WO2017183188A1 - ロープ損傷診断検査装置 - Google Patents
ロープ損傷診断検査装置 Download PDFInfo
- Publication number
- WO2017183188A1 WO2017183188A1 PCT/JP2016/062787 JP2016062787W WO2017183188A1 WO 2017183188 A1 WO2017183188 A1 WO 2017183188A1 JP 2016062787 W JP2016062787 W JP 2016062787W WO 2017183188 A1 WO2017183188 A1 WO 2017183188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire rope
- rope
- outer layer
- coil
- damage
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
- B66B7/12—Checking, lubricating, or cleaning means for ropes, cables or guides
- B66B7/1207—Checking means
- B66B7/1215—Checking means specially adapted for ropes or cables
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/14—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
- D07B1/145—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising elements for indicating or detecting the rope or cable status
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/262—Linear objects
- G01N2291/2626—Wires, bars, rods
Definitions
- the present invention relates to a rope damage diagnosis and inspection apparatus for detecting the presence or absence of damage to a strand by generating ultrasonic vibration in a rope by a magnetostrictive effect.
- a plurality of magnets and a pair of coil assemblies are arranged so as to surround the entire circumference of the wire rope.
- a magnetostrictive strip is disposed between each coil assembly and the wire rope.
- Each magnet applies a DC magnetic field to the wire rope and magnetostrictive strip. Further, an ultrasonic wave is applied to the wire rope by applying an alternating magnetic field by the coil assembly to vibrate the magnetostrictive strip by the magnetostrictive effect. And the reflected wave of the ultrasonic wave by damage of a wire rope is detected with a coil assembly through the inverse magnetostriction effect of a magnetostriction strip (for example, refer patent document 1).
- the probe surrounds the entire circumference of the wire rope in order to detect an abnormality in the entire circumference of the wire rope. Therefore, it takes time to attach the probe. Further, the entire probe is enlarged, and the probe may not be attached when two or more wire ropes are arranged close to each other as in an elevator, for example.
- the present invention has been made to solve the above-described problems, and detects whether or not the wire rope is damaged by facing only a part of the outer circumferential surface of the wire rope in the circumferential direction with a compact configuration.
- An object of the present invention is to obtain a rope damage diagnostic inspection apparatus capable of performing the above.
- the rope damage diagnosis and inspection apparatus is a rope damage diagnosis that detects the presence or absence of damage to a wire rope in which a plurality of outer layer strands each including a plurality of outer layer strands arranged on the outer periphery are arranged on the outer periphery.
- An inspection device having a magnet that applies a DC magnetic field to a wire rope and an exciting coil that applies an AC magnetic field to the wire rope, and vibrates the wire rope by a magnetostrictive effect to generate ultrasonic waves on the wire rope.
- An ultrasonic applicator and a detector having a detection element for detecting a change in the propagation state of the ultrasonic wave in the wire rope.
- the excitation coil and the detection element have one outer layer strand for the wire rope.
- the length of the wire rope for one rotation is the length of the first opposite side, and the product of the diameter and the number of outer layer strands contained in one outer layer strand is the second opposite side. They are arranged in a parallelogram to length.
- the exciting coil and the detecting element have the length of the wire rope corresponding to one rotation of one outer layer strand with respect to the wire rope as the length of the first opposite side. Since it is arranged in a parallelogram with the product of the diameter and number of outer layer strands contained in the outer layer strand as the length of the second opposite side, part of the outer peripheral surface of the wire rope in the circumferential direction with a compact configuration It is possible to detect the presence or absence of damage to the wire rope.
- FIG. 1 is a perspective view showing a rope damage diagnosis and inspection apparatus according to Embodiment 1 of the present invention
- FIG. 2 is a circuit diagram of the rope damage diagnosis and inspection apparatus of FIG.
- the casing 1 of the rope damage diagnostic inspection apparatus is disposed so as to face a part of the wire rope 2 in the length direction.
- the wire rope 2 is moved relative to the housing 1.
- FIG. 1 the inside of the housing 1 is shown through.
- an ultrasonic applicator 3 In the housing 1, an ultrasonic applicator 3, an excitation source 4, a detector 5, and a signal processing circuit 6 are accommodated.
- the ultrasonic applicator 3 includes an application side magnet 7 and an excitation coil 8.
- the application-side magnet 7 is made of a permanent magnet and applies a DC magnetic field to the wire rope 2 that is a magnetic body.
