the steel plate 1 a is conveyed. One end of the snout 6 is connected to the annealing / cooling unit 5 and the other end is disposed in the hot dipping bath 2 in the pot 7. The inside of the snout 6 is maintained in a reducing atmosphere as in the annealing / cooling section 5.
  • the pot 7 is a container for storing the hot dipping bath 2, and a sink roll 8 is disposed therein.
  • the injection nozzle 9 injects gas toward the steel plate 1a.
  • the injection nozzle 9 is disposed above the pot 7.
  • the injection nozzle 9 is disposed at a position where gas can be injected toward both surfaces of the steel plate 1 a pulled up from the pot 7.
  • the cooling device 10 cools the hot dip plated metal adhering to the steel plate.
  • an air cooler, a mist cooler, or the like is provided, and the steel plate 1 a is cooled by the cooling device 10.
  • the temper rolling / shape correcting device 11 performs temper rolling and shape correction of the steel sheet 1a on which the plating layer is formed.
  • the temper rolling / shape correcting apparatus 11 includes a skin pass mill for performing temper rolling on the steel plate 1a, a tension leveler for performing shape correction on the steel plate 1a after temper rolling, and the like.
  • the steel plate 1a is first unwound from the paying machine 3 and continuously drawn. After this steel plate 1a is heated in the heating furnace 4, it is transferred to the annealing / cooling section 5 in a reducing atmosphere and simultaneously annealed in the annealing furnace, and at the same time, removing rolling oil or the like adhering to the surface of the steel plate 1a. Then, after the surface is cleaned, such as reduction and removal of the oxide film, it is cooled in a cooling zone. Next, the steel plate 1 a passes through the snout 6 and further enters the pot 7 and is immersed in the hot dipping bath 2 in the pot 7. The steel plate 1a is supported by the sink roll 8 in the pot 7 so that its conveying direction is changed upward, and is drawn out from the hot dipping bath 2. Thereby, the hot dip metal adheres to the steel plate 1a.
  • the amount of adhesion of the hot dipped metal adhering to the steel plate 1a is adjusted by injecting gas from the injection nozzle 9 onto both surfaces of the steel plate 1a.
  • a gas wiping method Such a method for adjusting the amount of adhesion by gas injection is called a gas wiping method.
  • the adhesion amount of the hot dip metal is preferably adjusted in the range of 40 to 200 g / m 2 on both sides of the steel plate 1a.
  • Examples of the type of gas (wiping gas) injected into the steel sheet 1a in the gas wiping method include air, nitrogen, argon, helium, and water vapor. These wiping gases may be preheated and then injected to the steel sheet 1a.
  • the hot dipping bath 2 having a specific composition by using the hot dipping bath 2 having a specific composition, the surface oxidation concentration of Mg in the hot dipped metal (oxidation of Mg on the surface of the hot dipped metal and an increase in the Mg concentration) is essentially suppressed. The Therefore, even if oxygen is included in the wiping gas or oxygen is included in the air flow accompanying the injection of the wiping gas, the plating adhesion amount (deposited on the steel plate 1a does not deteriorate the effect of the invention). It is possible to adjust the amount of hot-dip plated metal).
  • the method for adjusting the plating adhesion amount is of course not limited to the gas wiping method, and various adhesion amount control methods can be applied.
  • Examples of the adhesion amount control method other than the gas wiping method include a roll drawing method in which the steel plate 1a is passed between a pair of rolls arranged immediately above the bath surface of the hot dipping bath 2, and a steel plate 1a drawn from the hot dipping bath 2.
  • a method of adjusting the plating adhesion amount by using natural gravity drop without applying external force Two or more plating adhesion amount adjusting methods may be combined.
  • the steel plate 1a is transported further upward than the position where the injection nozzle 9 is disposed, and then supported by two transport rolls 15 so as to be folded downward. That is, the steel plate 1a is conveyed along an inverted U-shaped path. In this inverted U-shaped path, the steel plate 1a is cooled by the cooling device 10 by air cooling, mist cooling, or the like. Thereby, the hot dip plating metal adhering on the surface of the steel plate 1a solidifies, and a plating layer is formed.
  • the cooling device 10 In order to complete the solidification of the hot dipped metal by being cooled by the cooling device 10, until the surface temperature of the hot dipped metal (or plating layer) reaches 300 ° C. or less by the cooling device 10 on the steel plate 1 a. Preferably it is cooled.
  • the surface temperature of the hot dip metal is measured with a radiation thermometer, for example.
  • the cooling rate from when the steel plate 1a is drawn from the plating bath 2 to when the surface of the hot-dip plated metal on the steel plate 1a is cooled to 300 ° C. is 5 to 5.
  • the range is preferably 100 ° C./sec.
  • the cooling device 10 has a temperature control function for adjusting the temperature of the steel plate 1a along the conveying direction and the plate width direction.
  • the cooling device 10 may be divided into a plurality along the conveying direction of the steel plate 1a.
  • a primary cooling device 101 that cools the steel plate 1 a in a path that is transported further upward than the arrangement position of the injection nozzle 9, and a secondary cooling device 102 that cools the steel plate 1 a on the downstream side of the primary cooling device 101. And are provided.
  • the primary cooling device 101 and the secondary cooling device 102 may be further divided into a plurality.
  • the primary cooling device 101 cools the steel plate 1a until the surface of the hot-dip metal reaches 300 ° C. or lower, and the secondary cooling device 102 further heats the steel plate 1a to the temper rolling / shape correcting device 11. It can cool so that the temperature at the time of being introduced into may become 100 ° C or less.
  • the cooling rate of the surface of the hot dipped metal is 50 ° C./sec or lower while the surface temperature of the hot dipped metal on the steel plate 1a is 500 ° C. or higher.
  • the precipitation of the Si—Mg phase on the surface of the plating layer is particularly suppressed, so that the occurrence of sagging is suppressed.
  • the reason why the cooling rate in this temperature range affects the precipitation behavior of the Si-Mg phase is not necessarily clear at this time, but if the cooling rate in this temperature range is high, the temperature gradient in the thickness direction of the hot-dip plated metal increases.
  • the precipitation of the Mg—Si layer is promoted preferentially on the surface of the hot-dip plated metal at a lower temperature, and as a result, the precipitation amount of the Si—Mg phase on the plating outermost surface is increased. It is done.
  • the cooling rate in this temperature range is more preferably 40 ° C./sec or less, and particularly preferably 35 ° C./sec or less.
  • the steel sheet 1a after cooling is subjected to temper rolling by the temper rolling / shape correcting device 11 and then subjected to shape correction.
  • the rolling reduction by temper rolling is preferably in the range of 0.3 to 3%. It is preferable that the elongation rate of the steel sheet 1a by shape correction is 3% or less.
  • the steel plate 1a is wound up by the winder 12, and the coil 14 of the steel plate 1a is held by the winder 12.
  • the temperature of the hot dipping bath 2 in the pot 7 is a temperature not higher than the solidification start temperature of the hot dipping bath 2 and 40 ° C. higher than the start solidification temperature. Is preferred. More preferably, the temperature of the hot dipping bath 2 in the pot 7 is not higher than the solidification start temperature of the hot dipping bath 2 and not more than 25 ° C. higher than the start of solidification temperature.
  • the upper limit of the temperature of the hot dipping bath 2 is limited in this way, the time required for the hot dipped metal adhering to the steel plate 1a to solidify after the steel plate 1a is drawn from the hot dipping bath 2 is shortened. .
  • the time during which the hot-dip plated metal adhering to the steel plate 1a is in a flowable state is also shortened, so that wrinkles are less likely to occur in the plated layer. If the temperature of the hot dipping bath 2 is not higher than 20 ° C. higher than the solidification start temperature of the hot dipping bath 2, the generation of wrinkles in the plating layer is remarkably suppressed.
  • the steel plate 1a When the steel plate 1a is drawn out from the hot dipping bath 2, it may be drawn into a non-oxidizing atmosphere or a low-oxidizing atmosphere, and gas is further applied to the steel plate 1a in this non-oxidizing atmosphere or low-oxidizing atmosphere. Adjustment of the adhesion amount of the hot dip metal by the wiping method may be performed.
  • the steel material 1 drawn from the hot dipping bath 2 has a transport path upstream of the hot dipping bath 2 (a transport path going upward from the hot dipping bath 2). It is preferable that the hollow member 22 is surrounded and the inside of the hollow member 22 is filled with a non-oxidizing gas such as nitrogen gas or a low oxidizing gas.
  • a non-oxidizing gas or a low oxidizing gas means a gas having a lower oxygen concentration than the atmosphere.
  • the oxygen concentration of the non-oxidizing gas or the low oxidizing gas is preferably 1000 ppm or less.
  • the atmosphere filled with the non-oxidizing gas or the low-oxidizing gas is the non-oxidizing atmosphere or the low-oxidizing atmosphere, and the oxidation reaction is suppressed in this atmosphere.
  • the injection nozzle 9 is disposed inside the hollow member 22.
  • the hollow member 22 is provided so as to surround the conveyance path of the steel material 1 from the inside of the hot dipping bath 2 (upper part of the hot dipping bath 2) to the upper side of the hot dipping bath 2.
  • the gas injected from the injection nozzle 9 is also preferably a non-oxidizing gas such as nitrogen gas or a low oxidizing gas.
  • a non-oxidizing gas such as nitrogen gas or a low oxidizing gas.
  • an overaging treatment is further applied to the steel plate 1a after the hot dipping treatment.
  • the workability of the surface-treated steel material is further improved.
  • the overaging treatment is performed by holding the steel sheet 1a within a certain temperature range for a certain time.
  • FIG. 3 shows an apparatus used for the overaging treatment, among which FIG. 3 (a) shows a heating apparatus and FIG. 3 (b) shows a heat retaining container 20.
  • a heating apparatus is provided with the conveying apparatus with which the steel plate 1a after a hot dipping process is conveyed continuously. Similar to the conveying device in the hot dipping treatment apparatus, the conveying device includes a feeding machine 16, a winder 17, and a plurality of conveying rolls 21.
  • a heating furnace 18 such as an induction heating furnace is provided in the transport path of the steel plate 1a by the transport device.
  • the heat retaining container 20 is not particularly limited as long as it can hold the coil 19 of the steel plate 1a and has heat insulation.
  • the heat retaining container 20 may be a large container (a warming chamber).
  • the coil 14 of the steel plate 1a after the hot dipping treatment is first transported from the winder 12 of the hot dipping treatment device by a crane, a carriage, or the like, and the heating device 16 is fed. Retained. In the heating device, the steel plate 1a is first unwound from the feeder 16 and continuously fed out. The steel plate 1a is heated to a temperature suitable for the overaging treatment in the heating furnace 18, and then wound up by the winder 17, and the coil 19 of the steel plate 1a is held by the winder 17.
  • the coil 19 of the steel plate 1a is transported from the winder 17 by a crane, a carriage or the like and held in the heat retaining container 20. Since the coil 19 of the steel plate 1a is held in the heat retaining container 20 for a certain period of time, the overaging treatment is performed on the steel plate 1a.
  • the plating layer formed on the surface of the steel sheet 1a according to the present embodiment contains Mg and a slight amount of Mg-based oxide film exists on the surface of the plating layer, the plating layer in the coil of the steel sheet 1a during overaging treatment. Even if they are overlapped, seizure and welding hardly occur between the plating layers. For this reason, even if the heat retention time at the time of the overaging treatment is long, or even if the heat retention temperature is high, seizure hardly occurs, and sufficient overaging treatment can be performed on the steel sheet 1a. This greatly improves the workability of the hot-dip galvanized steel sheet and improves the efficiency of the overaging treatment.
  • the temperature of the steel plate 1a after being heated by the heating device is in the range of 180 to 220 ° C., that is, the steel plate 1a is in the above range within the above range. Is preferably transferred to. It is preferable that the retention time y (hr) of the steel plate 1a in the heat insulation container satisfies the following formula (1).
  • t (° C.) is the temperature (holding temperature) of the steel plate 1a during the holding time y (hr), and is the lowest temperature when temperature fluctuation occurs in the steel plate 1a.
  • the hot dip treatment apparatus and the heating apparatus are separate apparatuses, but the hot dip treatment apparatus may include the heating furnace 21 so that the hot dip treatment apparatus may also serve as the heating apparatus.
  • the design may be changed as appropriate by adding, removing, or replacing various elements as necessary.
  • the hot dip treatment apparatus and the heating apparatus according to the present embodiment are suitable when the steel material 1 is the steel plate 1a, the design of the hot dip treatment apparatus, the heating apparatus, and the like can be variously changed according to the shape of the steel material 1 and the like. is there.
  • the pretreatment for plating is performed on the steel material 1, the pretreatment for plating can be variously changed according to the type, shape and the like of the steel material 1.
  • the coating composition of the present invention comprises a film-forming resin (a), a crosslinking agent (b), at least one vanadium compound (c) selected from the group consisting of alkaline earth metal vanadate, Containing magnesium triphosphate (d).
  • a film-forming resin a
  • b crosslinking agent
  • c vanadium compound
  • additives such as an adhesive improvement component and an extender, may be contained as needed.
  • Another paint can be applied as a top coat on the coating film.
  • the film-forming resin (a) used in the coating composition of the present invention is a thermosetting resin.
  • the thermosetting resin is not particularly limited as long as it has a functional group capable of reacting with a crosslinking agent (b) described later and has a film-forming ability.
  • an epoxy resin and a modified product thereof (acrylic) Modified epoxy resins, etc.); polyester resins and modified products thereof (urethane modified polyester resins, epoxy modified polyester resins, silicone modified polyester resins, etc.); acrylic resins and modified products thereof (silicone modified acrylic resins, etc.); urethane resins and modified products thereof (Epoxy-modified urethane resin, etc.); Phenol resin and its modified products (acrylic-modified phenolic resin, epoxy-modified phenolic resin, etc.); Phenoxy resin; Alkyd resin and its modified products (urethane-modified alkyd resin, acrylic-modified alkyd resin, etc.); Fluorine Resin; Polyphenylene ether It can be mentioned resins polyetherimide resins; resin; polyamideimide resin. These resins may be used alone or in combination of two or more.
  • the film-forming resin (a) an epoxy resin, a polyester resin or the like can be used from the viewpoint of the balance between the bending processability of the obtained coating film and the moisture resistance, corrosion resistance, and weather resistance of the obtained coating film. It is possible to use a thermosetting resin such as a modified product, and one or more selected from these can be used.
  • a thermosetting resin such as a modified product, and one or more selected from these can be used.
  • the thermosetting resin at least one selected from a hydroxyl group-containing epoxy resin, a hydroxyl group-containing polyester resin, and a modified product containing a hydroxyl group is used.
  • the epoxy resin, the polyester resin and these modified products have a hydroxyl group, various amino resins and various isocyanate compounds can be selected as the crosslinking agent (b).
  • a variety of physical properties can be imparted to the coating film by selecting a crosslinking agent (b) having desired properties from various crosslinking agents (b), which is particularly preferable.
  • the number average molecular weight (Mn) of the hydroxyl group-containing epoxy resin is preferably 1,400 to 15,000, more preferably 2,000 to 10,000. 2,000 to 4,000 is particularly preferable.
  • the hydroxyl group-containing epoxy resin has a glass transition temperature (Tg) of preferably 60 to 120 ° C., more preferably 60 to 85 ° C.
  • Tg glass transition temperature
  • the number average molecular weight (Mn) of the hydroxyl group-containing polyester resin (including the modified hydroxyl group-containing polyester resin) is preferably 1,800 to 40,000, and preferably 2,000 to 30,000. More preferred is 10,000 to 20,000.
  • the glass transition temperature (Tg) of the hydroxyl group-containing polyester resin is preferably 0 to 80 ° C., more preferably 10 to 40 ° C.
  • Mn number average molecular weight of the hydroxyl group-containing epoxy resin and / or acid group-containing polyester resin to be used
  • Mn number average molecular weight of the hydroxyl group-containing epoxy resin and / or acid group-containing polyester resin to be used
  • Mn number average molecular weight of the hydroxyl group-containing epoxy resin and / or acid group-containing polyester resin to be used
  • the crosslinking reaction with the crosslinking agent (b) described later proceeds sufficiently,
  • the moisture resistance becomes sufficient, and accordingly, the corrosion resistance can be secured, and the resulting coating composition has an appropriate viscosity and the handleability becomes good.
  • elution of the vanadium compound and tribasic magnesium phosphate contained in the coating film becomes appropriate, and the corrosion resistance under acidic environment conditions becomes favorable, which is preferable.
  • the glass transition temperature (Tg) of the hydroxyl group-containing epoxy resin and / or hydroxyl group-containing polyester resin used is within the above range, the moisture resistance of the coating film is not excessively increased, and the moisture resistance of the coating film is increased. It becomes sufficient and the corrosion resistance is also good.
  • hydroxyl group-containing epoxy resins examples include trade names “jER1004”, “jER1007”, “E1255HX30” (bisphenol A skeleton), “YX8100BH30” and the like manufactured by Mitsubishi Chemical. (Where “jER” is a registered trademark).
  • examples of the hydroxyl group-containing polyester resin include, for example, trade names “Beckolite 47-335” manufactured by DIC, trade names “Byron 220”, “Byron UR3500”, “ Byron UR5537 “,” Byron UR8300 “, etc. can be mentioned (where" Byron "is a registered trademark).
  • the number average molecular weight (Mn) is a value calculated based on the molecular weight of standard polystyrene from a chromatogram measured by gel permeation chromatography (GPC).
  • the glass transition temperature (Tg) is a value measured using a thermal analyzer (trade name “TMA100 / SSC5020” manufactured by Seiko Instruments Inc.).
  • the content of the film-forming resin (a) in the coating composition of the present invention is usually 10 to 80% by mass, preferably 20 to 70% by mass, based on the total solid content. By being 10 mass% or more, bending workability, coating workability, and coating film strength are improved. Moreover, sufficient corrosion resistance can be obtained because content of film-forming resin (a) is 80 mass% or less.
  • the coating composition of the present invention may contain a thermoplastic resin (j) as a resin other than the film-forming resin (a).
  • the thermoplastic resin (j) include chlorinated olefin resins such as chlorinated polyethylene and chlorinated polypropylene; homopolymers or copolymers containing vinyl chloride, vinyl acetate, vinylidene chloride and the like as monomer components; Resin; acetal resin; alkyd resin; chlorinated rubber resin; modified polypropylene resin (anhydride modified polypropylene resin, etc.); fluororesin (for example, vinylidene fluoride resin, vinyl fluoride resin, copolymer of fluorinated olefin and vinyl ether) , A copolymer of a fluorinated olefin and a vinyl ester) and the like.
  • the thermoplastic resin (j) only one kind may be used alone, or two or more kinds may be used in combination. By using the thermoplastic resin (j) in combination, the physical
  • the crosslinking agent (b) reacts with the thermosetting resin to form a cured coating film.
  • the crosslinking agent (b) include a blocked polyisocyanate compound (f) obtained by blocking an isocyanate group of a polyisocyanate compound with an active hydrogen-containing compound, an amino resin (g), a phenol resin, and the like. It is preferable to use at least one selected from the group consisting of an isocyanate resin (g) and an amino resin (g) having one or more methylol groups or imino groups on average in one molecule.
  • the polyisocyanate compound constituting the polyisocyanate compound and the block polyisocyanate compound (f) is not particularly limited, and conventionally known ones can be used.
  • cyclized polymer (isocyanurate type) of each diisocyanate
  • an isocyanate biuret body (biuret type) and an adduct type.
  • a polyisocyanate compound may be used individually by 1 type, and may use 2 or more types together.
  • the isocyanurate type polyisocyanate compound is one of those preferably used in the present invention.
  • polyisocyanate compound it is preferable to use an aromatic polyisocyanate compound containing one or more aromatic functional groups in the molecule.
  • aromatic polyisocyanate compound By using an aromatic polyisocyanate compound, the moisture resistance of the coating film can be improved and the coating film strength can be improved.
  • Preferred aromatic polyisocyanate compounds include 2,4- or 2,6-diisocyanatotoluene (TDI), 2,2′-, 2,4′- or 4,4′-diisocyanatodiphenylmethane ( MDI), xylene diisocyanate (XDI), naphthalene diisocyanate (NDI), and the like.
  • the isocyanate group content of the polyisocyanate compound constituting the block polyisocyanate compound (f) measured in accordance with JIS K 7301-1995 is usually 3 to 20% in the solid content of the polyisocyanate compound, preferably Is 5 to 15%.
  • the isocyanate group content is at least the lower limit of the above preferred range, the curability of the coating film is sufficient, which is preferable.
  • the isocyanate group content is not more than the upper limit of the above preferable range, the crosslinking density of the obtained coating film becomes appropriate and the corrosion resistance becomes good, which is preferable.
  • the active hydrogen-containing compound (blocking agent) used in the block polyisocyanate compound (f) is not particularly limited, and is —OH group (alcohols, phenols, etc.), ⁇ N—OH group (oximes, etc.), ⁇ N—H groups (amines, amides, imides, lactams, etc.), compounds having —CH 2 — groups (active methylene groups), and azoles can be mentioned.
  • the heat dissociation temperature of the block polyisocyanate compound (f) depends on the type of polyisocyanate compound and active hydrogen-containing compound constituting the block polyisocyanate compound (f), the presence or absence of a catalyst, and the amount thereof.
  • the dissociation temperature by heat ( A blocked polyisocyanate compound (f) having a catalyst-free state) of 120 to 180 ° C. is preferably used.
  • Examples of the blocked polyisocyanate compound (f) having a dissociation temperature of 120 to 180 ° C. include trade names “Desmodur BL3175” and “Desmotherm 2170” manufactured by Sumika Bayer Urethane (where “ “Death Module” and “DESMOTHERM” are registered trademarks).
  • a melamine resin As said amino resin (g), a melamine resin, a urea resin, etc. can be mentioned, Especially, a melamine resin is used preferably.
  • the “melamine resin” generally means a thermosetting resin synthesized from melamine and an aldehyde, and has three reactive functional groups —NX 1 X 2 in one molecule of the triazine nucleus.
  • the reactive functional group is —N— (CH 2 OR) 2 [R is an alkyl group, the same shall apply hereinafter]; the reactive functional group is —N— (CH 2 OR) (CH 2 OH) containing methylol group; reactive functional group containing —N— (CH 2 OR) (H); reactive functional group containing —N— (CH 2 OR) (CH 2 OH) and Four types of methylol / imino group types containing —N— (CH 2 OR) (H) or containing —N— (CH 2 OH) (H) can be exemplified.
  • a melamine resin having an average of one or more methylol groups or imino groups in the triazine nucleus (hereinafter referred to as melamine resin (g1)), that is, a methylol group type or an imino group type.
  • melamine resin (g1) a melamine resin having an average of one or more methylol groups or imino groups in the triazine nucleus
  • melamine resin (g1) a methylol / imino group type melamine resin or a mixture thereof.
  • the melamine resin (g1) is excellent in cross-linking reactivity with the coating film-forming resin (a) even in the absence of a catalyst, and a coating film with good moisture resistance can be obtained.
  • the melamine resin (g1) include a trade name “My Coat 715” manufactured by Nippon Cytec Industries.
  • the content of the crosslinking agent (b) in the coating composition of the present invention is preferably 10 to 80% by mass in terms of the solid content with respect to 100% by mass of the solid content of the film-forming resin (a). Preferably, it is 20 to 70% by mass.
  • the content (in terms of solid content) of the crosslinking agent (b) is 10% by mass or more with respect to 100% by mass of the solid content of the film-forming resin (a)
  • the film-forming resin (a) and The crosslinking reaction proceeds sufficiently, the moisture permeability of the coating film becomes appropriate, the moisture resistance of the coating film becomes good, and the corrosion resistance becomes good.
  • the content of the crosslinking agent (b) (in terms of solid content) is 80% by mass or less with respect to 100% by mass of the solid content of the film-forming resin (a), whereby the rust preventive pigment in the coating film Is sufficiently dissolved and corrosion resistance is improved.
  • the vanadium compound (c) which is a rust preventive pigment is a vanadate metal salt composed of at least one selected from the group consisting of alkaline earth metal vanadate and magnesium vanadate.
  • the vanadium compound (c) has a specific conductivity. Specifically, the conductivity of a 1% by mass aqueous solution thereof is 200 ⁇ S / cm to 2,000 ⁇ S / cm at a temperature of 25 ° C.
  • the vanadium compound (c) having an electric conductivity within this range exhibits appropriate solubility, it effectively prevents corrosion not only on the coated surface of the article to be coated (such as a steel plate) but also on the end surface. be able to.
  • the electrical conductivity is less than 200 ⁇ S / cm, the elution of the vanadium compound from the coating film to the article to be coated (such as a steel plate) is reduced, resulting in a decrease in corrosion resistance.
  • the electrical conductivity exceeds 2,000 ⁇ S / cm, the moisture permeability of the coating film becomes excessively high (water easily enters the coating film), and the moisture resistance of the coating film decreases, Corrosion resistance is also reduced.
  • the conductivity of a 1% by mass aqueous solution of the vanadium compound (c) is preferably 200 to 1,000 ⁇ S / cm.
  • the valence of vanadium in the vanadate metal salt is any of 3, 4, and 5.
  • Vanadic acid includes orthovanadate, and condensed vanadate such as metavanadate and pyrovanadate. is there.
  • As the alkaline earth metal vanadate calcium vanadate is preferred.
  • 1 mass% aqueous solution refers to a solution obtained by adding 1 g of a sample (for example, vanadium compound (c)) to 99 g of ion-exchanged water and stirring at room temperature for 4 hours.
  • a sample for example, vanadium compound (c)
  • the conductivity is a value obtained by measuring the conductivity of this 1% by mass aqueous solution at a temperature of 25 ° C. using an electric conductivity meter (for example, a conductivity meter “CM-30ET” manufactured by Toa DK Corporation).
  • the pH of the 1% by mass aqueous solution of the calcium vanadate is preferably 6.5 to 11.0, and more preferably 7.0 to 10.0. When the pH is within this range, the corrosion resistance of the surface-treated steel material of the present invention can be significantly increased. When the pH of a 1% by mass aqueous solution of calcium vanadate is outside the above range, corrosion of a substrate such as iron, zinc, or aluminum may be likely to occur.
  • 1% by mass aqueous solution has the same meaning as described above, and the pH is the value when the pH of the 1% by mass aqueous solution is measured using a pH meter (“F-54” manufactured by Horiba, Ltd.). Value.
  • content of the said vanadium compound (c) exceeds 50 mass% with respect to the total of 100 mass% of solid content of the film-forming resin (a) mentioned later and solid content of a crosslinking agent (b). It is 150% by mass or less, preferably 60 to 100% by mass.
  • content of the vanadium compound (c) is 50% by mass or less with respect to 100% by mass of the total solid content of the coating film-forming resin (a) and the crosslinking agent (b)
  • vanadium from the coating film to the steel material 1 is obtained.
  • the corrosion resistance decreases.
  • the content of the vanadium compound (c) exceeds 150% by mass, the moisture permeability of the coating film becomes excessively high and water easily enters the coating film, and the moisture resistance of the coating film decreases. Corrosion resistance decreases with decreasing humidity resistance.
  • the ratio of the specific vanadium compound (c), which is a rust preventive pigment, and the resin solid content composed of the film-forming resin (a) and the cross-linking agent (b) is within an appropriate range. By adjusting to, moisture resistance and corrosion resistance can be compatible at a high level.
  • the method for preparing the vanadium compound (c) used in the present invention is not particularly limited, and any method may be used.
  • the vanadium compound (c) is calcium vanadate
  • it can be obtained by mixing the calcium compound with vanadate and / or vanadium pentoxide in water and reacting them.
  • the solid obtained by the reaction (usually a white solid) may be subjected to treatments such as washing with water, dehydration, drying, and pulverization as necessary.
  • Examples of calcium compounds for preparing calcium vanadate include calcium carbonate, calcium hydroxide, calcium oxide, calcium chloride, calcium nitrate, calcium acetate, and calcium sulfate. Furthermore, calcium compounds of organic acids such as calcium formate are also preferably used. Examples of vanadate include, but are not limited to, potassium vanadate, sodium vanadate, and ammonium vanadate.
  • vanadine exhibiting a desired conductivity is obtained by adjusting the use ratio of the calcium compound and vanadate and / or vanadium pentoxide.
  • Calcium acid can be obtained.
  • two or more kinds of calcium vanadate having different electric conductivities may be mixed uniformly.
  • the vanadium compound (c) is magnesium vanadate
  • it can be obtained by mixing and reacting the magnesium compound and vanadate and / or vanadium pentoxide in water.
  • the solid obtained by the reaction (usually a white solid) may be subjected to treatments such as washing with water, dehydration, drying, and pulverization as necessary.
  • magnesium compound for preparing magnesium vanadate examples include magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium chloride, magnesium nitrate, magnesium acetate and magnesium sulfate. Furthermore, magnesium compounds of organic acids such as magnesium formate are also preferably used. Examples of vanadate include, but are not limited to, potassium vanadate, sodium vanadate, and ammonium vanadate.
  • magnesium vanadate In the case of preparing magnesium vanadate by reacting a magnesium compound with vanadate and / or vanadium pentoxide, by adjusting the use ratio of the magnesium compound to vanadate and / or vanadium pentoxide, a desired ratio can be obtained. Magnesium vanadate showing electrical conductivity can be obtained. Further, in order to adjust the electrical conductivity within the above range, two or more kinds of magnesium vanadate having different electrical conductivity may be mixed uniformly.
  • Tertiary magnesium phosphate (d) is commercially available as an octahydrate, generally composed of “Mg 3 (PO 4 ) 2 .8H 2 O”. Further, tribasic magnesium phosphate (d) has a high pH buffering ability in the acidic region. For example, as shown in FIG. 4, pH buffering ability in the acidic region can be obtained by using together with the vanadium compound (c). However, compared with the vanadium compound (c) alone, the corrosion resistance of the coating film under acidic environmental conditions can be increased by using the tertiary magnesium phosphate (d) in combination with the vanadium compound (c). The effect of improving is demonstrated.
  • FIG. 4 pH buffering ability in the acidic region can be obtained by using together with the vanadium compound (c).
  • the corrosion resistance of the coating film under acidic environmental conditions can be increased by using the tertiary magnesium phosphate (d) in combination with the vanadium compound (c). The effect of improving is demonstrated.
  • FIG. 4 pH buffering ability
  • FIG. 4 shows an aqueous solution composed of 0.7% by mass of calcium vanadate and 0.3% by mass of tribasic magnesium phosphate (d) as the vanadium compound (c), and 1 as the vanadium compound (c).
  • the pH buffering action in the acidic region of an aqueous solution of 0.0% by weight calcium vanadate is shown.
  • the experimental method of pH buffer action shown in FIG. 4 is as follows. [experimental method]: 1. Adjust the initial pH of the aqueous solution with hydrochloric acid or sodium hydroxide. 2. 1% by mass of a rust preventive pigment is added to an aqueous solution whose initial pH has been adjusted and stirred. 3. The pH is measured 24 hours after the 1% by mass aqueous solution of the rust preventive pigment prepared in the above “2.”.
  • FIG. 4 by using a rust preventive pigment whose pH for 24 hours after preparation of the aqueous solution is in the range of 6.5 to 11 indicated by a one-dot chain line, in the case of a cold rolled steel plate or a plated steel plate containing zinc or aluminum, A coating film showing high corrosion resistance is obtained. Therefore, as shown in FIG. 4, when calcium tribasic phosphate is used in combination with calcium vanadate rather than calcium vanadate alone, the buffering action in the acidic region near pH 3 is higher. It is speculated that a coated steel sheet having a coating film using a coating composition containing bismuth and tribasic magnesium phosphate has improved corrosion resistance under acidic environmental conditions.
  • the content of tertiary magnesium phosphate (d) is converted based on the mass of “Mg 3 (PO 4 ) 2 ” even when the above octahydrate is used, and the content of the film-forming resin (a) It is 1 to 150% by mass based on 100% by mass of the solid content and the solid content of the crosslinking agent (b). If it is less than 1% by mass, the elution of the tertiary magnesium phosphate (d) from the coating film to the steel material 1 is reduced. As a result, the pH buffering capacity is lowered, and the corrosion resistance under acidic environmental conditions is lowered.
  • the content of tribasic magnesium phosphate (d) exceeds 150% by mass, the moisture permeability of the coating film becomes excessively high and water easily enters the coating film, and the coating film has moisture resistance. As the moisture resistance decreases, the corrosion resistance under acidic environmental conditions also decreases.
  • tribasic magnesium phosphate (d) is used in consideration of the pH buffering ability in the acidic region.
  • the tertiary calcium phosphate which is a tertiary alkaline earth metal salt, has less elution from the coating film to the steel material 1 than the tertiary magnesium phosphate.
  • the buffering capacity of pH is insufficient, and as a result, the corrosiveness under acidic environmental conditions is reduced.
  • tertiary lithium phosphate and tertiary sodium phosphate are alkali metal phosphates
  • the moisture permeability of the coating film becomes excessively high and water easily enters the coating film, The moisture resistance of the coating film is lowered, and the corrosion resistance is lowered as the moisture resistance is lowered.
  • magnesium phosphates the pH in the aqueous solution is more alkaline than that of primary magnesium phosphate (Mg (H 2 PO 4 ) 2 .4H 2 O) and secondary magnesium phosphate (MgHPO 4 .3H 2 O).
  • tribasic magnesium phosphate has a high pH buffering action in the acidic region, the corrosion resistance under acidic environmental conditions of the steel material 1 having a coating film using a coating composition containing tertiary magnesium phosphate is obtained. improves.
  • the total content of the tertiary magnesium phosphate (d) and the vanadium compound (c) is the mass of the vanadium compound (c) and the mass of “Mg 3 (PO 4 ) 2 ” of the tertiary magnesium phosphate (d)
  • the total mass is 51 to 210% by mass with respect to the total of 100% by mass of the solid content of the film-forming resin (a) and the solid content of the crosslinking agent (b).
  • the mass ratio of the vanadium compound (c) and the tribasic magnesium phosphate (d) is 60: 150 to 150: 1 when the tribasic magnesium phosphate (d) is converted as “Mg 3 (PO 4 ) 2 ”.
  • it is 60:50 to 150: 50, more preferably 60:25.
  • the mass ratio of the vanadium compound (c) and the tribasic magnesium phosphate (d) is 60: 150 to 150: 1 when the tribasic magnesium phosphate (d) is converted as “Mg 3 (PO 4 ) 2 ”. Therefore, both the corrosion resistance under acidic conditions and the corrosion resistance under normal neutral conditions can be improved.
  • the coating composition of the present invention may further contain an adhesion improving component that is at least one compound selected from the group consisting of a silane coupling agent, a titanium coupling agent, and a zirconium coupling agent. .
  • an adhesion improving component that is at least one compound selected from the group consisting of a silane coupling agent, a titanium coupling agent, and a zirconium coupling agent.
  • the adhesiveness-improving component is not particularly limited, and conventionally known components can be used.
  • suitably used adhesion improving components include silane coupling agents such as “DOW® CORNING® TORAY® Z-6011” and “DOW® CORNING® TORAY® Z-6040” manufactured by Toray Dow Corning (here, , “DOW CORNING” is a registered trademark); titanium coupling agents such as “Origatix TC-401” and “Olgatix TC-750” manufactured by Matsumoto Fine Chemical; and “Olgatix” manufactured by Matsumoto Fine Chemical Zirconium-based coupling agents such as “ZC-580” and “Orugatics ZC-700”, among them, silane-based coupling agents are preferably used.
  • the content of the adhesion improving component is preferably 0.1 to 20% by mass with respect to 100% by mass of the total solid content of the film-forming resin (a) and the crosslinking agent (b).
  • the content of the adhesion improving component is 0.1% by mass or more, an effect of improving moisture resistance is obtained.
  • the storage stability of a coating composition becomes favorable because content of an adhesive improvement component is 20 mass% or less.
  • the coating composition of the present invention may further contain extender pigments such as calcium carbonate, barium sulfate, clay, talc, mica, silica, alumina and bentonite.
  • extender pigments such as calcium carbonate, barium sulfate, clay, talc, mica, silica, alumina and bentonite.
  • the content of the extender is preferably 1 to 40% by mass with respect to 100% by mass of the total solid content of the film-forming resin (a) and the crosslinking agent (b).
  • the content of the extender is 1% by mass or more, an effect of improving moisture resistance is obtained.
  • content of an extender is 40 mass% or less, the moisture permeability of a coating film becomes suitable, the moisture resistance of a coating film becomes favorable, and corrosion resistance becomes favorable.
  • the coating composition of the present invention may contain a curing catalyst.
  • the curing catalyst include a tin catalyst, an amine catalyst, and a lead catalyst.
  • an organic tin compound is preferably used.
  • the organotin compound for example, dibutyltin dilaurate (DBTL), dibutyltin oxide, tetra-n-butyl-1,3-diacetoxystannoxane and the like can be used.
  • the coating composition of the present invention may contain a curing catalyst.
  • the curing catalyst in this case include acid catalysts such as carboxylic acid and sulfonic acid, and among them, dodecylbenzenesulfonic acid, paratoluenesulfonic acid and the like are preferably used.
  • the content of the curing catalyst is usually 0.1 to 10% by mass and 0.1 to 1% by mass with respect to 100% by mass of the total solid content of the film-forming resin (a) and the crosslinking agent (b). % Is preferred.
  • the content of the curing catalyst is 0.1 to 10% by mass, the storage stability of the coating composition is improved.
  • the coating composition of this invention may contain other additives other than the above as needed.
  • Other additives include, for example, rust preventive pigments other than the vanadium compound (c); extender pigments other than the extender pigments; colorants such as color pigments and dyes; glitter pigments; solvents; ultraviolet absorbers (benzophenone series) UV absorbers, etc.); antioxidants (phenolic, sulphoid, hindered amine antioxidants, etc.); plasticizers; surface conditioners (silicones, organic polymers, etc.); sagging agents; thickeners; waxes, etc.
  • lubricants there are lubricants, pigment dispersants, pigment wetting agents, leveling agents, color separation preventing agents, precipitation preventing agents, antifoaming agents, preservatives, antifreezing agents, emulsifiers, fungicides, antibacterial agents, stabilizers, and the like. These additives may be used alone or in combination of two or more.
  • a non-chromium rust preventive pigment can be used as the rust preventive pigment other than the vanadium compound (c).
  • a non-chromium rust preventive pigment can be used.
  • Non-chromium rust preventive pigments such as salt pigments (phosphomolybdate aluminum pigments), calcium silica pigments, phosphate rust preventive pigments such as tripolyphosphate, and silicate rust preventive pigments. These may be used alone or in combination of two or more.
  • the coating composition of the present invention contains a predetermined amount of the vanadium compound (c) having a predetermined conductivity and pH, it exhibits sufficiently high corrosion resistance, but if necessary, the moisture resistance of the resulting coating film, Rust preventive pigments other than the vanadium compound (c) may be used as long as the corrosion resistance and chemical resistance are not impaired.
  • coloring pigment examples include inorganic coloring pigments such as titanium dioxide, carbon black, graphite, iron oxide, and coal dust; phthalocyanine blue, phthalocyanine green, quinacridone, perylene, anthrapyrimidine, carbazole violet, anthrapyridine, azo orange, and flavan Organic coloring pigments such as throne yellow, isoindoline yellow, azo yellow, indanthrone blue, dibromanthanthrone red, perylene red, azo red, anthraquinone red; aluminum powder, alumina powder, bronze powder, copper powder, tin powder, zinc powder , Iron phosphide, atomized titanium and the like. These may be used alone or in combination of two or more.
  • glitter pigment examples include aluminum foil, bronze foil, tin foil, gold foil, silver foil, titanium metal foil, stainless steel foil, alloy foils such as nickel and copper, and foil pigments such as foil-like phthalocyanine blue. it can. These may be used alone or in combination of two or more.
  • solvent examples include water; ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, dipropylene glycol monomethyl ether.
  • Glycol organic solvents such as dipropylene glycol monoethyl ether and propylene glycol monomethyl ether acetate; alcohol organic solvents such as methanol, ethanol and isopropyl alcohol; ether organic solvents such as dioxane and tetrahydrofuran; 3-methoxybutyl acetate, acetic acid Ester organic such as ethyl, isopropyl acetate, butyl acetate Medium; ketone organic solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, isophorone; and N-methyl-2-pyrrolidone, toluene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral Spirit, Solvesso 100, Solvesso 150 (all of which are aromatic hydrocarbon solvents) can be used
  • the coating composition of the present invention includes, for example, a film forming resin (a), a crosslinking agent (b) and a vanadium compound (c), an extender pigment, an adhesion improving component, a curing catalyst, and other additives. It can be prepared by mixing using a mixer such as a ball mill, bead mill, pebble mill, sand grind mill, pot mill, paint shaker, or disper.
  • the coating composition of the present invention is a two-component coating composition comprising a main ingredient component containing a film-forming resin (a) and a vanadium compound (c) and a crosslinking agent component containing a crosslinking agent (b). Also good.
  • the coating composition of the present invention can be applied as an undercoat coating called a primer.
  • a known material such as a polyester resin-based paint or a fluororesin-based paint can be used for the top coat.
  • the coating film by the coating composition of the present invention contains a predetermined plating layer of steel (in short, Al, Zn, Si, Cr and Mg, and Mg content is 0.1 to 10% by mass, Cr
  • the content of aluminum is 0.02 to 1.0% by mass
  • the Si—Mg phase is 0.2 to 15% by volume
  • the mass ratio of Mg in the Si—Mg phase to the total amount of Mg is 3% or more.
  • Zinc alloy plating layer Thereby, it is possible to obtain a surface-treated steel sheet having corrosion resistance (particularly edge corrosion resistance) improved to be equal to or higher than that of conventional chromate treatment.
  • a coating method of the coating composition of the present invention a conventionally known method such as a roll coater, airless spray, electrostatic spray, curtain flow coater or the like can be employed.
  • the coating film of the present invention formed using the coating composition of the present invention can be formed by applying a coating composition to the plating layer of the steel material 1 and then performing a baking treatment for heating the object to be coated. . Thereby, the surface-treated steel material of the present invention is obtained.
  • the baking temperature is usually 180 to 250 ° C., and the baking time is usually 10 to 200 seconds.
  • the film thickness (dry film thickness) of the coating film (the coating film of the present invention) obtained using the coating composition of the present invention is usually 1 to 30 ⁇ m, preferably 1 to 10 ⁇ m.
  • the coating film of the present invention usually has a wet resistance value of 10 5 to 10 12 ⁇ ⁇ cm 2 since the coating composition forming the coating composition contains a predetermined amount of the vanadium compound (c) having a predetermined conductivity. Show.
  • the wet resistance value of the coating film varies depending on the type of resin and crosslinking agent used in the coating composition, the type and amount of additives to be included, and the baking conditions, but the wet resistance value of the coating film is generally within the above range. This means that the coating film has an appropriate moisture permeability while exhibiting good moisture resistance.
  • the wet resistance value of the coating film of the present invention is preferably 10 6 to 10 11 ⁇ ⁇ cm 2 .
  • the wet resistance value of the coating film was measured at a wave height of applied voltage of ⁇ 0.5 V after a dry coating film thickness of 15 ⁇ m was wetted with 5% saline (NaCl aqueous solution) at 35 ° C. for 1 hour. DC resistance value.
  • the detailed conditions for measuring the wet resistance value of the coating film will be described in Examples described later.
  • the present inventor has found that by combining the plating layer and the coating film according to the present invention, the corrosion resistance (particularly edge corrosion resistance) equal to or higher than that of the conventional chromate treatment can be obtained, and the present invention has been created. It was. Examples and comparative examples will be shown and their effects will be specifically described. However, the present invention is not limited to the following examples. In the following examples, “parts” and “%” are based on mass unless otherwise specified.
  • a plated layer was formed by immersing the steel sheet in molten metal.
  • Examples 1 to 2 Examples 5 to 18, Comparative Examples 4 to 13, and Reference Example 1, a 55% Al-2% Mg-1.6% Si-0.03% Cr-zinc alloy plated steel sheet is obtained.
  • the components of the molten metal were adjusted.
  • Example 3 the components of the molten metal were adjusted so that a 55% Al-0.5% Mg-1.6% Si-0.03% Cr-zinc alloy plated steel sheet was obtained.
  • the components of the molten metal were adjusted so that a 55% Al-5% Mg-1.6% Si-0.03% Cr-zinc alloy plated steel sheet was obtained.
  • Comparative Example 1 the components of the molten metal were adjusted so that a 55% Al-11% Mg-1.6% Si-0.03% Cr-zinc alloy plated steel sheet was obtained.
  • Comparative Example 14 the components of the molten metal were adjusted so that a 55% Al-2% Mg-1.6% Si-0.01% Cr-zinc alloy plated steel sheet was obtained.
  • Comparative Example 15 the components of the molten metal were adjusted so that a 55% Al-2% Mg-1.6% Si-1.1% Cr-zinc alloy plated steel sheet was obtained.
  • Comparative Example 2 and Reference Example 2 the components of the molten metal were adjusted so that a 55% Al-1.6% Si-zinc alloy plated steel sheet was obtained.
  • Comparative Example 3 the components of the molten metal were adjusted so that a hot dip galvanized steel sheet was obtained.
  • Coating compositions were prepared according to the blending compositions shown in Tables 1 to 4.
  • the coating composition of any of Examples 1 to 18 and Comparative Examples 1 to 13 is applied to the surface of the steel sheet so that the dry coating film has a thickness of 5 ⁇ m, and baked at a maximum temperature of 200 ° C. for 30 seconds.
  • the surface undercoat film was formed.
  • a polyester-based topcoat “NSC300HQ” made by Nippon Paint Industrial Coatings was applied on the above-mentioned undercoat so that the dry coat would be 10 ⁇ m, and baked at a maximum temperature of 210 ° C. for 40 seconds.
  • a surface overcoating film was formed to obtain a coated steel sheet.
  • cross-cut tape adhesion test (cross-cut adhesion test) was performed on the test piece after being immersed in boiling water of 95 ° C. or more for 5 hours, and evaluated.
  • the cross-cut tape adhesion test is performed in accordance with JIS K-5400 8.5.2 (1990) cross-cut tape method, with a gap interval of 1 mm and 100 cross cuts, and cellophane adhesive tape is adhered to the surface. The number of grids remaining on the painted surface when the film was peeled off rapidly was examined.
  • Rust and blisters on flat surfaces are evaluated in accordance with ASTM D714-56, and are scored with a maximum of 5 points in light of the above Table 9 used for boiling water resistance test. The degree of deterioration was measured at 5 points, and the average value was scored according to the following criteria. (Standard) ⁇ : 2 mm or less, ⁇ : 4 mm or less, ⁇ : 6 mm or less, ⁇ : more than 6 mm 2T processing (processing to bend each sample 180 degrees by vise with two steel plates sandwiched) It was conducted and the above-mentioned salt spray test was carried out to observe the occurrence of white rust in the bent portion, and in accordance with Table 9 above, scoring was performed with a maximum of 5 points.
  • Standard ⁇ : 2 mm or less, ⁇ : 4 mm or less, ⁇ : 6 mm or less, ⁇ : more than 6 mm 2T processing (processing to bend each sample 180 degrees by vise with two steel plates sandwiched) It was conducted and the above
  • the surface-treated steel sheet of the present invention has high end corrosion resistance equivalent to or higher than that of the plated steel sheet subjected to the chromate treatment.
  • the comparative example 15 was equipped with the same high corrosion resistance as an Example, since the smoothness of the coating film was lost, it was taken out of the scope of the present invention. This is presumably because dross was generated in the bath due to excessive addition of Cr.
  • Pencil Hardness Test Each surface-treated steel sheet obtained above was cut into 5 cm ⁇ 10 cm, and scratch resistance was evaluated by measuring the pencil hardness of the obtained test piece. According to the method of JIS-K 5400 8.4.1 (1993), the scratch resistance of the coating film was examined by coating film blurring when the pencil core hardness was changed. The highest hardness that could not be obtained was defined as the pencil hardness of the coating film.
  • Substrate eye adhesion test In accordance with the method specified in the 14.2.5 cross cut test of JIS G3322: 2012, the 100th square is created by cutting 1 mm wide, and the cell surface is pressure-bonded using a cellophane adhesive tape in the vertical direction. The squares that were not pulled or peeled off were counted for evaluation.

