WO2017183385A1 - 電源モジュール - Google Patents

電源モジュール Download PDF

Info

Publication number
WO2017183385A1
WO2017183385A1 PCT/JP2017/011584 JP2017011584W WO2017183385A1 WO 2017183385 A1 WO2017183385 A1 WO 2017183385A1 JP 2017011584 W JP2017011584 W JP 2017011584W WO 2017183385 A1 WO2017183385 A1 WO 2017183385A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply module
inductor
resin member
substrate
Prior art date
Application number
PCT/JP2017/011584
Other languages
English (en)
French (fr)
Inventor
宗丈 宮下
康弘 東出
武司 和気
貴之 丹下
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017183385A1 publication Critical patent/WO2017183385A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/04Arrangements of circuit components or wiring on supporting structure on conductive chassis

Definitions

  • the present invention relates to a power supply module, and more particularly to a power supply module including a substrate and a plurality of electronic components mounted on the substrate.
  • Patent Document 1 a DC / DC converter module having a structure in which an electronic component such as an IC chip is directly mounted on the upper surface of a chip inductor is known.
  • a plurality of electronic components are mounted on the upper surface of the chip inductor, so that the mounting area can be reduced.
  • Patent Document 1 an electronic component such as an IC chip or a sealing resin is directly bonded to the upper surface of a chip inductor that is not suitable for mounting an electronic component or the like. is there. As a result, the strength and durability of the module itself are insufficient.
  • An object of the present invention is to provide a power supply module that can reduce a mounting area with a simple configuration and has improved durability against mechanical strength, external force, and the like.
  • the power supply module of the present invention is A substrate having a first surface and a second surface opposite the first surface; A plurality of electronic components respectively mounted on the first surface and the second surface; A first resin member formed on the first surface and sealing the plurality of electronic components mounted on the first surface; A second resin member formed on the second surface and sealing the plurality of electronic components mounted on the second surface; An inductor disposed in a position overlapping with some of the plurality of electronic components in plan view of the first surface or the second surface; It is characterized by providing.
  • This configuration makes it possible to realize a power supply module having a small mounting area compared to the case where a plurality of electronic components are mounted on either the first surface or the second surface of the substrate.
  • the entire power supply module is robust and durable against the mechanical strength and external force of the power supply module itself. Will increase.
  • the mounting strength of the electronic component on the substrate can be increased compared to the case where the electronic component is mounted on the substrate 1 only by soldering, and the electrical connection reliability between the electronic component and the substrate is improved. To do.
  • the inductor is a relatively large part. Therefore, with this configuration, the mounting area of the power supply module can be easily reduced. Further, in this configuration, an electronic component that generates heat during operation is sealed with a resin member having higher thermal conductivity than air. Therefore, heat generated from the electronic component is dispersed through the resin member, so that heat dissipation is improved.
  • the inductor is preferably sealed by the first resin member or the second resin member.
  • the entire power supply module is robust, and the durability of the power supply module itself with respect to mechanical strength, external force, and the like is increased. Also, with this configuration, it is possible to increase the mounting strength of the inductor with respect to the substrate as compared with the case where the inductor is mounted on the substrate only by soldering, and the electrical connection reliability between the inductor and the substrate is improved.
  • the plurality of electronic components include an input capacitor connected to an input unit, an output capacitor connected to an output unit, and between the inductor and the input capacitor.
  • a switching element connected between any of the inductor and the output capacitor and switching a current flowing through the inductor, wherein the input capacitor and the output capacitor are of the first surface or the second surface.
  • the switch element may be mounted on any one surface, and the switch element may be mounted on a surface different from the surface on which the input capacitor and the output capacitor are mounted, among the first surface and the second surface.
  • the plurality of electronic components include: an input capacitor connected to an input unit; an output capacitor connected to an output unit; and the inductor and the input capacitor; A switching element connected between the inductor and the output capacitor and switching a current flowing through the inductor, wherein the input capacitor and the output capacitor are either the first surface or the second surface.
  • the switch element is mounted on one of the surfaces, and the switch element may be mounted on a surface different from the surface on which the input capacitor and the output capacitor are mounted on the first surface and the second surface.
  • the switch element is a position where at least a part of the switch element overlaps at least one of the input capacitor or the output capacitor in plan view of the first surface or the second surface. It is preferable to arrange
  • This configuration shortens the distance on the plane between the switch element and the input capacitor (or output capacitor) compared to when the switch element and the input capacitor (or output capacitor) are arranged side by side on the same substrate surface.
  • the wiring length between the switch element and the input capacitor (or output capacitor) is shortened. Therefore, the loop inductance and conductor resistance of the power supply module are reduced, and the switching noise suppression effect by the input capacitor (or output capacitor) is enhanced. Therefore, conduction noise from the power supply module to the conductor pattern formed on the substrate is reduced. Further, radiation noise from the power supply module to the outside is reduced. Also, with this configuration, the power conversion efficiency of the power supply module can be improved.
  • a conductor formed on the substrate may be provided.
  • the switch element is disposed at a position where at least part of the switch element overlaps the conductor in a plan view of the first surface or the second surface.
  • the conductor formed on the substrate functions as a shield that shields the noise radiated from the switch element, so that the noise radiated from the power supply module can be further suppressed.
  • any one of the above (1) to (5) it is preferable to include a first heat radiating member disposed on the surface of the first resin member. With this configuration, heat generated by the electronic component during operation can be easily radiated to the outside of the power supply module.
  • the first columnar heat conductor is provided.
  • the first columnar heat conductor connected to the first heat radiating member comes into contact with at least one of the plurality of electronic components mounted on the first surface or the inductor, thereby further improving heat dissipation.
  • At least one of the plurality of electronic components embedded in the second resin member and mounted on the second surface or in contact with the inductor and connected to the second heat dissipation member It is preferable to include a second columnar heat conductor.
  • the second columnar heat conductor connected to the second heat radiating member comes into contact with at least one of the plurality of electronic components mounted on the second surface or the inductor, thereby further improving heat dissipation.
  • the present invention it is possible to realize a power supply module that can reduce the mounting area with a simple configuration and has improved durability against mechanical strength, external force, and the like.
  • FIG. 1 is a front view of a power supply module 101 according to the first embodiment.
  • FIG. 2A is a plan view of the power supply module 101
  • FIG. 2B is a bottom view of the power supply module 101.
  • FIG. 3 is a circuit diagram of the power supply module 101.
  • FIG. 4 is a front view of the power supply module 102 according to the second embodiment.
  • FIG. 5 is a front view of the power supply module 103 according to the third embodiment.
  • FIG. 6 is a front view of the power supply module 104 according to the fourth embodiment.
  • FIG. 7A is a circuit diagram of a power supply module 105A according to the fifth embodiment
  • FIG. 7B is a circuit diagram of another power supply module 105B according to the fifth embodiment.
  • FIG. 1 is a front view of a power supply module 101 according to the first embodiment.
  • FIG. 2A is a plan view of the power supply module 101
  • FIG. 2B is a bottom view of the power supply module 101.
  • the first resin member 11 and the second resin member 12 are shown transparent.
  • the positions of the switch elements 31 and 32 are indicated by broken lines in order to make the structure easy to understand.
  • the positions of the conductors 4 are shown by broken lines in order to make the structure easy to understand. Is shown.
  • the power supply module 101 is a step-down DC / DC converter module.
  • the power supply module 101 has a rectangular parallelepiped shape, and includes a substrate 1, an inductor 2, a control IC 3, two capacitors 21, switch elements 31, 32, a first resin member 11, a second resin member 12, five terminal electrodes P1, and five terminals. Electrode P2 etc. are provided.
  • the substrate 1 is a flat plate having a rectangular planar shape, and has a first surface PS1 and a second surface PS2 parallel to the X-axis direction and the Y-axis direction.
  • a conductor 4 is formed inside the substrate 1.
  • the conductor 4 is a conductor pattern whose planar shape is U-shaped (C-shaped).
  • the substrate 1 is a printed wiring board including a thermosetting resin such as an epoxy resin, and the conductor 4 is a ground conductor formed inside the substrate 1, for example.
  • Switch elements 31 and 32 and terminal electrodes P1 and P2 are mounted (mounted) on the first surface PS1 of the substrate 1, and the inductor 2, the control IC 3, and the two capacitors 21 are mounted on the second surface PS2 of the substrate 1. Is mounted (implemented).
  • the switch elements 31 and 32 are, for example, FETs, and the inductor 2 is, for example, a chip inductor.
  • the control IC 3 is, for example, a microprocessor chip or an IC chip.
  • the two capacitors 21 are an input capacitor and an output capacitor, for example, a ceramic chip capacitor.
  • the switch elements 31 and 32 have a surface (second surface PS2) on which the capacitor 21 (corresponding to “input capacitor” and “output capacitor” in the present invention) is mounted among the first surface PS1 and the second surface PS2. ) Is mounted on a different surface (first surface PS1).
  • the control IC 3, the capacitor 21 (input capacitor and output capacitor), the switch elements 31, 32, and the like correspond to “a plurality of electronic components respectively mounted on the first surface and the second surface” in the present invention.
  • the switch elements 31 and 32 correspond to the “electronic component mounted on the first surface” in the present invention
  • the control IC 3 and the capacitor 21 are mounted on the “second surface” in the present invention.
  • the “plural electronic components mounted on the first surface and the second surface” include a power inductor, a choke coil, a transformer, and the like in addition to the control IC 3, the capacitor 21, and the switch elements 31, 32. May be.
  • the inductor 2 is arranged at a position overlapping with some of the plurality of electronic components when the first surface PS1 or the second surface PS2 is viewed in plan (viewed from the Z-axis direction).