- the exciting coil 8 applies an alternating magnetic field to the wire rope 2 and causes an induced current (eddy current, alternating current) to flow in the circumferential direction of the wire rope 2.
- the ultrasonic applicator 3 vibrates the wire rope 2 in the axial direction by the magnetostrictive effect, and generates ultrasonic waves on the wire rope 2.
- the ultrasonic wave generated in the wire rope 2 propagates in the wire rope 2 in the axial direction along the strand helical structure.
- the ultrasonic waves are reflected or greatly attenuated at the damaged part.
- the excitation source 4 is connected to the excitation coil 8 and has an RF source 4a that generates an RF current of kHz to MHz.
- the detector 5 is arranged at an interval in the length direction of the wire rope 2 with respect to the ultrasonic applicator 3.
- the detector 5 includes a detection-side magnet 9 and a detection coil 10 as a detection element.
- the detection-side magnet 9 is made of a permanent magnet and applies a DC magnetic field to the wire rope 2.
- the detection coil 10 detects the ultrasonic wave propagated in the wire rope 2 as an AC voltage. Thereby, the detection coil 10 detects a change in the propagation state of the ultrasonic wave in the wire rope 2.
- the signal processing circuit 6 has a waveform discrimination circuit 11 and a control communication circuit 12.
- the waveform discriminating circuit 11 detects whether or not the wire rope 2 is broken from the RF current waveform and the detection voltage waveform of the detection coil 10.
- the control communication circuit 12 controls the RF source 4a and the waveform discrimination circuit 11.
- the control communication circuit 12 transmits a measurement result, that is, information on whether or not the wire is broken, to an external computer.
- the control communication circuit 12 receives signals from the external computer such as operation settings, that is, measurement start and end, frequency and amplitude of the RF source 4a, and a condition for determining whether or not the wire is broken.
- FIG. 3 is a cross-sectional view of the wire rope 2 of FIG. 1, showing a cross section perpendicular to the length direction.
- the wire rope 2 has a core rope 21 disposed at the center and a plurality of outer layer strands 22a to 22h twisted around the outer periphery of the core rope 21. In this example, eight outer layer strands 22a to 22h are used.
- the cross-sectional structure of the core rope 21 is omitted, but various structures can be applied.
- Each of the outer layer strands 22a to 22h is disposed between the center wire 23 made of steel, the nine outer layer strands 24 made of steel disposed on the outer periphery, and between the center strand 23 and the outer layer strand 24.
- This is a stranded wire having nine intermediate strands 25 made of steel. The diameter of the intermediate strand 25 is smaller than the diameter of the central strand 23 and the diameter of the outer layer strand 24.
- the outer layer strand 24 is broken at a portion in contact with the sheaves of the outer layer strands 22 a to 22 h, that is, a so-called mountain break, and the outer layer strand 24 at a portion in contact with the adjacent outer layer strands 22 a to 22 h is broken. , So-called valley breaks may occur.
- FIG. 4 is a configuration diagram showing an arrangement state of the exciting coil 8 with respect to the wire rope 2 viewed along a direction (Z-axis direction) perpendicular to the length direction of the wire rope 2 of FIG.
- the exciting coil 8 has the length of the wire rope 2 corresponding to one rotation of the outer strand strand, for example, the outer strand strand 22a, as the length of the first opposite side with respect to the wire rope 2, and one outer layer strand, for example, the outer layer strand.
- the strands 22a are arranged in a parallelogram with the product of the diameter and the number of outer layer wires 24 included in the strand 22a as the length of the second opposite side.
- the excitation coil 8 is arranged along the outer periphery of the parallelogram so as to collectively surround the above-mentioned parallelogram region.
- the exciting coil 8 applies ultrasonic waves to all the outer layer strands 24 of all the outer layer strands 22a to 22h, but does not apply ultrasonic waves to the same outer layer strand 24 at two or more locations simultaneously. .
- the detection coil 10 is arranged in the same manner as the excitation coil 8. Thereby, the detection coil 10 detects the ultrasonic waves from all the outer layer strands 24 of all the outer layer strands 22a to 22h, but does not detect the ultrasonic waves at two or more locations simultaneously from the same outer layer strand 24. .
- the ultrasonic wave generated by the vibration of the wire rope 2 advances in the wire rope 2 in the axial direction along the spiral structure of the outer strand 24. If there is an abnormality in the wire rope 2, the ultrasonic wave is reflected or attenuated at that point.
- the ultrasonic wave traveling in the wire rope 2 is detected as an alternating voltage by inverse conversion of ultrasonic wave application. And the damage of the wire rope 2 is detected from AC voltage fluctuation.
- the exciting coil 8 is disposed so as to collectively surround the parallelogram region, but as shown in FIG. 5, the exciting coil 8 is divided into the number of outer layer strands 22a to 22h. It may be divided into 8a to 8h and adjacent divided coils may be connected. Further, as shown in FIG. 6, the adjacent divided coils 8a to 8h may be connected in the reverse direction.
- the detection coil 10 can be modified similarly to the excitation coil 8.
- the divided coils 8a to 8h are not connected to each other, and an ultrasonic wave is applied to each of the outer layer strands 22a to 22h, and the detection coil 10 also detects an ultrasonic wave for each of the outer layer strands 22a to 22h. May be.
- the detection element is not limited to the detection coil 10 and may be, for example, a Hall element or a magnetoresistive element.
- the magnetoresistive element an AMR (anisotropic magnetoresistive) element, a GMR (giant magnetoresistive) element, or a TMR (tunnel magnetoresistive) element can be used.
- FIG. 8 is a perspective view showing a rope damage diagnosis and inspection apparatus according to Embodiment 2 of the present invention.
- the excitation coil 8 detects the reflected wave of the ultrasonic wave that propagates through the wire rope 2 after the application of the ultrasonic wave. That is, the excitation coil 8 is used as another detection coil, and the reflected wave from the damaged portion 2 a of the wire rope 2 is detected by the excitation coil 8.
- Other configurations are the same as those in the first embodiment.
- the distance from the exciting coil 8 to the damaged portion 2a can be known, and the ultrasonic speed fluctuation due to the tension fluctuation of the wire rope 2 can be canceled.
- the configuration of the excitation coil 8 and the detection coil 10 can be changed as in the first embodiment.
- the detection element in the detector 5 can be changed as in the first embodiment.
- FIG. 9 is a perspective view showing a rope damage diagnostic inspection apparatus according to Embodiment 3 of the present invention.
- the detector 5 is omitted from the configuration of the second embodiment.
- the excitation coil 8 also serves as a detection element, so that the ultrasonic applicator 3 also serves as a detector.
- the excitation coil 8 detects the reflected wave of the ultrasonic wave that propagates through the wire rope 2 after application of the ultrasonic wave.
- the signal processing circuit 6 detects the presence / absence of a broken wire by the reflected wave of the ultrasonic wave.
- the detector 5 is omitted, so that the whole can be miniaturized.
- the configuration of the exciting coil 8 can be changed.
- an electromagnet may be used as a magnet that applies a DC magnetic field to the wire rope 2.
- the rope damage diagnosis and inspection apparatus of the present invention can be applied to ropes other than elevator ropes.
Landscapes
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
実施の形態1.
図1はこの発明の実施の形態1によるロープ損傷診断検査装置を示す斜視図、図2は図1のロープ損傷診断検査装置の回路図である。図において、ロープ損傷診断検査装置の筐体1は、ワイヤロープ2の長さ方向の一部に対向するように配置される。ワイヤロープ2の検査時には、筐体1に対してワイヤロープ2を相対的に移動させる。図1では、筐体1内を透視して示している。
さらに、検出素子は、検出コイル10に限定されるものではなく、例えば、ホール素子又は磁気抵抗素子でもよい。磁気抵抗素子としては、AMR(異方性磁気抵抗)素子、GMR(巨大磁気抵抗)素子、又はTMR(トンネル磁気抵抗)素子を用いることができる。
次に、図8はこの発明の実施の形態2によるロープ損傷診断検査装置を示す斜視図である。実施の形態2では、励磁コイル8は、超音波の印加後、ワイヤロープ2を伝搬する超音波の反射波を検出する。即ち、励磁コイル8をもう1つの検出コイルとして使用し、ワイヤロープ2の損傷箇所2aからの反射波を励磁コイル8により検出する。他の構成は、実施の形態1と同様である。
また、実施の形態2においても、実施の形態1と同様に、検出器5における検出素子の変更が可能である。
次に、図9この発明の実施の形態3よるロープ損傷診断検査装置を示す斜視図である。実施の形態3では、実施の形態2の構成から検出器5が省略されている。そして、励磁コイル8が検出素子を兼ねることにより、超音波印加器3が検出器を兼ねている。励磁コイル8は、超音波の印加後、ワイヤロープ2を伝搬する超音波の反射波を検出する。信号処理回路6は、超音波の反射波により素線切れの有無を検出する。
また、実施の形態1~3において、ワイヤロープ2に直流磁界を印加する磁石として、電磁石を用いてもよい。
さらに、この発明のロープ損傷診断検査装置は、エレベータ用ロープ以外のロープにも適用できる。
Claims (6)
- 外周に配置されている複数本の外層素線をそれぞれ含む複数本の外層ストランドが外周に配置されているワイヤロープの損傷の有無を検出するロープ損傷診断検査装置であって、
前記ワイヤロープに直流磁界を印加する磁石と、前記ワイヤロープに交流磁界を印加する励磁コイルとを有しており、磁歪効果により前記ワイヤロープを振動させて前記ワイヤロープに超音波を生じさせる超音波印加器、及び
前記ワイヤロープにおける超音波の伝搬状態の変化を検出する検出素子を有している検出器
を備え、
前記励磁コイル及び前記検出素子は、前記ワイヤロープに対して1本の前記外層ストランドが1回転する分の前記ワイヤロープの長さを第1の対辺の長さとし、1本の前記外層ストランドに含まれる前記外層素線の直径と本数との積を第2の対辺の長さとする平行四辺形に配置されているロープ損傷診断検査装置。 - 前記磁石は、印加側磁石であり、
前記検出器は、前記ワイヤロープに直流磁界を印加する検出側磁石と、前記ワイヤロープに対向する前記検出素子である検出コイルとを有している請求項1記載のロープ損傷診断検査装置。 - 前記励磁コイル及び前記検出コイルは、前記外層ストランドの本数分の分割コイルに分割されている請求項2記載のロープ損傷診断検査装置。
- 前記分割コイル毎に超音波の印加及び検出を行う請求項3記載のロープ損傷診断検査装置。
- 前記励磁コイルにより、前記ワイヤロープを伝搬する超音波の反射波を検出する請求項1から請求項4までのいずれか1項に記載のロープ損傷診断検査装置。
- 前記励磁コイルが前記検出素子を兼ねることにより、前記超音波印加器は前記検出器を兼ねており、前記励磁コイルにより、前記ワイヤロープを伝搬する超音波の反射波を検出する請求項1記載のロープ損傷診断検査装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018512747A JP6505316B2 (ja) | 2016-04-22 | 2016-04-22 | ロープ損傷診断検査装置 |
KR1020187027162A KR102113325B1 (ko) | 2016-04-22 | 2016-04-22 | 로프 손상 진단 검사 장치 |
US16/087,814 US10801999B2 (en) | 2016-04-22 | 2016-04-22 | Rope damage diagnostic testing apparatus |
CN201680084610.1A CN109073606B (zh) | 2016-04-22 | 2016-04-22 | 绳索损伤诊断检查装置 |
DE112016006773.9T DE112016006773T5 (de) | 2016-04-22 | 2016-04-22 | Seilschadendiagnose-Testvorrichtung |
PCT/JP2016/062787 WO2017183188A1 (ja) | 2016-04-22 | 2016-04-22 | ロープ損傷診断検査装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062787 WO2017183188A1 (ja) | 2016-04-22 | 2016-04-22 | ロープ損傷診断検査装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183188A1 true WO2017183188A1 (ja) | 2017-10-26 |
Family
ID=60115823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062787 WO2017183188A1 (ja) | 2016-04-22 | 2016-04-22 | ロープ損傷診断検査装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10801999B2 (ja) |
JP (1) | JP6505316B2 (ja) |
KR (1) | KR102113325B1 (ja) |
CN (1) | CN109073606B (ja) |
DE (1) | DE112016006773T5 (ja) |
WO (1) | WO2017183188A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210188597A1 (en) * | 2017-08-10 | 2021-06-24 | Mitsubishi Electric Corporation | Break detection device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102348335B1 (ko) | 2019-11-04 | 2022-01-11 | 현대엘리베이터주식회사 | Ir 반사판을 이용한 승강기 로프 진단 장치 및 방법 |
KR102334334B1 (ko) | 2019-11-04 | 2021-12-06 | 현대엘리베이터주식회사 | 상대 밝기 템플릿을 이용한 승강기 로프 진단 영상 처리 장치 및 방법 |
TW202242364A (zh) * | 2021-04-20 | 2022-11-01 | 香港商安鎂樂科技有限公司 | 使用光纖傳感器監測繩索和繩索狀結構中張力的系統和方法 |
CN113567559B (zh) * | 2021-07-27 | 2022-11-18 | 同济大学 | 一种拉索钢丝腐蚀的超声检测装置及其方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011185827A (ja) * | 2010-03-10 | 2011-09-22 | Tokyo Electric Power Co Inc:The | 加振検査システムおよび加振検査方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA871964B (ja) * | 1986-03-25 | 1987-09-07 | ||
US4827216A (en) * | 1987-03-25 | 1989-05-02 | Grimson E G | Differential triple-coil tester for wire rope with periodic lay effect cancellation |
CN1018480B (zh) * | 1987-11-17 | 1992-09-30 | 罗伯特·马森 | 用于测量和/或监控线或绳的性能参数的方法和装置 |
US5456113A (en) * | 1992-11-06 | 1995-10-10 | Southwest Research Institute | Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions |
US5457994A (en) * | 1992-11-06 | 1995-10-17 | Southwest Research Institute | Nondestructive evaluation of non-ferromagnetic materials using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions |
CN2190788Y (zh) * | 1994-04-18 | 1995-03-01 | 窦毓棠 | 高灵敏磁传感器钢丝绳无损探伤仪 |
CN2270973Y (zh) * | 1996-02-01 | 1997-12-17 | 储东生 | 永久磁铁探伤仪 |
JPH09210968A (ja) * | 1996-02-06 | 1997-08-15 | Electron Kiyooto:Kk | ワイヤーロープの損傷検出器 |
JPH11230945A (ja) * | 1998-02-09 | 1999-08-27 | Hitachi Building Systems Co Ltd | ワイヤーロープの磁気探傷装置 |
JPH11325841A (ja) * | 1998-05-12 | 1999-11-26 | Nkk Corp | ワイヤロープの診断装置 |
JP2000351575A (ja) * | 1999-06-08 | 2000-12-19 | Ishikawajima Harima Heavy Ind Co Ltd | ワイヤロープ断線検出装置 |
JP2004075221A (ja) * | 2002-08-12 | 2004-03-11 | Hitachi Ltd | エレベータ |
JP2005024769A (ja) * | 2003-06-30 | 2005-01-27 | Toshiba Corp | 誘導加熱を用いた定着装置 |
JP3137668U (ja) * | 2007-08-29 | 2007-12-06 | 豊 平間 | ワイヤロープ用消磁装置 |
CN101140266B (zh) * | 2007-10-11 | 2011-01-19 | 华中科技大学 | 基于磁致伸缩扭转波检测导磁构件缺陷的装置 |
JP3143572U (ja) * | 2008-03-07 | 2008-07-31 | 豊 平間 | ロープ損傷検出装置 |
US8390281B2 (en) | 2008-04-14 | 2013-03-05 | Mitsubishi Electric Corporation | Wire rope flaw detector for increasing accuracy independent of speed while conserving detector size |
US8098065B2 (en) | 2008-08-29 | 2012-01-17 | Southwest Research Institute | Magnetostrictive sensor probe for guided-wave inspection and monitoring of wire ropes/cables and anchor rods |
CN201322742Y (zh) * | 2008-09-01 | 2009-10-07 | 中国科学院金属研究所 | 超声导波复合式无损检测装置 |
JP5023112B2 (ja) * | 2009-07-31 | 2012-09-12 | 株式会社日立製作所 | エレベーター |
KR101118541B1 (ko) * | 2009-12-11 | 2012-03-13 | 재단법인 포항산업과학연구원 | 강선 케이블의 결함 탐상 장치 |
KR101547049B1 (ko) * | 2011-06-07 | 2015-08-24 | 미쓰비시덴키 가부시키가이샤 | 와이어 로프 탐상 장치 |
US9103798B2 (en) * | 2011-12-07 | 2015-08-11 | Ndt Technologies, Inc. | Magnetic inspection device and method |
JP2013130223A (ja) * | 2011-12-20 | 2013-07-04 | Asahi Intecc Co Ltd | ワイヤーロープ |
JP6193077B2 (ja) * | 2012-10-30 | 2017-09-06 | 東京製綱株式会社 | ワイヤロープの検査装置 |
JP2014101197A (ja) * | 2012-11-21 | 2014-06-05 | Toshiba Elevator Co Ltd | エレベータロープ劣化判定方法及びエレベータロープ保守装置 |
US9170239B2 (en) * | 2013-03-10 | 2015-10-27 | Southwest Research Institute | Magnetostrictive sensor having crimped magnetostrictive strip for high temperature operation |
CN108780068B (zh) * | 2016-03-24 | 2022-02-25 | 三菱电机株式会社 | 缆绳探伤装置及缆绳探伤装置的调整方法 |
-
2016
- 2016-04-22 JP JP2018512747A patent/JP6505316B2/ja active Active
- 2016-04-22 US US16/087,814 patent/US10801999B2/en active Active
- 2016-04-22 CN CN201680084610.1A patent/CN109073606B/zh active Active
- 2016-04-22 WO PCT/JP2016/062787 patent/WO2017183188A1/ja active Application Filing
- 2016-04-22 KR KR1020187027162A patent/KR102113325B1/ko active IP Right Grant
- 2016-04-22 DE DE112016006773.9T patent/DE112016006773T5/de active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011185827A (ja) * | 2010-03-10 | 2011-09-22 | Tokyo Electric Power Co Inc:The | 加振検査システムおよび加振検査方法 |
Non-Patent Citations (1)
Title |
---|
AOKI, FUMIKO ET AL.: "Experimental Study of Guided Wave Transmission in Wire-rope using Electromagnetic Acoustic Transducers", JOURNAL OF THE JAPAN SOCIETY OF APPLIED ELECTROMAGNETICS AND MECHANICS, vol. 23, no. 2, 10 June 2015 (2015-06-10), pages 308 - 313, XP055602274 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210188597A1 (en) * | 2017-08-10 | 2021-06-24 | Mitsubishi Electric Corporation | Break detection device |
US12110211B2 (en) * | 2017-08-10 | 2024-10-08 | Mitsubishi Electric Corporation | Break detection device |
Also Published As
Publication number | Publication date |
---|---|
JP6505316B2 (ja) | 2019-04-24 |
US20190086369A1 (en) | 2019-03-21 |
KR102113325B1 (ko) | 2020-05-21 |
KR20180113213A (ko) | 2018-10-15 |
DE112016006773T5 (de) | 2019-01-03 |
US10801999B2 (en) | 2020-10-13 |
JPWO2017183188A1 (ja) | 2018-07-26 |
CN109073606A (zh) | 2018-12-21 |
CN109073606B (zh) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6505316B2 (ja) | ロープ損傷診断検査装置 | |
JP4917899B2 (ja) | 渦電流探傷センサ及び渦電流探傷方法 | |
KR101073686B1 (ko) | 분절형 자기변형 패치 배열 트랜스듀서, 이를 구비한 구조 진단 장치 및 이 트랜스듀서의 작동 방법 | |
JP3572460B2 (ja) | 渦流探傷用プローブ | |
WO2018138850A1 (ja) | 磁性体の検査装置および磁性体の検査方法 | |
KR100573736B1 (ko) | 비틀림파를 발생 및 측정할 수 있는 트랜스듀서와 이를이용한 이상진단 장치 및 방법 | |
KR100561215B1 (ko) | 탄성 초음파를 발생 및 측정할 수 있는 자기변형트랜스듀서와 이를 이용한 구조진단 장치 | |
JP2013505443A (ja) | 表面硬化深さの渦電流検査 | |
US8717012B2 (en) | Eddy current probe for surface and sub-surface inspection | |
JPWO2020095354A1 (ja) | 磁性体検査装置および磁性体検査システム | |
JP2005156419A (ja) | ワイヤロープの磁気探傷装置 | |
JP5006349B2 (ja) | ワイヤーロープの探傷装置の校正装置 | |
JP7081446B2 (ja) | 磁性体検査装置および磁性体検査システム | |
JP7027927B2 (ja) | 磁性体検査装置 | |
US20150008912A1 (en) | Method and device for detecting mechanical changes in a component by means of a magnetoelastic sensor | |
CN109580766A (zh) | 一种扭转模态导波传感器 | |
JP4179149B2 (ja) | ワイヤロープの磁気探傷装置および磁気探傷装置付滑車 | |
JPH10111276A (ja) | 探傷装置 | |
JP4568377B1 (ja) | Lモードガイド波センサとその使用方法 | |
JP2016008931A (ja) | 非破壊検査装置および非破壊検査方法 | |
JP2009265008A (ja) | ワイヤーロープの探傷装置 | |
JP7143690B2 (ja) | 磁性体検査システム、磁性体検査装置および磁性体検査方法 | |
WO1999053282A1 (en) | Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes | |
RU2781153C1 (ru) | Вихретоковый проходной преобразователь для неразрушающего контроля стрендовых канатов | |
JP2007093518A (ja) | 肉厚測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018512747 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187027162 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16899460 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16899460 Country of ref document: EP Kind code of ref document: A1 |