Abstract

【課題】クロメート処理と同等以上の端部耐食性を備えた表面処理鋼材を、六価クロムを使用せずに提供する。 【解決手段】鋼材の表面にめっき層を介して塗膜を形成した表面処理鋼材であって、めっき層はMgを含むガリバリウム浴に鋼材を浸漬することによって得られる。塗膜は、塗膜形成性樹脂と、架橋剤と、所定のバナジウム化合物と、第三リン酸マグネシウムとを含有する塗料組成物を用いて形成され、バナジウム化合物は所定の電導度を満足する化合物であり、かつバナジウム化合物の含有量は塗膜形成性樹脂の固形分および架橋剤の固形分の合計100質量%に対して所定量に制限され、バナジウム化合物は、所定のpHを満足しており、第三リン酸マグネシウムの含有量は塗膜形成性樹脂の固形分および架橋剤の固形分の合計100質量%に対して所定量であることを特徴とする表面処理鋼材。

Description

表面処理鋼材
 本発明は、溶融めっき鋼板のクロメートフリーに関する技術である。
 従来、建材、自動車用の材料、家電製品用の材料などの用途に、溶融Zn-Al系めっき鋼材が広く利用されてきた。なかでも55%アルミニウム・亜鉛合金めっき鋼板に代表される高アルミニウム(25~75質量%)・亜鉛合金めっき鋼板は、通常の溶融亜鉛めっき鋼板に比較して耐食性が優れるため、需要拡大が続いている。また、近年、特に建材に対する更なる耐食性向上や加工性向上の要求を受けて、めっき層中へのMg等の添加による溶融Zn-Al系めっき鋼材の耐食性等の向上が図られている(例えば、特許文献1参照)。
 しかし、Mgを含有する高アルミニウム・亜鉛合金めっき鋼板においては、めっき層の表面にしわが発生しやすく、このため表面外観の悪化が問題となっている。更にこのしわによってめっき層の表面に急峻な隆起が生じるため、めっき層に対して化成処理を施して化成処理層を形成したり、塗装等を施して被覆層を形成したりする場合には、前記化成処理層や被覆層の厚みが不均一になりやすい。このため、塗装等によるめっき鋼板の耐食性の向上が充分に発揮されないという問題がある。
 上記問題を解決するために、特許文献2は、鋼材の表面上にアルミニウム・亜鉛合金めっき層がめっきされてなる溶融めっき鋼材であって、前記アルミニウム・亜鉛合金めっき層が構成元素としてAl、Zn、Si及びMgを含み、且つMg含有量が0.1~10質量%であり、前記アルミニウム・亜鉛合金めっき層が0.2~15体積%のSi―Mg相を含み、前記Si-Mg相中のMgの、Mg全量に対する質量比率が3%以上であり、前記アルミニウム・亜鉛合金めっき層が構成元素として更に0.02~1.0質量%のCrを含むことを特徴とする溶融めっき鋼材を開示する。
 めっき鋼板は長期間使用されると表面の酸化により錆が出て見栄えが悪くなるため、めっき鋼板の表面には、通常、防錆処理が施される。従来、防錆処理としては優れた防食剤であるクロム酸塩を使用したクロメート処理が一般的であった。しかしながらクロメート処理液に含まれる六価クロムは、環境への悪影響が懸念され、その使用が制限されつつある。そこで、バナジン酸金属塩等のバナジウム化合物を含有する塗料がこれまで種々提案されている。
 例えば、特許文献3および4には、防錆顔料として、リン酸イオンを放出する化合物とバナジン酸イオンを放出する化合物とを組み合わせた防錆顔料を用いることが開示されている。しかし、当該六価クロムを含有しない防錆顔料を用いて形成された塗膜は、室外機等の屋外用途への適用に対して耐食性が十分でない等の問題を有している。
 また、特許文献5および6には、防錆顔料として、(1)バナジウム化合物、(2)金属珪酸塩等、および(3)リン酸系金属塩からなる防錆顔料を含有する防錆塗料組成物が開示されている。しかしながら、これらの防錆塗料組成物についても、特許文献1および2で開示されている防錆塗料と同様、屋外用途への適用に対して耐食性が十分でなく、改善の余地があった。
 防錆塗料組成物の耐食性を向上させるための手段として、防錆顔料であるバナジウム化合物の含有量を増加させることが有効である。しかしながら、バナジウム化合物、特にバナジン酸の1価あるいは2価のカチオン塩は水溶性が高いため、多量に含有させると、塗膜が吸湿しやすくなる。その結果、塗膜の耐湿性が低下して、塗膜にフクレが生じるという問題があった。このような塗膜のフクレは、耐食性低下の原因ともなる。
 そこで、例えば、特許文献7には、塗料形成樹脂(a)、架橋剤(b)およびバナジン酸カルシウム(c)を含有し、かつ、バナジン酸カルシウム(c)の1質量%水溶液の電導度が200~2,000μS/cmであって、バナジン酸カルシウム(c)の含有量が、前記塗料形成樹脂(a)及び架橋剤(b)の合計固形分100質量%に対して50~150質量%である、塗料組成物が開示され、耐食性と耐湿性とが両立された六価クロムを含有しない防錆塗料組成物が提案されている。
 また、例えば、特許文献8には、塗膜形成性樹脂(a)と、架橋剤(b)と、五酸化バナジウム及びバナジン酸アルカリ土類金属塩からなる群から選ばれる少なくとも1種のバナジウム化合物(c)と、防錆促進剤(d)とを含有する塗料組成物であって、前記バナジウム化合物(c)は1質量%水溶液の温度25℃における電導度が200μS/cm~2,000μS/cmとなる化合物であり、かつ前記バナジウム化合物(c)の合計含有量は前記塗膜形成性樹脂(a)の固形分及び前記架橋剤(b)の固形分の合計100質量%に対して5~150質量%であり、前記防錆促進剤(d)が、水溶性化合物(d-1)及びキレート形成化合物(d-2)からなる群から選ばれる少なくとも1種以上の化合物であり、前記防錆促進剤(d)の合計含有量は前記塗膜形成性樹脂(a)の固形分及び架橋剤(b)の固形分の合計100質量%に対して1~150質量%であり、前記水溶性化合物(d-1)は1質量%水溶液の温度25℃における電導度が2,000μS/cmを超え15,000μS/cm以下となる化合物であり、かつ前記水溶性化合物(d-1)はアルカリ土類金属の水酸化物、バナジン酸化合物、及びセリウム化合物からなる群から選ばれた少なくとも1種以上の化合物であり、前記キレート形成化合物(d-2)は、複数の配位部位を有し、これらの配位部位が1つの金属イオンに配位される化合物である、塗料組成物が開示され、さらに、長期に渡って優れた耐食性、及び耐湿性を有し、かつ、短期耐食性試験で良好な結果を示す、上記塗料組成物が提案されている。
 さらに、例えば、特許文献9には、(A)水酸基含有塗膜形成性樹脂、(B)架橋剤及び(C)防錆顔料混合物を含有する塗料組成物であって、該防錆顔料混合物(C)が、(1)五酸化バナジウム、バナジン酸カルシウム、バナジン酸マグネシウム及びメタバナジン酸アンモニウムからなる群から選択される少なくとも1種のバナジウム化合物、(2)少なくともマグネシウムを含有する、リン酸、亜リン酸及びトリポリリン酸からなる群から選択される少なくとも1種の酸の塩であるリン酸系金属塩、(3)マグネシウムイオン交換シリカからなるものであり、該樹脂(A)及び該架橋剤(B)の固形分総量に対して、該バナジウム化合物(1)の量が3~50質量%、該リン酸系金属塩(2)の量が1~50質量%、及び該マグネシウムイオン交換シリカ(3)の量が1~150質量%であって、かつ該防錆顔料混合物(C)の量が10~150質量%である、塗料組成物が開示されている。
 特許文献10には、鋼材の表面上にアルミニウム・亜鉛合金めっき層がめっきされてなる溶融めっき鋼材であって、前記アルミニウム・亜鉛合金めっき層が構成元素としてAl、Zn、Si及びMgを含み、且つMg含有量が0.1~10質量%であり、
  前記アルミニウム・亜鉛合金めっき層が0.2~15体積%のSi―Mg相を含み、前記Si-Mg相中のMgの、Mg全量に対する質量比率が3%以上であり、前記アルミニウム・亜鉛合金めっき層が構成元素として更に0.02~1.0質量%のCrを含むことを特徴とする溶融めっき鋼材が開示されている。
 近年、「酸性雨」によって、塗装鋼板の塗膜の腐食が生じる現象が認められている。ここで、「酸性雨」とは、二酸化硫黄(SO2)や窒素酸化物(NOx)などを起源とする酸性雨起因物質が、雨・雪・霧などに溶け込むことで、大気が通常より酸性化する現象、または、環境が通常より酸性化する現象をいう。また、酸性雨起因物質が放出されてから酸性雨として降ってくるまでに、国境を越えて数百から数千kmも運ばれることもあり、塗装鋼板の腐食被害が広範囲な地域に渡って、今後とも増加すると予想されている。また、酸性雨起因物質が、結露および湿気のある環境下で水膜に吸収されることで、環境が酸化し、腐食が進行する場合がある。
 特に、近年めっき鋼板に予め塗装処理を施したプレコート鋼板が増加しており、切断時に形成された切断端部から腐食する端部腐食(つまり、端部耐食性)の問題が大きくなっている。
特開平11-279735号公報 特許第5118782号 特公平5-50444号公報 特許第3461741号公報 特許第4323530号公報 特開2009-227748号公報 特開2011-184624号公報 特開2013-067699号公報 国際公開第2012/086494号 特許第5857156号
 従来のクロメートフリーの開発では、クロメート処理に耐食性を近づける試みはされているものの、クロメート処理と同等の耐食性は得られていなかった。特に、上述した端部耐食性については、クロメート処理よりも著しく劣り、改善が求められていた。
 そこで、本願発明は、クロメート処理と同等以上の端部耐食性を備えた表面処理鋼材を、六価クロムを使用せずに提供することを目的とする。
 上記課題を解決するために、本願発明に係る表面処理鋼材は、鋼材の表面にアルミニウム・亜鉛合金めっき層を少なくとも含む下地層を介して塗膜を形成した表面処理鋼材であって、前記アルミニウム・亜鉛合金めっき層は構成元素としてAl、Zn、Si、Cr及びMgを含み、且つMg含有量が0.1~10質量%、Crの含有量が0.02~1.0質量%であり、前記アルミニウム・亜鉛合金めっき層が0.2~15体積%のSi―Mg相を含み、前記Si-Mg相中のMgの、Mg全量に対する質量比率が3%以上であり、前記塗膜は、塗膜形成性樹脂(a)と、架橋剤(b)と、バナジン酸アルカリ土類金属塩及びバナジン酸マグネシウムからなる群から選ばれる少なくとも1種のバナジウム化合物(c)と、第三リン酸マグネシウム(d)とを含有し、前記バナジウム化合物(c)は1質量%水溶液の温度25℃における電導度が200μS/cm~2,000μS/cmとなる化合物であり、かつ前記バナジウム化合物(c)の含有量は前記塗膜形成性樹脂(a)および前記架橋剤(b)の合計100質量%に対して50質量%を超え150質量%以下であり、前記バナジウム化合物(c)は、その1質量%水溶液のpHが6.5~11であり、前記第三リン酸マグネシウム(d)の含有量は前記塗膜形成性樹脂(a)および前記架橋剤(b)の合計100質量%に対して3~150質量%であることを特徴とする。
 本願発明によれば、クロメート処理と同等以上の端部耐食性を備えた表面処理鋼材を、六価クロムを使用せずに提供することができる。
溶融めっき処理装置の一例を示す概略図である。 溶融めっき処理装置の他例を示す一部の概略図である。 過時効処理に用いられる加熱装置保温容器の例を示す概略図である。 本発明における、バナジウム化合物(c)として0.7質量%のバナジン酸カルシウムと0.3質量%の第三リン酸マグネシウム(d)からなる水溶液と、バナジウム化合物(c)として1.0質量%のバナジン酸カルシウムの水溶液の、酸性領域におけるpH緩衝能力を示す図である。
 本実施形態の表面処理鋼材は、鋼材の表面にアルミニウム・亜鉛合金めっき層(以下、単に「めっき層」と称する)を少なくとも含む下地層が形成され、上地層として塗料組成物を用いた塗膜が形成されている。鋼材としては、薄鋼板、厚鋼板、型鋼、鋼管、鋼線等の種々の部材が挙げられる。すなわち、鋼材の形状は特に制限されない。また、本実施形態では、めっき層とこのめっき層の上にクロメートフリー化成処理を施した化成処理層とにより下地層を構成している。この化成処理層については、特に内容を限定しない。
 めっき層は、溶融めっき処理により形成され、構成元素としてAl、Zn、Si、Cr及びMgを含む。めっき層の全体を100質量%としたとき、Mgの含有量は0.1~10質量%である。このため、Alによって特にめっき層の表面の耐食性が向上すると共に、Znによる犠牲防食作用によって特に表面処理鋼材の切断端面におけるエッジクリープが抑制されて、表面処理鋼材の耐食性が高められる。更に、Siによってめっき層中のAlと鋼材との間の過度の合金化が抑制され、めっき層と鋼材との間に介在する合金層(後述)が表面処理鋼材の加工性を損なうことが抑制される。更に、めっき層がZnよりも卑な金属であるMgを適度に含有することで、めっき層の犠牲防食作用が強化され、表面処理鋼材の耐食性が更に向上する。
 めっき層の全体を100体積%としたとき、めっき層にはSi―Mg相が0.2~15体積%含まれる。Si―Mg相はSiとMgとの金属間化合物で構成される相であり、めっき層中に分散して存在する。めっき層中のSi―Mg相の体積割合が高いほど、めっき層におけるしわの発生が抑制される。これは、表面処理鋼材の製造時に溶融めっき金属が冷却されることで凝固してめっき層が形成されるプロセスにおいて、溶融めっき金属が完全に凝固する前にSi―Mg相が溶融めっき金属中で析出し、このSi―Mg相が溶融めっき金属の流動を抑制するためと考えられる。
 めっき層の全体を100体積%としたとき、Si―Mg相の体積割合は0.2~15体積%であり、好ましくは0.2~10体積%であり、より好ましくは0.4~5体積%である。
 めっき層におけるSi―Mg相の体積割合は、めっき層をその厚み方向に切断した場合の切断面におけるSi―Mg相の面積割合と等しい。めっき層の切断面におけるSi-Mg相は、電子顕微鏡観察により明瞭に確認することができる。このため、切断面におけるSi-Mg相の面積割合を測定することで、めっき層におけるSi―Mg相の体積割合を間接的に測定することができる。
 めっき層はSi―Mg相と、それ以外のZnとAlを含有する相により構成される。ZnとAlを含有する相は、主としてα-Al相(デンドライト組織)及びZn-Al-Mg共晶相(インターデンドライト組織)で構成される。ZnとAlを含有する相は、めっき層の組成に応じて更にMg-Znから構成される相(Mg-Zn相)、Siから構成される相(Si相)、Fe-Al金属間化合物から構成される相(Fe-Al相)等、各種の相を含み得る。従って、めっき層におけるZnとAlを含有する相の体積割合は99.8~85体積%であり、好ましくは99.8~90体積%であり、より好ましくは99.6~95体積%である。
 めっき層中のMg全量に対するSi-Mg相中のMgの質量比率は、3質量%以上である。Si-Mg相に含まれないMgは、ZnとAlを含有する相中に含まれる。ZnとAlを含有する相においては、Mgはα-Al相中、Zn-Al-Mg共晶相中、Mg-Zn相中、めっき表面に形成されるMg含有酸化物皮膜中等に含まれる。Mgがα-Al相中に含まれる場合には、α-Al相中にMgが固溶する。
 めっき層中のMg全量に対するSi-Mg相中のMgの質量比率は、Si-Mg相がMgSiの化学量論組成を有しているとみなされた上で算出され得る。尚、実際にはSi-Mg相はSi及びMg以外のAl、Zn、Cr、Fe等の元素を少量含む可能性が有り、Si-Mg相中のSiとMgとの組成比も化学量論組成から若干変動している可能性があるが、これらを考慮してSi-Mg相中のMg量を厳密に決定することは非常に困難である。このため、本発明においては、めっき層中のMg全量に対するSi-Mg相中のMgの質量比率が決定される際には、前記の通り、Si-Mg相がMgSiの化学量論組成を有しているとみなされる。
 めっき層中のMg全量に対するSi-Mg相中のMgの質量比率は、次の式(1)により算出され得る。
  R=A/(M×CMG/100)×100  …(1)
  Rはめっき層中のMg全量に対するSi-Mg相中のMgの質量比率(質量%)を示す。Aはめっき層の平面視単位面積当たりの、めっき層中のSi-Mg相に含まれるMg含有量(g/m)を示す。Mはめっき層の平面視単位面積当たりの、めっき層の質量(g/m)を示す。CMGはめっき層中の全Mgの含有量(質量%)を示す。
  Aは、次の式(2)から算出され得る。
  A=V×ρ×α  …(2)
  Vはめっき層の平面視単位面積当たりの、めっき層中のSi-Mg相の体積(m/m)を示す。ρはSi-Mg相の密度を示し、その値は1.94×10(g/m)である。αはSi-Mg相中のMgの含有質量比率を示し、その値は0.63である。
  Vは、次の式(3)から算出され得る。
  V=V×R/100  …(3)
  Vはめっき層の平面視単位面積あたりの、めっき層の全体体積(m/m)を示す。Rはめっき層中のSi-Mg相の体積比率(体積%)を示す。
  Vは、次の式(4)から算出され得る。
  V=M/ρ  …(4)
  ρは、めっき層全体の密度(g/m)を示す。ρの値は、めっき層の組成に基づいてめっき層の構成元素の常温での密度を加重平均することで算出され得る。
 本実施形態では、めっき層中のMgが上記のように高い比率でSi-Mg相中に含まれる。このため、めっき層の表層に存在するMg量が少なくなり、これによりめっき層の表層におけるMg系酸化皮膜の形成が抑制される。従って、Mg系酸化皮膜に起因するめっき層のしわが、抑制される。Mg全量に対するSi-Mg相中のMgの割合が多いほど、しわの発生が抑制される。この割合は5質量%以上であればより好ましく、20質量%以上であれば更に好ましく、50質量%以上であれば特に好ましい。Si-Mg相中のMgの、Mg全量に対する割合の上限は特に制限されず、この割合が100質量%であってもよい。
 めっき層における50nm深さの最外層内では、大きさが直径4mm、深さ50nmとなるいかなる領域においても、Mg含有量が60質量%未満であることが好ましい。このめっき層の最外層におけるMg含有量は、グロー放電発光分光分析(GD-OES:Glow Discharge - Optical Emission Spectroscopy)により測定することができる。精度の良い定量濃度分析値を得ることが困難である場合、めっき層に含まれる複数の各元素の濃度曲線を比較することで、MgO単独の酸化皮膜がめっき層の最外層に認められないことを確かめればよい。
 めっき層の最外層でのMg含有量が少ないほど、Mg系酸化皮膜に起因するしわが抑制される。このMg含有量は、40質量未満であればより好ましく、20質量%未満であれば更に好ましく、10質量%未満であれば特に好ましい。特にめっき層の厚み50nmの最外層内に、Mg含有量が60質量%以上となる部分が存在しなくなることが好ましく、更にMg含有量が40質量%以上となる部分が存在しないことが好ましく、Mg含有量が20質量%以上となる部分が存在しなければ更に好ましい。
 Mg含有量の物理的意味について説明する。化学量論組成のMgO酸化物中のMg含有量は約60質量%である。すなわち、Mg含有量が60質量%未満ということは、化学量論組成のMgO(MgO単独の酸化皮膜)が、めっき層の最外層に存在せず、或いはこの化学量論組成のMgOの形成が著しく抑制されていることを意味する。本実施形態ではめっき層の最外層におけるMgの過剰な酸化が抑制されることにより、MgO単独の酸化皮膜の形成が抑制される。めっき層の最外層ではAl、Zn、Sr等のMg以外の元素の酸化物を少量もしくは多量に含有する複合酸化物が形成され、このため相対的にめっき層の表層におけるMgの含有量が低下していると考えられる。
 めっき層の表面でのSi―Mg相の面積比率が30%以下であることが好ましい。めっき層中にSi-Mg相が存在すると、めっき層の表面ではSi―Mg相が薄く網目状に形成されやすくなり、このSi―Mg相の面積比率が大きいとめっき層の外観が変化する。Si-Mg相のめっき表面分布状態が不均一な場合は、目視によってめっき層の外観に光沢のムラが観察される。この光沢のムラは、タレと呼ばれる外観不良である。めっき層の表面でのSi―Mg相の面積比率が30%以下であれば、タレが抑制され、めっき層の外観が向上する。更に、めっき層の表面にSi-Mg相が少ないことは、めっき層の耐食性が長期に亘って維持されるためにも有効である。めっき層の表面へのSi-Mg相の析出を抑制すると、相対的にはめっき層内部へのSi-Mg相の析出量が増大する。そのため、めっき層内部のMg量が多くなり、これによりめっき層においてMgの犠牲防食作用が長期に亘って発揮されるようになり、これによりめっき層の高い耐食性が長期に亘って維持されるようになる。めっき層の外観向上及びめっき層の耐食性の維持のためには、めっき層の表面でのSi―Mg相の面積比率は、20%以下であればより好ましく、10%以下であれば更に好ましく、5%以下であれば特に好ましい。
 めっき層におけるMgの含有量は上記の通り0.1~10質量%の範囲である。Mgの含有量が0.1質量%未満であるとめっき層の耐食性が充分に確保されなくなってしまう。この含有量が10質量%より多くなると耐食性が低下し、めっき鋼材の製造時に溶融めっき浴中にドロスが発生しやすくなってしまう。このMgの含有量は更に0.5質量%以上であることが好ましく、更に1.0質量%以上であることが好ましい。またこのMgの含有量は特に5.0質量%以下であることが好ましく、更に3.0質量%以下であることが好ましい。Mgの含有量が1.0~3.0質量%の範囲であれば特に好ましい。
 めっき層におけるAlの含有量は25~75質量%の範囲であることが好ましい。この含有量が25質量%以上であればめっき層中のZn含有量が過剰とならず、めっき層の表面における耐食性が充分に確保される。この含有量が75質量%以下であればZnによる犠牲防食効果が充分に発揮されると共にめっき層の硬質化が抑制されて表面処理鋼材の折り曲げ加工性が高くなる。更に、めっき鋼材の製造時に溶融めっき金属の流動性が過度に低くならないようにすることでめっき層のしわを更に抑制する観点からも、Alの含有量は75質量%以下であることが好ましい。このAlの含有量は特に45質量%以上であることが好ましい。またこのAlの含有量は特に65質量%以下であることが好ましい。Alの含有量が45~65質量%の範囲であれば特に好ましい。
 めっき層におけるSiの含有量は、Alの含有量に対して0.5~10質量%の範囲であることが好ましい。SiのAlに対する含有量が0.5質量%以上であるとめっき層中のAlと鋼材との過度の合金化が充分に抑制される。この含有量が10質量%より多くなるとSiによる作用が飽和するだけでなくめっき鋼材の製造時に溶融めっき浴中にドロスが発生しやすくなってしまう。このSiの含有量は特に1.0質量%以上であることが好ましい。またこのSiの含有量は特に5.0質量%以下であることが好ましい。Siの含有量が1.0~5.0質量%の範囲であれば特に好ましい。
 更に、めっき層中のSi:Mgの質量比が100:50~100:300の範囲であることが好ましい。この場合、めっき層中のSi-Mg層の形成が特に促進され、めっき層におけるしわの発生が更に抑制される。このSi:Mgの質量比は更に100:70~100:250であることが好ましく、更に100:100~100:200であることが好ましい。
 上述した通り、めっき層は、構成元素としてCrを含有している。この場合、Crによってめっき層中のSi-Mg相の成長が促進され、めっき層中のSi-Mg相の体積割合が高くなると共に、めっき層中のMg全量に対するSi-Mg相中のMgの割合が高くなる。これにより、めっき層のしわが更に抑制される。めっき層におけるCrの含有量は0.02~1.0質量%の範囲である。めっき層におけるCrの含有量が0.02%未満であれば、めっき層の耐食性が充分に確保され難くなると共にめっき層のしわやタレが充分に抑制され難くなる。めっき層におけるCrの含有量が1.0質量%より多くなると前記作用が飽和するだけでなく、めっき鋼材の製造時に溶融めっき浴中にドロスが発生しやすくなり、塗装後の塗膜平滑性が低下する。このCrの含有量は0.05質量%以上であることが好ましい。またこのCrの含有量は0.5質量%以下であることが好ましい。このCrの含有量は、特に0.07~0.2質量%の範囲であることが好ましい。
 めっき層における50nm深さの最外層内でのCrの含有量は、100~500質量ppmであることが好ましい。この場合、めっき層の耐食性が更に向上する。これは、最外層にCrが存在するとめっき層に不働態皮膜が形成され、このためにめっき層のアノード溶解が抑制されるためと考えられる。このCrの含有量は更に150~450質量ppmであることが好ましく、更に200~400質量ppmであることが好ましい。
 めっき層と鋼材との間にはAlとCrとを含有する合金層が介在することが好ましい。本発明では、合金層はめっき層とは異なる層とみなされる。合金層は、構成元素として、AlとCr以外に、Mn、Fe、Co、Ni、Cu、Zn、Sn等の種々の金属元素を含有してもよい。このような合金層が存在すると、合金層中のCrによってめっき層中のSi-Mg相の成長が促進され、めっき層中のSi-Mg相の体積割合が高くなると共に、めっき層中のMg全量に対するSi-Mg相中のMgの割合が高くなる。これにより、めっき層のしわやタレが更に抑制される。特に、合金層中のCrの含有割合(質量割合)の、めっき層内のCrの含有割合(質量割合)に対する比が、2~50の範囲であることが好ましい。この場合、めっき層内の合金層付近においてSi-Mg相の成長が促進されることで、めっき層の表面でのSi―Mg相の面積比率が低くなり、このためタレが更に抑制されると共にめっき層の耐食性が更に長期に亘って維持される。合金層中のCrの含有割合の、めっき層内のCrの含有割合に対する比は、更に3~40であることが好ましく、更に4~25であることが好ましい。合金層中のCr量は、めっき層の断面をエネルギー分散型X線分析装置(EDS)を用いて測定することで導出することができる。
 合金層の厚みは0.05~5μmの範囲であることが好ましい。この厚みが0.05μm以上であれば、合金層による上記作用が効果的に発揮される。この厚みが5μm以下であれば、合金層によって表面処理鋼材の加工性が損なわれにくくなる。
 めっき層がCrを含有すると、めっき層の折り曲げ加工変形後の耐食性も向上する。その理由は次の通りであると考えられる。めっき層が厳しい折り曲げ加工変形を受けると、めっき層及びめっき層上の塗膜にクラックが生じる場合がある。その際、クラックを通じてめっき層内に水や酸素が浸入してしまい、めっき層内の合金が直接腐食因子に晒されてしまう。しかし、めっき層の特に表層に存在するCr並びに合金層に存在するCrはめっき層の腐食反応を抑制し、これによりクラックを起点とした腐食の拡大が抑制される。めっき層の折り曲げ加工変形後の耐食性が特に向上するためには、めっき層における50nm深さの最外層内でのCrの含有量が300質量ppm以上であることが好ましく、特に200~400質量ppmの範囲であることが好ましい。また、めっき層の折り曲げ加工変形後の耐食性が特に向上するためには、合金層中のCrの含有割合(質量割合)の、めっき層内のCrの含有割合(質量割合)に対する比が20以上であることが好ましく、特に20~30の範囲であることが好ましい。
 めっき層は構成元素として更にSrを含有することが好ましい。この場合、Srによってめっき層中のSi-Mg層の形成が特に促進される。更に、Srによって、めっき層の表層におけるMg系酸化皮膜の形成が抑制される。これは、Mg系酸化皮膜よりもSrの酸化膜の方が優先的に形成されやすくなることで、Mg系酸化皮膜の形成が阻害されるためであると考えられる。これにより、めっき層におけるしわの発生が更に抑制される。めっき層中のSrの含有量は1~1000質量ppmの範囲であることが好ましい。このSrの含有量が1質量ppm未満であると上述の作用が発揮されなくなり、この含有量が1000質量ppmより多くなるとSrの作用が飽和してしまうだけでなく、めっき鋼板の製造時に溶融めっき浴中にドロスが発生しやすくなってしまう。このSrの含有量は特に5質量ppm以上であることが好ましい。またこのSrの含有量は特に500質量ppm以下であることが好ましく、更に300質量ppm以下であることが好ましい。このSrの含有量は、更に20~50質量ppmの範囲であることが好ましい。
 めっき層は構成元素として更にFeを含有することが好ましい。この場合、Feによってめっき層中のSi-Mg層の形成が特に促進される。更に、Feはめっき層のミクロ組織及びスパングル組織の微細化にも寄与し、これによりめっき層の外観及び加工性が向上する。めっき層におけるFeの含有量は0.1~1.0質量%の範囲であることが好ましい。このFeの含有量が0.1質量%未満であるとめっき層のミクロ組織及びスパングル組織が粗大化してめっき層の外観が悪化すると共に加工性が悪化してしまう。この含有量が1.0質量%より多くなるとめっき層のスパングルがあまりにも微細化し、或いは消失してしまってスパングルによる外観向上がなされなくなると共に、表面処理鋼材の製造時に溶融めっき浴中にドロスが発生しやすくなってめっき層の外観が更に悪化してしまう。このFeの含有量は特に0.2質量%以上であることが好ましい。またこのFeの含有量は特に0.5質量%以下であることが好ましい。Feの含有量が0.2~0.5質量%の範囲であれば特に好ましい。
 めっき層は、構成元素として更にアルカリ土類元素、Sc、Y、ランタノイド元素、Ti及びBから選択される元素を含有してもよい。
 アルカリ土類元素(Be、Ca、Ba、Ra)、Sc、Y、及びランタノイド元素(La、Ce、Pr、Nd、Pm、Sm、Eu等)は、Srと同様の作用を発揮する。めっき層におけるこれらの成分の含有量の総量は、質量比率で1.0質量%以下であることが好ましい。
 Ti及びBのうち少なくとも一方をめっき層が含有すると、めっき層のα-Al相(デンドライト組織)が微細化することでスパングルが微細化し、このため、スパングルによるめっき層の外観が向上する。更に、Ti及びBのうち少なくとも一方によりめっき層でのしわの発生が更に抑制される。これは、Ti及びBの作用によりSi-Mg相も微細化し、この微細化したSi-Mg相が、溶融めっき金属が凝固してめっき層が形成されるプロセスにおいて溶融めっき金属の流動を効果的に抑制するためと考えられる。更に、このようなめっき組織の微細化によって曲げ加工時のめっき層内の応力の集中が緩和されて大きなクラックの発生等が抑制され、めっき層の曲げ加工性が更に向上する。前記作用が発揮されるためには、溶融めっき浴2中のTi及び/又はBの含有量の合計が、質量比率で0.0005~0.1質量%の範囲であることが好ましい。このTi及び/又はBの含有量の合計は特に0.001質量%以上であることが好ましい。またこのTi及び/又はBの含有量の合計は特に0.05質量%以下であることが好ましい。Ti及び/又はBの含有量の合計が0.001~0.05質量%の範囲であれば特に好ましい。
 Znは、めっき層の構成元素全体のうち、Zn以外の構成元素を除いた残部を占める。
 めっき層は構成元素として上記以外の元素を含まないことが好ましい。特にめっき層は、Al、Zn、Si、Mg、Cr、Sr、及びFeのみを構成元素として含有すること、或いは、これらの元素、並びにアルカリ土類元素、Sc、Y、ランタノイド元素、Ti及びBから選択される元素のみを構成元素として含有することが、好ましい。
 但し、言うまでもないが、めっき層は、Pb、Cd、Cu、Mn等の不可避的不純物を含有してもよい。この不可避的不純物の含有量はできるだけ少ない方が好ましく、特にこの不可避的不純物の含有量の合計がめっき層に対して質量比率で1質量%以下であることが好ましい。
 [めっき層の製造方法]
 好ましい実施形態では、鋼材をめっき層の構成元素の組成と一致する組成を有する溶融めっき浴に浸漬することにより実施される。溶融めっき処理により鋼材とめっき層との間に合金層が形成されるが、それによる組成の変動は無視し得るほどに小さい。
 本実施形態では、例えば25~75質量%のAl、0.5~10質量%のMg、0.02~1.0質量%のCr、Alに対して0.5~10質量%のSi、1~1000質量ppmのSr、0.1~1.0質量%のFe、及びZnを含有する溶融めっき浴が準備される。溶融めっき浴中のSi:Mgの質量比は、100:50~100:300の範囲であることが好ましい。
 また、別の実施形態では、例えばAlを25~75質量%、Crを0.02~1.0質量%、SiをAlに対して0.5~10質量%、Mgを0.1~0.5質量%、Feを0.1~0.6質量%、Srを1~500質量ppmの範囲で含有させ、或いは更にアルカリ土類元素、ランタノイド元素、Ti及びBから選択される成分を含有させ、残部をZnとした溶融めっき浴を準備することができる。
 溶融めっき処理により形成されるめっき層には、しわが発生しにくくなる。従来、Mgを含有する溶融した金属(溶融めっき金属)が溶融めっき処理によって鋼材に付着すると、この溶融めっき金属の表層でMgが濃化しやすくなり、このためにMg系酸化皮膜が形成され、このMg系酸化皮膜に起因してめっき層にしわが発生しやすかった。しかしながら、上記組成を有する溶融めっき浴が用いられることでめっき層が形成されると、鋼材に付着した溶融めっき金属の表層におけるMgの濃化が抑制され、溶融めっき金属が流動してもめっき層の表面にしわが発生しにくくなる。更にこの溶融めっき金属内部の流動性が低減されて、溶融めっき金属の流動自体が抑制され、このため前記しわが更に発生しにくくなる。
 前記のようなMgの濃化及び溶融めっき金属の流動の抑制は、次の様な機序によりなされると考えられる。
 鋼材の表面上に付着した溶融めっき金属が冷却されて凝固する過程で、まずα-Al相が初晶として析出し、デンドライト状に成長する。このようにAlリッチなα-Al相の凝固が進行すると、残部の溶融めっき金属中(すなわち、溶融めっき金属の未だ凝固していない成分中)のMgとSi濃度が除々に高くなる。次に鋼材が冷却されてその温度が更に低下すると、残部の溶融めっき金属の中からSiを含有するSi含有相(Si-Mg相)が凝固析出する。このSi-Mg相は、上述の通りMgとSiとの合金で構成される相である。このSi-Mg相の析出・成長がCr、Fe及びSrによって促進される。このSi-Mg相に溶融めっき金属中のMgが取り込まれることで、溶融めっき金属の表層へのMgの移動が阻害され、この溶融めっき金属の表層でのMgの濃化が抑制される。
 更に、溶融めっき金属中のSrもMgの濃化抑制に寄与する。これは溶融めっき金属中でSrはMgと同様に酸化しやすい元素であることから、SrがMgと競争的にめっき表面で酸化膜を形成し、結果としてMg系酸化皮膜の形成が抑制されるためであると考えられる。
 更に、前記のように初晶であるα-Al相以外の残部の溶融めっき金属中でSi-Mg相が凝固成長することで、溶融めっき金属が固液混相状態となり、このため溶融めっき金属自体の流動性が低下し、その結果としてめっき層表面のしわの発生が抑制される。
 Feはめっき層のミクロ組織やスパングルを制御する上で重要である。Feがめっき層の組織に影響を与える理由は、現時点では必ずしも明確ではないが、Feは溶融めっき金属中でSiと合金化し、この合金が溶融めっき金属の凝固時に凝固核となるためであると考えられる。
 更に、SrはMgと同様に卑な元素であることから、Srによってめっき層の犠牲防食作用が更に強化され、表面処理鋼材の耐食性が更に向上する。SrはSi相及びSi-Mg相の析出形態の針状化を抑制する作用も発揮し、このためSi相及びSi-Mg相が球状化して、めっき層におけるクラックの発生が抑制される。
 溶融めっき処理時には、めっき層と鋼材との間に、溶融めっき金属中のAlの一部を含有する合金層も形成される。例えば鋼材にプレめっきが施されていない場合には、めっき浴中のAlと鋼材中のFeとを主体とするFe-Al系の合金層が形成される。鋼材にプレめっきが施されている場合には、めっき浴中のAlとプレめっきの構成元素の一部或いは全部とを含み、或いは更に鋼材中のFeを含む合金層が形成される。
 めっき浴がCrを含有する場合、合金層は構成元素としてAlと共に更にCrを含む。合金層は、めっき浴の組成、プレめっきの有無、鋼材1の組成などに応じて、構成元素として、AlとCr以外に、Si、Mn、Fe、Co、Ni、Cu、Zn、Sn等の種々の金属元素を含有し得る。
 合金層中には、溶融めっき金属中のCrの一部がめっき層中よりも高い濃度で含有されるようになる。このような合金層が形成されると、合金層中のCrによってめっき層中のSi-Mg相の成長が促進され、めっき層中のSi-Mg相の体積割合が高くなると共に、めっき層中のMg全量に対するSi-Mg相中のMgの割合が高くなる。これにより効果は、上述したので説明を繰り返さない。
 合金層の厚みが過大であると表面処理鋼材の加工性は低下するが、溶融めっき浴中のSiの作用によって前記合金層の過剰な成長が抑制され、このため、表面処理鋼材の良好な加工性が確保される。合金層の厚みは0.05~5μmの範囲であることが好ましい。合金層の厚みが前記範囲であると、表面処理鋼材の耐食性が充分に向上すると共に、加工性も充分に向上する。
 更に、めっき層内では、その表面付近でCrの濃度が一定範囲に保たれ、それに伴ってめっき層の耐食性が更に向上する。この理由は、明確ではないが、Crが酸素と結合することでめっき層の表面付近に複合酸化膜が形成されるためであると推測される。このようなめっき層の耐食性向上のためには、めっき層における50nm深さの最外層内でのCrの含有量が100~500質量ppmとなることが好ましい。
 溶融めっき浴がCrを含有すると、めっき層の折り曲げ加工変形後の耐食性も向上する。その理由は次の通りであると考えられる。厳しい折り曲げ加工変形を受けると、めっき層及びめっき層上の塗装皮膜にクラックが生じる場合がある。その際、クラックを通じてめっき層内に水や酸素が浸入してしまい、めっき層内の合金が直接腐食因子に晒されてしまう。しかし、めっき層の特に表層に存在するCr並びに合金層に存在するCrはめっき層の腐食反応を抑制し、これによりクラックを起点とした腐食の拡大が抑制される。
 上記好ましい実施形態で扱われる溶融めっき金属は、七成分以上の元素を含む多元系溶融金属であり、その凝固過程は極めて複雑であって理論的に予測することは困難であるが、本発明者らは実験での観察等を通じて、上記重要な知見を得るに至った。
 溶融めっき浴の組成が上記のように調整されることで、上記の通りめっき層におけるしわやタレの抑制、並びに表面処理鋼材の耐食性と加工性の確保が、達成され得る。
 溶融めっき浴が特にCaを含有する場合には、溶融めっき浴におけるドロスの発生が著しく抑制される。溶融めっき浴がMgを含有する場合には、Mgの含有量が10質量%以下であってもある程度のドロスの発生は避けがたく、表面処理鋼材の良好な外観が確保されるためにはめっき浴からのドロスの除去が必要となるが、溶融めっき浴が更にCaを含有すると、Mgに起因するドロスの発生が著しく抑制される。これにより、表面処理鋼材の外観がドロスにより悪化することが更に抑制されると共に、溶融めっき浴からドロスを除去するために要する手間が軽減される。溶融めっき浴中のCaの含有量は100~5000質量ppmの範囲であることが好ましい。この含有量が100質量ppm以上であることで、溶融めっき浴中のドロスの発生が効果的に抑制される。Caの含有量が過剰であるとこのCaに起因するドロスが発生するおそれがあるが、Caの含有量が5000質量ppm以下であることで、Caに起因するドロスが抑制される。この含有量は更に200~1000質量ppmの範囲であることが好ましい。
 上記のようにめっき層の表面のしわが抑制されることによって、特にめっき層の表面に、高さが200μmより大きいと共に急峻度が1.0よりも大きい隆起が存在しなくなることが好ましい。急峻度とは、(隆起の高さ(μm))÷(隆起の底面の幅(μm))で規定される値である。隆起の底面は、隆起の周囲の平坦面を含む仮想的な平面と隆起とが交わる箇所のことである。隆起の高さとは隆起の底面から隆起の先端までの高さである。急峻度が低い場合、めっき層の外観が更に向上する。更に、めっき層に重ねて後述するように塗膜が形成される場合に、隆起が前記塗膜を突き破ることが防止されると共に、前記塗膜の厚みが容易に均一化され得るようになる。これにより、塗膜が形成された表面処理鋼材の外観が向上すると共に、塗膜によって表面処理鋼材が更に優れた耐食性等を発揮し得るようになる。
 このようなMgの濃化の程度、Si―Mg相の状態、合金層の厚み及びめっき層の表面の隆起の急峻度の調整は、鋼材に上記組成の溶融めっき浴を用いて溶融めっき処理を施すことで達成され得る。
 溶融めっき処理にあたっては、Cr、Mn、Fe、Co、Ni、Cu、Zn、Snから選択される少なくとも一種の成分を含有するプレめっき層が形成されている鋼材に、めっき層形成のための溶融めっき処理が施されてもよい。前記溶融めっき処理を施す前の鋼材にプレめっき処理が施されることで、この鋼材の表面上にプレめっき層が形成される。このプレめっき層によって、溶融めっき処理時の鋼材と溶融めっき金属との濡れ性が向上し、鋼材とめっき層との間の密着性が改善する。
 プレめっき層は、プレめっき層を構成する金属の種類に依存するが、めっき層の表面外観や耐食性の更なる向上にも寄与する。例えばCrを含有するプレめっき層が形成される場合、鋼材とめっき層との間でCrを含有する合金層の形成が促進され、表面処理鋼材の耐食性が更に向上する。例えばFeやNiを含有するプレめっき層が形成される場合、鋼材と溶融めっき金属との濡れ性が向上してめっき層の密着性が大きく改善し、更にSi―Mg相の析出が促進され、めっき層の表面外観が更に向上する。Si―Mg相の析出の促進は、プレめっき層と溶融めっき金属との反応に起因して生じると考えられる。
 プレめっき層の付着量は特に限定されないが、鋼材の片面上での付着量が0.1~3g/mの範囲であることが好ましい。この付着量が0.1g/m未満であれば、プレめっき層による鋼材表面の被覆が困難であり、プレめっきによる改善効果が十分に発揮されない。またこの付着量が3g/mを超える場合は、改善効果が飽和するばかりでなく製造コスト高となる。
 以下に、鋼材に対して溶融めっき処理を施すための溶融めっき処理装置の概要、並びに溶融めっき処理の好適な処理条件について図1等を参照しながら説明する。図1は、溶融めっき処理装置の一例を示す概略図である。
 処理対象である鋼材1は炭素鋼、合金鋼、ステンレス鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼などの鉄鋼から形成されている部材である。鋼材1としては、薄鋼板、厚鋼板、型鋼、鋼管、鋼線等の種々の部材が挙げられる。すなわち、鋼材1の形状は特に制限されない。
 鋼材1には、溶融めっき処理の前にフラックス処理が施されていてもよい。このフラックス処理により、鋼材1の溶融めっき浴2との濡れ性及び密着性が改善され得る。鋼材1には、溶融めっき浴2に浸漬される前に加熱焼鈍・還元処理が施されてもよいし、この処理が省略されてもよい。上記の通り鋼材1には溶融めっき処理の前にプレめっき処理が施されてもよい。
 以下では、鋼材1として板材(鋼板1a)が採用される場合、すなわち溶融めっき鋼板が製造される場合の、溶融めっき鋼板の製造工程について説明する。
 図1に示される溶融めっき処理装置は、鋼板1aを連続的に搬送する搬送装置を備える。この搬送装置は、繰出機3、巻取機12、及び複数の搬送ロール15で構成されている。この搬送装置では、長尺な鋼板1aのコイル13(第一のコイル13)を繰出機3が保持される。この第一のコイル13が繰出機3で巻き解かれ、鋼板1aが搬送ロール15で支えられながら巻取機12まで搬送される。更にこの鋼板1aを巻取機12が巻回し、この巻取機12が鋼板1aのコイル12(第二のコイル12)を保持する。
 この溶融めっき処理装置では、前記搬送装置による鋼板1aの搬送経路の上流側から順に、加熱炉4、焼鈍・冷却部5、スナウト6、ポット7、噴射ノズル9、冷却装置10、調質圧延・形状矯正装置11が順次設けられている。加熱炉4は鋼板1aを加熱する。この加熱炉4は無酸化炉等で構成される。焼鈍・冷却部5は鋼板1aを加熱焼鈍し、それに続いて冷却する。この焼鈍・冷却部5は加熱炉4に連結されており、上流側に焼鈍炉が、下流側に冷却帯(冷却機)がそれぞれ設けられている。この焼鈍・冷却部5内は還元性雰囲気に保持されている。スナウト6はその内部で鋼板1aが搬送される筒状の部材であり、その一端が前記焼鈍・冷却部5に連結され、他端がポット7内の溶融めっき浴2内に配置される。スナウト6内は焼鈍・冷却部5内と同様に還元性雰囲気に保持される。ポット7は溶融めっき浴2を貯留する容器であり、その内部にはシンクロール8が配置されている。噴射ノズル9は鋼板1aに向けてガスを噴射する。噴射ノズル9はポット7の上方に配置される。この噴射ノズル9は、ポット7から引き上げられた鋼板1aの両面に向けてガスを噴射できる位置に配置される。冷却装置10は鋼板に付着している溶融めっき金属を冷却する。この冷却装置10としては、空冷機、ミスト冷却機等が設けられ、この冷却装置10で鋼板1aが冷却される。調質圧延・形状矯正装置11は、めっき層が形成された鋼板1aの調質圧延及び形状矯正をおこなう。この調質圧延・形状矯正装置11は、鋼板1aに対して調質圧延をおこなうためのスキンパスミル等や、調質圧延後の鋼板1aに対して形状矯正をおこなうためのテンションレベラー等を備える。
 この溶融めっき処理装置を用いた溶融めっき処理では、まず繰出機3から鋼板1aが巻き解かれて連続的に繰り出される。この鋼板1aが加熱炉4で加熱された後、還元性雰囲気の焼鈍・冷却部5に搬送され、焼鈍炉で焼き鈍されると同時に、鋼板1aの表面に付着している圧延油等の除去や酸化膜の還元除去などの表面の清浄化がなされた後、冷却帯で冷却される。次に、鋼板1aはスナウト6を通過し、更にポット7に侵入してこのポット7内の溶融めっき浴2中に浸漬される。鋼板1aはポット7内でシンクロール8に支えられることでその搬送方向が上方へ転換され、溶融めっき浴2から引き出される。これにより鋼板1aに溶融めっき金属が付着する。
 次に、この鋼板1aの両面に噴射ノズル9からガスが噴射されることで、鋼板1aに付着した溶融めっき金属の付着量が調整される。このようなガスの噴射による付着量の調整方法をガスワイピング法という。この溶融めっき金属の付着量は鋼板1aの両面を併せて40~200g/mの範囲に調整されることが好ましい。
 ガスワイピング法において鋼板1aへ噴射されるガス(ワイピングガス)の種類として、大気、窒素、アルゴン、ヘリウム、水蒸気等が挙げられる。これらのワイピングガスは予備加熱されてから鋼板1aへ噴射されてもよい。本実施形態では特定組成の溶融めっき浴2が用いられることで、溶融めっき金属中のMgの表面酸化濃化(溶融めっき金属の表層におけるMgの酸化並びにMg濃度の上昇)が本質的に抑制される。このため、たとえワイピングガス中に酸素が含まれ、若しくはワイピングガスの噴射に随伴する気流中に酸素が含まれていても、発明の効果を損なうことなくめっき付着量(鋼板1a上に付着している溶融めっき金属の量)の調整が可能となる。
 めっき付着量の調整方法は、勿論前記ガスワイピング法に限られず、種々の付着量制御法を適用することができる。ガスワイピング法以外の付着量制御法としては、例えば溶融めっき浴2の浴面直上に配置された一対のロール間に鋼板1aを通過させるロール絞り法、溶融めっき浴2から引き出された鋼板1aに近接して遮蔽板を配置してこの遮蔽板で溶融めっき金属を払拭する方法、鋼板1aに付着している溶融めっき金属に対して電磁力を用いて下方へ移動する力を加える電磁力ワイピング法、外的な力を加えず自然重力落下を利用してめっき付着量を調整する方法等が挙げられる。二種以上のめっき付着量の調整方法が組み合わされてもよい。
 次にこの鋼板1aは噴射ノズル9の配置位置よりも更に上方に搬送された後、二つの搬送ロール15に支えられることで下方へ折り返すように搬送される。すなわち鋼板1aは逆U字状の経路を搬送される。この逆U字状の経路において、鋼板1aが冷却装置10で空冷やミスト冷却等により冷却される。これにより、鋼板1aの表面上に付着した溶融めっき金属が凝固し、めっき層が形成される。
 冷却装置10によって冷却されることにより溶融めっき金属の凝固が完全に終了するためには、鋼板1a上が冷却装置10により、溶融めっき金属(或いはめっき層)の表面温度が300℃以下になるまで冷却されることが好ましい。溶融めっき金属の表面温度は、例えば放射温度計などで測定される。このようにめっき層が形成されるためには、この鋼板1aがめっき浴2より引き出されてから鋼板1a上の溶融めっき金属の表面が300℃に冷却されるまでの間の冷却速度が5~100℃/secの範囲であることが好ましい。鋼板1aの冷却速度を制御するために、冷却装置10が、鋼板1aの温度をその搬送方向及び板幅方向に沿って調節するための温度制御機能を備えることが好ましい。冷却装置10は、鋼板1aの搬送方向に沿って複数に分割されていてもよい。図1では、噴射ノズル9の配置位置よりも更に上方に搬送される経路において鋼板1aを冷却する一次冷却装置101と、一次冷却装置101よりも下流側で鋼板1aを冷却する二次冷却装置102とが設けられている。一次冷却装置101と二次冷却装置102とが更に複数に分割されていてもよい。この場合、例えば一次冷却装置101で鋼板1aを溶融めっき金属の表面が300℃或いはそれ以下の温度になるまで冷却し、更に二次冷却装置102で鋼板1aを、調質圧延・形状矯正装置11へ導入される際の温度が100℃以下となるように冷却することができる。
 鋼板1aが冷却される過程では、鋼板1a上の溶融めっき金属の表面温度が500℃以上である間の溶融めっき金属の表面の冷却速度が50℃/sec以下であることが好ましい。この場合、めっき層の表面におけるSi-Mg相の析出が特に抑制され、このためタレの発生が抑制される。この温度域での冷却速度がSi-Mg相の析出挙動に影響する理由は現時点で必ずしも明確ではないが、この温度域での冷却速度が速いと溶融めっき金属における厚み方向の温度勾配が大きくなり、このため温度がより低い溶融めっき金属の表面で優先的にMg-Si層の析出が促進されてしまい、その結果、めっき最表面でのSi-Mg相の析出量が多くなってしまうと考えられる。この温度域での冷却速度は、40℃/sec以下であれば更に好ましく、35℃/sec以下であれば特に好ましい。
 冷却後の鋼板1aには調質圧延・形状矯正装置11で調質圧延が施された後、形状矯正が施される。調質圧延による圧下率は0.3~3%の範囲であることが好ましい。形状矯正による鋼板1aの伸び率は3%以下であることが好ましい。
 続いて、鋼板1aは巻取機12で巻き取られ、この巻取機12で鋼板1aのコイル14が保持される。
 このような溶融めっき処理時においては、ポット7内の溶融めっき浴2の温度は、この溶融めっき浴2の凝固開始温度より高く且つ前記凝固開始温度よりも40℃高い温度以下の温度であることが好ましい。ポット7内の溶融めっき浴2の温度が溶融めっき浴2の凝固開始温度より高く且つ前記凝固開始温度よりも25℃高い温度以下の温度であれば更に好ましい。このように溶融めっき浴2の温度の上限が制限されると、鋼板1aが溶融めっき浴2から引き出されてから、この鋼板1aに付着した溶融めっき金属が凝固するまでに要する時間が短縮される。その結果、鋼板1aに付着している溶融めっき金属が流動可能な状態にある時間も短縮され、このためめっき層にしわが更に発生しにくくなる。前記溶融めっき浴2の温度が、溶融めっき浴2の凝固開始温度よりも20℃高い温度以下であれば、めっき層におけるしわの発生が特に著しく抑制される。
 鋼板1aが溶融めっき浴2から引き出される際には、非酸化性雰囲気又は低酸化性雰囲気中へ引き出されてもよく、更にこの非酸化性雰囲気又は低酸化性雰囲気中で鋼板1aに対してガスワイピング法による溶融めっき金属の付着量の調整が施されてもよい。そのためには、例えば図2に示すように、溶融めっき浴2から引き出された鋼材1の、溶融めっき浴2よりも上流側の搬送経路(溶融めっき浴2から上方へと向かう搬送経路)が、中空の部材22で囲まれると共に、この中空の部材22の内部が窒素ガスなどの非酸化性ガス又は低酸化性ガスで満たされることが好ましい。非酸化性ガス又は低酸化性ガスとは、大気に比較して酸素濃度が低いガスを意味する。非酸化性ガス又は低酸化性ガスの酸素濃度は1000ppm以下であることが好ましい。非酸化性ガス又は低酸化性ガスで満たされた雰囲気が非酸化性雰囲気又は低酸化性雰囲気であり、この雰囲気中では酸化反応が抑制される。噴射ノズル9は中空の部材22の内側に配置される。中空の部材22は、溶融めっき浴2内(溶融めっき浴2の上部)からこの溶融めっき浴2の上方に亘って、鋼材1の搬送経路を囲むように設けられている。更に、噴射ノズル9から噴射されるガスも、窒素ガスなどの非酸化性ガス又は低酸化性ガスであることが好ましい。この場合、溶融めっき浴2から引き出された鋼板1aは非酸化性雰囲気又は低酸化性雰囲気に曝されるため、鋼板1aに付着した溶融めっき金属の酸化が抑制され、この溶融めっき金属の表層にMg系酸化皮膜が更に形成されにくくなる。このため、めっき層におけるしわの発生が更に抑制される。中空の部材22が使用される代わりに、鋼板1aの搬送経路を含む溶融めっき処理装置の一部、或いは溶融めっき処理装置の全部が、非酸化性雰囲気又は低酸化性雰囲気中に配置されてもよい。
 溶融めっき処理後の鋼板1aに対して、更に過時効処理が施されることも好ましい。この場合、表面処理鋼材の加工性が更に向上する。過時効処理は、鋼板1aを一定温度範囲内に一定時間保持することで施される。
 図3は、過時効処理に用いられる装置を示し、このうち図3(a)は加熱装置を、図3(b)は保温容器20をそれぞれ示す。加熱装置は、溶融めっき処理後の鋼板1aが連続的に搬送される搬送装置を備える。この搬送装置は、溶融めっき処理装置における搬送装置と同様に繰出機16、巻取機17、及び複数の搬送ロール21で構成されている。この搬送装置による鋼板1aの搬送経路には、誘導加熱炉等の加熱炉18が設けられている。保温容器20は、内部に鋼板1aのコイル19が保持可能であり、且つ断熱性を有する容器であれば、特に制限されない。保温容器20は大型の容器(保温室)であってもよい。
 鋼板1aに過時効処理が施される場合には、まず溶融めっき処理後の鋼板1aのコイル14が溶融めっき処理装置の巻取機12からクレーンや台車等で運搬され、加熱装置の繰出機16に保持される。加熱装置ではまず繰出機16から鋼板1aが巻き解かれて連続的に繰り出される。この鋼板1aは加熱炉18で過時効処理に適した温度まで加熱されてから、巻取機17で巻き取られ、この巻取機17で鋼板1aのコイル19が保持される。
 続いて、鋼板1aのコイル19が巻取機17からクレーンや台車等で運搬されて、保温容器20内に保持される。この保温容器20内に前記鋼板1aのコイル19が一定時間保持されることで、鋼板1aに対して過時効処理が施される。
 本実施形態により鋼板1aの表面上に形成されるめっき層はMgを含有し、めっき層の表面には僅かながらMg系酸化皮膜が存在することから、過時効処理時に鋼板1aのコイルにおいてめっき層同士が重ねられていても、めっき層間で焼き付きや溶着が生じにくい。このため、たとえ過時効処理時の保温時間が長時間であり、或いは保温温度が高温であっても、焼き付きが生じにくくなり、鋼板1aに充分な過時効処理が施され得る。これにより溶融めっき鋼板の加工性を大きく向上すると共に過時効処理の効率が向上する。
 過時効処理にあたっては、特に加熱装置による加熱後の鋼板1aの温度が180~220℃の範囲であること、すなわち鋼板1aの温度が前記範囲内である状態で鋼板が保温容器外から保温容器内へ移されることが好ましい。保温容器内での鋼板1aの保持時間y(hr)は、下記式(1)を充足することが好ましい。
  5.0×1022×t-10.0≦y≦7.0×1024×t-10.0  …(1)
  (但し、150≦t≦250)
  式(1)中のt(℃)は、前記保持時間y(hr)中における鋼板1aの温度(保持温度)であり、鋼板1aに温度変動が生じる場合にはその最低温度である。
 尚、本実施形態では、溶融めっき処理装置及び加熱装置が別個の装置であるが、溶融めっき処理装置が加熱炉21を備えることで溶融めっき処理装置が加熱装置を兼ねてもよい。これらの装置においては、必要に応じて種々の要素が追加、除去、置換等されることで適宜設計変更されてもよい。本実施形態による溶融めっき処理装置及び加熱装置は、鋼材1が鋼板1aである場合に適するが、溶融めっき処理装置、加熱装置等の構成は鋼材1の形状等に応じて種々設計変更が可能である。鋼材1に対してめっき前処理が施される場合には、このめっき前処理も、鋼材1の種類、形状等に応じて種々変更可能である。
 このように溶融めっき処理が施され、或いは更に過時効処理が施された鋼材1には、めっき層に重ねてクロメートフリー化成処理がなされ、その上に塗料組成物を用いた塗膜が形成される。本発明の塗料組成物は、塗膜形成性樹脂(a)と、架橋剤(b)と、バナジン酸アルカリ土類金属塩からなる群から選ばれる少なくとも1種のバナジウム化合物(c)と、第三リン酸マグネシウム(d)とを含有する。また、必要に応じて、密着性向上成分、体質顔料等の添加剤が含有されていてもよい。塗膜の上にトップコートとして別の塗料を塗布することもできる。
(塗膜形成性樹脂(a)について)
 本発明の塗料組成物に用いられる塗膜形成性樹脂(a)は、熱硬化性樹脂である。熱硬化性樹脂としては、後述する架橋剤(b)と反応しうる官能基を有し、かつ塗膜形成能を有する樹脂である限り特に制限されず、例えば、エポキシ樹脂およびその変性物(アクリル変性エポキシ樹脂等);ポリエステル樹脂およびその変性物(ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、シリコーン変性ポリエステル樹脂等);アクリル樹脂およびその変性物(シリコーン変性アクリル樹脂等);ウレタン樹脂およびその変性物(エポキシ変性ウレタン樹脂等);フェノール樹脂およびその変性物(アクリル変性フェノール樹脂、エポキシ変性フェノール樹脂等);フェノキシ樹脂;アルキド樹脂およびその変性物(ウレタン変性アルキド樹脂、アクリル変性アルキド樹脂等);フッ素樹脂;ポリフェニレンエーテル樹脂;ポリアミドイミド樹脂;ポリエーテルイミド樹脂等の樹脂を挙げることができる。これらの樹脂は1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、塗膜形成性樹脂(a)としては、得られる塗膜の折り曲げ加工性や得られる塗膜の耐湿性、耐食性および耐候性のバランスの観点から、エポキシ樹脂、ポリエステル樹脂またはこれらの変性物等の熱硬化性樹脂を用いることが可能であって、これらから選択される1種以上を用いることができる。好ましくは、熱硬化性樹脂として、水酸基含有エポキシ樹脂、水酸基含有ポリエステル樹脂および水酸基を含有するこれらの変性物から選択される1種以上が用いられる。エポキシ樹脂、ポリエステル樹脂およびこれらの変性物が水酸基を有していると、架橋剤(b)として、各種アミノ樹脂、各種イソシアネート化合物を選択することができる。その結果、種々の架橋剤(b)の中から、所望の性質を有する架橋剤(b)を選択することによって、塗膜に多様な物性を付与することができるようになるため、特に好ましい。
 上記水酸基含有エポキシ樹脂(水酸基含有エポキシ樹脂変性物を含む)の数平均分子量(Mn)は、1,400~15,000であることが好ましく、2,000~10,000であることがより好ましく、2,000~4,000であることが特に好ましい。上記水酸基含有エポキシ樹脂のガラス転移温度(Tg)は60~120℃であることが好ましく、60~85℃であることがより好ましい。また、上記水酸基含有ポリエステル樹脂(水酸基含有ポリエステル樹脂変性物を含む)の数平均分子量(Mn)は、1,800~40,000であることが好ましく、2,000~30,000であることがより好ましく、10,000~20,000であることが特に好ましい。上記水酸基含有ポリエステル樹脂のガラス転移温度(Tg)は0~80℃であることが好ましく、10~40℃であることがより好ましい。使用する水酸基含有エポキシ樹脂および/または酸基含有ポリエステル樹脂の数平均分子量(Mn)が上記範囲内であることにより、後述する架橋剤(b)との架橋反応が十分に進行し、塗膜の耐湿性が十分となり、それに伴い耐食性を確保できるとともに、得られる塗料組成物が適切な粘度になって取り扱い性が良好となる。また、塗膜中に含まれるバナジウム化合物、第三リン酸マグネシウムの溶出が適切となり、酸性環境条件下における耐食性が良好となり、好ましい。また、使用する水酸基含有エポキシ樹脂および/または水酸基含有ポリエステル樹脂のガラス転移温度(Tg)が上記範囲内であることにより、塗膜の透湿性が過度に高くなることなく、塗膜の耐湿性が十分となり、耐食性も良好となる。
 上記水酸基含有エポキシ樹脂(水酸基含有エポキシ樹脂変性物を含む)としては、例えば、三菱化学製の商品名「jER1004」、「jER1007」、「E1255HX30」(ビスフェノールA骨格)、「YX8100BH30」等を挙げることができる(ここで、「jER」は登録商標である)。また、水酸基含有ポリエステル樹脂(水酸基含有ポリエステル樹脂変性物を含む)としては、例えば、DIC製の商品名「ベッコライト47-335」、東洋紡製の商品名「バイロン220」、「バイロンUR3500」、「バイロンUR5537」、「バイロンUR8300」等を挙げることができる(ここで、「バイロン」は登録商標である)。
 なお、本明細書中において、数平均分子量(Mn)とは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出した値である。また、本明細書中において、ガラス転移温度(Tg)とは、熱分析装置(セイコーインスツル製の商品名「TMA100/SSC5020」)を用いて測定した値である。
 本発明の塗料組成物における塗膜形成性樹脂(a)の含有量は、通常、全固形分中10~80質量%であり、20~70質量%であることが好ましい。10質量%以上であることにより、折り曲げ加工性、塗装作業性、塗膜強度が良好となる。また、塗膜形成性樹脂(a)の含有量が80質量%以下であることにより、十分な耐食性を得ることができる。
 本発明の塗料組成物は、塗膜形成性樹脂(a)以外の樹脂として、熱可塑性樹脂(j)を含有させてもよい。熱可塑性樹脂(j)としては、例えば、塩素化ポリエチレン、塩素化ポリプロピレン等の塩素化オレフィン系樹脂;塩化ビニル、酢酸ビニル、塩化ビニリデン等をモノマー成分とする単独重合体または共重合体;セルロース系樹脂;アセタール樹脂;アルキド樹脂;塩化ゴム系樹脂;変性ポリプロピレン樹脂(酸無水物変性ポリプロピレン樹脂等);フッ素樹脂(例えばフッ化ビニリデン樹脂、フッ化ビニル樹脂、フッ素化オレフィンとビニルエーテルとの共重合体、フッ素化オレフィンとビニルエステルとの共重合体)等を挙げることができる。熱可塑性樹脂(j)は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。熱可塑性樹脂(j)を併用することで、塗膜物性を所望の性質に調製することができる。
(架橋剤(b)について)
 架橋剤(b)は、熱硬化性樹脂と反応して硬化塗膜を形成するものである。架橋剤(b)としては、ポリイソシアネート化合物のイソシアネート基を活性水素含有化合物でブロックしたブロックポリイソシアネート化合物(f)、アミノ樹脂(g)、フェノール樹脂等を挙げることができ、なかでも、ブロックポリイソシアネート化合物(f)およびメチロール基若しくはイミノ基を1分子中に平均して1つ以上有するアミノ樹脂(g)からなる群から選択される1種以上を用いることが好ましい。
 上記ポリイソシアネート化合物および上記ブロックポリイソシアネート化合物(f)を構成するポリイソシアネート化合物としては特に制限されず、従来公知のものを用いることができる。例えば、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、シクロヘキサン-1,3-または1,4-ジイソシアネート、1-イソシアナト-3-イソシアナトメチル-3,5,5-トリメチルシクロヘキサン(別名イソホロンジイソシアネート;IPDI)、ジシクロヘキシルメタン-4,4'-ジイソシアネート(別名:水添MDI)、2-または4-イソシアナトシクロヘキシル-2'-イソシアナトシクロヘキシルメタン、1,3-または1,4-ビス-(イソシアナトメチル)-シクロヘキサン、ビス-(4-イソシアナト-3-メチルシクロヘキシル)メタン、1,3-または1,4-α,α,α'α'-テトラメチルキシリレンジイソシアネート、2,4-または2,6-ジイソシアナトトルエン、2,2'-、2,4'-または4,4'-ジイソシアナトジフェニルメタン(MDI)、1,5-ナフタレンジイソシアネート、p-またはm-フェニレンジイソシアネート、キシレンジイソシアネート、ジフェニル-4,4'-ジイソシアネート等である。また、各ジイソシアネート同士の環化重合体(イソシアヌレート型)、さらにはイソシアネート・ビウレット体(ビウレット型)、アダクト型を使用してもよい。ポリイソシアネート化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。イソシアヌレート型のポリイソシアネート化合物は、本発明において好ましく用いられるものの1つである。
 上記のなかでも、ポリイソシアネート化合物としては、分子内に1以上の芳香族官能基を含有する芳香族ポリイソシアネート化合物を用いることが好ましい。芳香族ポリイソシアネート化合物を用いることにより、塗膜の耐湿性を向上させることができるとともに、塗膜強度を向上させることができる。好ましく用いられる芳香族ポリイソシアネート化合物としては、2,4-または2,6-ジイソシアナトトルエン(TDI)、2,2'-、2,4'-または4,4'-ジイソシアナトジフェニルメタン(MDI)、キシレンジイソシアネート(XDI)、ナフタレンジイソシアネート(NDI)等を挙げることができる。
 ブロックポリイソシアネート化合物(f)を構成するポリイソシアネート化合物の、JIS K 7301-1995に準拠して測定されるイソシアネート基含有率は、ポリイソシアネート化合物の固形分中、通常3~20%であり、好ましくは5~15%である。イソシアネート基含有率が上記好ましい範囲の下限値以上であることにより、塗膜の硬化性が十分となり好ましい。一方、イソシアネート基含有率が上記好ましい範囲の上限値以下であることにより、得られる塗膜の架橋密度が適切となって耐食性が良好となり好ましい。
 上記ブロックポリイソシアネート化合物(f)に用いられる活性水素含有化合物(ブロック化剤)としては特に制限されず、-OH基(アルコール類、フェノール類等)、=N-OH基(オキシム類等)、=N-H基(アミン類、アミド類、イミド類、ラクタム類等)を有する化合物や、-CH2-基(活性メチレン基)を有する化合物、アゾール類を挙げることができる。例えば、フェノール、クレゾール、キシレノール、ε-カプロラクタム、σ-バレロラクタム、γ-ブチロラクタム、メタノール、エタノール、n-、i-、またはt-ブチルアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコール、ホルムアミドオキシム、アセトアルドキシム、アセトキシム、メチルエチルケドキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシム、マロン酸ジメチル、アセト酢酸エチル、アセチルアセトン、ピラゾール等である。活性水素含有化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 ブロックポリイソシアネート化合物(f)の熱による解離温度は、これを構成するポリイソシアネート化合物および活性水素含有化合物の種類や触媒の有無およびその量に依存するが、本発明においては、熱による解離温度(無触媒状態)が120~180℃であるブロックポリイソシアネート化合物(f)が好ましく用いられる。この範囲内に解離温度を示すブロックポリイソシアネート化合物(f)を用いることにより、塗料の安定性を向上させることができ、また、塗膜形成性樹脂(a)との架橋反応性に優れているため、耐湿性が良好な塗膜を得ることができる。解離温度が120~180℃であるブロックポリイソシアネート化合物(f)としては、例えば、住化バイエルウレタン製の商品名「デスモジュールBL3175」、「デスモサーム2170」等を挙げることができる(ここで、「デスモジュール」、「DESMOTHERM」は登録商標である)。
 上記アミノ樹脂(g)としては、メラミン樹脂、尿素樹脂等を挙げることができ、なかでもメラミン樹脂が好ましく用いられる。「メラミン樹脂」とは、一般的に、メラミンとアルデヒドから合成される熱硬化性の樹脂を意味し、トリアジン核1分子中に3つの反応性官能基-NX12を有している。メラミン樹脂としては、反応性官能基として-N-(CH2OR)2〔Rはアルキル基、以下同じ〕を含む完全アルキル型;反応性官能基として-N-(CH2OR)(CH2OH)を含むメチロール基型;反応性官能基として-N-(CH2OR)(H)を含むイミノ基型;反応性官能基として、-N-(CH2OR)(CH2OH)と-N-(CH2OR)(H)とを含む、あるいは-N-(CH2OH)(H)を含むメチロール/イミノ基型の4種類を例示することができる。
 本発明においては、上記メラミン樹脂のなかでも、メチロール基またはイミノ基をトリアジン核に平均して1つ以上有するメラミン樹脂(以下、メラミン樹脂(g1)という)、すなわち、メチロール基型、イミノ基型あるいはメチロール/イミノ基型メラミン樹脂またはこれらの混合物を用いることが好ましい。メラミン樹脂(g1)は、無触媒下においても塗膜形成性樹脂(a)との架橋反応性に優れており、耐湿性が良好な塗膜を得ることができる。メラミン樹脂(g1)としては、例えば、日本サイテックインダストリーズ製の商品名「マイコート715」等を挙げることができる。
 本発明の塗料組成物における架橋剤(b)の含有量は、塗膜形成性樹脂(a)の固形分100質量%に対して、好ましくは、固形分で10~80質量%であり、より好ましくは20~70質量%である。架橋剤(b)の含有量(固形分換算)が、塗膜形成性樹脂(a)の固形分100質量%に対して10質量%以上であることにより、塗膜形成性樹脂(a)との架橋反応が十分に進行し、塗膜の透湿性が適切となって、塗膜の耐湿性が良好となり、耐食性が良好となる。また、架橋剤(b)の含有量(固形分換算)が、塗膜形成性樹脂(a)の固形分100質量%に対して80質量%以下であることにより、塗膜中の防錆顔料の溶出が十分となり耐食性が良好となる。
(バナジウム化合物(c)について)
 防錆顔料であるバナジウム化合物(c)は、バナジン酸アルカリ土類金属塩及びバナジン酸マグネシウムからなる群から選ばれる少なくとも1種のからなるバナジン酸金属塩である。バナジウム化合物(c)は、特定の電導度を有するものであり、具体的には、その1質量%水溶液の電導度が温度25℃において200μS/cm~2,000μS/cmである。この範囲内の電導度を有するバナジウム化合物(c)を所定量用いることにより、耐食性と耐湿性とがともに向上された塗膜を得ることができる。また、この範囲内の電導度を有するバナジウム化合物(c)は、適度な溶解性を示すことから、被塗物(鋼板等)の塗装面だけでなく、端面部の腐食を効果的に防止することができる。電導度が200μS/cm未満であると、塗膜から被塗物(鋼板等)へのバナジウム化合物の溶出が少なくなる結果、耐食性が低下する。また、電導度が2,000μS/cmを超えると、塗膜の透湿性が過度に高くなって(塗膜に水が過度に浸入しやすくなって)、塗膜の耐湿性が低下し、それに伴い耐食性も低下する。バナジウム化合物(c)の1質量%水溶液の電導度は、好ましくは200~1,000μS/cmである。なお、バナジン酸金属塩におけるバナジウムの原子価は3、4、5のいずれかであり、バナジン酸とは、オルトバナジン酸と、メタバナジン酸、ピロバナジン酸等の縮合バナジン酸のいずれも包含するものである。バナジン酸アルカリ土類金属塩としては、バナジン酸カルシウムが好ましい。
 本明細書中において、「1質量%水溶液」とは、イオン交換水99gに対して試料(例えば、バナジウム化合物(c))1gを加え、室温にて4時間攪拌して得られる溶液をいう。ただし、添加した試料の水への溶解度が1質量%未満の場合は、添加した試料のすべてがイオン交換水に溶解していなくてもよい。上記電導度は、温度25℃においてこの1質量%水溶液の電導度を、電気伝導度計(例えば、東亜ディーケーケー製電導度計「CM-30ET」)を用いて測定したときの値である。
 上記バナジン酸カルシウムは、その1質量%水溶液のpHが6.5~11.0であることが好ましく、7.0~10.0であることがより好ましい。pHがこの範囲内にあることにより、本発明の表面処理鋼材の耐食性を顕著に高めることができる。バナジン酸カルシウムの1質量%水溶液のpHが上記範囲外である場合には、鉄や亜鉛やアルミニウムなどの基材の腐食が生じやすくなるおそれがある。
 なお、ここでいう「1質量%水溶液」は上記と同じ意味であり、上記pHは、1質量%水溶液のpHを、pHメータ(堀場製作所製「F-54」)を用いて測定したときの値である。
 本発明において、上記バナジウム化合物(c)の含有量は、後述する塗膜形成性樹脂(a)の固形分および架橋剤(b)の固形分の合計100質量%に対して50質量%を超え150質量%以下であり、好ましくは60~100質量%である。バナジウム化合物(c)の含有量が、塗膜形成性樹脂(a)および架橋剤(b)の合計固形分100質量%に対して50質量%以下であると、塗膜から鋼材1へのバナジウム化合物(c)の溶出が少なくなる結果、耐食性が低下する。また、バナジウム化合物(c)の含有量が150質量%を超えると、塗膜の透湿性が過度に高くなって塗膜に水が過度に浸入しやすくなり、塗膜の耐湿性が低下し、耐湿性の低下に伴い耐食性も低下する。このように、本発明においては、防錆顔料である特定のバナジウム化合物(c)と塗膜形成性樹脂(a)と架橋剤(b)とからなる樹脂固形分との比率を、適正な範囲に調整することにより、耐湿性と耐食性を高位で両立することが可能となっている。
 本発明で用いられるバナジウム化合物(c)の調製方法は特に制限されず、いかなる方法が用いられてもよい。例えば、バナジウム化合物(c)がバナジン酸カルシウムである場合、カルシウム化合物とバナジン酸塩および/または五酸化バナジウムとを水中で混合し、反応させることによって得ることができる。当該反応によって得られた固体(通常、白色固体)は、必要に応じて水洗、脱水、乾燥、粉砕等の処理に供されてもよい。
 バナジン酸カルシウムを調製するためのカルシウム化合物としては、例えば、炭酸カルシウム、水酸化カルシウム、酸化カルシウム、塩化カルシウム、硝酸カルシウム、酢酸カルシウムおよび硫酸カルシウムが例示される。さらに、ギ酸カルシウム等の有機酸のカルシウム化合物もまた好適に用いられる。バナジン酸塩としては、バナジン酸カリウム、バナジン酸ナトリウム、バナジン酸アンモニウムが例示されるが、これらに限定されない。
 カルシウム化合物とバナジン酸塩とを反応させてバナジン酸カルシウムを調製する場合には、カルシウム化合物とバナジン酸塩および/または五酸化バナジウムとの使用比率を調整することによって、所望の電導度を示すバナジン酸カルシウムを得ることができる。また、電導度を上記範囲内に調整するために、異なる電導度を示す2種以上のバナジン酸カルシウムを均一に混合してもよい。
 同様にして、バナジウム化合物(c)がバナジン酸マグネシウムである場合は、マグネシウム化合物とバナジン酸塩および/または五酸化バナジウムとを水中で混合し、反応させることによって得ることができる。当該反応によって得られた固体(通常、白色固体)は、必要に応じて水洗、脱水、乾燥、粉砕等の処理に供されてもよい。
 バナジン酸マグネシウムを調製するためのマグネシウム化合物としては、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、塩化マグネシウム、硝酸マグネシウム、酢酸マグネシウムおよび硫酸マグネシウムが例示される。さらに、ギ酸マグネシウム等の有機酸のマグネシウム化合物もまた好適に用いられる。バナジン酸塩としては、バナジン酸カリウム、バナジン酸ナトリウム、バナジン酸アンモニウムが例示されるが、これらに限定されない。
 マグネシウム化合物とバナジン酸塩および/または五酸化バナジウムとを反応させてバナジン酸マグネシウムを調製する場合も、マグネシウム化合物とバナジン酸塩および/または五酸化バナジウムとの使用比率を調整することによって、所望の電導度を示すバナジン酸マグネシウムを得ることができる。また、電導度を上記範囲内に調整するために、異なる電導度を示す2種以上のバナジン酸マグネシウムを均一に混合してもよい。
(第三リン酸マグネシウム(d)について)
 第三リン酸マグネシウム(d)は、一般に「Mg3(PO42・8H2O」からなる、8水和物として市販されている。また、第三リン酸マグネシウム(d)は、酸性領域における高いpH緩衝能力を有し、例えば、図4に示すように、上記バナジウム化合物(c)と併用することで、酸性領域におけるpH緩衝能力が、上記バナジウム化合物(c)のみに比べ、格段に高くなり、その結果、第三リン酸マグネシウム(d)を上記バナジウム化合物(c)と併用することで、酸性環境条件における塗膜の耐食性が向上するという効果を発揮する。ここで、図4には、バナジウム化合物(c)として0.7質量%のバナジン酸カルシウムと0.3質量%の第三リン酸マグネシウム(d)からなる水溶液と、バナジウム化合物(c)として1.0質量%のバナジン酸カルシウムの水溶液の、酸性領域におけるpH緩衝作用について示されている。図4に示すpH緩衝作用の実験方法は、以下のとおりである。
[実験方法]:
1.塩酸または水酸化ナトリウムを用いて、水溶液の初期pHを調整する。
2.初期pHが調整された水溶液に、防錆顔料を1質量%添加して撹拌する。
3.上記「2.」にて調製された防錆顔料1質量%の水溶液の24時間後にpHを測定する。
 図4において、水溶液調製後24時間のpHが一点鎖線で示した6.5~11の範囲にある防錆顔料を用いることにより、冷延鋼板や亜鉛またはアルミニウムを含むめっき鋼板である場合において、高い耐食性を示す塗膜が得られる。したがって、図4に示すように、バナジン酸カルシウム単独より、バナジン酸カルシウムに第三リン酸マグネシウムを併用した場合には、pHが3付近の酸性領域での緩衝作用が高いことから、バナジン酸カルシウムと第三リン酸マグネシウムとを含む塗膜組成物を用いた塗膜を有する塗装鋼板は、酸性環境条件下における耐食性が向上すると推察される。
 第三リン酸マグネシウム(d)の含有量は、上記8水和物を用いた場合においても「Mg3(PO42」の質量に基づいて換算し、塗膜形成性樹脂(a)の固形分および架橋剤
(b)の固形分の合計100質量%に対して1~150質量%である。1質量%未満では、塗膜から鋼材1への第三リン酸マグネシウム(d)の溶出が少なくなる結果、pH緩衝能力が低くなり、酸性環境条件下における耐食性が低下する。また、第三リン酸マグネシウム(d)の含有量が150質量%を超えると、塗膜の透湿性が過度に高くなって塗膜に水が過度に浸入しやすくなり、塗膜の耐湿性が低下し、耐湿性の低下に伴い酸性環境条件下における耐食性も低下する。
 本発明では、酸性領域におけるpH緩衝能力を考慮して、第三リン酸マグネシウム(d)を用いている。ここで、第三リン酸アルカリ土類金属塩である、第三リン酸カルシウムは、第三リン酸マグネシウムに比べ、塗膜から鋼材1への溶出が少ないことから、同量添加しても酸性領域におけるpHの緩衝能力が不十分であり、その結果、酸性環境条件での腐食性が低下する。また、第三リン酸アルカリ金属塩である、第三リン酸リチウムおよび第三リン酸ナトリウムは、塗膜の透湿性が過度に高くなって塗膜に水が過度に浸入しやすくなることから、塗膜の耐湿性が低下し、耐湿性の低下に伴い耐食性も低下する。また、リン酸マグネシウムの中でも、第一リン酸マグネシウム(Mg(H2PO42・4H2O)および第二リン酸マグネシウム(MgHPO4・3H2O)に比べ、水溶液中のpHがアルカリ性になる「第三リン酸マグネシウム」は、酸性領域でのpH緩衝作用が高いことから、第三リン酸マグネシウムを含む塗装組成物を用いた塗膜を有する鋼材1の酸性環境条件下における耐食性が向上する。
 第三リン酸マグネシウム(d)とバナジウム化合物(c)との総含有量は、バナジウム化合物(c)の質量と第三リン酸マグネシウム(d)の「Mg3(PO42」の質量との合計質量として、塗膜形成性樹脂(a)の固形分および架橋剤(b)の固形分の合計100質量%に対して51~210質量%である。第三リン酸マグネシウム(d)とバナジウム化合物(c)との総含有量を上記範囲内にすることにより、バナジウム化合物(c)および第三リン酸マグネシウム(d)が塗膜から鋼材1へ適量溶出するため耐食性が維持され、かつ、塗膜の耐湿性も維持される。
 バナジウム化合物(c)と第三リン酸マグネシウム(d)との質量比は、第三リン酸マグネシウム(d)を「Mg3(PO42」として換算して、60:150~150:1であり、好ましくは60:50~150:50であり、より好ましくは60:25である。バナジウム化合物(c)と第三リン酸マグネシウム(d)との質量比が、第三リン酸マグネシウム(d)を「Mg3(PO42」として換算して、60:150~150:1であることにより、酸性条件での耐食性と通常の中性条件での耐食性のどちらも良好にすることができる。
(密着性向上成分について)
 本発明の塗料組成物は、シラン系カップリング剤、チタン系カップリング剤およびジルコニウム系カップリング剤からなる群から選ばれる少なくとも1種の化合物である密着性向上成分をさらに含有していてもよい。密着性向上成分の添加により、被塗物との密着性を向上させることができ、塗膜の耐湿性をさらに向上させることができる。
 上記密着性向上成分としては特に制限されず、従来公知のものを使用することができる。好適に用いられる密着性向上成分の具体例を挙げれば、東レ・ダウコーニング製の商品名「DOW  CORNING  TORAY  Z-6011」、「DOW  CORNING  TORAY  Z-6040」等のシラン系カップリング剤(ここで、「DOW  CORNING」は登録商標である);マツモトファインケミカル製の商品名「オルガチックスTC-401」、「オルガチックスTC-750」等のチタン系カップリング剤;マツモトファインケミカル製の商品名「オルガチックスZC-580」、「オルガチックスZC-700」等のジルコニウム系カップリング剤、なかでも、シラン系カップリング剤が好ましく用いられる。
 密着性向上成分の含有量は、塗膜形成性樹脂(a)および架橋剤(b)の合計固形分100質量%に対して0.1~20質量%であることが好ましい。密着性向上成分の含有量が0.1質量%以上であることにより、耐湿性向上効果が得られる。また、密着性向上成分の含有量が20質量%以下であることにより、塗料組成物の貯蔵安定性が良好となる。
(体質顔料について)
 本発明の塗料組成物は、炭酸カルシウム、硫酸バリウム、クレー、タルク、マイカ、シリカ、アルミナおよびベントナイト等の体質顔料をさらに含有していてもよい。体質顔料の添加により、塗膜強度を向上させることができるとともに、塗膜表面に凹凸が生じ、上塗り塗膜との密着性が向上する等の理由により、耐湿性が良好となる。体質顔料の含有量は、塗膜形成性樹脂(a)および架橋剤(b)の合計固形分100質量%に対して1~40質量%であることが好ましい。体質顔料の含有量が1質量%以上であることにより、耐湿性向上効果が得られる。また、体質顔料の含有量が40質量%以下であることにより、塗膜の透湿性が適切となって、塗膜の耐湿性が良好となり、耐食性が良好となる。
(硬化触媒について)
 架橋剤(b)としてブロックポリイソシアネート化合物(f)および/またはポリイソシアネート化合物を用いる場合、本発明の塗料組成物は、硬化触媒を含有してもよい。硬化触媒としては、例えば、スズ触媒、アミン触媒、鉛触媒等を挙げることができ、なかでも有機スズ化合物が好ましく用いられる。有機スズ化合物としては、例えば、ジブチルスズジラウレート(DBTL)、ジブチルスズオキサイド、テトラ-n-ブチル-1,3-ジアセトキシスタノキサン等を用いることができる。
 また、架橋剤(b)として、メラミン樹脂(g1)を用いる場合にも、本発明の塗料組成物は、硬化触媒を含有してもよい。この場合の硬化触媒としては、例えば、カルボン酸、スルホン酸のような酸触媒等を挙げることができ、なかでもドデシルベンゼンスルホン酸、パラトルエンスルホン酸等が好ましく用いられる。
 上記硬化触媒の含有量は、塗膜形成性樹脂(a)および架橋剤(b)の合計固形分100質量%に対して、通常0.1~10質量%であり、0.1~1質量%であることが好ましい。硬化触媒の含有量が0.1~10質量%であることにより、塗料組成物の貯蔵安定性が良好となる。
(その他の添加剤について)
 本発明の塗料組成物は、必要に応じて、上記以外のその他の添加剤を含有してもよい。その他の添加剤としては、例えば、上記バナジウム化合物(c)以外の防錆顔料;上記体質顔料以外の体質顔料;着色顔料、染料等の着色剤;光輝性顔料;溶剤;紫外線吸収剤(ベンゾフェノン系紫外線吸収剤等);酸化防止剤(フェノール系、スルフォイド系、ヒンダードアミン系酸化防止剤等);可塑剤;表面調整剤(シリコーン、有機高分子等);タレ止め剤;増粘剤;ワックス等の滑剤;顔料分散剤;顔料湿潤剤;レベリング剤;色分かれ防止剤;沈殿防止剤;消泡剤;防腐剤;凍結防止剤;乳化剤;防かび剤;抗菌剤;安定剤等がある。これらの添加剤は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 上記バナジウム化合物(c)以外の防錆顔料としては、非クロム系防錆顔料を用いることができ、例えば、五酸化バナジウム、モリブデン酸塩顔料(モリブデン酸亜鉛、モリブデン酸ストロンチウム等)、リンモリブデン酸塩顔料(リンモリブデン酸アルミニウム系顔料等)、カルシウムシリカ系顔料、トリポリリン酸塩等のリン酸塩系防錆顔料、ケイ酸塩系防錆顔料等の非クロム系防錆顔料が挙げられる。これらは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。本発明の塗料組成物は、所定の電導度およびpHを有するバナジウム化合物(c)を所定量含有することから、十分に高い耐食性を示すが、必要に応じて、得られる塗膜の耐湿性、耐食性、耐薬品性等を損なわない範囲で上記のようなバナジウム化合物(c)以外の防錆顔料が使用されてもよい。
 上記着色顔料としては、例えば、二酸化チタン、カーボンブラック、グラファイト、酸化鉄、コールダスト等の無機着色顔料;フタロシアニンブルー、フタロシアニングリーン、キナクリドン、ペリレン、アンスラピリミジン、カルバゾールバイオレット、アントラピリジン、アゾオレンジ、フラバンスロンイエロー、イソインドリンイエロー、アゾイエロー、インダスロンブルー、ジブロムアンザスロンレッド、ペリレンレッド、アゾレッド、アントラキノンレッド等の有機着色顔料;アルミニウム粉、アルミナ粉、ブロンズ粉、銅粉、スズ粉、亜鉛粉、リン化鉄、微粒化チタン等を挙げることができる。これらは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 上記光輝性顔料としては、例えば、アルミ箔、ブロンズ箔、スズ箔、金箔、銀箔、チタン金属箔、ステンレススチール箔、ニッケル・銅等の合金箔、箔状フタロシアニンブルー等の箔顔料を挙げることができる。これらは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 上記溶剤としては、例えば、水;エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系有機溶剤;メタノール、エタノール、イソプロピルアルコール等のアルコール系有機溶剤;ジオキサン、テトラヒドロフラン等のエーテル系有機溶剤;3-メトキシブチルアセテート、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系有機溶媒;メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン系有機溶剤;ならびに、N-メチル-2-ピロリドン、トルエン、ペンタン、iso-ペンタン、ヘキサン、iso-ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット、ソルベッソ100、ソルベッソ150(いずれも芳香族炭化水素系溶剤)等を挙げることができる。これらは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。本発明の塗料組成物は、水系塗料であってもよく、有機溶剤系の塗料であってもよい。
 本発明の塗料組成物は、例えば、塗膜形成性樹脂(a)、架橋剤(b)およびバナジウム化合物(c)、体質顔料、密着性向上成分、硬化触媒およびその他の添加剤を、ローラーミル、ボールミル、ビーズミル、ペブルミル、サンドグラインドミル、ポットミル、ペイントシェーカー、ディスパー等の混合機を用いて混合することにより、調製することができる。あるいは、本発明の塗料組成物は、塗膜形成性樹脂(a)およびバナジウム化合物(c)を含む主剤成分と、架橋剤(b)を含む架橋剤成分とからなる2液型塗料であってもよい。
 本発明の塗料組成物は、プライマーとも呼ばれる下塗り塗料として適用することができる。この場合、上塗り塗料には、ポリエステル樹脂系塗料、フッ素樹脂系塗料等公知の材料を用いることができる。
[2.塗膜および塗装鋼板]
 本発明の塗料組成物による塗膜は、上述した通り、鋼材の所定のめっき層(要するに、Al、Zn、Si、Cr及びMgを含み、且つMg含有量が0.1~10質量%、Crの含有量が0.02~1.0質量%、Si―Mg相が0.2~15体積%、前記Si-Mg相中のMgの、Mg全量に対する質量比率が3%以上であるアルミニウム・亜鉛合金めっき層)の上に形成される。これにより、従来のクロメート処理と同等以上に耐食性(特に端部耐食性)が高められた表面処理鋼板を得ることができる。
 本発明の塗料組成物の塗布方法としては、ロールコーター、エアレススプレー、静電スプレー、カーテンフローコーター等従来公知の方法を採用することができる。本発明の塗料組成物を用いて形成された本発明の塗膜は、塗料組成物を鋼材1のめっき層に塗布した後、被塗物を加熱する焼付け処理を行なうことによって形成することができる。これによって、本発明の表面処理鋼材が得られる。なお、焼付け温度は、通常180~250℃であり、焼付け時間は、通常10~200秒である。
 本発明の塗料組成物を用いて得られる塗膜(本発明の塗膜)の膜厚(乾燥膜厚)は、通常1~30μmであり、好ましくは1~10μmである。
 本発明の塗膜は、これを形成する塗料組成物が所定の電導度を有するバナジウム化合物(c)を所定量含有することから、通常、105~1012Ω・cm2の湿潤抵抗値を示す。塗料組成物に用いる樹脂や架橋剤の種類、含有させる添加剤の種類と量、焼付条件等で塗膜の湿潤抵抗値は変動するが、概ね、塗膜の湿潤抵抗値が上記範囲内であることは、塗膜が適度な透湿性を有している一方で、良好な耐湿性を示すことを意味している。すなわち、湿潤抵抗値が105Ω・cm2未満であることは、塗膜の透湿性が過度に高く、耐湿性が低いことを意味しており、従って、フクレや剥がれ等が生じやすい傾向にある。また、湿潤抵抗値が1012Ω・cm2を超えることは、塗膜の透湿性が過度に低いことを意味しており、塗膜中の防錆顔料の溶出が阻害されて耐食性が低下する傾向にある。本発明の塗膜の湿潤抵抗値は、好ましくは106~1011Ω・cm2である。なお、塗膜の湿潤抵抗値とは、乾燥塗膜厚15μmの塗膜を5%食塩水(NaCl水溶液)で35℃にて1時間湿潤させた後に印加電圧の波高±0.5Vで測定した直流抵抗値を意味する。塗膜の湿潤抵抗値測定の詳細条件については、後述の実施例で述べる。
 本発明者は、本発明に係るめっき層と塗膜とを組み合わせることによって、従来のクロメート処理と同等以上の耐食性(特に端部耐食性)が得られることを知見し、本発明を創作するに至った。実施例及び比較例を示して、その効果について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。下記実施例中、「部」および「%」は、特に断りのない限り質量基準である。
 (めっき層について)
 鋼板を溶融金属に浸漬させることによりめっき層を形成した。実施例1~2、実施例5~18、比較例4~13及び参考例1では、55%Al-2%Mg-1.6%Si-0.03%Cr-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。実施例3では、55%Al-0.5%Mg-1.6%Si-0.03%Cr-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。実施例4では、55%Al-5%Mg-1.6%Si-0.03%Cr-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。比較例1では、55%Al-11%Mg-1.6%Si-0.03%Cr-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。比較例14では、55%Al-2%Mg-1.6%Si-0.01%Cr-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。比較例15では、55%Al-2%Mg-1.6%Si-1.1%Cr-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。比較例2及び参考例2では、55%Al-1.6%Si-亜鉛合金めっき鋼板が得られるように溶融金属の成分を調整した。比較例3では、溶融亜鉛めっき鋼板が得られるように溶融金属の成分を調整した。
 (塗料組成層について)
(1)バナジン酸アルカリ土類金属塩の調製
 バナジン酸アルカリ土類金属塩としてバナジン酸カルシウムを使用した。バナジン酸カルシウムは以下のように調整した。
 炭酸カルシウム(CaCO)622gと、五酸化バナジウム(V)378gを水10Lに添加し、60℃に昇温後、同温度で2時間攪拌した。得られた反応生成物(白色固体)を水洗後脱水し、100℃にて乾燥した後、粉砕することにより、バナジン酸カルシウムを得た。
 (電導度およびpHの測定手順)
〔i〕イオン交換水で洗浄したポリエチレン製細口瓶に、イオン交換水99gおよび試料1gを添加する。
〔ii〕イオン交換水で洗浄したスターラーチップを投入して、室温下で4時間撹拌する。
〔iii〕撹拌後、電気伝導度計(東亜ディーケーケー製電導度計「CM-30ET」)およびpHメータ(堀場製作所製「F-54」)を用いて、電導度およびpHを測定する。
 バナジン酸カルシウム以外の他の防錆顔料の詳細は次のとおりである。
1.「メタバナジン酸ナトリウム」:市販試薬
2.「五酸化バナジウム」:市販試薬
3.「シールデックスC303」:グレースジャパン製、カルシウムイオン交換シリカ微粒子
4.「第三リン酸マグネシウム」:市販試薬
5.「第一リン酸マグネシウム」:市販試薬
6.「第二リン酸マグネシウム」:市販試薬
7.「第三リン酸カルシウム」 :市販試薬
8.「バナジン酸マグネシウム」:市販試薬
9.「クロム酸ストロンチウム」:ストロンチウムクロメート:キクチカラー社製
(3)塗料組成物の調製
 表1~表4に示される配合組成に従い、塗料組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4に示される各種配合成分の詳細は次のとおりである。
(1)「沈降性硫酸バリウムB-55」:堺化学工業製、沈降性硫酸バリウム。
(2)「クレー1号」:丸尾カルシウム製、クレー。
(3)「ユニグロス1000」丸尾カルシウム製、炭酸カルシウム
(4)「タルクSSS」日本タルク製、タルク
(5)「GASIL  HP260」INEOS  SILICAS製、シリカ粉(v)「DBTL」:日東化成製、「TVS  Tin  Lau」〔ジブチルスズジラウレート、不揮発分:100%〕。
(3)塗装鋼板の作製
 厚さ0.35mmのアルミニウム亜鉛めっき鋼板をアルカリ脱脂した後、日本ペイント・サーフケミカルズ製の有機無機複合処理剤「サーフコートEC2310」を、鋼板表面および裏面に塗布することにより、クロメートフリー化成処理を施し、乾燥した。ついで、得られた鋼板の裏面に上記で得られた塗料組成物を、乾燥塗膜が7μmとなるように塗布し、最高到達温度180℃にて30秒間焼き付けを行なって、裏面塗膜を形成した。次に、鋼板の表面に実施例1~18、比較例1~13のいずれかの塗料組成物を、乾燥塗膜が5μmとなるように塗布し、最高到達温度200℃にて30秒間焼き付けを行なって、表面下塗り塗膜を形成した。さらに、上記下塗り塗膜上に日本ペイント・インダストリアルコーティングス製のポリエステル系上塗り塗料「NSC300HQ」を、乾燥塗膜が10μmとなるように塗布し、最高到達温度210℃にて40秒間焼き付けを行なって、表面上塗り塗膜を形成し、塗装鋼板を得た。また参考例1,2については化成処理として日本ペイント・サーフケミカルズ製の「NRC300」を用いてクロメート処理を施し、クロム酸ストロンチウムを含有する該当の下塗り塗料、および上塗り塗料を同条件で塗布、焼付乾燥を行った。
(4)評価について
 次に示す項目<1>~<8>について、表面処理鋼板の評価試験を行なった。結果を表5~表8に併せて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<1>耐沸騰水性試験
 上記で得られた各表面処理鋼板を5cm×10cmに切断し、得られた試験片を、95℃以上の沸騰水中に5時間浸漬した後、引き上げて表面側の塗装外観を、ASTM D714-56に従って評価した(平面部フクレ評価)。ASTM D714-56は、各フクレの大きさ(平均径)と密度について、標準判定写真と対比して評価し、等級記号を示すものである。フクレの大きさと密度は各々4段階で級別されており、以下の表9における組合せで5点満点の点数で評価を実施した。
Figure JPOXMLDOC01-appb-T000009
異常なし:5
 また、95℃以上の沸騰水中に5時間浸漬した後の試験片について、碁盤目テープ付着試験(碁盤目密着性試験)を行ない、評価した。碁盤目テープ付着試験は、JIS K-5400 8.5.2(1990)碁盤目テープ法に準じて、切り傷の隙間間隔を1mmとし、碁盤目を100個作り、その表面にセロハン粘着テープを密着させ、急激に剥がしたときの塗面に残存する碁盤目の数を調べた。
<2>耐薬品性試験
 上記で得られた各表面処理鋼板を5cm×10cmに切断し、得られた試験片を、5%濃度の苛性ソーダ水溶液に24時間浸漬した後、引き上げて水道水で洗浄し、表面側の塗装外観を、ASTM D714-56に従って平面部フクレの評価を行った。この評価について耐沸騰水性試験に用いた上記の表9に照らし合わせて5点満点で採点を行った。
<3>塩水噴霧試験
 各実施例及び比較例のサンプルについて、横7cm、縦15cmの寸法で裁断した。この際、表面からの切断と裏面からの切断とを交互に行い、各試験片の断面が上バリ(裏面より切断)、下バリ(表面より切断)の両方を有するように試験片を作成し、塗装鋼板の上端および下端部をポリエステルテープにてシールした。この試験サンプルに対してJIS K 5400 9.1に定める試験方法によって塩水噴霧試験を1000時間行い、平面部の塗膜及びカット部について白錆、ブリスターの発生状況を観察した。平面部の錆・フクレについてはASTM D714-56に従って評価をおこなうとともに、耐沸騰水試験に用いた上記の表9に照らし合わせて5点満点で採点をおこない、端部の錆・フクレについては任意の5点でその劣化幅を計測し、平均値を以下の基準で採点した。
(基準)
◎: 2mm以下、○: 4mm以下、△: 6mm以下、×: 6mm超
 各実施例及び比較例のサンプルについて、2T加工(鋼板を二枚挟んで各サンプルを万力で180度折り曲げる加工)を行い、上述の塩水噴霧試験を実施することで、折曲げ部分における白錆の発生状況を観察し、上記の表9に照らし合わせて5点満点で採点をおこなった。
 表3及び表7の比較例2に示すように、本願発明の塗料組成物を溶融55%アルミ-1.6%シリコン-亜鉛合金めっき鋼板に塗布した場合、平面部におけるフクレ評価は参考例1及び2と同様に高い評価となったが、端部耐食性の評価は×になった。また、比較例3に示すように、本願発明の塗料組成物を溶融亜鉛めっき鋼板に塗布した場合、平面部におけるフクレ評価は参考例1及び2と同様に高い評価となったが、端部耐食性の評価は△になった。一方、本願発明の実施例では、平面部におけるフクレ評価のみならず端部耐食性までもが参考例1及び2と同様の高い評価となった。つまり、メカニズムは不明であるが、本願発明の表面処理鋼板はクロメート処理を施しためっき鋼板と同等以上の高い端部耐食性を備えていることがわかった。なお、比較例15は、実施例と同様の高い耐食性を備えているが、塗膜の平滑性が失われたため、本発明の範囲外とした。これは、Crの過剰添加により、浴中にドロスが発生したためと考えられる。
<4>鉛筆硬度試験
 上記で得られた各表面処理鋼板を5cm×10cmに切断し、得られた試験片について鉛筆硬度を測定することにより、耐傷つき性を評価した。JIS-K 5400の8.4.1(1993)の方法に準じて、塗膜の引っかき抵抗性を鉛筆の芯の硬さを変えたときの塗膜のやぶれで調べ、塗膜にやぶれが認められない最高の硬さをその塗膜の鉛筆硬度とした。
<5>加工密着性試験
 JIS G3322:2012の14.2.2曲げ試験に定められた方法に準拠して180度密着曲げを施した後に、加工部にセロハン粘着テープを用いて塗膜表面に圧着させてテープを引き離し、塗膜の剥離状態を観察した。塗膜の剥離が認められた場合は密着曲げ時に同じ板厚のめっき鋼板をはさんで再度180度曲げをおこない、テープ剥離評価を繰り返して塗膜剥離が生じないはさみ板の枚数を評価点とした(例えば、2枚の場合2TTと表記)。
<6>耐衝撃性試験
 JIS G3322:2012の14.2.4衝撃試験に定められた方法に準拠して50cmの高さから試験面に500gのおもりを落下させ、その後セロハン粘着テープを用いて塗膜表面に圧着させて鉛直方向に引っ張り、塗膜の剥離面積を目視で観察して、以下の基準で5点満点で採点した。
(基準)
5:剥離なし 4:10%以下 3:20%以下 2:50%以下 1:50%を超える剥離
<7>基盤目密着性試験
JIS G3322:2012の14.2.5碁盤目試験に定められた方法に準拠して1mm幅のカットで100マス目を作成し、セロハン粘着テープを用いて塗膜表面に圧着させて鉛直方向に引っ張り、剥離が生じなかったマス目を数えて評価とした。
 
 

Claims (14)

  1.  鋼材の表面にアルミニウム・亜鉛合金めっき層を少なくとも含む下地層を介して塗膜を形成した表面処理鋼材であって、
     前記アルミニウム・亜鉛合金めっき層は構成元素としてAl、Zn、Si、Cr及びMgを含み、且つMg含有量が0.1~10質量%、Crの含有量が0.02~1.0質量%であり、
     前記アルミニウム・亜鉛合金めっき層が0.2~15体積%のSi―Mg相を含み、前記Si-Mg相中のMgの、Mg全量に対する質量比率が3%以上であり、
     前記塗膜は、塗膜形成性樹脂(a)と、架橋剤(b)と、バナジン酸アルカリ土類金属塩及びバナジン酸マグネシウムからなる群から選ばれる少なくとも1種のバナジウム化合物(c)と、第三リン酸マグネシウム(d)とを含有し、
     前記バナジウム化合物(c)は1質量%水溶液の温度25℃における電導度が200μS/cm~2,000μS/cmとなる化合物であり、かつ前記バナジウム化合物(c)の含有量は前記塗膜形成性樹脂(a)および前記架橋剤(b)の合計100質量%に対して50質量%を超え150質量%以下であり、前記バナジウム化合物(c)は、その1質量%水溶液のpHが6.5~11であり、前記第三リン酸マグネシウム(d)の含有量は前記塗膜形成性樹脂(a)および前記架橋剤(b)の合計100質量%に対して3~150質量%であることを特徴とする表面処理鋼材。
  2.  前記塗膜は、炭酸カルシウム、硫酸バリウム、クレー、タルク、マイカ、シリカ、アルミナおよびベントナイトからなる群から選択される少なくとも1種の体質顔料(e)をさらに含有し、前記体質顔料(e)の含有量は、前記塗膜形成性樹脂(a)および前記架橋剤(b)の合計100質量%に対して1~40質量%である、請求項1に記載の表面処理鋼材。
  3.  前記塗膜形成性樹脂(a)は、数平均分子量が2,000~10,000であり、ガラス転移温度が60~120℃である水酸基含有エポキシ樹脂、および、数平均分子量が2,000~30,000であり、ガラス転移温度が0~80℃である水酸基含有ポリエステル樹脂からなる群から選択される少なくとも1種を含む、請求項1または2に記載の表面処理鋼材。
  4.  前記架橋剤(b)は、ポリイソシアネート化合物のイソシアネート基を活性水素含有化合物でブロックしたブロックポリイソシアネート化合物(f)、および、メチロール基またはイミノ基を1分子中に平均して1つ以上有するアミノ樹脂(g)からなる群から選択される少なくとも1種を含み、
     前記架橋剤(b)の含有量は、前記塗膜形成性樹脂(a)100質量%に対して、10~80質量%である、請求項1~3のいずれか1項に記載の表面処理鋼材。
  5.  前記ポリイソシアネート化合物は、芳香族ポリイソシアネート化合物である、請求項4に記載の表面処理鋼材。
  6.  前記塗料組成物は、シラン系カップリング剤、チタン系カップリング剤およびジルコニウム系カップリング剤からなる群から選択される少なくとも1種のカップリング剤(h)をさらに含有し、
     前記カップリング剤(h)の含有量は、前記塗膜形成性樹脂(a)および前記架橋剤(b)の合計100質量%に対して0.1~20質量%である、請求項1~5のいずれか1項に記載の表面処理鋼材。
  7.  乾燥塗膜厚15μmの塗膜を35℃の5%食塩水中で1時間湿潤させた後の塗膜の直流抵抗値である湿潤抵抗値が105~1012Ω・cm2である、請求項1~6のいずれか1項に記載の表面処理鋼材。
  8.  前記アルミニウム・亜鉛合金めっき層における50nm深さの最外層内で、大きさが直径4mm、深さ50nmとなるいかなる領域において、Mg含有量が60質量%未満である、請求項1~7のいずれか1項に記載の表面処理鋼材。
  9.  前記アルミニウム・亜鉛合金めっき層における50nm深さの最外層内でのCrの含有量が100~500質量ppmの範囲である、請求項1~8のいずれか1項に記載の表面処理鋼材。
  10.  前記アルミニウム・亜鉛合金めっき層と前記鋼材との間に、AlとCrとを含有する合金層が介在し、この合金層中のCrの質量割合の、前記アルミニウム・亜鉛合金めっき層内のCrの質量割合に対する比が、2~50の範囲である、請求項1~9のいずれか1項に記載の表面処理鋼材。
  11.  前記アルミニウム・亜鉛合金めっき層の表面におけるSi―Mg相の割合が、面積比率で、30%以下である、請求項1~10のいずれか1項に記載の表面処理鋼材。
  12.  前記アルミニウム・亜鉛合金めっき層中の
    Alの含有量が25~75質量%、
    Siの含有量がAlに対して0.5~10質量%、
    であり、且つ
    Si:Mgの質量比が100:50~100:300
    である、請求項1~11のいずれか1項に記載の表面処理鋼材。
  13.  前記アルミニウム・亜鉛合金めっき層が構成元素として更に1~1000質量ppmのSrを含む、請求項1~12のいずれか1項に記載の表面処理鋼材。
  14.  前記アルミニウム・亜鉛合金めっき層が、構成元素として更にTi及びBのうち少なくとも一方からなる成分を、0.0005~0.1質量%の範囲で含有する、請求項1~13のいずれか1項に記載の表面処理鋼材。
     
PCT/JP2017/009035 2016-04-26 2017-03-07 表面処理鋼材 WO2017187799A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA3005266A CA3005266C (en) 2016-04-26 2017-03-07 Surface-treated steel material
KR1020177037903A KR101868530B1 (ko) 2016-04-26 2017-03-07 표면처리강재
ES17789088T ES2850627T3 (es) 2016-04-26 2017-03-07 Acero tratado en superficie
US15/766,639 US11136659B2 (en) 2016-04-26 2017-03-07 Surface-treated steel material
SG11201801742XA SG11201801742XA (en) 2016-04-26 2017-03-07 Treated surface steel
NZ741908A NZ741908A (en) 2016-04-26 2017-03-07 Surface-treated steel material
AU2017257044A AU2017257044B2 (en) 2016-04-26 2017-03-07 Treated surface steel
MX2018009384A MX2018009384A (es) 2016-04-26 2017-03-07 Material de acero tratado en la superficie.
CN201780002354.1A CN108026648A (zh) 2016-04-26 2017-03-07 表面处理钢材
EP17789088.6A EP3354772B1 (en) 2016-04-26 2017-03-07 Treated surface steel
PH12018500849A PH12018500849A1 (en) 2016-04-26 2018-04-20 Treated surface steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016088071A JP6087461B1 (ja) 2016-04-26 2016-04-26 表面処理鋼材
JP2016-088071 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017187799A1 true WO2017187799A1 (ja) 2017-11-02

Family

ID=58185977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009035 WO2017187799A1 (ja) 2016-04-26 2017-03-07 表面処理鋼材

Country Status (15)

Country Link
US (1) US11136659B2 (ja)
EP (1) EP3354772B1 (ja)
JP (1) JP6087461B1 (ja)
KR (1) KR101868530B1 (ja)
CN (1) CN108026648A (ja)
AU (1) AU2017257044B2 (ja)
CA (1) CA3005266C (ja)
ES (1) ES2850627T3 (ja)
MX (1) MX2018009384A (ja)
MY (1) MY172928A (ja)
NZ (1) NZ741908A (ja)
PH (1) PH12018500849A1 (ja)
SG (1) SG11201801742XA (ja)
TW (1) TWI737701B (ja)
WO (1) WO2017187799A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508771A (ja) * 2017-12-26 2021-03-11 ポスコPosco 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
WO2022210200A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 プレコートめっき鋼板及び成形品

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123817A1 (de) * 2017-10-12 2019-04-18 Geobrugg Ag Drahtnetzvorrichtung
KR101977505B1 (ko) * 2017-12-20 2019-05-10 주식회사 포스코 수지 조성물, 이를 이용한 흑색 수지 강판, 및 그 제조방법
JP6950666B2 (ja) * 2018-03-01 2021-10-13 Jfeスチール株式会社 表面外観に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法および溶融Zn−Al−Mg系めっき鋼板の製造ライン
JP7166955B2 (ja) * 2018-03-29 2022-11-08 株式会社神戸製鋼所 塗装亜鉛めっき鋼板
KR102425853B1 (ko) * 2018-05-25 2022-07-28 닛폰세이테츠 가부시키가이샤 표면 처리 강판
KR101995685B1 (ko) * 2019-01-11 2019-10-01 (주)지씨엠씨 금속의 친환경 방청코팅용 표면처리 조성물 및 이를 코팅한 금속재료
KR101999113B1 (ko) * 2019-01-24 2019-07-11 주식회사 영동 알루미늄휠의 표면처리방법
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
JP6741840B1 (ja) * 2019-10-04 2020-08-19 日鉄鋼板株式会社 表面処理鋼材
JP6959466B2 (ja) * 2020-03-05 2021-11-02 Jfe鋼板株式会社 塗装鋼板
JP7417473B2 (ja) * 2020-05-20 2024-01-18 日鉄鋼板株式会社 被覆めっき鋼板
CN112962042B (zh) * 2021-02-01 2023-03-14 江西科技师范大学 一种热镀锌防爆剂及其制备方法
CN113773674B (zh) * 2021-08-30 2022-04-08 温州瑞银不锈钢制造有限公司 一种表面覆膜不锈钢的生产工艺以及表面覆膜不锈钢
CN114103175B (zh) * 2021-11-22 2022-06-24 佛山市彩龙镀膜包装材料有限公司 一种双面镀铝聚酯薄膜及其制备方法
CN117343557A (zh) * 2022-06-29 2024-01-05 宝山钢铁股份有限公司 涂料、具有该涂料形成的涂层的取向硅钢板及其制造方法
CN115386749A (zh) * 2022-08-30 2022-11-25 福建华能电气有限公司 一种铝镁合金防爆盒的重力铸造工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857156B2 (ja) * 1978-05-13 1983-12-19 協和醗酵工業株式会社 発酵法によるコエンチ−ムq↓1↓0の製造法
JP5118782B2 (ja) * 2010-02-18 2013-01-16 日鉄住金鋼板株式会社 溶融めっき鋼材及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341270B2 (ja) 1972-06-24 1978-11-01
JPS5118782B1 (ja) 1974-06-18 1976-06-12
JPS58480B2 (ja) 1974-08-06 1983-01-06 トウアネンリヨウコウギヨウ カブシキガイシヤ アタクチツク・ポリプロピレン含有燃料油の製造方法
JPS5857156A (ja) 1981-09-30 1983-04-05 Canon Inc 現像装置
JPH0550444A (ja) 1991-08-26 1993-03-02 Central Glass Co Ltd 人工大理石の製法
JPH11279735A (ja) 1998-03-27 1999-10-12 Nisshin Steel Co Ltd Al−Si−Mg−Zn系溶融Al基めっき鋼板
JP3461741B2 (ja) 1998-12-28 2003-10-27 新日本製鐵株式会社 耐食性に優れるプレコート鋼板
JP4323530B2 (ja) 2007-03-12 2009-09-02 関西ペイント株式会社 耐食性に優れた塗料組成物
JP5547376B2 (ja) 2008-03-19 2014-07-09 関西ペイント株式会社 防錆塗料組成物
JP5511058B2 (ja) 2010-03-10 2014-06-04 日本ペイント株式会社 塗料組成物およびこれを用いた塗膜
JP5814941B2 (ja) 2010-12-22 2015-11-17 関西ペイント株式会社 耐食性に優れる塗料組成物
MY166355A (en) 2011-08-24 2018-06-25 Nippon Steel & Sumitomo Metal Corp Surface-treated hot-dip plated steel
JP5732672B2 (ja) 2011-09-21 2015-06-10 日本ペイント株式会社 塗料組成物、塗膜、及び塗装鋼板
JP5341270B1 (ja) 2012-04-25 2013-11-13 日新製鋼株式会社 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
WO2015012290A1 (ja) 2013-07-25 2015-01-29 日本ファインコーティングス株式会社 塗料組成物、塗膜、および塗装鋼板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857156B2 (ja) * 1978-05-13 1983-12-19 協和醗酵工業株式会社 発酵法によるコエンチ−ムq↓1↓0の製造法
JP5118782B2 (ja) * 2010-02-18 2013-01-16 日鉄住金鋼板株式会社 溶融めっき鋼材及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508771A (ja) * 2017-12-26 2021-03-11 ポスコPosco 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
JP7244722B2 (ja) 2017-12-26 2023-03-23 ポスコ カンパニー リミテッド 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
WO2022210200A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 プレコートめっき鋼板及び成形品
JP7436943B2 (ja) 2021-03-31 2024-02-22 日本製鉄株式会社 プレコートめっき鋼板及び成形品

Also Published As

Publication number Publication date
CA3005266C (en) 2018-11-27
NZ741908A (en) 2019-07-26
EP3354772B1 (en) 2020-12-30
TWI737701B (zh) 2021-09-01
US11136659B2 (en) 2021-10-05
CA3005266A1 (en) 2017-11-02
EP3354772A1 (en) 2018-08-01
KR20180025877A (ko) 2018-03-09
JP6087461B1 (ja) 2017-03-01
EP3354772A4 (en) 2019-09-25
US20180305802A1 (en) 2018-10-25
KR101868530B1 (ko) 2018-06-19
SG11201801742XA (en) 2018-04-27
PH12018500849B1 (en) 2018-11-05
PH12018500849A1 (en) 2018-11-05
ES2850627T3 (es) 2021-08-31
JP2017197795A (ja) 2017-11-02
TW201807254A (zh) 2018-03-01
AU2017257044B2 (en) 2019-02-07
CN108026648A (zh) 2018-05-11
AU2017257044A1 (en) 2018-05-24
MX2018009384A (es) 2018-09-05
MY172928A (en) 2019-12-14

Similar Documents

Publication Publication Date Title
JP6087461B1 (ja) 表面処理鋼材
JP5408385B2 (ja) 表面処理溶融めっき鋼材
TWI236968B (en) Plated steel material, plated steel sheet and coated steel sheet excellent in corrosion resistance, and a method of producing the same
JP5408384B2 (ja) 塗装めっき鋼材
JP5118782B2 (ja) 溶融めっき鋼材及びその製造方法
WO2021065485A1 (ja) 表面処理鋼材
WO2014175194A1 (ja) 塗装鋼板用下地処理組成物、並びに下地処理されためっき鋼板およびその製造方法、塗装めっき鋼板およびその製造方法
WO2013083292A1 (en) Organic coated steel strip
JP4002534B2 (ja) 塗膜密着性と鮮映性に優れ環境負荷の小さい高耐食性塗装鋼板
JP7163949B2 (ja) 表面処理鋼板
WO2013083294A2 (en) Organic coated steel substrate
JP2004176131A (ja) 鮮映性の優れた高耐食性塗装鋼板
JP6772943B2 (ja) 塗装鋼板
JP2024065974A (ja) 塗装鋼板及び塗装鋼板の製造方法
JP2024065975A (ja) 塗装鋼板及び塗装鋼板の製造方法
TW202332787A (zh) 熱浸鍍Al-Zn-Si-Mg系鋼板及其製造方法,表面處理鋼板及其製造方法及塗裝鋼板及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020177037903

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 3005266

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11201801742X

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15766639

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12018500849

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2017257044

Country of ref document: AU

Date of ref document: 20170307

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009384

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE