WO2017183413A1 - 蓄熱熱交換装置 - Google Patents

蓄熱熱交換装置 Download PDF

Info

Publication number
WO2017183413A1
WO2017183413A1 PCT/JP2017/013361 JP2017013361W WO2017183413A1 WO 2017183413 A1 WO2017183413 A1 WO 2017183413A1 JP 2017013361 W JP2017013361 W JP 2017013361W WO 2017183413 A1 WO2017183413 A1 WO 2017183413A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
flow path
straight pipe
liquid
Prior art date
Application number
PCT/JP2017/013361
Other languages
English (en)
French (fr)
Inventor
俊圭 鈴木
一法師 茂俊
慶和 矢次
泰光 野村
純一 中園
鴇崎 晋也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017538445A priority Critical patent/JP6501894B2/ja
Priority to US16/090,674 priority patent/US20200049424A1/en
Priority to EP17785755.4A priority patent/EP3428566B1/en
Priority to CN201780023234.XA priority patent/CN109073327B/zh
Publication of WO2017183413A1 publication Critical patent/WO2017183413A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0086Partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage heat exchange device including a heat storage tank filled with a latent heat storage material and a heat exchanger.
  • a heat storage material that can temporarily store heat and use it when necessary is used in order to fill a time gap between the supply and demand of heat energy.
  • a latent heat storage material using latent heat at the time of phase change between liquid and solid is used as a material having a high heat storage density per volume.
  • the solid phase of the heat storage material generally has a low thermal conductivity, and inhibits heat input and output by becoming a thermal resistance when heat energy is input and output during heat storage and heat dissipation. Further, since the volume changes greatly when solidifying from the liquid phase to the solid phase, the heat transfer surface is exposed and the heat exchange performance is degraded.
  • the heat storage heat exchange device of Patent Document 1 needs to dissolve the heat storage material solid phase in the entire heat storage tank in order to dissolve the solid phase around the heat exchanger when the heat storage material in the heat storage tank solidifies, It takes time to store heat.
  • the heat exchange amount of the heat storage heat exchange device decreases as the solid phase grows, the volume of the heat exchange part increases and the size of the device increases under use conditions where the required heat amount increases or decreases.
  • the present invention has been made to solve the above-described problems, and can store heat in a short time and melt the solid phase by heat input even when the solid phase of the heat storage material is deposited on the heat transfer surface.
  • An object is to obtain a heat storage heat exchanger that can be desorbed.
  • the heat storage heat exchange device is provided in the heat storage tank, the heat storage tank, the heat storage material having heat storage performance and heat dissipation performance, and the heat storage material is covered with the heat storage material inside the heat storage tank, in the horizontal direction.
  • a heat medium flow path having a second straight pipe portion through which the heat medium flows, and the first straight pipe portion is located on the lower side in the vertical direction than the second straight pipe portion.
  • the first straight pipe portion in which the liquid flow path and the heat medium flow path are disposed adjacent to each other and the liquid flows horizontally in the liquid flow path is provided in the first straight pipe portion. Since it is located vertically below the second straight pipe part of the heat medium flow path that forms a pair with the pipe part, the solid phase deposited around the liquid flow path is quickly dissolved by the heat medium that has flowed through the heat medium flow path. When the amount of heat required increases, the heat output can be increased by directly exchanging heat between the liquid and the heat medium.
  • FIG. 5 is a cross-sectional view taken along line BB shown in FIG. 4.
  • Embodiment 1 of this invention Comprising: It is explanatory drawing which showed the structure which made the pair of a 1st straight pipe part and a 2nd straight pipe part the staggered arrangement. It is a schematic diagram of the fluid circuit using the thermal storage heat exchange apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing of the liquid flow path of the thermal storage heat exchange apparatus which concerns on Embodiment 2 of this invention, a thermal-medium flow path, and a thermal storage material solid-phase parting plate. It is sectional drawing of the liquid flow path of the thermal storage heat exchanger apparatus which concerns on Embodiment 3 of this invention, a heat medium flow path, and a heater.
  • FIG. 12 is a cross-sectional view taken along the line CC of FIG.
  • Embodiments of a heat storage heat exchanger according to the present invention will be described below with reference to the drawings.
  • the structures, materials, etc. described in one embodiment may be replaced with, or added to, the structures, materials, etc. described in the other embodiments without causing technical contradiction. Good.
  • FIG. 1 is an internal configuration diagram showing an example of an internal structure of a heat storage heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the liquid flow path and the heat medium flow path disposed inside the heat storage tank of the heat storage heat exchanger according to Embodiment 1 of the present invention.
  • the heat storage heat exchange device according to Embodiment 1 shown in FIGS. 1 and 2 is a coil-tank heat exchange system as an example.
  • This heat storage heat exchange device includes a heat storage tank 1, a heat storage material 2 filled in the heat storage tank 1, a liquid flow path 3 for obtaining heat from the heat storage material 2, and a heat medium flow path 4 for applying heat to the heat storage material 2.
  • the heat storage heat exchange device further includes a flow rate control unit 9 that controls the flow rate of the liquid flowing in the liquid flow path 3 and the flow rate of the heat medium flowing in the heat medium flow path 4.
  • the heat storage tank 1 includes a heat storage material 2, a liquid flow path 3, and a heat medium flow path 4.
  • the heat storage tank 1 is made of stainless steel, iron, nickel chrome alloy or the like as a material that is not corroded by the heat storage material 2.
  • the heat storage material 2 is a latent heat storage material having a melting point in the temperature range to be used. Since the sensible heat storage material such as water stores only sensible heat, it can also store the heat of fusion that is latent heat. The heat storage density is large. Therefore, the heat storage tank 1 can be reduced in size compared with the case where a sensible heat storage material is used.
  • the heat storage material 2 When the heat storage material 2 is heated by a heat medium, the heat storage material 2 changes its phase from solid to liquid and stores latent heat (heat of fusion). In addition, when a liquid for receiving heat is circulated, the heat is deprived and solidifies from the liquid to a solid and dissipates heat.
  • Specific materials for the heat storage material 2 include, as saturated hydrocarbons, linear decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosan, heinecosan, docosan, tricosane, tetracosan, Pentacosane, hexacosane, heptacosane, octacosane, nonacosan, triacontan, hentria contane, dotria contane, tritria contane, tetratria contane, pentatria contane, hexatria contane, heptatria contane, octatria contane, nonatria contane, tetra Contan, detetracontan
  • fatty acids such as palmitic acid, stearic acid, myristic acid, oleic acid, palmitoleic acid, y-linolenic acid, linoleic acid, arachidonic acid, ⁇ -linolenic acid, decanoic acid, pentadecanoic acid, heptadecanoic acid, behenic acid, lignoceric acid Decenoic acid, pentadecenoic acid, myristoleic acid and the like.
  • the metal system include mercury, potassium, sodium, gallium, indium, bismuth, aluminum, zinc, silicon, magnesium, copper, tin, lead, cadmium, and alloys containing at least one of these.
  • D-threitol, L-threitol, DL-threitol, meso-erythritol, L-erythritol, D-erythritol, DL-erythritol, pentaerythritol, dipentaerythritol, xylitol, D-arabitol, L-arabitol, DL-arabitol, D-sorbitol, L-sorbitol, DL-sorbitol, D-mannitol, L-mannitol, DL-mannitol and the like can be mentioned.
  • Hydrated salts include potassium fluoride tetrahydrate, calcium chloride hexahydrate, lithium nitrate trihydrate, sodium acetate trihydrate, sodium thiosulfate pentahydrate, sodium sulfate decahydrate, Disodium hydrogen phosphate, iron chloride hexahydrate, magnesium sulfate heptahydrate, lithium acetate dihydrate, sodium hydroxide monohydrate, barium hydroxide octahydrate, strontium hydroxide octahydrate , Aluminum ammonium sulfate hexahydrate, aluminum potassium sulfate hexahydrate and the like.
  • Molten salts include aluminum chloride, lithium nitrate, sodium nitrate, potassium nitrate, lithium hydroxide, calcium chloride, lithium chloride, magnesium chloride, potassium chloride, potassium fluoride, lithium fluoride, lithium carbonate, potassium carbonate, barium nitrate, carbonate Sodium etc. are mentioned.
  • Other examples include clathrate hydrates such as tetrabutylammonium bromide, water, and the like.
  • any material can be used as long as it has a melting point in the operating temperature range and causes a phase change between a liquid and a solid.
  • the liquid flow path 3 is a liquid flow path that is covered with the heat storage material 2 and receives heat from the heat storage material 2.
  • the liquid flow path 3 has a first straight pipe portion 3a through which the liquid flows in the horizontal direction.
  • a metal such as copper, aluminum, stainless steel, titanium, or nickel chrome alloy, or a resin such as polypropylene, polyethylene terephthalate, polyethylene, or polycarbonate is used.
  • a shape of the liquid flow path 3 for example, a circular tube, a multi-hole tube, a flat tube, a torsion tube, or the like is used.
  • liquid channel 3 for example, a tube having an inner diameter of 1 to 20 mm and a tube wall thickness of 0.3 to 2.0 mm may be used.
  • liquid flowing in the liquid flow path 3 water, silicon oil, brine such as ethylene glycol or propylene glycol, or the like is used.
  • the heat medium flow path 4 is a heat medium flow path that is covered with the heat storage material 2 and applies heat to the heat storage material 2.
  • the heat medium flow path 4 forms a pair adjacent to the liquid flow path 3, and has a second straight pipe portion 4a through which the heat medium flows in the horizontal direction.
  • a metal such as copper, aluminum, stainless steel, titanium, nickel chrome alloy, or a resin such as polypropylene, polyethylene terephthalate, polyethylene, or polycarbonate is used.
  • a circular tube, a multi-hole tube, a flat tube, a torsion tube, or the like is used as the shape of the heat medium flow path 4.
  • heat medium channel 4 for example, a tube having an inner diameter of 1 to 20 mm and a tube wall thickness of 0.3 to 2.0 mm may be used.
  • liquid flowing through the heat medium flow path 4 water, silicon oil, brine such as ethylene glycol or propylene glycol, or the like is used.
  • a pair of the first straight pipe portion 3a of the liquid flow path 3 and the second straight pipe portion 4a of the heat medium flow path 4 is arranged in a plurality of stages in the vertical direction (six stages in the illustrated example) as shown in FIG.
  • the first straight pipe portion 3a is located on the lower side in the vertical direction than the second straight pipe portion 4a.
  • the heat medium flow path 4 is configured to meander in the vertical direction by connecting one ends of the second straight pipe portions 4a adjacent in the vertical direction.
  • the fluid flow path 3 is configured to meander in the vertical direction by connecting one ends of the first straight pipe portions 3a adjacent in the vertical direction.
  • the heat storage material solid phase dividing plate 5 has a through-hole 5c through which the liquid flow path 3 and the heat medium flow path 4 penetrate, and the outer periphery of the liquid flow path 3 and the heat medium flow path 4 is connected to the liquid flow path 3 and the heat medium. It is a plate provided so as to cross the flow path 4.
  • the heat storage material solid phase dividing plate 5 transmits heat from the heat medium to the heat storage material 2 when the solid of the heat storage material 2 deprived of heat by the liquid flow path 3 is deposited, and intersects the liquid flow path 3 direction. So that it is divided.
  • the material of the heat storage material solid phase dividing plate 5 is preferably a material having a high thermal conductivity such as copper, aluminum, stainless steel, titanium, nickel chrome alloy.
  • a plate having a thickness of 0.3 to 2 mm may be used.
  • the temperature sensor 6 detects the outlet temperature of the liquid flow path 3.
  • the solid of the heat storage material 2 is deposited on the outer periphery of the liquid flow path 3, it becomes a thermal resistance and inhibits the temperature rise of the liquid. If the liquid is kept flowing as it is, the liquid temperature at the outlet does not rise to a desired temperature. For this reason, it is necessary to detect the liquid temperature at the outlet side and to distribute the heat medium to the heat medium flow path 4 when the temperature becomes a certain temperature or lower. It is desirable that the supply amount of the heat medium can be controlled by the flow rate controller 9 based on the temperature detected by the temperature sensor 6.
  • a heat medium is supplied to the heat medium flow path 4, and heat is given to the heat storage material 2 by heat exchange between the heat storage material 2 and the heat medium.
  • the temperature of the heat storage material 2 gradually increases, and starts to melt when the temperature becomes equal to or higher than the melting point.
  • the heat storage process is completed when the heat storage material 2 is completely melted and there is almost no temperature difference between the heat medium temperature and the heat storage material 2 and heat exchange is stopped.
  • heat is exchanged between the heat storage material 2 and the liquid by supplying the liquid to the liquid flow path 3, and the liquid obtains heat from the heat storage material 2.
  • the temperature of the heat storage material 2 gradually decreases and starts to solidify when the temperature becomes equal to or lower than the melting point.
  • the heat storage material 2 is solidified, it becomes a thermal resistance, and as the thickness of the solid phase increases, the thermal resistance increases and the amount of heat exchange decreases.
  • the heat storage-heat radiation step is a step of simultaneously performing necessary heat storage and heat radiation when the temperature at the outlet of the liquid heat storage tank 1 becomes equal to or lower than the target temperature.
  • the liquid is supplied at the same time as the heat medium is supplied when the liquid temperature is lower than the target temperature.
  • the liquid in the liquid flow path 3 obtains heat from the heat medium in addition to the heat obtained from the surrounding heat storage material 2 by arranging the liquid flow path 3 and the heat medium flow path 4 adjacent to each other.
  • the heat medium in the heat medium flow path 4 applies heat to the liquid in the liquid flow path 3 and simultaneously heats the surrounding heat storage material 2 to melt the solid of the heat storage material 2. That is, heat storage and heat dissipation can be performed simultaneously by arranging the liquid flow path 3 and the heat medium flow path 4 adjacent to each other.
  • FIG. 3 is a schematic diagram when the heat storage material solid phase deposited around the liquid flow path of the heat storage heat exchange device according to Embodiment 1 of the present invention is melted and desorbed.
  • S1 indicates a state in which the liquid is supplied to the liquid flow path 3 and the heat storage material 2 near the outer periphery is deprived of heat, so that the solid of the heat storage material 2 is deposited.
  • the heat storage material solid phase 20 also adheres around the heat medium flow path 4 due to heat transfer from the liquid flow path 3. As the liquid is supplied, the thickness of the heat storage material solid phase 20 increases, and the liquid temperature at the outlet of the heat storage tank 1 gradually decreases.
  • S2 shows a state in which a heat medium is supplied to the heat medium flow path 4.
  • the heat medium supplied to the heat medium flow path 4 first applies heat to the heat storage material solid phase 20 around the heat medium flow path 4, and the heat storage material solid phase 20 starts to melt.
  • S3 shows a state where the heat medium is further supplied to the heat medium flow path 4 from the state of S2.
  • the heat storage material solid phase 20 around the heat medium flow path 4 is completely melted by the heat applied from the heat medium, and the heat storage material solid phase 20 around the liquid flow path 3 starts to melt.
  • S4 shows a state in which a heat medium is further supplied to the heat medium flow path 4 from the state of S3.
  • the heat storage material solid phase 20 around the liquid flow path 3 on the heat medium flow path 4 side melts, and the remaining heat storage material solid phase 20 around the liquid flow path 3 is desorbed, whereby the surface of the liquid flow path 3 Is exposed and the heat exchange capacity is increased.
  • the heat storage material solid phase 20 is moved downward in the vertical direction from the difference in specific gravity by melting the upper side of the liquid flow path 3 in the vertical direction. Since it peels, the surface of the liquid flow path 3 can be exposed rapidly, and a heat exchange capability can be raised rapidly. Therefore, it can suppress that the exit temperature of the liquid thermal storage tank 1 falls below target temperature, and it can avoid that supply of a liquid stops.
  • the heat storage material 2 is, for example, water
  • the density in the solid state is smaller than that in the liquid state. Therefore, in order to quickly separate the solid (ice) from the liquid channel 3, It is necessary to dispose the heat medium flow path 4.
  • FIG. 4 is an enlarged view of part A shown in FIG. 5 is a cross-sectional view taken along line BB shown in FIG.
  • the U-shaped portion is bent obliquely with respect to the vertical direction as shown in FIG.
  • the vertical positional relationship between the heat medium flow path 4 and the liquid flow path 3 that form a pair can also be maintained at the end portions. That is, it is the structure which the connection part of the 2nd straight pipe part 4a adjacent vertically is located in the perpendicular direction upper side rather than the connection part of the 1st straight pipe part 3a adjacent vertically. At this time, as shown in FIG.
  • the radius of the heat medium flow path 4 is r1
  • the radius of the liquid flow path 3 is r2
  • the outer periphery of the second straight pipe portion 4a of the paired heat medium flow path 4 is r2
  • the liquid flow is d and the bending angle with respect to the vertical direction is ⁇ .
  • first straight pipe portion 3a and the second straight pipe portion 4a which are paired as shown in FIG. 1 are arranged in a plurality of stages in the vertical direction, as shown in FIG. It arrange
  • the heat from the 2nd straight pipe part 4a is preferentially transmitted to the 1st straight pipe part 3a used as a pair.
  • FIG. 6 is a heat storage heat exchanger according to Embodiment 1 of the present invention, and is an explanatory diagram showing a configuration in which pairs of a first straight pipe portion and a second straight pipe portion are arranged in a staggered manner. .
  • FIG. 6 when the cross section in the vertical direction of the heat storage tank 1 is seen and the pair of the first straight pipe portion 3 a and the second straight pipe portion 4 a is in a staggered arrangement, the separated heat storage material solid phase 20 is stored in heat. Sedimentation of the tank 1 in the vertical direction can be promoted, and the heat exchange capacity can be improved.
  • the pipe diameter of the second straight pipe portion 4 a of the heat medium flow path 4 is made smaller than the pipe diameter of the first straight pipe section 3 a of the liquid flow path 3, so that it is deposited around the heat medium flow path 4. Since the amount of the heat storage material solid phase 20 is reduced and the melting time is shortened, the heat exchange capacity can be improved more quickly.
  • the melting time of the heat storage material solid phase 20 due to the heat of the heat medium channels 4 is shortened, and the heat exchange performance is improved. improves.
  • a coil-tank type heat exchange system is shown as an example of a heat storage heat exchange device.
  • the same effect can be obtained with a shell-and-tube type, a double pipe type, and a plate-fin type. can get.
  • the heat storage material solid phase 20 is connected for a long time when melted by the heat medium, there is a problem that the heat storage material solid phase 20 does not peel quickly. Therefore, in the heat storage heat exchange device of the first embodiment, the heat storage material solid phase 20 crosses the liquid flow path 3 and the heat medium flow path 4 so that the heat storage material solid phase 20 is not formed long along the liquid flow path 3. Install the phase separation plate 5.
  • the heat storage material solid phase dividing plate 5 divides the heat storage material solid phase 20 deposited around the liquid flow path 3 by heat transmitted from the heat medium flowing in the heat medium flow path 4 in a direction intersecting the liquid flow path 3. Since the divided heat storage material solid phase 20 is quickly separated from the liquid flow path 3, the heat transfer surface of the liquid flow path 3 is exposed, and the heat exchange capability can be quickly improved.
  • FIG. 7 is a schematic diagram of a fluid circuit using the heat storage heat exchanger according to Embodiment 1 of the present invention.
  • the heat storage material solid phase 20 is deposited around the surface of the liquid flow path 3. Since the heat storage material solid phase 20 has a low thermal conductivity, it becomes a thermal resistance, and the heat given to the liquid from the heat storage material 2 is reduced. Furthermore, if the liquid is continuously supplied, the liquid temperature at the outlet of the heat storage tank 1 will eventually become lower than the desired temperature, and the supply of the liquid will stop.
  • the flow rate control unit 9 detects the temperature at the outlet of the heat storage tank 1 of the liquid flow path 3 with the temperature sensor 6, and the detected value becomes equal to or lower than the target temperature. Then, a heat storage / heat radiation step of supplying the heat medium from the heat source 7 to the heat medium flow path 4 is performed. Since the heat radiation amount is determined by the thickness of the heat storage material solid phase 20, whether or not the heat storage material solid phase 20 is peeled off can be calculated from the liquid outlet temperature. Therefore, the temperature sensor 6 detects when the liquid outlet temperature is equal to or higher than the target temperature, and the heat dissipation process is completed.
  • the temperature sensor 6 is similarly disposed at the outlet of the heat storage tank 1 of the heat medium flow path 4, and the heat storage process is completed when the outlet temperature of the heat medium becomes equal to or higher than a predetermined temperature.
  • the flow rate control unit 9 is configured to control the liquid flowing through the liquid flow path 3 based on at least one of the liquid temperature and the heat medium temperature detected by the temperature sensor 6. Since the flow rate and the flow rate of the heat medium flowing through the heat medium flow path 4 are controlled, the upper part of the heat storage material solid phase 20 generated around the liquid flow path 3 can be preferentially melted, and the heat storage material solid phase 20 having a large specific gravity can be obtained. The lower part that has not melted can be quickly detached. Therefore, the heat transfer surface of the liquid flow path 3 can be exposed and the amount of heat exchange can be quickly improved.
  • FIG. 8 is a cross-sectional view of the liquid flow path, the heat medium flow path, and the heat storage material solid phase dividing plate of the heat storage heat exchanger according to Embodiment 2 of the present invention.
  • the description is abbreviate
  • the heat storage heat exchange device is configured such that the heat storage material solid phase dividing plate 5 intersects the liquid flow path 3 and the heat medium flow path 4.
  • the heat storage material solid-phase dividing plate 5 includes a second cover portion 5 b that covers the outer peripheral surface of the heat medium flow path 4 and a first cover portion 5 a that covers the outer peripheral surface of the liquid flow path 3.
  • the heat storage heat exchange device diffuses from the heat medium flow path 4 to the surrounding heat storage material liquid phase by causing the heat storage material solid phase dividing plate 5 to intersect the liquid flow path 3 and the heat medium flow path 4. Therefore, the heat storage material solid phase 20 can be efficiently melted and separated from the liquid flow path 3 in the heat storage process and the heat storage-heat radiation process.
  • the time during which the heat storage material solid phase 20 is divided in the direction intersecting the liquid flow path 3 is shortened, so that the liquid is continuously supplied.
  • the supply stop of the liquid due to the liquid temperature at the outlet being equal to or lower than the desired temperature can be avoided.
  • the shape of the heat storage material solid phase dividing plate 5 is characterized in that the length of the liquid flow path 3 in the radial direction is longer than the length of the heat medium flow path 4 in the radial direction.
  • the heat storage material solid phase dividing plate 5 has an average dimension between the outer peripheral surface of the heat medium flow path 4 and the second outer peripheral surface of the liquid flow path 3 and the inner peripheral surface of the first cover portion 5a. It is formed in the shape larger than the average dimension between the inner peripheral surfaces of the cover part 5b.
  • the heat storage material solid-phase dividing plate 5 Since the heat storage material solid-phase dividing plate 5 has the above shape, the heat of the heat medium supplied to the heat medium flow path 4 is efficiently deposited around the liquid flow path 3 in the heat storage process and the heat storage-heat radiation process.
  • the heat storage material solid phase 20 is transmitted to the heat storage material solid phase 20, and the time during which the heat storage material solid phase 20 is divided in the direction intersecting the liquid flow path 3 is shortened. For this reason, the time required for the heat storage process and the heat storage-heat radiation process is shortened, and the supply stop of the liquid can be avoided.
  • the heat storage material solid-phase dividing plate 5 has a heat storage material solid phase in which heat from the heat medium is more efficiently when the cross section of the heat storage material solid phase 20 deposited around the liquid flow path 3 and the heat medium flow path 4 is closer. It is transmitted to 20.
  • the heat storage material solid phase 20 has a density higher than that of the heat storage material liquid phase, the solid phase thickness of the heat storage material 2 becomes larger from the center portion of the liquid flow path 3 to the lower side than the upper side. Therefore, the shape of the heat storage material solid phase dividing plate 5 has a larger inner diameter on the lower side than on the upper side of the liquid flow path 3. Since the heat storage material solid phase 20 deposited around the heat medium flow path 4 has a larger thickness on the surface where the liquid flow path 3 is located, the heat storage material solid phase 20 is located lower than the upper side from the center of the heat medium flow path 4. , The inner diameter becomes larger.
  • the heat storage material solid-phase dividing plate 5 has an average dimension of the outer peripheral surface of the heat medium flow path 4 and the inner peripheral surface of the second cover portion 5b, which are positioned vertically lower than the second straight pipe portion 4a.
  • the shape is smaller than the average dimension of the outer peripheral surface of the liquid flow path 3 located on the lower side in the vertical direction than the first straight pipe portion 3a and the inner peripheral surface of the first cover portion 5a. Therefore, the heat storage heat exchange device according to the second embodiment efficiently transfers heat from the heat medium flow path 4 to the liquid flow path 3 and the melting and desorption time of the heat storage material solid phase 20 deposited around the liquid flow path 3. The heat exchange capacity can be improved quickly.
  • FIG. 9 is a cross-sectional view of the liquid channel, the heat medium channel, and the heater of the heat storage heat exchanger according to Embodiment 3 of the present invention.
  • the description is abbreviate
  • the heat storage heat exchange device of Embodiment 3 has a configuration in which a heater 8 is installed on the upper side in the vertical direction of the liquid flow path 3 as shown in FIG.
  • the heater 8 when the temperature of the liquid cannot be increased beyond the target temperature only by the heat from the heat medium flow path 4, the heater 8 can be energized to compensate for the insufficient heat. . Therefore, stop of the liquid can be avoided, the heat storage material 2 around the liquid flow path 3 can be melted, and the heat exchange capability of the heat storage heat exchange device can be quickly improved.
  • the heater 8 when the heater 8 is energized, the outlet temperature of the liquid flow path 3 is detected by the temperature sensor 6 and is controlled by the flow rate control unit 9, thereby suppressing the power consumption in the heater 8 more than necessary.
  • FIG. 10 is a heat storage heat exchange device according to Embodiment 4 of the present invention, and is a cross-sectional view showing the relationship among the liquid flow path, the heat medium flow path, and the heat storage material solid phase dividing plate. Note that the description of the same configuration as that of the heat storage heat exchanger of Embodiments 1 to 3 is omitted as appropriate.
  • a slit 10 is provided on the upper side in the vertical direction of the heat medium flow path 4 in the plane of the heat storage material solid phase dividing plate 5.
  • the heat transfer to the upper side in the vertical direction of the heat medium flow path 4 is suppressed by the slit 10, so that heat is efficiently transferred from the heat medium flow path 4 to the liquid flow path 3.
  • the melting and desorption time of the heat storage material solid phase 20 deposited around the liquid flow path 3 can be shortened, and the heat exchange capability can be improved promptly.
  • the heat storage heat exchange device of the fourth embodiment is provided with slits on the left and right sides of the heat medium flow path 4 so that the heat medium flow path 4 is changed to the liquid flow path 3. Heat can be transferred efficiently, and the melting and desorption time of the heat storage material solid phase 20 deposited around the liquid flow path 3 can be further shortened, and the heat exchange capability can be improved quickly.
  • FIG. 11 is a heat storage heat exchange device according to Embodiment 5 of the present invention, and is a cross-sectional view showing the relationship among a liquid flow path, a heat medium flow path, and a heat storage material solid phase dividing plate.
  • 12 is a cross-sectional view taken along the line CC of FIG. Note that the description of the same configuration as that of the heat storage heat exchanger of Embodiments 1 to 3 is omitted as appropriate.
  • the heat storage material solid-phase dividing plate 5 is arranged on the upper side in the vertical direction of the heat medium flow path 4 in the plane of the heat storage material solid-phase cutting plate 5.
  • the cut-and-raised part 11 which cut and raised a part of is forwardly provided.
  • the cut-and-raised part 11 is cut and raised so that the cut at the cut end is on the lower side in the vertical direction than the uncut part.
  • the heat storage heat exchange device when the heat given from the heat medium flow path 4 is transferred to the liquid flow path 3 through the heat storage material solid phase dividing plate 5, the heat is transferred upward in the vertical direction. It is suppressed by the cut and raised portion 11. Therefore, the heat storage heat exchange device according to the fifth embodiment efficiently transfers heat from the heat medium flow path 4 to the liquid flow path 3 and the melting and desorption time of the heat storage material solid phase 20 deposited around the liquid flow path 3. The heat exchange capacity can be improved quickly.
  • the cut-and-raised portion 11 is cut and raised so that the cut of the cut is on the lower side in the vertical direction than the uncut portion. Heat can be transmitted to the path 3 more efficiently, and the melting and desorption time of the heat storage material solid phase 20 deposited around the liquid flow path 3 can be further shortened, and the heat exchange capability can be quickly improved.
  • the structure of the cut-and-raised part 11 shown in FIG.11 and FIG.12 is an example, and is not limited to the said structure.
  • the cut-and-raised part 11 is configured in various shapes depending on the situation of implementation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

蓄熱熱交換装置は、蓄熱槽と、蓄熱槽の内部に設けられ、蓄熱性能および放熱性能を有する蓄熱材と、蓄熱槽の内部で蓄熱材に覆われ、水平方向に液体が流れる第1直管部を有する液体流路と、蓄熱槽の内部で蓄熱材に覆われ、液体流路と隣接して対をなし、水平方向に液体よりも温度の高い熱媒体が流れる第2直管部を有する熱媒体流路と、を備えている。第1直管部は、第2直管部よりも鉛直方向下側に位置する。

Description

蓄熱熱交換装置
 この発明は、潜熱蓄熱材を充填した蓄熱槽と熱交換器とを備えた蓄熱熱交換装置に関するものである。
 従来、熱交換装置は、熱エネルギーの需要と供給の時間的なギャップを埋めるために、一時的に熱を貯めて必要な時に使用することができる蓄熱材が利用されている。その中でも液体と固体の相変化時の潜熱を利用した潜熱蓄熱材は、体積当たりの蓄熱密度の高い材料として用いられている。ここで、蓄熱材の固相は、一般的に熱伝導率が小さく、蓄熱時及び放熱時、熱エネルギーを出し入れする際に熱抵抗となることで熱の出し入れを阻害する。また、液相から固相へと凝固する際に体積が大きく変化するため、伝熱面が露出し、熱交換性能が低下してしまう。
 そこで、特許文献1に記載の蓄熱熱交換装置では、蓄熱槽の底面を覆う加熱源と底面に垂直な加熱源を有することによって蓄熱槽内に空隙が生じることを防止し、溶解した潜熱蓄熱材の対流により残りの固相の潜熱蓄熱材の溶解を促進している。
特開昭58-178191号公報
 特許文献1の蓄熱熱交換装置は、蓄熱槽内の蓄熱材が凝固した場合に熱交換器の周囲の固相を溶解するために蓄熱槽内全体の蓄熱材固相を溶解させる必要があり、蓄熱に時間がかかる。また、この蓄熱熱交換装置は、熱交換量が固相の成長とともに低下するため、必要な熱量が増減するような使用条件においては、熱交換部分の容積が増大し、装置が大型化する。
 本発明は、上記のような課題を解決するためになされたもので、短時間で蓄熱できるとともに、伝熱面に蓄熱材の固相が析出した場合も短時間の熱入力により固相を融解脱離することができる蓄熱熱交換装置を得ることを目的とする。
 本発明に係る蓄熱熱交換装置は、蓄熱槽と、前記蓄熱槽の内部に設けられ、蓄熱性能および放熱性能を有する蓄熱材と、前記蓄熱槽の内部で前記蓄熱材に覆われ、水平方向に液体が流れる第1直管部を有する液体流路と、前記蓄熱槽の内部で前記蓄熱材に覆われ、前記液体流路と隣接して対をなし、水平方向に前記液体よりも温度の高い熱媒体が流れる第2直管部を有する熱媒体流路と、を備え、前記第1直管部は、前記第2直管部よりも鉛直方向下側に位置するものである。
 本発明に係る蓄熱熱交換装置によれば、液体流路と熱媒体流路とが隣接して配置され、液体流路の内部で水平方向に液体が流れる第1直管部が、第1直管部と対をなす熱媒体流路の第2直管部よりも鉛直方向下側に位置するので、熱媒体流路に流した熱媒体によって液体流路周囲に析出した固相を速やかに溶解させることができ、必要な熱量が増加した場合に、液体と熱媒体を直接熱交換することによって熱出力を増加することができる。
本発明の実施の形態1に係る蓄熱熱交換装置の内部構造の一例を示した内部構成図である。 本発明の実施の形態1に係る蓄熱熱交換装置の蓄熱槽の内部に配置した液体流路と熱媒体流路の断面図である。 本発明の実施の形態1に係る蓄熱熱交換装置の液体流路の周囲に析出した蓄熱材固相が融解及び脱離する際の模式図である。 図1に示したA部拡大図である。 図4に示したB-B線矢視断面図である。 本発明の実施の形態1に係る蓄熱熱交換装置であって、第1直管部と第2直管部との対を千鳥配置とした構成を示した説明図である。 本発明の実施の形態1に係る蓄熱熱交換装置を用いた流体回路の模式図である。 本発明の実施の形態2に係る蓄熱熱交換装置の液体流路と熱媒体流路と蓄熱材固相分断プレートの断面図である。 本発明の実施の形態3に係る蓄熱熱交換装置の液体流路と熱媒体流路とヒータの断面図である。 本発明の実施の形態4に係る蓄熱熱交換装置であって、液体流路と熱媒体流路と蓄熱材固相分断プレートとの関係を示した断面図である。 本発明の実施の形態5に係る蓄熱熱交換装置であって、液体流路と熱媒体流路と蓄熱材固相分断プレートとの関係を示した断面図である。 図11に示したC-C線矢視断面図である。
 実施の形態1.
 以下に本発明に係る蓄熱熱交換装置の実施の形態を、図面を参照して説明する。なお、以下の実施の形態のうち、ある実施の形態で述べた構造、材料等を技術的な矛盾が生じない範囲で他の実施の形態述べた構造、材料等に置き換え、付加等してもよい。
 図1は、本発明の実施の形態1に係る蓄熱熱交換装置の内部構造の一例を示した内部構成図である。図2は、本発明の実施の形態1に係る蓄熱熱交換装置の蓄熱槽の内部に配置した液体流路と熱媒体流路の断面図である。図1及び図2に示した実施の形態1の蓄熱熱交換装置は、一例としてコイル-タンク式の熱交換方式である。この蓄熱熱交換装置は、蓄熱槽1と、蓄熱槽1に充填される蓄熱材2と、蓄熱材2から熱を得る液体流路3と、蓄熱材2へ熱を与える熱媒体流路4と、液体流路3と熱媒体流路4とに交差させて配置された蓄熱材固相分断プレート5と、液体流路3の蓄熱槽1の出口側に位置する温度センサ6と、を備えている。また、実施の形態1の蓄熱熱交換装置は、液体流路3を流れる液体の流量及び熱媒体流路4に流れる熱媒体の流量を制御する流量制御部9を、更に備えている。
 蓄熱槽1は、蓄熱材2、液体流路3及び熱媒体流路4を内包している。蓄熱槽1は、蓄熱材2によって腐食されない材質として、ステンレス、鉄、又はニッケルクロム合金などで構成されている。
 蓄熱材2は、使用する温度範囲に融点を持つ潜熱蓄熱材であり、水等の顕熱蓄熱材が顕熱のみを蓄えるのに対し、潜熱である融解熱も蓄えることができるため、単位体積あたりの蓄熱密度が大きい。従って、顕熱蓄熱材を用いる場合に比べ蓄熱槽1を小型化することができる。蓄熱材2は熱媒体により加熱されると固体から液体に相変化することによって潜熱(融解熱)を蓄える。また、熱を受け取るための液体を流通すると熱を奪われて液体から固体に凝固し、放熱する。
 蓄熱材2の具体的な材料としては、飽和炭化水素として、直鎖状のデカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンエイコサン、ドコサン、トリコサン、テトラコサン、ペンタコサン、ヘキサコサン、ヘプタコサン、オクタコサン、ノナコサン、トリアコンタン、ヘントリアコンタン、ドトリアコンタン、トリトリアコンタン、テトラトリアコンタン、ペンタトリアコンタン、ヘキサトリアコンタン、ヘプタトリアコンタン、オクタトリアコンタン、ノナトリアコンタン、テトラコンタン、ドテトラコンタン、トリテトラコンタン、テットラテトラテトラコンタン、ヘキサテトラコンタン、オクタテトラコンタン、ペンタコンタン、ヘキサコンタン、ヘプタコンタン、ヘクタンなどのパラフィンが挙げられる。または、脂肪酸として、パルミチン酸、ステアリン酸、ミリスチン酸、オレイン酸、パルミトレイン酸、y-リノレン酸、リノール酸、アラキドン酸、α-リノレン酸、デカン酸、ペンタデカン酸、ヘプタデカン酸、ベヘン酸、リグノセリン酸、デセン酸、ペンタデセン酸、ミリストレイン酸などが挙げられる。金属系として、水銀、カリウム、ナトリウム、ガリウム、インジウム、ビスマス、アルミニウム、亜鉛、けい素、マグネシウム、銅、錫、鉛、カドミウム、およびこれらを少なくとも一つ含む合金等が挙げられる。糖アルコール類では、D-スレイトール、L-スレイトール、DL-スレイトール、メソ-エリスリトール、L-エリスリトール、D-エリスリトール、DL-エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、キシリトール、D-アラビトール、L-アラビトール、DL-アラビトール、D-ソルビトール、L-ソルビトール、DL-ソルビトール、D-マンニトール、L-マンニトール及びDL-マンニトール等が挙げられる。水和塩としては、フッ化カリウム4水和物、塩化カルシウム6水和物、硝酸リチウム3水和物、酢酸ナトリウム3水和物、チオ硫酸ナトリウム5水和物、硫酸ナトリウム10水和物、リン酸水素2ナトリウム、塩化鉄6水和物、硫酸マグネシウム7水和物、酢酸リチウム2水和物、水酸化ナトリウム1水和物、水酸化バリウム8水和物、水酸化ストロンチウム8水和物、硫酸アルミニウムアンモニウム6水和物、硫酸アルミニウムカリウム6水和物等が挙げられる。溶融塩としては、塩化アルミニウム、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、水酸化リチウム、塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、フッ化カリウム、フッ化リチウム、炭酸リチウム、炭酸カリウム、硝酸バリウム、炭酸ナトリウム等が挙げられる。その他にテトラブチルアンモニウムブロマイドなどの包接水和物、水等が挙げられる。これら以外にも、使用温度域に融点があり、液体と固体間の相変化が生じるものであれば使用できる。
 液体流路3は、蓄熱材2に覆われて、蓄熱材2から熱を受け取る液体の流路である。液体流路3は、水平方向に液体が流れる第1直管部3aを有している。液体流路3の材質は、たとえば、銅、アルミニウム、ステンレス、チタニウム、ニッケルクロム合金などの金属、またはポリプロピレン、ポリエチレンテレフタレート、ポリエチレン、ポリカーボネイトなどの樹脂が用いられる。液体流路3の形状は、たとえば、円管、多穴管、扁平管、ねじり管などが用いられる。液体流路3は、たとえば内径が1~20mm、管壁厚さが0.3~2.0mmの管を用いると良い。液体流路3を流れる液体としては、水、シリコンオイル、またはエチレングリコール、プロピレングリコールなどのブラインなどが用いられる。
 熱媒体流路4は、蓄熱材2に覆われており、蓄熱材2に熱を与える熱媒体の流路である。熱媒体流路4は、液体流路3と隣接して対をなし、水平方向に熱媒体が流れる第2直管部4aを有している。熱媒体流路4の材質は、たとえば、銅、アルミニウム、ステンレス、チタニウム、ニッケルクロム合金などの金属、またはポリプロピレン、ポリエチレンテレフタレート、ポリエチレン、ポリカーボネイトなどの樹脂が用いられる。熱媒体流路4の形状は、たとえば、円管、多穴管、扁平管、ねじり管などが用いられる。熱媒体流路4は、たとえば内径が1~20mm、管壁厚さが0.3~2.0mmの管を用いると良い。熱媒体流路4を流れる液体としては、水、シリコンオイル、またはエチレングリコール、プロピレングリコールなどのブラインなどが用いられる。
 液体流路3の第1直管部3a及び熱媒体流路4の第2直管部4aの対は、図1に示すように、上下方向に複数段(図示例の場合は6段)配置されており、第1直管部3aが、第2直管部4aよりも鉛直方向下側に位置している。熱媒体流路4は、上下に隣接する第2直管部4aの一端部が連結されて、上下方向に蛇行する構成とされている。同様に、流体流路3は、上下に隣接する第1直管部3aの一端部が連結されて、上下方向に蛇行する構成とされている。
 蓄熱材固相分断プレート5は、液体流路3及び熱媒体流路4が貫通する貫通孔5cを有し、液体流路3及び熱媒体流路4の外周を、液体流路3及び熱媒体流路4と交差するように設けられたプレートである。蓄熱材固相分断プレート5は、液体流路3によって熱を奪われた蓄熱材2の固体が析出した際に、熱媒体からの熱を蓄熱材2に伝え、液体流路3方向に交差するように分断するためのものである。蓄熱材固相分断プレート5の材質は、たとえば銅、アルミニウム、ステンレス、チタニウム、ニッケルクロム合金など熱伝導率の大きいものが望ましい。蓄熱材固相分断プレート5は、たとえば0.3~2mmの厚さの板を用いると良い。
 温度センサ6は、液体流路3の出口温度を検知する。放熱工程において、液体流路3の外周に蓄熱材2の固体が析出すると熱抵抗となり液体の温度上昇を阻害する。そのまま液体を流し続けると出口での液体温度が所望の温度まで上昇しない。そのため、出口側での液体温度を検知し、一定温度以下になったところで熱媒体流路4に熱媒体を流通する必要がある。温度センサ6での検出温度に基づき、流量制御部9で熱媒体の供給量を制御できることが望ましい。出口側の液体温度が一定温度以上になったところで熱媒体流路4への熱媒体の供給を止める。ここで、さらに熱媒体流路4の出口温度を検知することで、液体流路3への液体の供給を止めていても、熱媒体温度が一定温度以上となったところで熱媒体の供給を止めることができる。
 次に、実施の形態1の蓄熱熱交換装置による蓄熱材2への蓄熱及び放熱の各工程について説明する。蓄熱熱交換装置の温度が融点以下になっている場合、蓄熱材2は蓄熱槽1の中で固体状態となっている。
 蓄熱工程は、熱媒体流路4に熱媒体を供給し、蓄熱材2と熱媒体が熱交換することによって蓄熱材2に熱を与える。蓄熱材2は、徐々に温度が上昇し、融点以上になると融解し始める。蓄熱材2が完全に融解し、熱媒体温度と蓄熱材2の温度差がほとんど無くなり熱交換しなくなったところを蓄熱工程完了とする。
 放熱工程は、液体流路3に液体を供給することによって蓄熱材2と液体とが熱交換し、液体が蓄熱材2から熱を得る。蓄熱材2は、徐々に温度が低下し、融点以下になると凝固し始める。蓄熱材2が凝固すると熱抵抗となり、固相の厚みが増大していくことで熱抵抗が大きくなって熱交換量が小さくなる。
 蓄熱-放熱工程は、液体の蓄熱槽1の出口での温度が、目標の温度以下となったところで必要となる蓄熱と放熱を同時に行う工程である。液体温度が、必要な温度以下になってしまうことを避けるために、目標の温度以下になったときに液体を供給すると同時に熱媒体を供給する。ここで、液体流路3と熱媒体流路4とを隣接しておくことで液体流路3内の液体は、周囲の蓄熱材2から得る熱の他に、熱媒体から熱を得て、温度が上昇する。熱媒体流路4内の熱媒体は、液体流路3内の液体に熱を与えると同時に周囲の蓄熱材2に熱を与えて蓄熱材2の固体を融解する。つまり、液体流路3と熱媒体流路4とを隣接しておくことで蓄熱と放熱とを同時に行うことができるようになる。
 次に、液体流路3と熱媒体流路4との間の熱のやり取りを図3に基づいて説明する。図3は、本発明の実施の形態1に係る蓄熱熱交換装置の液体流路の周囲に析出した蓄熱材固相が融解及び脱離する際の模式図である。
 S1は、液体流路3に液体を供給し、外周付近の蓄熱材2の熱が奪われることによって蓄熱材2の固体が析出している状態を示している。S1では、液体流路3からの伝熱によって熱媒体流路4の周りにも蓄熱材固相20が付着する。液体を供給するにつれて蓄熱材固相20の厚みが増大し、蓄熱槽1の出口での液体温度が徐々に低下する。
 S2は、熱媒体流路4に熱媒体を供給している状態を示している。S2では、熱媒体流路4に供給された熱媒体が、まず熱媒体流路4の周りの蓄熱材固相20に熱を与え、蓄熱材固相20が融解し始める。
 S3は、S2の状態からさらに熱媒体流路4に熱媒体を供給した状態を示している。S3では、熱媒体流路4の周囲の蓄熱材固相20が熱媒体から与えられた熱により完全に融解し、液体流路3の周囲の蓄熱材固相20が融解し始める。
 S4は、S3の状態からさらに熱媒体流路4に熱媒体を供給した状態を示している。S4では、熱媒体流路4側における液体流路3周囲の蓄熱材固相20が融解し、液体流路3の周囲の残った蓄熱材固相20が脱離することによって液体流路3表面が露出し、熱交換能力が大きくなる。
 ここで、蓄熱材2の固体状態の密度が液体状態の密度よりも大きい場合は、液体流路3の鉛直方向上側を融解することで蓄熱材固相20が比重の差から鉛直方向下側に剥離するため速やかに液体流路3の表面を露出することができ、熱交換能力を速やかに上昇させることができる。そのため、液体の蓄熱槽1の出口温度が目標温度以下になるまで低下することを抑制することができて、液体の供給が停止してしまうことを回避することができる。一方、蓄熱材2がたとえば水の場合、固体状態の方が液体の状態よりも密度が小さいので、液体流路3から固体(氷)を速やかに剥離するために、液体流路3の下に熱媒体流路4を配設する必要がある。
 また、図4は、図1に示したA部拡大図である。図5は、図4に示したB-B線矢視断面図である。図4に示すように、対となる熱媒体流路4と液体流路3の端部がU字に曲がる場合、図5に示すように鉛直方向に対してU字の部分を斜めに曲げることで、端部についても対となる熱媒体流路4と液体流路3の鉛直方向の位置関係を維持することができる。つまり、上下に隣接する第2直管部4aの連結部分が、上下に隣接する第1直管部3aの連結部分よりも鉛直方向上側に位置するようにした構成である。このとき、図5に示すように、熱媒体流路4の半径をr1、液体流路3の半径をr2、対となる熱媒体流路4の第2直管部4aの外周と、液体流路3の第1直管部3aの外周との距離をd、鉛直方向に対する曲げ角度をθとすると、(r1+r2+d)sinθ≧r1+r2とすることで流路の干渉を避けることができる。
 また、図1に示すように対となる第1直管部3aと第2直管部4aが上下方向に複数段配置される場合、図5に示すように、第2直管部4aは他の対の第1直管部3aからの距離Dよりも対となる第1直管部3aからの距離dが小さくなるように配置する(d<D)。これにより、第2直管部4aからの熱が優先的に対となる第1直管部3aへと伝えられる。
 また、図6は、本発明の実施の形態1に係る蓄熱熱交換装置であって、第1直管部と第2直管部との対を千鳥配置とした構成を示した説明図である。図6に示すように、蓄熱槽1の鉛直方向における断面を見て、第1直管部3aと第2直管部4aの対が千鳥配置であると、剥離した蓄熱材固相20を蓄熱槽1の鉛直方向下側への沈殿を促し、熱交換能力を向上させることができる。
 また、熱媒体流路4の第2直管部4aの配管径を、液体流路3の第1直管部3aの配管径よりも小さくすることによって、熱媒体流路4の周囲に析出する蓄熱材固相20の量が減少し、融解時間が短くなるため、熱交換能力をより速やかに向上させることができる。
 また、対となる熱媒体流路4の本数が液体流路3の本数よりも多い場合には、熱媒体流路4の熱による蓄熱材固相20の融解時間が短くなり、熱交換性能が向上する。
 図1に示す実施の形態1では、蓄熱熱交換装置の一例として、コイル-タンク式の熱交換方式を示したが、シェルアンドチューブ型、2重管型、プレート-フィン型でも同様の効果が得られる。また、蓄熱材固相20は、熱媒体によって融解された際に、長くつながっていた場合、速やかに剥離しないということが問題となる。そこで、実施の形態1の蓄熱熱交換装置では、蓄熱材固相20が液体流路3に沿って長く形成されないように液体流路3と熱媒体流路4とに交差するように蓄熱材固相分断プレート5を設置する。蓄熱材固相分断プレート5は、熱媒体流路4に流れる熱媒体から伝わる熱によって液体流路3の周囲に析出した蓄熱材固相20を液体流路3と交差する方向に分断する。分断された蓄熱材固相20は、速やかに液体流路3から剥離するため、液体流路3の伝熱面が露出し、熱交換能力を速やかに向上することができる。
 次に、蓄熱、放熱を制御するための温度センサ6を図7に基づいて説明する。図7は、本発明の実施の形態1に係る蓄熱熱交換装置を用いた流体回路の模式図である。放熱工程では、液体流路3に液体を供給し、蓄熱材2から液体に熱が奪われると、液体流路3の表面の周囲には蓄熱材固相20が析出する。蓄熱材固相20は、熱伝導率が小さいため、熱抵抗となり、蓄熱材2から液体に与えられる熱は小さくなる。さらに、液体を供給し続けるといずれ蓄熱槽1の出口における液体温度が得たい温度以下になってしまい、液体の供給が止まってしまう。そこで、図7に示すように、流量制御部9は、液体流路3の蓄熱槽1の出口での温度を温度センサ6によって検出し、その検出値した温度が目標の温度以下になった場合、熱源7から熱媒体流路4に熱媒体を供給する、蓄熱-放熱工程を行う。放熱量は、蓄熱材固相20の厚みによって決まるため、蓄熱材固相20が剥離したかどうかについては、液体の出口温度から算出することができる。そのため、液体の出口温度が目標の温度以上になったところを温度センサ6で検出し、放熱工程完了とする。
 ここで、蓄熱-放熱工程の途中で液体の供給を止めて、蓄熱工程に移行した場合、液体流路3の出口温度では、放熱工程の完了時期が分からない。そこで、蓄熱熱交換装置では、熱媒体流路4の蓄熱槽1の出口にも同様に温度センサ6を配設し、熱媒体の出口温度が所定温度以上になったところで蓄熱工程完了とする。
 したがって、実施の形態1の蓄熱熱交換装置によれば、液体流路3と熱媒体流路4とが隣接して配置され、液体流路3の内部で水平方向に液体が流れる第1直管部3aが、第1直管部3aと対をなす熱媒体流路4の第2直管部4aよりも鉛直方向下側に位置するので、熱媒体流路4に流した熱媒体で、液体流路3の周囲に析出した固相を速やかに溶解させることができ、必要な熱量が増加した場合に、液体と熱媒体を直接熱交換することによって熱出力を増加することができる。
 また、実施の形態1の蓄熱熱交換装置によれば、流量制御部9は、温度センサ6が検知した液体温度及び熱媒体温度の少なくとも一方の温度に基づいて、液体流路3を流れる液体の流量及び熱媒体流路4に流れる熱媒体の流量を制御するので、液体流路3の周囲に生成した蓄熱材固相20の上部を優先的に融解でき、比重の大きい蓄熱材固相20の溶け残った下部を速やかに脱離させることできる。よって、液体流路3の伝熱面を露出させて、熱交換量を速やかに向上することができる。
 実施の形態2.
 次に、本発明に係る実施の形態2の蓄熱熱交換装置を図8に基づいて説明する。図8は、本発明の実施の形態2に係る蓄熱熱交換装置の液体流路と熱媒体流路と蓄熱材固相分断プレートの断面図である。なお、実施の形態1の蓄熱熱交換装置と同一の構成については、その説明を適宜省略する。
 実施の形態2の蓄熱熱交換装置は、蓄熱材固相分断プレート5が、液体流路3と熱媒体流路4とに交差する形状で構成されている。蓄熱材固相分断プレート5は、熱媒体流路4の外周面を覆う第2覆い部5bと、液体流路3の外周面を覆う第1覆い部5aと、を有している。実施の形態2の蓄熱熱交換装置は、蓄熱材固相分断プレート5を液体流路3と熱媒体流路4とに交差させることによって、熱媒体流路4から周囲の蓄熱材液相に拡散する熱を低減することができ、蓄熱工程、蓄熱-放熱工程において効率良く蓄熱材固相20を融解し、液体流路3から剥離することができる。つまり、実施の形態2の蓄熱熱交換装置は、蓄熱材固相20が液体流路3に交差する方向に分断される時間が短くなることで、液体を供給し続けることにより、蓄熱槽1の出口における液体温度が得たい温度以下になることよる液体の供給停止を避けることができる。
 さらに、蓄熱材固相分断プレート5の形状において、液体流路3の半径方向の長さが熱媒体流路4の半径方向の長さより長い形状であることを特徴とする。具体的には、蓄熱材固相分断プレート5は、液体流路3の外周面と第1覆い部5aの内周面との間の平均寸法が、熱媒体流路4の外周面と第2覆い部5bの内周面との間の平均寸法よりも大きい形状に形成されている。
 蓄熱材固相分断プレート5が、上記形状を有することにより、蓄熱工程、蓄熱-放熱工程において、熱媒体流路4に供給される熱媒体の熱が効率的に液体流路3の周囲に析出した蓄熱材固相20に伝わり、蓄熱材固相20が液体流路3に交差する方向に分断される時間が短くなる。そのため、蓄熱工程、蓄熱-放熱工程の時間が短くなり、液体の供給停止を避けることができる。なお、蓄熱材固相分断プレート5は、液体流路3と熱媒体流路4の周囲に析出する蓄熱材固相20の断面形状に近い方が熱媒体からの熱が効率良く蓄熱材固相20に伝わる。
 また、蓄熱材固相20は、蓄熱材液相よりも密度が大きいため、液体流路3の中心部分から上側よりも下側の方が蓄熱材2の固相厚みが大きくなる。そのため、蓄熱材固相分断プレート5の形状は、液体流路3の上側よりも下側の方が、内径が大きくなる。熱媒体流路4の周囲に析出する蓄熱材固相20は、液体流路3がある面の方が、厚みが大きくなるため、熱媒体流路4の中心から上側よりも下側の方が、内径が大きくなる。
 そこで、蓄熱材固相分断プレート5は、第2直管部4aよりも鉛直方向下側に位置する熱媒体流路4の外周面と第2覆い部5bの内周面との平均寸法が、第1直管部3aよりも鉛直方向下側に位置する液体流路3の外周面と第1覆い部5aの内周面との平均寸法よりも小さい形状としている。よって、実施の形態2の蓄熱熱交換装置は、熱媒体流路4から液体流路3へ効率良く熱を伝え、液体流路3の周囲に析出した蓄熱材固相20の融解及び脱離時間を短くすることができ、速やかに熱交換能力を向上させることができる。
 実施の形態3.
 次に、本発明に係る実施の形態3の蓄熱熱交換装置を図9に基づいて説明する。図9は、本発明の実施の形態3に係る蓄熱熱交換装置の液体流路と熱媒体流路とヒータの断面図である。なお、実施の形態1及び2の蓄熱熱交換装置と同一の構成については、その説明を適宜省略する。
 実施の形態3の蓄熱熱交換装置では、図9に示すように、液体流路3の鉛直方向上側にヒータ8が設置された構成である。実施の形態3の蓄熱熱交換装置では、熱媒体流路4からの熱だけでは液体の温度が目標の温度以上にできなくなった場合に、ヒータ8に通電し、足りない熱を補うことができる。そのため、液体の停止を避けることができるとともに、液体流路3の周囲の蓄熱材2を融解することができ、蓄熱熱交換装置の熱交換能力を速やかに向上させることができる。また、ヒータ8への通電は、液体流路3の出口温度を温度センサ6によって検知し、流量制御部9で制御することによって、必要以上のヒータ8での電力消費を抑制することができる。
 実施の形態4.
 次に、本発明に係る実施の形態4の蓄熱熱交換装置を図10に基づいて説明する。図10は、本発明の実施の形態4に係る蓄熱熱交換装置であって、液体流路と熱媒体流路と蓄熱材固相分断プレートとの関係を示した断面図である。なお、実施の形態1~3の蓄熱熱交換装置と同一の構成については、その説明を適宜省略する。
 実施の形態4の蓄熱熱交換装置では、図10に示すように、蓄熱材固相分断プレート5の面内における熱媒体流路4の鉛直方向上側にスリット10が設けられている。実施の形態4の蓄熱熱交換装置では、熱媒体流路4の鉛直方向上側への熱の伝達がスリット10によって抑制されるため、熱媒体流路4から液体流路3へ効率良く熱を伝え、液体流路3の周囲に析出した蓄熱材固相20の融解及び脱離時間を短くすることができ、速やかに熱交換能力を向上させることができる。
 なお、詳細に図示することは省略したが、実施の形態4の蓄熱熱交換装置は、熱媒体流路4の左右側にもスリットを設けることによって、熱媒体流路4から液体流路3へ効率良く熱を伝え、液体流路3の周囲に析出した蓄熱材固相20の融解及び脱離時間をさらに短くすることができ、速やかに熱交換能力を向上させることができる。
 実施の形態5.
 次に、本発明に係る実施の形態5の蓄熱熱交換装置を図11及び図12に基づいて説明する。図11は、本発明の実施の形態5に係る蓄熱熱交換装置であって、液体流路と熱媒体流路と蓄熱材固相分断プレートとの関係を示した断面図である。図12は、図11に示したC-C線矢視断面図である。なお、実施の形態1~3の蓄熱熱交換装置と同一の構成については、その説明を適宜省略する。
 実施の形態5の蓄熱熱交換装置では、図11及び図12に示すように、蓄熱材固相分断プレート5の面内における熱媒体流路4の鉛直方向上側に、蓄熱材固相分断プレート5の一部を前方に切り起こした切り起こし部11が設けられている。切り起こし部11は、切り口の切り込みが切り残し部分よりも鉛直方向下側となるように切り起こされている。実施の形態5の蓄熱熱交換装置では、熱媒体流路4から与えられる熱が蓄熱材固相分断プレート5を介して液体流路3に伝えられる際に、鉛直方向上側への熱の伝達が切り起こし部11によって抑制される。そのため、実施の形態5の蓄熱熱交換装置は、熱媒体流路4から液体流路3へ効率良く熱を伝え、液体流路3の周囲に析出した蓄熱材固相20の融解及び脱離時間を短くすることができ、速やかに熱交換能力を向上させることができる。
 また、実施の形態5の蓄熱熱交換装置は、切り口の切り込みが切り残し部分よりも鉛直方向下側となるように切り起こし部11が切り起こされているので、熱媒体流路4から液体流路3へさらに効率良く熱を伝え、液体流路3の周囲に析出した蓄熱材固相20の融解及び脱離時間をさらに短くすることができ、速やかに熱交換能力を向上させることができる。なお、図11及び図12に示した切り起こし部11の構成は一例であり、当該構成に限定されない。切り起こし部11は、実施の状況に応じて種々の形状で構成される。
 1 蓄熱槽、 2 蓄熱材、3 液体流路、3a 第1直管部、4 熱媒体流路、4a 第2直管部、5 蓄熱材固相分断プレート、5a 第1覆い部、5b 第2覆い部、5c 貫通孔、6 温度センサ、7 熱源、8 ヒータ、9 流量制御部、10 スリット、11 切り起こし部、20 蓄熱材固相。

Claims (15)

  1.  蓄熱槽と、
     前記蓄熱槽の内部に設けられ、蓄熱性能および放熱性能を有する蓄熱材と、
     前記蓄熱槽の内部で前記蓄熱材に覆われ、水平方向に液体が流れる第1直管部を有する液体流路と、
     前記蓄熱槽の内部で前記蓄熱材に覆われ、前記液体流路と隣接して対をなし、水平方向に前記液体よりも温度の高い熱媒体が流れる第2直管部を有する熱媒体流路と、を備え、
     前記第1直管部は、前記第2直管部よりも鉛直方向下側に位置する蓄熱熱交換装置。
  2.  前記第2直管部の配管径は、前記第1直管部の配管径よりも小さい請求項1に記載の蓄熱熱交換装置。
  3.  前記熱媒体流路は、前記液体流路よりも多い本数で構成されている請求項1又は2に記載の蓄熱熱交換装置。
  4.  前記第1直管部と前記第2直管部との対は、上下方向に複数段配置されており、
     前記熱媒体流路は、前記上下に隣接する第2直管部の一端部が連結されて、上下方向に蛇行する構成とされ、
     前記流体流路は、前記上下に隣接する第1直管部の一端部が連結されて、上下方向に蛇行する構成とされている請求項1~3のいずれか一項に記載の蓄熱熱交換装置。
  5.  上下方向に複数段配置された対となる前記第1直管部と前記第2直管部の距離の平均は、隣接する一方の段の第2直管部と他方の段の第1直管部との距離よりも小さい請求項4に記載の蓄熱熱交換装置。
  6.  前記上下方向に複数段配置されている前記第1直管部と前記第2直管部との対は、前記蓄熱槽の鉛直方向における断面を見ると、千鳥配置とされている請求項4又は5に記載の蓄熱熱交換装置。
  7.  上下に隣接する前記第2直管部の連結部分は、上下に隣接する前記第1直管部の連結部分よりも鉛直方向上側に位置する請求項4~6のいずれか一項に記載の蓄熱熱交換装置。
  8.  前記液体流路を流れる液体の液体温度及び前記熱媒体流路に流れる熱媒体の熱媒体温度のうち少なくとも一方を検出する温度センサと、
     前記温度センサが検知した温度に基づいて、前記液体流路を流れる前記液体の流量及び前記熱媒体流路に流れる前記熱媒体の流量を制御する流量制御部と、を更に備えている請求項1~7のいずれか一項に記載の蓄熱熱交換装置。
  9.  前記液体流路と前記熱媒体流路とに、交差させて配置された分断プレートを、更に備えている請求項1~8のいずれか一項に記載の蓄熱熱交換装置。
  10.  前記液体流路及び前記熱媒体流路は、それぞれ管状からなり、
     前記分断プレートは、
     前記液体流路の外周面を覆う第1覆い部と、
     前記熱媒体流路の外周面を覆う第2覆い部と、を有し、
     前記液体流路の外周面と第1覆い部の内周面との間の平均寸法が、前記熱媒体流路の外周面と第2覆い部の内周面との間の平均寸法よりも大きい形状である請求項9に記載の蓄熱熱交換装置。
  11.  前記分断プレートは、前記第2直管部よりも鉛直方向下側に位置する前記熱媒体流路の外周面と第2覆い部の内周面との平均寸法が、前記第1直管部よりも鉛直方向下側に位置する前記液体流路の外周面と前記第1覆い部の内周面との平均寸法よりも小さい形状である請求項10に記載の蓄熱熱交換装置。
  12.  前記分断プレートには、前記第2直管部の鉛直方向上側にスリットが形成されている請求項9~11のいずれか一項に記載の蓄熱熱交換装置。
  13.  前記分断プレートには、前記第2直管部の鉛直方向上側の一部を切り起こした切り起こし部が形成されている請求項9~11のいずれか一項に記載の蓄熱熱交換装置。
  14.  前記切り起こし部は、切り口の切り込みが切り残し部分よりも鉛直方向下側となるように切り起こされている請求項13に記載の蓄熱熱交換装置。
  15.  前記液体流路の鉛直方向上側に隣接して設けられ、前記液体流路に熱を与えるヒータを、更に備えている請求項1~14のいずれか一項に記載の蓄熱熱交換装置。
PCT/JP2017/013361 2016-04-22 2017-03-30 蓄熱熱交換装置 WO2017183413A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017538445A JP6501894B2 (ja) 2016-04-22 2017-03-30 蓄熱熱交換装置
US16/090,674 US20200049424A1 (en) 2016-04-22 2017-03-30 Regenerative heat exchange apparatus
EP17785755.4A EP3428566B1 (en) 2016-04-22 2017-03-30 Regenerative heat exchanger
CN201780023234.XA CN109073327B (zh) 2016-04-22 2017-03-30 蓄热热交换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085887 2016-04-22
JP2016-085887 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183413A1 true WO2017183413A1 (ja) 2017-10-26

Family

ID=60116682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013361 WO2017183413A1 (ja) 2016-04-22 2017-03-30 蓄熱熱交換装置

Country Status (5)

Country Link
US (1) US20200049424A1 (ja)
EP (1) EP3428566B1 (ja)
JP (2) JP6501894B2 (ja)
CN (1) CN109073327B (ja)
WO (1) WO2017183413A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20175180L (fi) * 2017-02-27 2018-08-28 Ari Piispanen Energiavirtojen hallintamenetelmä ja -järjestelmä
CN112484549A (zh) * 2019-09-11 2021-03-12 广东美的白色家电技术创新中心有限公司 换热器组件、蓄能换热装置及电器
US11326840B2 (en) 2020-04-13 2022-05-10 Rocky Research Cooling system with thermal storage
CN113587697A (zh) * 2020-04-30 2021-11-02 芜湖美的厨卫电器制造有限公司 蓄热组件和热水器
CN112944440B (zh) * 2021-03-16 2022-12-27 西北大学 一种电加热蓄热供暖系统及其供暖方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925547A (ja) * 1972-06-30 1974-03-07
JPS54146058A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPS54146054A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPS5680696A (en) * 1979-12-05 1981-07-02 Hitachi Ltd Heat accumulating device
JPS56100263A (en) * 1980-01-11 1981-08-12 Hitachi Ltd Heat accumulater
JPS56102691A (en) * 1980-01-21 1981-08-17 Hitachi Ltd Heat accumulator
JPS5712256A (en) * 1980-06-25 1982-01-22 Nippon Tokkyo Kanri Kk Heat storage device for solar heat utilization equipment
JPS5733792A (en) * 1980-08-06 1982-02-23 Hitachi Plant Eng & Constr Co Ltd Heat accumulator
JPS63113299A (ja) * 1986-10-30 1988-05-18 Toshiba Corp 潜熱蓄熱装置
JPH02219987A (ja) * 1989-02-20 1990-09-03 Toshiba Corp 蓄熱装置
EP1098157A2 (de) * 1999-11-04 2001-05-09 Alfred Schneider Latentwärmespeicher

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178191A (ja) * 1982-04-09 1983-10-19 Matsushita Electric Ind Co Ltd 蓄熱装置
JP3859359B2 (ja) * 1998-06-16 2006-12-20 株式会社大気社 蓄熱槽使用の熱源システム
GB2489069A (en) * 2011-03-16 2012-09-19 Green Structures Ltd Thermal energy store
DE202012103717U1 (de) * 2012-09-27 2012-12-14 Viessmann Kältetechnik AG Thermischer Speicher für Kälteanlagen
CN205027185U (zh) * 2015-08-09 2016-02-10 大连理工大学 相变蓄放热一体式换热器
CN105115340A (zh) * 2015-09-09 2015-12-02 江苏宝奥兰空调设备有限公司 一种相变蓄热装置及热泵热水器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925547A (ja) * 1972-06-30 1974-03-07
JPS54146058A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPS54146054A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPS5680696A (en) * 1979-12-05 1981-07-02 Hitachi Ltd Heat accumulating device
JPS56100263A (en) * 1980-01-11 1981-08-12 Hitachi Ltd Heat accumulater
JPS56102691A (en) * 1980-01-21 1981-08-17 Hitachi Ltd Heat accumulator
JPS5712256A (en) * 1980-06-25 1982-01-22 Nippon Tokkyo Kanri Kk Heat storage device for solar heat utilization equipment
JPS5733792A (en) * 1980-08-06 1982-02-23 Hitachi Plant Eng & Constr Co Ltd Heat accumulator
JPS63113299A (ja) * 1986-10-30 1988-05-18 Toshiba Corp 潜熱蓄熱装置
JPH02219987A (ja) * 1989-02-20 1990-09-03 Toshiba Corp 蓄熱装置
EP1098157A2 (de) * 1999-11-04 2001-05-09 Alfred Schneider Latentwärmespeicher

Also Published As

Publication number Publication date
US20200049424A1 (en) 2020-02-13
JP6501894B2 (ja) 2019-04-17
CN109073327A (zh) 2018-12-21
CN109073327B (zh) 2020-09-04
EP3428566A4 (en) 2019-04-10
EP3428566B1 (en) 2020-07-22
JPWO2017183413A1 (ja) 2018-04-26
JP2018105616A (ja) 2018-07-05
EP3428566A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2017183413A1 (ja) 蓄熱熱交換装置
US20130098417A1 (en) Thermogenerator comprising phase-change materials
JP6308051B2 (ja) 蓄熱システム
JP2018118313A (ja) 鋳造用金型およびその製造方法
JP2017166729A (ja) 熱貯蔵システム
JP2012215323A (ja) 潜熱蓄熱装置
CN109291396A (zh) 一种高效3d打印耗材拉丝装置
JP6427852B2 (ja) 蓄熱剤の蓄放熱速度の調整方法
JP2017187181A (ja) 熱交換器及び給湯器
CN204905383U (zh) 一种锂离子电池模组及汽车
JP6630946B2 (ja) 潜熱蓄熱装置
CN104684357A (zh) 一种新型散热器
JP2011083778A (ja) 三次元造形方法及び三次元造形装置
CN209986192U (zh) 一种上引法结晶器
WO2020189089A1 (ja) 過冷却解除装置、蓄熱装置及び動力装置
JP2014238204A (ja) 扁平管熱交換器の製造方法及びその製造方法で製造した扁平管熱交換器
CN208584799U (zh) 新型激光3d打印机
JP2009103341A (ja) 蓄熱装置
JP2015183973A (ja) 過冷却型潜熱蓄熱材組成物および蓄熱システム
JP6237300B2 (ja) リブ付き銅管の製造方法及び連続鋳造用鋳型
US20100269999A1 (en) Process and apparatus for direct chill casting
JP6041778B2 (ja) 伝熱管及びその製造方法
Lakshmi Review of cast-on-strap joints and strap alloys for lead–acid batteries
CN109237976B (zh) 一种能提高相变蓄能材料结晶速度的pcm蓄能结构
US20220203857A1 (en) Accelerated electric vehicle charging with subcooled coolant boiling

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538445

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017785755

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017785755

Country of ref document: EP

Effective date: 20181011

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785755

Country of ref document: EP

Kind code of ref document: A1