  • the switch elements 31 and 32 according to the present embodiment are arranged at positions overlapping the inductor 2 when viewed from the Z-axis direction. Further, the switch elements 31 and 32 are arranged at positions where at least a part thereof overlaps the conductor 4 when viewed from the Z-axis direction. Furthermore, the switch elements 31 and 32 are arranged at positions where at least a part thereof overlaps the capacitor 21 (at least one of the input capacitor and the output capacitor) when viewed from the Z-axis direction.
  • the first resin member 11 is a rectangular parallelepiped resin block which is formed on the first surface PS1 of the substrate 1 and seals the switch elements 31 and 32 mounted on the first surface PS1. In other words, the switch elements 31 and 32 are embedded in the first resin member 11 formed on the first surface PS1 of the substrate 1.
  • the first resin member 11 has a first main surface VS1 on the side opposite to the surface in contact with the first surface PS1 in the Z-axis direction. In the present embodiment, the first main surface VS1 of the first resin member 11 is a mounting surface of the power supply module 101.
  • the first resin member 11 is a thermosetting resin such as an epoxy resin.
  • the second resin member 12 is a rectangular parallelepiped resin block which is formed on the second surface PS2 of the substrate 1 and seals the inductor 2, the control IC 3, the capacitor 21 and the like mounted on the second surface PS2. In other words, the inductor 2, the control IC 3, and the capacitor 21 are embedded in the second resin member 12 formed on the second surface PS2 of the substrate 1.
  • the second resin member 12 has a second main surface VS2 on the side opposite to the surface in contact with the second surface PS2 in the Z-axis direction. In the present embodiment, the second main surface VS2 of the second resin member 12 is the top surface of the power supply module 101.
  • the second resin member 12 is a thermosetting resin such as an epoxy resin.
  • the terminal electrodes P 1 and P 2 are columnar electrodes for connection with external electrodes, and are embedded in the first resin member 11 so that a part thereof is exposed from the first resin member 11.
  • the terminal electrodes P1, P2 are mounted on the first surface of the substrate 1 and connected to a conductor pattern or the like formed on the substrate 1.
  • the terminal electrodes P ⁇ b> 1 and P ⁇ b> 2 are exposed on the first main surface VS ⁇ b> 1 of the first resin member 11.
  • the five terminal electrodes P1 are located on the first side of the substrate 1 (the right side of the substrate 1 in FIG. 2A) and are arranged in the Y-axis direction.
  • the five terminal electrodes P2 are arranged on the substrate 1 side. Are located on the second side (the left side of the substrate 1 in FIG. 2A) and arranged in the Y-axis direction.
  • the terminal electrodes P1 and P2 are, for example, cylindrical metal members.
  • FIG. 3 is an example of a circuit diagram of the power supply module 101.
  • the inductor 2, the two capacitors 21, and the switch elements 31, 32 shown in FIG. 1 are represented by an inductor L, an input capacitor Cin, an output capacitor Cout, and switch elements Q1, Q2, respectively.
  • the terminal electrode P1 is a voltage input part which receives DC voltage
  • the terminal electrode P2 is a voltage output part.
  • the inductor L and the switch element Q1 are connected between the terminal electrode P1 and the terminal electrode P2.
  • the switch elements Q1 and Q2 are elements that switch the current flowing through the inductor L.
  • the switch element Q1 is connected between the terminal electrode P1 and the inductor L, and the switch element Q2 is connected between the ground and the inductor L.
  • the input capacitor Cin is connected between the terminal electrode P1 and the ground, the output capacitor Cout is connected between the terminal electrode P2 and the ground, and the control IC 3 is connected to the switch elements Q1 and Q2, respectively.
  • the drain of the switch element Q1 is connected to the terminal electrode P1
  • the source of the switch element Q1 is connected to the first end of the inductor L
  • the second end of the inductor L is connected to the terminal electrode P2.
  • the drain of the switch element Q2 is connected to the first end of the inductor L, and the source of the switch element Q2 is connected to the ground.
  • the first end of the input capacitor Cin is connected to the terminal electrode P1
  • the second end of the input capacitor Cin is connected to the ground
  • the first end of the output capacitor Cout is connected to the terminal electrode P2, and the second end of the output capacitor Cout. Is connected to ground.
  • the control IC 3 is connected to the gate and source of the switch elements Q1 and Q2, respectively.
  • a loop Llp is constituted by the input capacitor Cin and the switch elements Q1 and Q2.
  • the power supply module 101 constitutes a step-down DC / DC converter module.
  • the power module 101 according to this embodiment has the following effects.
  • the power supply module 101 includes a substrate 1 having a first surface PS1 and a second surface PS2, and a plurality of electronic components are mounted on the first surface PS1 and the second surface PS2 of the substrate 1, respectively. Therefore, compared with the case where a plurality of electronic components are mounted on one of the first surface PS1 and the second surface PS2 of the substrate 1, a power module having a small mounting area can be realized.
  • heat generating components electronic components that generate heat during operation of the switch elements 31 and 32, the control IC 3 and the like (hereinafter referred to as “heat generating components”) are sealed with a resin member having higher thermal conductivity than air. . Therefore, heat generated from the heat generating component is dispersed through the resin member, so that heat dissipation is improved.
  • the heat generating components are mounted on the first surface PS1, and the mounting surface of the power supply module (the first main surface VS1 of the first resin member 11) is formed.
  • the first resin member 11 is sealed.
  • the power supply module having this configuration is mounted on the mounting board, the resin member is filled in the gap between the heat generating component and the mounting board, and the heat generating component contacts the mounting board through the resin member. Therefore, this configuration makes it easier to disperse the heat generated from the heat-generating component to the mounting substrate than when a power supply module having a structure in which the heat-generating component is not sealed by the resin member is mounted on the mounting substrate. It can be further increased.
  • substrate 1 can be shortened by forming the board
  • the switch elements 31 and 32 when viewed from the Z-axis direction, are disposed at positions where at least a part thereof overlaps the capacitor 21 (at least one of the input capacitor and the output capacitor).
  • the switch elements 31 and 32 and the capacitor 21 are arranged side by side on the same substrate surface, on the plane (XY plane) of the switch elements 31 and 32 and the input capacitor (or output capacitor). Since the distance is shortened, the wiring length between the switch elements 31 and 32 and the input capacitor (or output capacitor) is shortened (specifically, the sections D1 and D2 in FIG. 3 are shortened).
  • the inductance and conductor resistance of the loop Llp included in the power supply module 101 are reduced, and the switching noise suppression effect by the input capacitor (or output capacitor) is increased. Therefore, conduction noise from the power supply module to the conductor pattern or the like formed on the substrate 1 is reduced. Further, radiation noise from the power supply module to the outside is reduced. Furthermore, this configuration can improve the power conversion efficiency of the power supply module. The improvement of the power conversion efficiency of the power supply module is particularly effective in operation at high frequencies.
  • the wiring length of the interlayer connection conductor or the like connecting the first surface PS1 and the second surface PS2 of the substrate 1 can be shortened, so that the conductor resistance can be further reduced.
  • the power conversion efficiency of the power supply module can be further improved.
  • the switch elements 31 and 32 are arranged at positions where at least a part thereof overlaps the conductor 4 as viewed from the Z-axis direction.
  • the conductor 4 formed on the substrate 1 functions as a shield that shields the noise radiated from the switch elements 31 and 32, so that the noise radiated from the power supply module can be suppressed.
  • noise emission to the top surface side (second main surface VS2 side) of the power supply module which is the side opposite to the first surface PS1 of the substrate 1 on which the switch elements 31 and 32 are mounted, can be suppressed. .
  • the switch elements 31 and 32 are sandwiched between the conductor 4 and the ground conductor on the mounting board side by mounting the power supply module having this configuration on the mounting board. . Therefore, the noise emitted from the power supply module is shielded by the conductor 4 and the ground conductor on the mounting board side.
  • the switch elements 31 and 32 are mounted on the first surface PS1 of the substrate 1.
  • the switch elements may be incorporated in other electronic components such as the control IC 3. .
  • the electronic component in which the switch element is incorporated is disposed at a position overlapping the capacitor 21 (at least one of the input capacitor and the output capacitor) when viewed from the Z-axis direction.
  • the electronic component in which the switch element is incorporated is disposed at a position overlapping the conductor 4 formed on the substrate 1 when viewed from the Z-axis direction.
  • Second Embodiment shows about a power supply module provided with a thermal radiation member in a mounting surface.
  • FIG. 4 is a front view of the power supply module 102 according to the second embodiment.
  • the first resin member 11 and the second resin member 12 are shown transparent for easy understanding of the structure of the power supply module 102.
  • the power supply module 102 according to the present embodiment is different from the power supply module 101 according to the first embodiment in that the power supply module 102 includes the first heat radiating member 41 and the first columnar heat conductor V1. Other configurations are the same as those of the power supply module 101.
  • the first heat radiating member 41 is a heat radiating member having a rectangular planar shape disposed on the surface of the first resin member 11. A part of the first heat radiating member 41 is embedded in the first resin member 11 and exposed on the surface of the first resin member 11 (first main surface VS1).
  • the first columnar heat conductor V ⁇ b> 1 is a columnar high heat conductor embedded in the first resin member 11.
  • the first columnar heat conductor V1 is in contact with or close to at least one of the plurality of electronic components (switch element 31) mounted on the first surface PS1 of the substrate 1, and one end thereof is the first heat dissipation member. The other end is in contact with the conductor 4 formed on the substrate 1.
  • the first heat radiating member 41 is, for example, a metal plate, and the first columnar heat conductor V1 is, for example, a Cu block.
  • the power supply module 102 has the following effects in addition to the effects described in the first embodiment.
  • the first columnar heat conductor V1 connected to the first heat radiating member 41 comes into contact with at least one of the plurality of electronic components mounted on the first surface PS1 of the substrate 1 or the inductor 2, so that the heat dissipation is achieved. More improved. Further, when the first columnar heat conductor V1 is in contact with the conductor 4 formed on the substrate 1, heat dissipation is further improved.
  • the first heat radiating member 41 is exposed on the first main surface VS1 of the first resin member 11.
  • the first heat radiating member 41 can be bonded to the mounting board using a conductive bonding material such as solder. Dissipates heat efficiently.
  • the first columnar heat conductor V1 is in contact with or close to at least one of the plurality of electronic components mounted on the first surface PS1, and one end thereof is the first heat radiation member 41.
  • the power supply module may include only the first heat radiating member 41 and may not include the first columnar heat conductor.
  • one end of the first columnar heat conductor V1 may be connected to the first heat radiating member 41, and the other end may be in contact with the first surface PS1 of the substrate 1.
  • the first columnar heat conductor V1 may be in contact with or close to a plurality of electronic components mounted on the first surface PS1.
  • Third Embodiment shows about a power supply module provided with a thermal radiation member in a top
  • FIG. 5 is a front view of the power supply module 103 according to the third embodiment.
  • the first resin member 11 and the second resin member 12 are shown transparent for easy understanding of the structure of the power supply module 103.
  • the power supply module 103 according to the present embodiment is different from the power supply module 101 according to the first embodiment in that the second heat dissipation member 42 and the second columnar heat conductor V2 are provided. Other configurations are the same as those of the power supply module 101.
  • the second heat radiating member 42 is a heat radiating member having a rectangular planar shape disposed on the surface of the second resin member 12. A part of the second heat radiating member 42 is embedded in the second resin member 12 and exposed on the surface (second main surface VS2) of the second resin member 12.
  • the second columnar heat conductor V ⁇ b> 2 is a columnar high heat conductor embedded in the second resin member 12.
  • the second columnar heat conductor V2 is in contact with or close to at least one of the plurality of electronic components mounted on the second surface PS2 of the substrate 1 and the inductor, and one end thereof is connected to the second heat dissipation member 42. The other end is in contact with the conductor 4 formed on the substrate 1.
  • the second heat radiating member 42 is, for example, a metal plate, and the second columnar heat conductor V2 is, for example, a Cu block.
  • the power supply module 103 has the following effects in addition to the effects described in the first embodiment.
  • the second columnar heat conductor V2 connected to the second heat radiating member 42 contacts at least one of the plurality of electronic components mounted on the second surface PS2 of the substrate 1 or the inductor 2, so that the heat dissipation is More improved. Further, when the second columnar heat conductor V2 is in contact with the conductor 4 formed on the substrate 1, heat dissipation is further improved.
  • the second columnar heat conductor V2 is in contact with or close to at least one of the plurality of electronic components mounted on the second surface PS2 and the inductor, and one end is the second heat radiating member.
  • the power supply module may include only the second heat radiating member 42 and may not include the second columnar heat conductor.
  • one end of the second columnar heat conductor V2 may be connected to the second heat radiating member 42 and the other end may be in contact with the second surface PS2 of the substrate 1.
  • the second columnar heat conductor V2 may be in contact with or close to a plurality of electronic components mounted on the second surface PS2.
  • the second heat radiating member 42 is a heat radiating pad
  • the second heat radiating member 42 may be, for example, a heat sink provided with heat radiating fins.
  • the fourth embodiment shows a power supply module having a structure in which an inductor is mounted on a resin member.
  • FIG. 6 is a front view of the power supply module 104 according to the fourth embodiment.
  • the first resin member 11 and the second resin member 12 are shown transparent for easy understanding of the structure of the power supply module 104.
  • the power supply module 104 according to the present embodiment is different from the power supply module 101 according to the first embodiment in that the inductor 2 is not sealed by the first resin member 11.
  • Other configurations are substantially the same as those of the power supply module 101.
  • the power supply module 104 further includes terminal electrodes P3 and P4.
  • the terminal electrodes P 3 and P 4 are columnar electrodes for connecting the inductor 2 and the conductor formed on the substrate 1 and the inductor 2, and the second resin member 12 is partially exposed from the second resin member 12. It is buried in.
  • the terminal electrodes P3 and P4 are mounted on the second surface PS2 of the substrate 1 and connected to a conductor pattern or the like formed on the substrate 1.
  • the terminal electrodes P3 and P4 are, for example, cylindrical metal members.
  • the inductor 2 is mounted on the second main surface VS2 (the top surface of the power supply module) of the second resin member 12, and a conductor pattern formed on the substrate 1 via the terminal electrodes P3 and P4. Connected to.
  • the power module 104 has the following effects in addition to the effects described in the first embodiment.
  • an inductor having a size (area) up to the same size as the first surface PS1 or the second surface PS2 of the substrate 1 can be selected. Therefore, with this configuration, the selection range of the inductor is widened as compared with the case where the inductor 2 is mounted on one of the first surface PS1 and the second surface PS2 of the substrate 1. Further, by selecting an inductor having good characteristics, the power conversion efficiency of the power supply module is improved as compared with the case where the inductor 2 is mounted on either one of the first surface PS1 and the second surface PS2 of the substrate 1. be able to.
  • FIG. 7A is a circuit diagram of a power supply module 105A according to the fifth embodiment
  • FIG. 7B is a circuit diagram of another power supply module 105B according to the fifth embodiment.
  • the inductor L and the switch element Q2 are connected between the terminal electrode P1 and the terminal electrode P2.
  • the switch element Q2 is connected between the terminal electrode P2 and the inductor L, and the switch element Q1 is connected between the ground and the inductor L.
  • the input capacitor Cin is connected between the terminal electrode P1 and the ground, the output capacitor Cout is connected between the terminal electrode P2 and the ground, and the control IC 3 is connected to the switch elements Q1 and Q2, respectively.
  • the first end of the inductor L is connected to the terminal electrode P1
  • the source of the switch element Q2 is connected to the second end of the inductor L
  • the drain of the switch element Q2 is connected to the terminal electrode P2.
  • the drain of the switch element Q1 is connected to the second end of the inductor L
  • the source of the switch element Q1 is connected to the ground.
  • the first end of the input capacitor Cin is connected to the terminal electrode P1
  • the second end of the input capacitor Cin is connected to the ground
  • the first end of the output capacitor Cout is connected to the terminal electrode P2, and the second end of the output capacitor Cout. Is connected to ground.
  • the control IC 3 is connected to the gate and source of the switch elements Q1 and Q2, respectively.
  • the power supply module 105A constitutes a step-up DC / DC converter module.
  • the switch element Q1 and the switch element Q2 are connected between the terminal electrode P1 and the terminal electrode P2.
  • the inductor L is connected between the switch elements Q1, Q2 and the ground.
  • the drain of the switch element Q1 is connected to the terminal electrode P1
  • the source of the switch element Q1 is connected to the first end of the inductor L
  • the drain of the switch element Q2 is connected to the first end of the inductor L.
  • the second end of the inductor L is connected to the ground
  • the source of the switch element Q2 is connected to the terminal electrode P2.
  • the control IC 3 is connected to the gate and source of the switch elements Q1 and Q2, respectively.
  • the power supply module 105B constitutes a step-up / step-down DC / DC converter module.
  • the power supply module of the present invention may constitute not only a step-down DC / DC converter module but also a step-up DC / DC converter module and a step-up / step-down DC / DC converter module. Further, the power supply module of the present invention is not limited to a DC / DC converter module, and may constitute an AC / DC converter module or a DC / AC converter module.
  • planar shape of the substrate 1 is rectangular has been described, but the present invention is not limited to this configuration.
  • the planar shape of the substrate 1 can be changed as appropriate within the scope of the function and effect of the present invention, and may be, for example, circular, elliptical, polygonal, L-shaped, T-shaped, Y-shaped, or the like.
  • the rectangular parallelepiped power supply module is shown, but the present invention is not limited to this configuration.
  • the shape of the power supply module can be changed as appropriate within the range where the functions and effects of the present invention are achieved.
  • the top surface and end surface of the power supply module are not limited to flat surfaces, and may be curved surfaces or the like.
  • the power supply module including the control IC 3, the capacitor 21 (input capacitor and output capacitor), the switch elements 31 and 32, and the inductor 2 is shown.
  • the power supply module includes other electronic components. It does not have to be provided.
  • the switch elements 31 and 32 are mounted on the first surface PS1 of the substrate 1, and the inductor 2, the control IC 3, and the capacitor are mounted on the second surface PS2 of the substrate 1.
  • 21 input capacitor and output capacitor
  • the present invention is not limited to this configuration.
  • the number, type, arrangement, and the like of the electronic component and the inductor 2 can be changed as appropriate within the scope of the operation and effect of the present invention.
  • the plurality of electronic components may be mounted on any one of the first surface PS1 and the second surface PS2 of the substrate 1.
  • the switch elements 31 and 32 are preferably mounted on a surface different from the surface on which the capacitor 21 (input capacitor and output capacitor) is mounted on the first surface PS1 and the second surface PS2. .
  • the inductor 2 may be mounted on the second surface PS2 of the substrate 1 and sealed with the second resin member 12.
  • the conductor 4 is formed inside the substrate 1 and the planar shape is a U-shaped (C-shaped) conductor pattern is shown.
  • the conductor 4 may be formed on the first surface PS1 of the substrate 1 or may be formed on the second surface PS2 of the substrate 1.
  • the planar shape of the conductor 4 can be changed as appropriate within the scope of the effects and effects of the present invention, and may be, for example, a square, a rectangle, a polygon, a circle, an ellipse, an L shape, or a T shape.
  • the number of conductors 4 is not limited to one, and a plurality of conductors 4 may be formed on the substrate 1.
  • the five terminal electrodes P1 are located on the first side of the substrate 1 and arranged in the Y-axis direction, and the five terminal electrodes P2 are located on the second side of the substrate 1.
  • the configuration example arranged in the Y-axis direction has been described, but the present invention is not limited to this.
  • the terminal electrode is not limited to a cylindrical metal member, and may be an elliptical column shape, a polygonal column shape, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電源モジュール(101)は、第1面(PS1)および第1面(PS1)に対向する第2面(PS2)を有する基板(1)、インダクタ(2)、第1面(PS1)および第2面(PS2)にそれぞれ搭載される複数の電子部品(制御(IC3)、入力コンデンサまたは出力コンデンサ(21)、スイッチ素子(31,32)等)、第1面(PS1)に形成される第1樹脂部材(11)、第2面(PS2)に形成される第2樹脂部材(12)を備える。インダクタ(2)は、第1面(PS1)または第2面(PS2)を平面視して、複数の電子部品のいくつかに重なる位置に配置される。第1樹脂部材(11)は、第1面(PS1)に搭載される電子部品(スイッチ素子(31,32))を封止する。第2樹脂部材(12)は、第2面(PS2)に搭載される電子部品(制御(IC3)、入力コンデンサまたは出力コンデンサ(21)を封止する。

Description

電源モジュール
 本発明は、電源モジュールに関し、特に基板と基板に実装される複数の電子部品とを備える電源モジュールに関する。
 従来、チップインダクタの上面にICチップ等の電子部品を直接搭載する構造のDC/DCコンバータモジュールが知られている(特許文献1)。
 上記DC/DCコンバータモジュールでは、チップインダクタの上面に複数の電子部品を搭載するため、実装面積を低減できる。
特開2010-287684号公報
 しかし、特許文献1に示す構造では、ICチップ等の電子部品や封止樹脂等が、電子部品等の実装に適さないチップインダクタの上面に直接接合されるため、これらの接合強度が不十分である。その結果、モジュール自体の強度や耐久性が不十分となってしまう。
 本発明の目的は、簡素な構成により、実装面積を低減でき、且つ、機械的強度や外力等に対する耐久性を高めた電源モジュールを提供することにある。
(1)本発明の電源モジュールは、
 第1面および前記第1面に対向する第2面を有する基板と、
 前記第1面および前記第2面にそれぞれ搭載される複数の電子部品と、
 前記第1面に形成され、前記第1面に搭載される前記複数の電子部品を封止する第1樹脂部材と、
 前記第2面に形成され、前記第2面に搭載される前記複数の電子部品を封止する第2樹脂部材と、
 前記第1面または前記第2面を平面視して、前記複数の電子部品のいくつかに重なる位置に配置されるインダクタと、
 を備えることを特徴とする。
 この構成により、複数の電子部品を基板の第1面および第2面のいずれか一方の面に搭載する場合に比べて、小さな実装面積の電源モジュールを実現できる。この構成では、基板の第1面または第2面に搭載される複数の電子部品が樹脂部材で保護されるので、電源モジュール全体が堅牢となり、電源モジュール自体の機械的強度や外力等に対する耐久性が高まる。また、この構成により、はんだ付けだけで電子部品を基板1に搭載した場合に比べて、基板に対する電子部品の実装強度を高めることができ、電子部品と基板との電気的な接続信頼性が向上する。
 また、電源モジュールにおいて、インダクタは比較的サイズの大きな部品である。したがって、この構成により、電源モジュールの実装面積を容易に低減できる。また、この構成では、動作時に発熱する電子部品が、空気よりも熱伝導性の高い樹脂部材で封止されている。したがって、電子部品から発生する熱が樹脂部材を介して分散されるため、放熱性が高まる。
(2)上記(1)において、前記インダクタは、前記第1樹脂部材または前記第2樹脂部材により封止されることが好ましい。この構成では、基板の第1面または第2面に搭載されるインダクタが樹脂部材で保護されるので、電源モジュール全体が堅牢となり、電源モジュール自体の機械的強度や外力等に対する耐久性が高まる。また、この構成により、はんだ付けだけでインダクタを基板に搭載した場合に比べて、基板に対するインダクタの実装強度を高めることができ、インダクタと基板との電気的な接続信頼性が向上する。
(3)上記(1)または(2)において、前記複数の電子部品は、入力部に接続された入力コンデンサと、出力部に接続された出力コンデンサと、前記インダクタと前記入力コンデンサとの間または前記インダクタと前記出力コンデンサとの間のいずれかに接続され、前記インダクタに流れる電流をスイッチングするスイッチ素子と、を含み、前記入力コンデンサおよび前記出力コンデンサは、前記第1面または第2面のうちいずれか一方の面に搭載され、前記スイッチ素子は、前記第1面および前記第2面のうち前記入力コンデンサおよび出力コンデンサが搭載された面と異なる面に搭載されていてもよい。
(4)上記(1)または(2)において、前記複数の電子部品は、入力部に接続された入力コンデンサと、出力部に接続された出力コンデンサと、前記インダクタと前記入力コンデンサとの間および前記インダクタと前記出力コンデンサとの間にそれぞれ接続され、前記インダクタに流れる電流をスイッチングするスイッチ素子と、を含み、前記入力コンデンサおよび前記出力コンデンサは、前記第1面または前記第2面のうちいずれか一方の面に搭載され、前記スイッチ素子は、前記第1面および前記第2面のうち前記入力コンデンサおよび前記出力コンデンサが搭載された面と異なる面に搭載されていてもよい。
(5)上記(3)または(4)において、前記スイッチ素子は、前記第1面または前記第2面を平面視して、少なくとも一部が前記入力コンデンサまたは前記出力コンデンサの少なくとも一方に重なる位置に配置されることが好ましい。この構成により、スイッチ素子と入力コンデンサ(または出力コンデンサ)とを同一基板面上に並べて配置した場合と比べて、スイッチ素子と入力コンデンサ(または出力コンデンサ)との平面上での距離が短くなるため、スイッチ素子と入力コンデンサ(または出力コンデンサ)との間の配線長は短くなる。そのため、電源モジュールが有するループのインダクタンスおよび導体抵抗は小さくなり、入力コンデンサ(または出力コンデンサ)によるスイッチングノイズ抑制効果が高まる。したがって、電源モジュールから基板に形成される導体パターン等への伝導ノイズが低減される。また、電源モジュールから外部への輻射ノイズが低減される。また、この構成により、電源モジュールの電力変換効率を向上させることができる。
(6)上記(3)から(5)のいずれかにおいて、前記基板に形成される導体を備えていてもよい。
(7)上記(6)において、前記スイッチ素子は、前記第1面または前記第2面を平面視して、少なくとも一部が前記導体に重なる位置に配置されることが好ましい。この構成では、基板に形成される導体が、スイッチ素子から放射されるノイズを遮蔽するシールドとして機能するため、電源モジュールから放射されるノイズをより抑制できる。
(8)上記(1)から(5)のいずれかにおいて、前記第1樹脂部材の表面に配置された第1放熱部材を備えることが好ましい。この構成により、動作時に電子部品が発する熱を電源モジュールの外部へ放熱しやすくなる。
(9)上記(8)において、前記第1樹脂部材に埋設され、前記第1面に搭載される前記複数の電子部品のうち少なくとも1つまたは前記インダクタに接触し、前記第1放熱部材に接続される第1柱状熱伝導体を備えることが好ましい。第1放熱部材に接続される第1柱状熱伝導体が、第1面に搭載される複数の電子部品のうち少なくとも1つまたはインダクタに接触することによって、放熱性はより向上する。
(10)上記(6)または(7)において、前記第1樹脂部材の表面に配置された第1放熱部材を備えることが好ましい。この構成により、動作時に電子部品が発する熱を電源モジュールの外部へ放熱しやすくなる。
(11)上記(10)において、前記第1樹脂部材に埋設され、前記導体に接触し、前記第1放熱部材に接続される第1柱状熱伝導体を備えることが好ましい。第1放熱部材に接続される第1柱状熱伝導体が、基板に形成される導体に接触することによって、さらに放熱性が向上する。
(12)上記(8)または(9)において、前記第2樹脂部材の表面に配置された第2放熱部材を備えることが好ましい。この構成により、動作時に電子部品が発する熱を電源モジュールの外部へ放熱しやすくなる。
(13)上記(12)において、前記第2樹脂部材に埋設され、前記第2面に搭載される前記複数の電子部品のうち少なくとも1つまたは前記インダクタに接触し、前記第2放熱部材に接続される第2柱状熱伝導体を備えることが好ましい。第2放熱部材に接続される第2柱状熱伝導体が、第2面に搭載される複数の電子部品のうち少なくとも1つまたはインダクタに接触することによって、放熱性はより向上する。
(14)上記(10)において、前記第2樹脂部材の表面に配置された第2放熱部材を備えることが好ましい。この構成により、動作時に電子部品が発する熱を電源モジュールの外部へ放熱しやすくなる。
(15)上記(14)において、前記第2樹脂部材に埋設され、前記導体に接触し、前記第2放熱部材に接続される第2柱状熱伝導体を備えることが好ましい。第2放熱部材に接続される第2柱状熱伝導体が、基板に形成される導体に接触することによって、さらに放熱性が向上する。
 本発明によれば、簡素な構成により、実装面積を低減でき、且つ、機械的強度や外力等に対する耐久性を高めた電源モジュールを実現できる。
図1は第1の実施形態に係る電源モジュール101の正面図である。 図2(A)は電源モジュール101の平面図であり、図2(B)は電源モジュール101の下面図である。 図3は電源モジュール101の回路図である。 図4は、第2の実施形態に係る電源モジュール102の正面図である。 図5は、第3の実施形態に係る電源モジュール103の正面図である。 図6は、第4の実施形態に係る電源モジュール104の正面図である。 図7(A)は第5の実施形態に係る電源モジュール105Aの回路図であり、図7(B)は第5の実施形態に係る別の電源モジュール105Bの回路図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 《第1の実施形態》
 図1は第1の実施形態に係る電源モジュール101の正面図である。図2(A)は電源モジュール101の平面図であり、図2(B)は電源モジュール101の下面図である。図1、図2(A)および図2(B)では、電源モジュール101の構造を解りやすくするため、第1樹脂部材11および第2樹脂部材12を透明化して示している。また、図2(A)では、構造を解りやすくするため、スイッチ素子31,32の位置を破線で示しており、図2(B)では、構造を解りやすくするため、導体4の位置を破線で示している。
 本実施形態では、電源モジュール101が降圧型DC/DCコンバータモジュールである例を示す。電源モジュール101は直方体状であり、基板1、インダクタ2、制御IC3、2つのコンデンサ21、スイッチ素子31,32、第1樹脂部材11、第2樹脂部材12、5つの端子電極P1および5つの端子電極P2等を備える。
 基板1は平面形状が矩形の平板であり、X軸方向およびY軸方向に平行な第1面PS1および第2面PS2を有する。基板1の内部には導体4が形成されている。導体4は平面形状がU字状(C字状)の導体パターンである。基板1は例えばエキポシ樹脂等の熱硬化性樹脂を含むプリント配線板であり、導体4は例えば基板1の内部に形成されるグランド導体である。
 基板1の第1面PS1には、スイッチ素子31,32および端子電極P1,P2が搭載(実装)されており、基板1の第2面PS2には、インダクタ2、制御IC3、2つのコンデンサ21が搭載(実装)されている。スイッチ素子31,32は例えばFETであり、インダクタ2は例えばチップインダクタである。制御IC3は例えばマイクロプロセッサチップやICチップである。2つのコンデンサ21は入力コンデンサおよび出力コンデンサであり、例えばセラミックチップコンデンサである。すなわち、スイッチ素子31,32は、第1面PS1および第2面PS2のうちコンデンサ21(本発明における「入力コンデンサ」および「出力コンデンサ」に相当する。)が搭載された面(第2面PS2)とは異なる面(第1面PS1)に搭載されている。
 本実施形態では、これら制御IC3、コンデンサ21(入力コンデンサおよび出力コンデンサ)、スイッチ素子31,32等が、本発明における「第1面および第2面にそれぞれ搭載される複数の電子部品」に相当する。また、本実施形態では、これらスイッチ素子31,32が本発明における「第1面に搭載される電子部品」に相当し、これら制御IC3、コンデンサ21が本発明における「第2面に搭載される電子部品」に相当する。なお、「第1面および第2面にそれぞれ搭載される複数の電子部品」には、上記制御IC3、コンデンサ21、スイッチ素子31,32以外に、パワーインダクタやチョークコイル、トランス等が含まれていてもよい。
 図2(A)に示すように、インダクタ2は、第1面PS1または第2面PS2を平面視して(Z軸方向から視て)、複数の電子部品のいくつかに重なる位置に配置される。本実施形態に係るスイッチ素子31,32は、Z軸方向から視て、インダクタ2に重なる位置に配置される。また、スイッチ素子31,32は、Z軸方向から視て、少なくとも一部が導体4に重なる位置に配置される。さらに、スイッチ素子31,32は、Z軸方向から視て、少なくとも一部がコンデンサ21(入力コンデンサまたは出力コンデンサの少なくとも一方)に重なる位置に配置される。
 第1樹脂部材11は、基板1の第1面PS1上に形成され、第1面PS1に搭載されたスイッチ素子31,32を封止する直方体状の樹脂ブロックである。言い換えると、スイッチ素子31,32は、基板1の第1面PS1上に形成される第1樹脂部材11に埋設されている。第1樹脂部材11は、Z軸方向において第1面PS1に接する面とは反対側に第1主面VS1を有する。本実施形態では、この第1樹脂部材11の第1主面VS1が電源モジュール101の実装面である。第1樹脂部材11は例えばエポキシ樹脂等の熱硬化性樹脂である。
 第2樹脂部材12は、基板1の第2面PS2上に形成され、第2面PS2に搭載されたインダクタ2、制御IC3、コンデンサ21等を封止する直方体状の樹脂ブロックである。言い換えると、インダクタ2、制御IC3、コンデンサ21は、基板1の第2面PS2上に形成される第2樹脂部材12に埋設されている。第2樹脂部材12は、Z軸方向において第2面PS2に接する面とは反対側に第2主面VS2を有する。本実施形態では、この第2樹脂部材12の第2主面VS2が電源モジュール101の天面である。第2樹脂部材12は例えばエポキシ樹脂等の熱硬化性樹脂である。
 端子電極P1,P2は外部電極との接続用の柱状電極であり、一部が第1樹脂部材11から露出するように第1樹脂部材11に埋設されている。端子電極P1,P2は基板1の第1面に実装され、基板1に形成される導体パターン等に接続される。本実施形態では、端子電極P1,P2は第1樹脂部材11の第1主面VS1に露出する。また、5つの端子電極P1は、基板1の第1辺(図2(A)における基板1の右辺)側に位置し、Y軸方向に配列されており、5つの端子電極P2は、基板1の第2辺(図2(A)における基板1の左辺)側に位置し、Y軸方向に配列されている。端子電極P1,P2は例えば円柱状の金属部材である。
 図3は電源モジュール101の回路図の一例である。図3では、図1で示したインダクタ2、2つのコンデンサ21およびスイッチ素子31,32を、それぞれインダクタL、入力コンデンサCin、出力コンデンサCoutおよびスイッチ素子Q1,Q2で表している。また、図3では、端子電極P1はDC電圧を受ける電圧入力部であり、端子電極P2は電圧出力部である。
 インダクタLおよびスイッチ素子Q1は、端子電極P1と、端子電極P2との間に接続されている。スイッチ素子Q1,Q2はインダクタLに流れる電流をスイッチングする素子である。スイッチ素子Q1は、端子電極P1とインダクタLとの間に接続され、スイッチ素子Q2はグランドとインダクタLとの間に接続されている。入力コンデンサCinは端子電極P1とグランドとの間に接続され、出力コンデンサCoutは端子電極P2とグランドとの間に接続され、制御IC3はスイッチ素子Q1,Q2にそれぞれ接続されている。
 具体的には、スイッチ素子Q1のドレインは端子電極P1に接続され、スイッチ素子Q1のソースはインダクタLの第1端に接続され、インダクタLの第2端は端子電極P2に接続される。また、スイッチ素子Q2のドレインは、インダクタLの第1端に接続され、スイッチ素子Q2のソースはグランドに接続される。入力コンデンサCinの第1端は端子電極P1に接続され、入力コンデンサCinの第2端はグランドに接続され、出力コンデンサCoutの第1端は端子電極P2に接続され、出力コンデンサCoutの第2端はグランドに接続される。制御IC3は、スイッチ素子Q1,Q2のゲート・ソースにそれぞれ接続される。
 図3に示すように、入力コンデンサCinおよびスイッチ素子Q1,Q2によってループLlpを構成する。このように、電源モジュール101は降圧型DC/DCコンバータモジュールを構成する。
 本実施形態に係る電源モジュール101によれば、次のような効果を奏する。
(a)電源モジュール101は、第1面PS1および第2面PS2を有する基板1を備え、複数の電子部品が基板1の第1面PS1および第2面PS2にそれぞれ搭載される構造である。そのため、複数の電子部品を基板1の第1面PS1および第2面PS2のいずれか一方の面に搭載する場合に比べて、小さな実装面積の電源モジュールを実現できる。
(b)また、本実施形態では、複数の電子部品のいくつか(スイッチ素子31,32)が、Z軸方向から視て、インダクタ2に重なっている。電源モジュールにおいて、インダクタ2は比較的サイズの大きな部品である。したがって、この構成により、電源モジュールの実装面積を容易に低減できる。
(c)本実施形態では、第1面PS1に搭載される電子部品(スイッチ素子31,32)が第1樹脂部材11で封止され、第2面に搭載される電子部品(コンデンサ21および制御IC3)やインダクタ2が第2樹脂部材12で封止される。この構成では、電子部品やインダクタ2が樹脂部材で保護されるので、電源モジュール全体が堅牢となり、電源モジュール自体の機械的強度や外力等に対する耐久性が高まる。また、この構成により、はんだ付けだけで電子部品を基板1に搭載した場合に比べて、基板1に対する電子部品の実装強度を高めることができ、電子部品と基板との電気的な接続信頼性が向上する。
 また、この構成では、基板1に搭載される電子部品が樹脂部材によって封止されるため、部品強度の低い電子部品や半導体ベアチップ部品(IC)等も基板1にフェイスダウンで直接搭載できる。そのため、リードフレームやワイヤボンディングの必要が無く、モジュール内でのサイズは小さい。したがって、このようなベアチップ部品を使用することにより、電源モジュール自体の小型化(さらに実装面積を低減)を図ることができる。
(d)本実施形態では、スイッチ素子31,32や制御IC3等の動作時に発熱する電子部品(以下、「発熱部品」)が、空気よりも熱伝導性の高い樹脂部材で封止されている。したがって、発熱部品から発生する熱が樹脂部材を介して分散されるため、放熱性が高まる。
(e)また、本実施形態では、発熱部品(スイッチ素子31,32等)が第1面PS1に搭載され、電源モジュールの実装面(第1樹脂部材11の第1主面VS1)が形成される第1樹脂部材11に封止されている。この構成の電源モジュールを実装基板に実装した場合、発熱部品と実装基板との間隙に樹脂部材が充填され、発熱部品が樹脂部材を介して実装基板に接する。したがって、この構成により、発熱部品が樹脂部材に封止されていない構造の電源モジュールを実装基板に実装した場合に比べて、発熱部品から発生した熱を実装基板へ分散しやすくなり、放熱性をさらに高めることができる。
(f)基板1の第1面PS1および第2面PS2を樹脂部材で封止しない構造の電源モジュールの場合、電子部品を搭載するために基板1自体の強度を確保する必要があり、基板1を薄く形成することは困難である。一方、本実施形態では、基板1の第1面PS1および第2面PS2を樹脂部材で封止しているため、基板1を薄く形成したとしても、電子部品を搭載するための基板1の強度は確保され、基板1自体の反り等も抑制される。したがって、この構成により、薄く形成した基板1を容易に利用することができるため、小型(特に厚みが薄い)の電源モジュールを実現できる。
 なお、基板1を薄く形成することで、基板1の第1面PS1と第2面PS2とを接続する層間接続導体等の配線長を短くできるため、電源モジュール全体の導体抵抗を低減できる。したがって、低損失の電源モジュールを実現できる。
(g)本実施形態では、Z軸方向から視て、スイッチ素子31,32は、少なくとも一部がコンデンサ21(入力コンデンサまたは出力コンデンサの少なくとも一方)に重なる位置に配置される。この構成により、スイッチ素子31,32とコンデンサ21とを同一基板面上に並べて配置した場合と比べて、スイッチ素子31,32と入力コンデンサ(または出力コンデンサ)との平面(XY平面)上での距離が短くなるため、スイッチ素子31,32と入力コンデンサ(または出力コンデンサ)との間の配線長は短くなる(具体的には、図3における区間D1,D2が短くなる)。そのため、電源モジュール101が有するループLlpのインダクタンスおよび導体抵抗は小さくなり、入力コンデンサ(または出力コンデンサ)によるスイッチングノイズ抑制効果が高まる。したがって、電源モジュールから基板1に形成される導体パターン等への伝導ノイズが低減される。また、電源モジュールから外部への輻射ノイズが低減される。さらに、この構成により、電源モジュールの電力変換効率を向上させることができる。なお、上記電源モジュールの電力変換効率の向上については、特に高周波での動作において効果が高まる。
 また、上述したように基板1を薄く形成することで、基板1の第1面PS1と第2面PS2とを接続する層間接続導体等の配線長を短くできるため、導体抵抗をさらに小さくでき、電源モジュールの電力変換効率をさらに向上させることができる。
(h)本実施形態では、スイッチ素子31,32が、Z軸方向から視て、少なくとも一部が導体4に重なる位置に配置される。この構成では、基板1に形成された導体4が、スイッチ素子31,32から放射されるノイズを遮蔽するシールドとして機能するため、電源モジュールから放射されるノイズを抑制できる。本実施形態では、特にスイッチ素子31,32が搭載された基板1の第1面PS1とは反対側である電源モジュールの天面側(第2主面VS2側)へのノイズの放射を抑制できる。
 なお、実装基板にグランド導体等が形成されている場合には、この構成の電源モジュールを実装基板に実装することにより、導体4と実装基板側のグランド導体とでスイッチ素子31,32が挟まれる。したがって、導体4と実装基板側のグランド導体とによって、電源モジュールから放射されるノイズはシールドされる。
 また、本実施形態では、スイッチ素子31,32が、基板1の第1面PS1に搭載される例を示したが、スイッチ素子が制御IC3等の他の電子部品内に組み込まれていてもよい。この場合には、スイッチ素子が組み込まれた上記電子部品が、Z軸方向から視て、コンデンサ21(入力コンデンサまたは出力コンデンサの少なくとも一方)に重なる位置に配置されることが好ましい。また、この場合には、スイッチ素子が組み込まれた上記電子部品が、Z軸方向から視て、基板1に形成された導体4に重なる位置に配置されることが好ましい。
 《第2の実施形態》
 第2の実施形態では、実装面に放熱部材を備える電源モジュールについて示す。
 図4は、第2の実施形態に係る電源モジュール102の正面図である。図4では、電源モジュール102の構造を解りやすくするため、第1樹脂部材11および第2樹脂部材12を透明化して示している。
 本実施形態に係る電源モジュール102は、第1放熱部材41および第1柱状熱伝導体V1を備える点で、第1の実施形態に係る電源モジュール101と異なる。その他の構成については、電源モジュール101と同じである。
 第1放熱部材41は第1樹脂部材11の表面に配置された平面形状が矩形の放熱部材である。第1放熱部材41の一部は第1樹脂部材11に埋設され、第1樹脂部材11の表面(第1主面VS1)に露出している。第1柱状熱伝導体V1は、第1樹脂部材11に埋設された柱状の高熱伝導体である。第1柱状熱伝導体V1は、基板1の第1面PS1に搭載される複数の電子部品のうち少なくとも1つ(スイッチ素子31)に接触もしくは近接しており、一方の端が第1放熱部材41に接続され、他方の端が基板1に形成される導体4に接触している。第1放熱部材41は例えば金属板であり、第1柱状熱伝導体V1は例えばCuブロックである。
 本実施形態に係る電源モジュール102によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
(i)第1放熱部材41を備えることにより、動作時に発熱部品(スイッチ素子等)が発する熱を電源モジュールの外部へ放熱しやすくなる。第1放熱部材41に接続される第1柱状熱伝導体V1が、基板1の第1面PS1に搭載される複数の電子部品のうち少なくとも1つまたはインダクタ2に接触することによって、放熱性はより向上する。また、第1柱状熱伝導体V1が、基板1に形成される導体4に接触することによって、さらに放熱性が向上する。
(j)本実施形態に係る電源モジュール102では、第1放熱部材41が第1樹脂部材11の第1主面VS1に露出している。この構成により、電源モジュールを実装基板に実装する場合に、はんだ等の導電性接合材を用いて第1放熱部材41を実装基板に接合できるため、動作時に発熱部品が発する熱は実装基板側へ効率よく放熱する。
(k)また、本実施形態では、第1放熱部材41の一部が第1樹脂部材11に埋設されるため、第1放熱部材41を容易に固定できる。
 なお、本実施形態では、第1柱状熱伝導体V1が、第1面PS1に搭載される複数の電子部品のうち少なくとも1つに接触もしくは近接しており、一方の端が第1放熱部材41に接続され、他方の端が基板1に形成される導体4に接続される例を示したが、この構成に限定されるものではない。電源モジュールは第1放熱部材41のみ備え、第1柱状熱伝導体を備えていない構成でもよい。また、第1柱状熱伝導体V1の一方の端が第1放熱部材41に接続され、他方の端が基板1の第1面PS1に接触していてもよい。さらに、第1柱状熱伝導体V1が、第1面PS1に搭載される複数の電子部品に接触もしくは近接していてもよい。
 《第3の実施形態》
 第3の実施形態では、天面に放熱部材を備える電源モジュールについて示す。
 図5は、第3の実施形態に係る電源モジュール103の正面図である。図5では、電源モジュール103の構造を解りやすくするため、第1樹脂部材11および第2樹脂部材12を透明化して示している。
 本実施形態に係る電源モジュール103は、第2放熱部材42および第2柱状熱伝導体V2を備える点で、第1の実施形態に係る電源モジュール101と異なる。その他の構成については、電源モジュール101と同じである。
 第2放熱部材42は第2樹脂部材12の表面に配置された平面形状が矩形の放熱部材である。第2放熱部材42の一部は第2樹脂部材12に埋設され、第2樹脂部材12の表面(第2主面VS2)に露出している。第2柱状熱伝導体V2は、第2樹脂部材12に埋設された柱状の高熱伝導体である。第2柱状熱伝導体V2は、基板1の第2面PS2に搭載される複数の電子部品のうち少なくとも1つやインダクタに接触もしくは近接しており、一方の端が第2放熱部材42に接続され、他方の端が基板1に形成される導体4に接触している。第2放熱部材42は例えば金属板であり、第2柱状熱伝導体V2は例えばCuブロックである。
 本実施形態に係る電源モジュール103によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
(l)第2放熱部材42を備えることにより、動作時に発熱部品(制御IC、インダクタ等)が発する熱を電源モジュールの外部へ放熱しやすくなる。第2放熱部材42に接続される第2柱状熱伝導体V2が、基板1の第2面PS2に搭載される複数の電子部品のうち少なくとも1つまたはインダクタ2に接触することによって、放熱性はより向上する。また、第2柱状熱伝導体V2が、基板1に形成される導体4に接触することによって、さらに放熱性が向上する。
(m)また、本実施形態では、第2放熱部材42の一部が第2樹脂部材12に埋設されるため、第2放熱部材42を容易に固定できる。
 なお、本実施形態では、第2柱状熱伝導体V2が、第2面PS2に搭載される複数の電子部品のうち少なくとも1つやインダクタに接触もしくは近接しており、一方の端が第2放熱部材42に接続され、他方の端が基板1に形成される導体4に接触する例を示したが、この構成に限定されるものではない。電源モジュールは第2放熱部材42のみ備え、第2柱状熱伝導体を備えていない構成でもよい。また、第2柱状熱伝導体V2の一方の端が第2放熱部材42に接続され、他方の端が基板1の第2面PS2に接触していてもよい。さらに、第2柱状熱伝導体V2が、第2面PS2に搭載される複数の電子部品に接触もしくは近接していてもよい。
 なお、本実施形態では、第2放熱部材42が放熱用パッドである例を示したが、この構成に限定されるものではない。第2放熱部材42は、例えば放熱用フィンを備えるヒートシンク等であってもよい。
 《第4の実施形態》
 第4の実施形態では、インダクタが樹脂部材に搭載された構造の電源モジュールについて示す。
 図6は、第4の実施形態に係る電源モジュール104の正面図である。図6では、電源モジュール104の構造を解りやすくするため、第1樹脂部材11および第2樹脂部材12を透明化して示している。
 本実施形態に係る電源モジュール104は、インダクタ2が第1樹脂部材11に封止されていない点で、第1の実施形態に係る電源モジュール101と異なる。その他の構成については、電源モジュール101と実質的に同じである。
 電源モジュール104は、端子電極P3,P4をさらに備える。
 端子電極P3,P4は、インダクタ2と基板1に形成される導体等とインダクタ2とを接続するための柱状電極であり、一部が第2樹脂部材12から露出するように第2樹脂部材12に埋設されている。端子電極P3,P4は、基板1の第2面PS2に実装され、基板1に形成される導体パターン等に接続される。端子電極P3,P4は例えば円柱状の金属部材である。
 図6に示すように、インダクタ2は第2樹脂部材12の第2主面VS2(電源モジュールの天面)に搭載され、端子電極P3,P4を介して、基板1に形成される導体パターン等に接続される。
 本実施形態に係る電源モジュール104によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
(n)本実施形態では、インダクタ2が基板1の第2面PS2に搭載されていないため、インダクタ2を搭載するための搭載スペースを基板1に確保する必要がない。したがって、この構成により、基板1の第1面PS1および第2面PS2のいずれか一方の面にインダクタ2を搭載する場合に比べて、小さな実装面積の電源モジュールを実現できる。
(o)また、本実施形態に係る電源モジュールでは、基板1の第1面PS1または第2面PS2と同程度の大きさまでのサイズ(面積)のインダクタを選定できる。したがって、この構成により、基板1の第1面PS1および第2面PS2のいずれか一方の面にインダクタ2を搭載する場合に比べて、インダクタの選定の幅が広がる。また、特性の良いインダクタを選定することにより、基板1の第1面PS1および第2面PS2のいずれか一方の面にインダクタ2を搭載する場合に比べて、電源モジュールの電力変換効率を向上させることができる。
 《第5の実施形態》
 第5の実施形態では、降圧型DC/DCコンバータモジュール以外の電源モジュールの例を示す。
 図7(A)は第5の実施形態に係る電源モジュール105Aの回路図であり、図7(B)は第5の実施形態に係る別の電源モジュール105Bの回路図である。
 電源モジュール105Aでは、図7(A)に示すように、インダクタLおよびスイッチ素子Q2は、端子電極P1と端子電極P2との間に接続されている。スイッチ素子Q2は、端子電極P2とインダクタLとの間に接続され、スイッチ素子Q1はグランドとインダクタLとの間に接続されている。入力コンデンサCinは端子電極P1とグランドとの間に接続され、出力コンデンサCoutは端子電極P2とグランドとの間に接続され、制御IC3はスイッチ素子Q1,Q2にそれぞれ接続されている。
 具体的には、インダクタLの第1端は端子電極P1に接続され、スイッチ素子Q2のソースはインダクタLの第2端に接続され、スイッチ素子Q2のドレインは端子電極P2に接続される。また、スイッチ素子Q1のドレインは、インダクタLの第2端に接続され、スイッチ素子Q1のソースはグランドに接続される。入力コンデンサCinの第1端は端子電極P1に接続され、入力コンデンサCinの第2端はグランドに接続され、出力コンデンサCoutの第1端は端子電極P2に接続され、出力コンデンサCoutの第2端はグランドに接続される。制御IC3は、スイッチ素子Q1,Q2のゲート・ソースにそれぞれ接続される。
 このように、電源モジュール105Aは昇圧型DC/DCコンバータモジュールを構成する。
 次に、電源モジュール105Bでは、図7(B)に示すように、スイッチ素子Q1およびスイッチ素子Q2は、端子電極P1と端子電極P2との間に接続されている。インダクタLはスイッチ素子Q1,Q2とグランドとの間に接続されている。
 具体的には、スイッチ素子Q1のドレインは端子電極P1に接続され、スイッチ素子Q1のソースがインダクタLの第1端に接続され、スイッチ素子Q2のドレインがインダクタLの第1端に接続される。インダクタLの第2端はグランドに接続され、スイッチ素子Q2のソースが端子電極P2に接続される。制御IC3は、スイッチ素子Q1,Q2のゲート・ソースにそれぞれ接続される。
 このように、電源モジュール105Bは昇降圧型DC/DCコンバータモジュールを構成する。
 本実施形態で示したように、本発明の電源モジュールは、降圧型DC/DCコンバータモジュールだけでなく、昇圧型DC/DCコンバータモジュールや昇降圧DC/DCコンバータモジュールを構成してもよい。また、本発明の電源モジュールは、DC/DCコンバータモジュールのみに限定されず、AC/DCコンバータモジュールやDC/ACコンバータモジュールを構成してもよい。
 《その他の実施形態》
 以上に示した各実施形態では、基板1の平面形状が矩形である例を示したが、この構成に限定されるものではない。基板1の平面形状は本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば円形、楕円形、多角形、L字形、T字形、Y字形等であってもよい。また、以上に示した第1・第2・第3の各実施形態では、直方体状の電源モジュールを示したが、この構成に限定されるものではない。電源モジュールの形状は本発明の作用・効果を奏する範囲において適宜変更可能である。また、電源モジュールの天面や端面は、平面に限定されるものではなく、曲面等であってもよい。
 以上に示した各実施形態では、制御IC3、コンデンサ21(入力コンデンサおよび出力コンデンサ)、スイッチ素子31,32、インダクタ2を備える電源モジュールを示したが、電源モジュールがこれ以外の電子部品を備えていてもよいし、必ずしも備えていなくても良い。
 以上に示した第1・第2・第3の各実施形態では、基板1の第1面PS1にスイッチ素子31,32が搭載され、基板1の第2面PS2にインダクタ2、制御IC3、コンデンサ21(入力コンデンサおよび出力コンデンサ)が搭載される例を示したが、この構成に限定されるものではない。電子部品およびインダクタ2の個数・種類・配置等は、本発明の作用・効果を奏する範囲において適宜変更可能である。また、複数の電子部品は、基板1の第1面PS1および第2面PS2のいずれの面に搭載されていてもよい。但し、上述したように、スイッチ素子31,32は、第1面PS1および第2面PS2のうちコンデンサ21(入力コンデンサおよび出力コンデンサ)が搭載された面とは異なる面に搭載されることが好ましい。また、インダクタ2は基板1の第2面PS2に搭載され、第2樹脂部材12に封止されていてもよい。
 以上に示した各実施形態では、導体4が基板1の内部に形成され、平面形状がU字状(C字状)の導体パターンである例を示したが、この構成に限定されるものではない。導体4は基板1の第1面PS1に形成されていてもよいし、基板1の第2面PS2に形成されていてもよい。また、導体4の平面形状についても、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば正方形・矩形・多角形・円形・楕円形・L字形・T字形等であってもよい。さらに、導体4は1つに限らず、基板1に複数個形成されていてもよい。
 以上に示した各実施形態では、5つの端子電極P1が、基板1の第1辺側に位置し、Y軸方向に配列され、5つの端子電極P2が、基板1の第2辺側に位置し、Y軸方向に配列される構成例について示したが、これに限定されるものではない。端子電極の個数・配置等については、本発明の作用・効果を奏する範囲において適宜変更可能である。また、端子電極は円柱状の金属部材に限定されず、楕円柱状や多角柱状等であってもよい。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
Cin…入力コンデンサ
Cout…出力コンデンサ
L…インダクタ
Q1,Q2…スイッチ素子
D1,D2…区間
Llp…ループ
P1,P2,P3,P4…端子電極
PS1…基板の第1面
PS2…基板の第2面
V1…第1柱状熱伝導体
V2…第2柱状熱伝導体
VS1…第1樹脂部材の第1主面
VS2…第2樹脂部材の第2主面
1…基板
2…インダクタ
3…IC
4…導体
11…第1樹脂部材
12…第2樹脂部材
21…コンデンサ(入力コンデンサおよび出力コンデンサ)
31,32…スイッチ素子
41…第1放熱部材
42…第2放熱部材
101,102,103,104…電源モジュール

Claims (15)

  1.  第1面および前記第1面に対向する第2面を有する基板と、
     前記第1面および前記第2面にそれぞれ搭載される複数の電子部品と、
     前記第1面に形成され、前記第1面に搭載される前記複数の電子部品を封止する第1樹脂部材と、
     前記第2面に形成され、前記第2面に搭載される前記複数の電子部品を封止する第2樹脂部材と、
     前記第1面または前記第2面を平面視して、前記複数の電子部品のいくつかに重なる位置に配置されるインダクタと、
     を備える、電源モジュール。
  2.  前記インダクタは、前記第1樹脂部材または前記第2樹脂部材により封止される、請求項1に記載の電源モジュール。
  3.  前記複数の電子部品は、入力部に接続された入力コンデンサと、出力部に接続された出力コンデンサと、前記インダクタと前記入力コンデンサとの間または前記インダクタと前記出力コンデンサとの間のいずれかに接続され、前記インダクタに流れる電流をスイッチングするスイッチ素子と、を含み、
     前記入力コンデンサおよび前記出力コンデンサは、前記第1面または前記第2面のうちいずれか一方の面に搭載され、
     前記スイッチ素子は、前記第1面および前記第2面のうち前記入力コンデンサおよび前記出力コンデンサが搭載された面と異なる面に搭載される、請求項1または2に記載の電源モジュール。
  4.  前記複数の電子部品は、入力部に接続された入力コンデンサと、出力部に接続された出力コンデンサと、前記インダクタと前記入力コンデンサとの間および前記インダクタと前記出力コンデンサとの間にそれぞれ接続され、前記インダクタに流れる電流をスイッチングするスイッチ素子と、を含み、
     前記入力コンデンサおよび前記出力コンデンサは、前記第1面または前記第2面のうちいずれか一方の面に搭載され、
     前記スイッチ素子は、前記第1面および前記第2面のうち前記入力コンデンサおよび前記出力コンデンサが搭載された面と異なる面に搭載される、請求項1または2に記載の電源モジュール。
  5.  前記スイッチ素子は、前記第1面または前記第2面を平面視して、少なくとも一部が前記入力コンデンサまたは前記出力コンデンサの少なくとも一方に重なる位置に配置される、請求項3または4に記載の電源モジュール。
  6.  前記基板に形成される導体を備える、請求項3から5のいずれかに記載の電源モジュール。
  7.  前記スイッチ素子は、前記第1面または前記第2面を平面視して、少なくとも一部が前記導体に重なる位置に配置される、請求項6に記載の電源モジュール。
  8.  前記第1樹脂部材の表面に配置された第1放熱部材を備える、請求項1から5のいずれかに記載の電源モジュール。
  9.  前記第1樹脂部材に埋設され、前記第1面に搭載される前記複数の電子部品のうち少なくとも1つまたは前記インダクタに接触し、前記第1放熱部材に接続される第1柱状熱伝導体を備える、請求項8に記載の電源モジュール。
  10.  前記第1樹脂部材の表面に配置された第1放熱部材を備える、請求項6または7に記載の電源モジュール。
  11.  前記第1樹脂部材に埋設され、前記導体に接触し、前記第1放熱部材に接続される第1柱状熱伝導体を備える、請求項10に記載の電源モジュール。
  12.  前記第2樹脂部材の表面に配置された第2放熱部材を備える、請求項8または9に記載の電源モジュール。
  13.  前記第2樹脂部材に埋設され、前記第2面に搭載される前記複数の電子部品のうち少なくとも1つまたは前記インダクタに接触し、前記第2放熱部材に接続される第2柱状熱伝導体を備える、請求項12に記載の電源モジュール。
  14.  前記第2樹脂部材の表面に配置された第2放熱部材を備える、請求項10または11に記載の電源モジュール。
  15.  前記第2樹脂部材に埋設され、前記導体に接触し、前記第2放熱部材に接続される第2熱伝導体を備える、請求項14に記載の電源モジュール。
PCT/JP2017/011584 2016-04-21 2017-03-23 電源モジュール WO2017183385A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-084991 2016-04-21
JP2016084991 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183385A1 true WO2017183385A1 (ja) 2017-10-26

Family

ID=60116041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011584 WO2017183385A1 (ja) 2016-04-21 2017-03-23 電源モジュール

Country Status (1)

Country Link
WO (1) WO2017183385A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004823A (ja) * 2018-06-27 2020-01-09 株式会社村田製作所 回路モジュール及び回路モジュールの製造方法
WO2020195439A1 (ja) * 2019-03-22 2020-10-01 株式会社村田製作所 回路モジュール
CN111886787A (zh) * 2018-03-19 2020-11-03 株式会社村田制作所 控制电路模块、电子部件的连接构造以及电力变换装置
WO2022004420A1 (ja) * 2020-06-30 2022-01-06 株式会社村田製作所 電源モジュール
JPWO2022091479A1 (ja) * 2020-10-30 2022-05-05
WO2023243418A1 (ja) * 2022-06-15 2023-12-21 ローム株式会社 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666291U (ja) * 1993-02-22 1994-09-16 新日本製鐵株式会社 薄型dc−dcコンバータ
JPH10112573A (ja) * 1996-10-04 1998-04-28 Asahi Chem Ind Co Ltd 回路基板およびその製造方法
JP2008034778A (ja) * 2006-06-29 2008-02-14 Kyocera Corp 回路モジュール
JP2015089333A (ja) * 2013-10-28 2015-05-07 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト 回路基板に取り付けられた電力段を収容する出力インダクタを有するdc−dcコンバータアセンブリ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666291U (ja) * 1993-02-22 1994-09-16 新日本製鐵株式会社 薄型dc−dcコンバータ
JPH10112573A (ja) * 1996-10-04 1998-04-28 Asahi Chem Ind Co Ltd 回路基板およびその製造方法
JP2008034778A (ja) * 2006-06-29 2008-02-14 Kyocera Corp 回路モジュール
JP2015089333A (ja) * 2013-10-28 2015-05-07 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト 回路基板に取り付けられた電力段を収容する出力インダクタを有するdc−dcコンバータアセンブリ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886787A (zh) * 2018-03-19 2020-11-03 株式会社村田制作所 控制电路模块、电子部件的连接构造以及电力变换装置
JP2020004823A (ja) * 2018-06-27 2020-01-09 株式会社村田製作所 回路モジュール及び回路モジュールの製造方法
JP7143647B2 (ja) 2018-06-27 2022-09-29 株式会社村田製作所 回路モジュール及び回路モジュールの製造方法
WO2020195439A1 (ja) * 2019-03-22 2020-10-01 株式会社村田製作所 回路モジュール
US11973421B2 (en) 2019-03-22 2024-04-30 Murata Manufacturing Co., Ltd. Circuit module including metal plate in contact with electrode portions
WO2022004420A1 (ja) * 2020-06-30 2022-01-06 株式会社村田製作所 電源モジュール
JPWO2022091479A1 (ja) * 2020-10-30 2022-05-05
JP7268802B2 (ja) 2020-10-30 2023-05-08 株式会社村田製作所 電源回路モジュール
WO2023243418A1 (ja) * 2022-06-15 2023-12-21 ローム株式会社 半導体装置

Similar Documents

Publication Publication Date Title
WO2017183385A1 (ja) 電源モジュール
US20230230749A1 (en) Power system
JP5975180B2 (ja) 半導体モジュール
JP5259016B2 (ja) パワー半導体モジュール
JP7119842B2 (ja) Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置
JP6354845B2 (ja) 半導体モジュール
JP6709810B2 (ja) 低誘導性ハーフブリッジ装置
US9111954B2 (en) Power conversion module
JP2011199162A (ja) 半導体装置
JP5529100B2 (ja) スイッチングレギュレータおよびそれを備える電源装置
JP2005197435A (ja) 電力半導体装置
JP6583545B2 (ja) 電源モジュールおよび電源装置
JP2010287737A (ja) 半導体装置
JP2017143227A (ja) 半導体集積回路素子の放熱構造、ならびに、半導体集積回路素子及びその製造方法
JP2007027404A (ja) 半導体装置
JP2023021365A (ja) 半導体装置および電力変換装置
US6664629B2 (en) Semiconductor device
JP6515678B2 (ja) コンバータ搭載基板
WO2016075985A1 (ja) パワー半導体のパッケージ素子
JP4096831B2 (ja) 半導体装置の実装構造
WO2024181376A1 (ja) パワー半導体モジュール及び電力変換装置
JPWO2019082373A1 (ja) 半導体装置
US11721633B2 (en) Semiconductor device
JP2018142590A (ja) 電源装置、及びこれを備えたスイッチングハブ
US20230087499A1 (en) Semiconductor unit and semiconductor device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785727

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP