WO2017183160A1 - 排熱回収式空気調和装置 - Google Patents

排熱回収式空気調和装置 Download PDF

Info

Publication number
WO2017183160A1
WO2017183160A1 PCT/JP2016/062665 JP2016062665W WO2017183160A1 WO 2017183160 A1 WO2017183160 A1 WO 2017183160A1 JP 2016062665 W JP2016062665 W JP 2016062665W WO 2017183160 A1 WO2017183160 A1 WO 2017183160A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
compressor
heat recovery
flow path
exhaust heat
Prior art date
Application number
PCT/JP2016/062665
Other languages
English (en)
French (fr)
Inventor
信吾 谷中
▲高▼田 茂生
直史 竹中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/062665 priority Critical patent/WO2017183160A1/ja
Priority to US16/076,056 priority patent/US10724776B2/en
Priority to JP2018512724A priority patent/JP6529663B2/ja
Priority to CN201680084505.8A priority patent/CN108885031B/zh
Publication of WO2017183160A1 publication Critical patent/WO2017183160A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to an exhaust heat recovery type air conditioner that recovers exhaust heat by combining a refrigeration apparatus and an air conditioner.
  • Some conventional exhaust heat recovery type air conditioners employ a binary refrigerant circuit in which a refrigeration apparatus and an air conditioner are combined (see, for example, Patent Document 1).
  • an exhaust heat recovery heat exchanger in which an evaporator of an air conditioner and a condenser of a refrigeration apparatus are arranged in parallel heats the refrigerant of the air conditioner and the refrigerant of the refrigeration apparatus. By exchanging, the exhaust heat is recovered from the refrigeration apparatus.
  • the exhaust heat recovery heat exchanger is connected in series to the outdoor heat exchanger of the air conditioner. Therefore, the exhaust heat recovery heat exchanger can recover the exhaust heat of the refrigeration apparatus during the heating operation of the air conditioner, but cannot recover the heat because the high-pressure refrigerants pass through each other during the cooling operation.
  • both the outdoor heat exchanger and the heat recovery heat exchanger of the air conditioner are on the high pressure side, There is a problem that the exhaust heat of the refrigeration apparatus cannot be effectively used for the defrost operation.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust heat recovery type air conditioner that can effectively use exhaust heat without being limited to an operation mode.
  • An exhaust heat recovery type air conditioner includes a first compressor, a first flow switching device, an outdoor heat exchanger, a first expansion device, an indoor heat exchanger, and a second flow switching.
  • An air conditioning side refrigerant circuit in which an exhaust heat recovery heat exchanger is connected in parallel to both the outdoor heat exchanger and the indoor heat exchanger via a pipe, and a second compressor.
  • the exhaust heat recovery heat exchanger, a refrigeration side expansion device, and a refrigeration side refrigerant circuit to which a cooler is connected via a pipe, and the first flow path switching device includes the outdoor heat exchanger And the exhaust heat recovery heat exchanger, the outdoor heat exchanger is connected to either the discharge side or the suction side of the first compressor via a pipe, and the second flow path switching
  • the apparatus is provided between the indoor heat exchanger and the exhaust heat recovery heat exchanger, and the indoor heat exchanger is discharged from the first compressor.
  • the exhaust heat recovery heat exchanger is connected to the suction side of the first compressor via a pipe in the air conditioning side refrigerant circuit, and is connected to the air conditioning side. Heat is exchanged between the refrigerant in the refrigerant circuit and the refrigerant in the refrigeration side refrigerant circuit.
  • the exhaust heat recovery heat exchanger of the present invention heat exchange is performed between the low pressure refrigerant in the air conditioning side refrigerant circuit and the high pressure refrigerant in the refrigeration side refrigerant circuit in any operation mode by the exhaust heat recovery heat exchanger. Can do. Therefore, the COP (coefficient of performance) of the exhaust heat recovery type air conditioner can be improved as a combined system of the refrigeration apparatus and the air conditioner.
  • FIG. 1 is a schematic circuit diagram showing an exhaust heat recovery type air conditioner according to Embodiment 1.
  • FIG. 3 is a functional block diagram of a control device according to Embodiments 1 and 2.
  • FIG. 3 is a flowchart showing a flow during operation of the exhaust heat recovery type air conditioner according to the first embodiment. It is explanatory drawing which shows an example of the flow of the refrigerant
  • FIG. 4 is an explanatory diagram showing an example of a refrigerant flow in the hot gas defrost mode of FIG. 3 according to Embodiment 1.
  • FIG. 4 is an explanatory diagram showing an example of a refrigerant flow in the off-cycle defrost mode of FIG.
  • FIG. 4 is an explanatory diagram showing an example of a refrigerant flow in the priority cooling mode of FIG. 3 according to Embodiment 1.
  • FIG. FIG. 4 is an explanatory diagram illustrating an example of a refrigerant flow in the shared cooling mode of FIG. 3 according to the first embodiment.
  • 6 is a schematic circuit diagram illustrating an exhaust heat recovery type air conditioner according to Embodiment 2.
  • FIG. 6 is a flowchart showing a flow during operation of the exhaust heat recovery type air conditioner according to the second embodiment. It is explanatory drawing which shows an example of the flow of the refrigerant
  • FIG. 11 is an explanatory diagram showing an example of a refrigerant flow in the hot gas defrost mode of FIG. 10 according to the second embodiment.
  • FIG. 11 is an explanatory diagram showing an example of a refrigerant flow in the off-cycle defrost mode of FIG. 10 according to the second embodiment.
  • FIG. 11 is an explanatory diagram showing an example of a refrigerant flow in the normal cooling mode of FIG. 10 according to Embodiment 2.
  • FIG. 11 is an explanatory diagram showing an example of a refrigerant flow in the cooling assist mode of FIG. 10 according to the second embodiment. It is explanatory drawing which shows an example of the flow of the refrigerant
  • FIG. It is explanatory drawing which shows an example of the flow of the refrigerant
  • FIG. 1 is a schematic circuit diagram showing an exhaust heat recovery type air conditioner according to Embodiment 1.
  • FIG. The equipment configuration of the exhaust heat recovery type air conditioner 100a will be described with reference to FIG.
  • the exhaust heat recovery type air conditioner 100a includes an air conditioning side refrigerant circuit 30a and a refrigeration side refrigerant circuit 40a.
  • the air conditioning side refrigerant circuit 30a includes a first compressor 1, a first flow path switching device 3, an outdoor heat exchanger 2, a first expansion device 7, an indoor heat exchanger 5, and a second flow path switching.
  • the apparatus 4 is sequentially connected via a refrigerant pipe.
  • the exhaust heat recovery heat exchanger 6 is connected to the outdoor heat exchanger 2 and the indoor heat exchanger by a refrigerant pipe branched from a pipe between the outdoor heat exchanger 2 and the indoor heat exchanger 5. Both of the devices 5 are connected in parallel.
  • the branched refrigerant pipe merges with the pipe connected to the suction side of the first compressor 1 via the exhaust heat recovery heat exchanger 6.
  • the branched refrigerant pipe in which the exhaust heat recovery heat exchanger 6 is disposed is referred to as an exhaust heat recovery path 31.
  • the second compressor 10, the condenser 11, the exhaust heat recovery heat exchanger 6, the refrigeration side expansion device 13, and the cooler 12 are sequentially connected to the refrigeration side refrigerant circuit 40a via a refrigerant pipe.
  • the exhaust heat recovery heat exchanger 6 is a heat exchanger that connects two refrigerant circuits having a dual circuit configuration, and functions as an evaporator for a high temperature side cycle and a function as a condenser for a low temperature side cycle. Cascade condenser. As shown in FIG. 1, the exhaust heat recovery heat exchanger 6 is provided with an evaporator equivalent position of the air conditioning side refrigerant circuit 30a and a condenser equivalent position of the refrigeration side refrigerant circuit 40a. Exchange is performed, and exhaust heat recovery is performed from the refrigeration side refrigerant circuit 40a to the air conditioning side refrigerant circuit 30a.
  • the first compressor 1 and the second compressor 10 are, for example, scroll type compressors that compress refrigerant vapor.
  • the first compressor 1 is connected to a compressor path 32 formed by connecting two points on a path that connects the first flow path switching device 3 and the second flow path switching device 4 in a ring shape with a refrigerant pipe. Be placed. That is, the first compressor 1 is connected in parallel to both the first flow path switching device 3 and the second flow path switching device 4 via the refrigerant pipe.
  • the outdoor heat exchanger 2, the indoor heat exchanger 5, the condenser 11, and the cooler 12 are constituted by, for example, a fin tube type heat exchanger, and exchange heat with ambient air.
  • the indoor heat exchanger 5 exchanges heat with indoor air that is an air-conditioning target space.
  • the indoor heat exchanger 5 functions as a condenser when the heating operation is set in the air conditioner, and functions as an evaporator when the cooling operation is set.
  • the cooler 12 exchanges heat with the air in the cabinet, which is the space to be cooled.
  • the first flow path switching device 3 is provided between the outdoor heat exchanger 2 and the exhaust heat recovery heat exchanger 6, and the second flow path switching device 4 is an indoor heat exchanger 5 and the exhaust heat recovery heat exchanger. 6 is provided.
  • the first flow path switching device 3 and the second flow path switching device 4 are configured by, for example, a four-way valve or a three-way valve, and the three ports of the first flow path switching device 3 are connected to the discharge side of the first compressor 1.
  • the suction side and the outdoor heat exchanger 2 are connected to each other via a refrigerant pipe.
  • the three ports of the second flow switching device 4 are connected to the discharge side and the suction side of the first compressor 1 and the indoor heat exchanger 5 via refrigerant pipes, respectively.
  • the first flow path switching device 3 allows the outdoor heat exchanger 2 to communicate with either the discharge side or the suction side of the first compressor 1, and the second flow path switching device 4
  • the exchanger 5 is configured to communicate with either the discharge side or the suction side of the first compressor 1.
  • the first throttling device 7 and the freezing side throttling device 13 are depressurizing means for depressurizing the refrigerant, and are formed of, for example, an electronic expansion valve.
  • each of the outdoor heat exchanger 2, the indoor heat exchanger 5, and the exhaust heat recovery heat exchanger 6 connected in parallel in the air conditioning side refrigerant circuit 30a may be provided with an expansion device individually on the intermediate pressure side.
  • the first expansion device 7 is provided for the indoor heat exchanger 5, the flow rate of the refrigerant flowing through the indoor heat exchanger 5 is changed, and the second expansion device 8 is provided for the outdoor heat exchanger 2.
  • the flow rate of the refrigerant flowing through the outdoor heat exchanger 2 is changed.
  • a third expansion device 9 is provided on the exhaust heat recovery path 31 where the exhaust heat recovery heat exchanger 6 is installed, and the flow rate of the refrigerant flowing through the exhaust heat recovery heat exchanger 6 is changed.
  • Each component device of the refrigerant circuit is mounted on, for example, the outdoor unit 14a, the air conditioning indoor unit 15a, or the refrigeration apparatus 16a.
  • the outdoor unit 14a includes the first compressor 1, the first flow path switching device 3, the outdoor heat exchanger 2, the second expansion device 8, the second flow path switching device 4, and the exhaust heat recovery heat exchanger. 6 and a third diaphragm device 9.
  • the air conditioning indoor unit 15a includes the indoor heat exchanger 5 and the first expansion device 7, and the refrigeration device 16a includes the second compressor 10, the condenser 11, the exhaust heat recovery heat exchanger 6, the refrigeration side expansion device 13, And a cooler 12. As shown by the solid line in FIG. 1, each component device is connected by a refrigerant pipe.
  • the exhaust heat recovery type air conditioner 100a further includes a control device 50a.
  • the control device 50a is composed of, for example, a control board, a microcomputer, etc., and is connected to each component device via a signal line or the like.
  • the control device 50a controls the air conditioning side refrigerant circuit 30a and the refrigeration side refrigerant circuit 40a in accordance with the set operation mode.
  • the exhaust heat recovery type air conditioner 100a has a plurality of operation modes.
  • the plurality of operation modes for example, combine the port connection of the first flow path switching device 3 and the second flow path switching device 4 and the opening and closing of the first expansion device 7, the second expansion device 8, and the third expansion device 9.
  • the control device 50a is distinguished and stored in advance.
  • control device 50a adjusts the throttle opening degree of the first throttling device 7, the second throttling device 8, and the third throttling device, and in the refrigerant pipe section that becomes an intermediate pressure of the two-stage throttling to which the throttling device is connected. Control is performed so that the refrigerant becomes a preset supercooled liquid refrigerant. However, when the throttle device is instructed to be fully closed by the control device 50a, it is fully closed according to the instruction.
  • the exhaust heat recovery type air conditioner 100a is provided with sensors 61, 62, 63, 64 such as a temperature sensor or a pressure sensor, and is configured to measure the temperature of the pipe and the room.
  • the control device 50a also acquires information from the sensors 61, 62, 63, and 64, and performs control according to environmental conditions, loads, and the like.
  • a sensor 61 is installed in the indoor heat exchanger 5
  • a sensor 62 is installed in the outdoor heat exchanger 2
  • a sensor 63 is installed on the suction side of the first compressor 1
  • a sensor 64 is installed on the discharge side of the first compressor 1.
  • the control device 50a is configured to obtain information such as temperature, superheat degree, and supercooling degree.
  • FIG. 2 is a functional block diagram of the control device according to the first and second embodiments.
  • the control device 50 a includes an operation control unit 51, a frost determination unit 52, and a capability determination unit 53.
  • the operation control means 51 performs main operation control of the air conditioning side refrigerant circuit 30a and the refrigeration side refrigerant circuit 40a.
  • the operation control means manages the operation status of the air conditioner and the refrigeration apparatus 16a.
  • the operation status is information indicating, for example, heating operation, cooling operation, or air conditioning stop of the air conditioner, and cooling operation or cooling stop of the refrigeration apparatus 16a.
  • the frost determination means 52 acquires information from the sensor 62 and the like during the heating operation, and determines whether or not the outdoor heat exchanger 2 is frosted. As the determination method, any method may be adopted as long as it can detect the frosting state of the outdoor heat exchanger 2. For example, the frost determination unit 52 may perform frost determination based on the evaporation temperature of the refrigerant, or may determine that there is frost by comparing the temperature measured by the sensor 62 with a set threshold. A known technique can be used for the method of determining frost formation.
  • the capability determination means 53 acquires information from the sensors 61, 62, 63, 64 and determines whether the capability condition and the capability limit condition are satisfied.
  • the capacity condition during the heating operation indicates that the condensation capacity of the air-conditioning side refrigerant circuit 30a is lower than the required evaporation capacity of the refrigeration side refrigerant circuit 40a. Further, the capacity condition during the cooling operation indicates that the condensation capacity of the air-conditioning side refrigerant circuit 30a exceeds the required evaporation capacity.
  • the condensing capacity of the air conditioning side refrigerant circuit 30a is, for example, the degree of supercooling in the indoor heat exchanger 5, and may be obtained using a known technique.
  • the degree of supercooling during the heating operation is obtained from the difference between the inlet temperature and the outlet temperature by installing temperature sensors at the outlet and the inlet through which the refrigerant of the indoor heat exchanger 5 passes.
  • the required evaporation capacity of the refrigeration-side refrigerant circuit 40a is a target superheat degree at the outlet of the cooler 12 that is necessary for maintaining the temperature in the warehouse in which the refrigeration apparatus 16a is installed at a set temperature, for example.
  • the target degree of superheat may be a fixed value obtained by experimentation or the like for the space to be cooled, for example, or may be obtained by calculation according to a change in load based on the temperature of the space to be cooled.
  • the capacity determination means 53 determines whether or not the capacity limit condition for the condensation capacity to reach the set threshold value is satisfied during the heating operation.
  • the set threshold is an upper limit of the condensation capacity, and is a threshold set in advance according to the capacity of the air conditioner including the capacity of the first compressor 1, for example. Therefore, the capability determination means 53 can perform determination by comparing the degree of supercooling of the indoor heat exchanger 5 with a set threshold value, for example.
  • FIG. 3 is a flowchart showing a flow during operation of the exhaust heat recovery type air conditioner 100a according to the first embodiment.
  • the control which the control apparatus 50a implements about each operation mode is demonstrated.
  • exhaust heat recovery control is started.
  • the control device 50a determines whether or not the operation mode of the air conditioner is the heating operation (step ST102).
  • FIG. 4 is an explanatory diagram showing an example of the refrigerant flow in the normal heating mode of FIG. 3 according to the first embodiment.
  • FIG. 5 is an explanatory diagram showing an example of a refrigerant flow in the hot gas defrost mode of FIG. 3 according to the first embodiment.
  • 6 is an explanatory diagram showing an example of a refrigerant flow in the off-cycle defrost mode of FIG. 3 according to the first embodiment.
  • the arrows in the figure indicate the flow of the refrigerant, and a cross mark is attached to the expansion device that is instructed to be fully closed.
  • step ST102 When the heating control is performed by the operation control means 51 (step ST102; Yes), the frost determination means 52 determines whether or not the outdoor heat exchanger 2 is frosted (step ST103). When the condition of step ST103 is not satisfied, that is, when frost is not formed (step ST103; No), the capacity determining means 53 determines whether or not the condensing capacity of the air conditioner is below the required evaporation capacity of the refrigeration apparatus 16a. (Step ST104).
  • step ST103 when the frosting condition of step ST103 is satisfied (step ST103; Yes), the capacity determination means 53 determines whether or not the condensation capacity of the air conditioner has reached the upper limit (step ST106). Moreover, also when the capability conditions of step ST104 are satisfy
  • the operation control unit 51 controls the first flow path switching device and the second flow path switching device 4 as shown in FIG. Then, the normal heating mode is performed. Specifically, the first flow path switching device 3 communicates the refrigerant suction side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is the refrigerant discharge side of the first compressor 1.
  • the outdoor heat exchanger 2 functions as an evaporator
  • the indoor heat exchanger 5 functions as a condenser.
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30a. That is, during the heating operation, the control device 50a realizes exhaust heat recovery from the refrigerating device 16a by flowing the low-pressure refrigerant of the air-conditioning side refrigerant circuit 30a and the high-pressure refrigerant of the refrigeration side refrigerant circuit 40a to the exhaust heat recovery heat exchanger 6. is doing.
  • step ST104 when the condensing capacity in the air conditioner is lower than the required evaporation capacity of the refrigeration apparatus 16a (step ST104; Yes), the capacity determination means 53 further determines whether or not the air conditioner reaches the upper limit of the condensing capacity and is operated. Determination is made (step ST106). Moreover, also when the outdoor heat exchanger 2 is frosting (step ST103; Yes), determination of step ST106 is performed. When the capacity determination means 53 determines in step ST106 that the condensation capacity is lower than the upper limit of the condensation capacity, that is, there is a surplus capacity on the air conditioner side (step ST106; No), the operation control means 51 is shown in FIG.
  • the first flow path switching device 3 and the second flow path switching device 4 are controlled to implement the hot gas defrost mode. That is, the first flow path switching device 3 connects the refrigerant discharge side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant discharge side of the first compressor 1 and the indoor heat.
  • the exchanger 5 is communicated (step ST107). As a result, both the outdoor heat exchanger 2 and the indoor heat exchanger 5 become condensers, the indoor heating is maintained, and high-temperature refrigerant flows through the outdoor heat exchanger 2 to defrost.
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30a and recovers exhaust heat from the refrigeration apparatus 16a.
  • step ST106 when the vehicle is operated in a state where the upper limit of the condensation capacity of the air conditioner has been reached (step ST106; Yes), that is, when the air conditioning load is large relative to the capacity of the air conditioner, there is no remaining capacity in the condensation capacity.
  • Performs the off-cycle defrost mode by controlling the first flow path switching device 3, the second flow path switching device 4, and the second expansion device 8 as shown in FIG. That is, the first flow path switching device 3 connects the refrigerant suction side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant discharge side of the first compressor 1 and the indoor heat.
  • the second expansion device 8 is fully closed by communicating with the exchanger 5 (step ST108).
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30a and recovers exhaust heat from the refrigeration apparatus 16a.
  • FIG. 7 is an explanatory diagram illustrating an example of a refrigerant flow in the priority cooling mode of FIG. 3 according to the first embodiment.
  • FIG. 8 is an explanatory diagram illustrating an example of a refrigerant flow in the shared cooling mode of FIG. 3 according to the first embodiment.
  • the operation control means 51 controls the first flow path switching device 3 and the second flow path switching device 4.
  • the first flow path switching device 3 communicates the refrigerant discharge side of the first compressor 1 and the outdoor heat exchanger 2
  • the second flow path switching device 4 is the refrigerant suction side of the first compressor 1 and the indoor heat exchanger. 5 is controlled to communicate with the terminal 5 (step ST109).
  • the capability determination means 53 determines whether or not the capability condition in which the condensation capability of the air conditioner exceeds the required evaporation capability is satisfied (step ST110).
  • step ST110 When it is determined that the condensing capacity of the air conditioner does not exceed the required evaporation capacity (step ST110; No), that is, when the air conditioner does not have the capacity to recover the exhaust heat of the refrigeration apparatus 16a, the operation control means 51 As shown in FIG. 7, the third expansion device 9 is fully closed to implement the preferential cooling mode (step ST111).
  • the outdoor heat exchanger 2 functions as a condenser
  • the indoor heat exchanger 5 functions as an evaporator.
  • the refrigerant of the air conditioning side refrigerant circuit 30a does not flow through the exhaust heat recovery heat exchanger 6, and only the refrigerant of the refrigeration side refrigerant circuit 40a circulates.
  • step ST110 when it is determined by the capacity determination means 53 that the condensing capacity of the air conditioner exceeds the required evaporation capacity (step ST110; Yes), the connection state of the air conditioning side refrigerant circuit 30a is as shown in FIG. It is in the state controlled by. Since the third expansion device 9 is not instructed to fully close, the opening degree is adjusted. At this time, the operation control means 51 may perform control so that the opening degree of the third expansion device 9 increases as the difference between the condensing capacity and the required evaporation capacity of the air conditioner increases.
  • the outdoor heat exchanger 2 functions as a condenser
  • the indoor heat exchanger 5 functions as an evaporator.
  • the exhaust heat recovery heat exchanger 6 also functions as an evaporator of the air conditioner and recovers exhaust heat from the refrigeration apparatus 16a.
  • the control apparatus 50a performs each control of step ST105, step ST107, step ST108, step ST111, or step ST110; Yes, etc., and confirms the operation state of both units (step ST112). If both units are still in operation (step ST112; Yes), the process returns to the operation determination in step ST102 of the air conditioner, and the exhaust heat recovery control is continued. On the other hand, if the simultaneous operation of both units is finished, the exhaust heat recovery control shown in FIG. 3 is finished (step ST112; No).
  • the air conditioner and the refrigerating apparatus 16a each include two dedicated heat exchangers, even when either the air conditioner or the refrigerating apparatus 16a is shut down, the air conditioner and the freezer The device 16a can be operated independently. When the operation of the refrigeration apparatus 16a is stopped, the third expansion device 9 is controlled to be fully closed.
  • control device 50a takes into consideration the heat exchange in the exhaust heat recovery heat exchanger 6 in the refrigeration device 16a, so that the inlet of the refrigeration side expansion device 13 has a predetermined degree of subcooling (subcool). Adjust the condensation capacity. Even when the exhaust heat recovery heat exchanger 6 is not acting, only the exhaust heat from the refrigeration apparatus 16a is not recovered, and the cooling function of the refrigeration apparatus 16a is maintained.
  • the second flow path switching device 4 is disposed in the outdoor unit 14a
  • it may be disposed in the vicinity of the indoor heat exchanger 5.
  • it is good also as a structure by which multiple air-conditioning indoor unit 15a is arrange
  • FIG. the set of the second flow path switching device 4, the indoor heat exchanger 5, and the first expansion device 7 is regarded as the air conditioning indoor unit 15a, and a plurality of air conditioning indoor units 15a may be connected in parallel.
  • the exhaust heat recovery type air conditioner 100a includes the first compressor 1, the first flow path switching device 3, the outdoor heat exchanger 2, the first expansion device 7, the indoor The heat exchanger 5 and the second flow path switching device 4 are connected via a pipe, and the exhaust heat recovery heat exchanger 6 is connected in parallel to both the outdoor heat exchanger 2 and the indoor heat exchanger 5 via a pipe.
  • the refrigeration side refrigerant circuit 40a in which the air conditioning side refrigerant circuit 30a, the second compressor 10, the exhaust heat recovery heat exchanger 6, the refrigeration side expansion device 13, and the cooler 12 are connected via a pipe
  • the first flow path switching device 3 is provided between the outdoor heat exchanger 2 and the exhaust heat recovery heat exchanger 6, and the outdoor heat exchanger 2 is connected to the discharge side and the suction side of the first compressor 1.
  • the second flow path switching device 4 is connected between the indoor heat exchanger 5 and the exhaust heat recovery heat exchanger 6.
  • the indoor heat exchanger 5 is connected to either the discharge side or the suction side of the first compressor 1 via a pipe
  • the exhaust heat recovery heat exchanger 6 is connected to the air conditioning side refrigerant circuit 30a via the pipe.
  • the refrigerant is connected to the suction side of the first compressor 1 to exchange heat between the refrigerant in the air conditioning side refrigerant circuit 30a and the refrigerant in the refrigeration side refrigerant circuit 40a.
  • the exhaust heat recovery type air conditioner 100a may further include a control device 50a for controlling the air conditioning side refrigerant circuit 30a and the refrigeration side refrigerant circuit 40a according to the operation mode.
  • a control device 50a for controlling the air conditioning side refrigerant circuit 30a and the refrigeration side refrigerant circuit 40a according to the operation mode.
  • the refrigeration side refrigerant circuit 40 a may further include a condenser 11 between the discharge side of the second compressor 10 and the cooler 12.
  • the refrigeration apparatus 16a includes a condenser in addition to the exhaust heat recovery heat exchanger 6, an independent operation is possible even when the operation of the air conditioner is stopped.
  • control device 50a determines whether or not the frosting condition for detecting frosting in the outdoor heat exchanger 2 is satisfied during the heating operation in which the indoor heat exchanger 5 functions as a condenser. 52, and capability determination means 53 for determining whether or not the capability condition in which the condensing capability of the air conditioning side refrigerant circuit 30a is lower than the required evaporation capability of the refrigeration side refrigerant circuit 40a is satisfied during the heating operation. Is determined to be not satisfied and it is determined that the capacity condition is not satisfied, the first flow path switching device 3 is controlled to connect the outdoor heat exchanger 2 and the suction side of the first compressor 1. The second flow path switching device 4 may be controlled to connect the indoor heat exchanger 5 and the discharge side of the first compressor 1.
  • the exhaust heat of the refrigeration apparatus 16a can be recovered during heating operation and used for heating operation, and the refrigeration efficiency on the refrigeration apparatus side can be improved.
  • the capacity determination means 53 further determines whether or not a capacity limit condition in which the condensation capacity reaches the set threshold value is satisfied during the heating operation, and the control device 50a includes the frost condition and the capacity condition.
  • the first flow path switching device 3 is controlled to connect the outdoor heat exchanger 2 and the discharge side of the first compressor 1. You may connect, the 2nd flow-path switching apparatus 4 may be controlled, and the indoor heat exchanger 5 and the discharge side of the 1st compressor 1 may be connected.
  • the defrosting operation is performed while maintaining the heating operation. Since the capacity determination is performed in addition to the defrost determination, the defrosting operation can be performed at any time with the low heating capacity and the high refrigeration capacity regardless of the detection of the frost, and the frost can be formed in the state where the heating operation is maintained. Can be prevented. Moreover, since the low-pressure refrigerant of the air conditioning side refrigerant circuit 30a flows through the exhaust heat recovery heat exchanger 6, the air conditioner can recover heat from the refrigeration apparatus 16a, and can use the recovered heat for heating and defrosting. Moreover, since the refrigerant
  • the air conditioning side refrigerant circuit 30a further includes a second expansion device 8 that changes the flow rate of the refrigerant flowing in the outdoor heat exchanger 2, and the second expansion device 8 and the first flow path switching device 3 are the outdoor heat exchanger 2. They may be connected via a pipe so as to sandwich them.
  • the control device 50a can adjust the flow of the refrigerant to the second expansion device 8, and can perform various operations of the air conditioner.
  • control device 50a controls the first flow path switching device 3 to outdoor.
  • the heat exchanger 2 and the suction side of the first compressor 1 are connected, the second flow path switching device 4 is controlled to connect the indoor heat exchanger 5 and the discharge side of the first compressor 1, and the second The expansion device 8 is fully closed to stop the refrigerant circulation in the outdoor heat exchanger 2.
  • off-cycle defrost can be performed during heating operation without impairing comfort.
  • the low-pressure refrigerant that has passed through the indoor heat exchanger 5 flows into the exhaust heat recovery heat exchanger 6 without being branched, the exhaust heat from the refrigeration apparatus 16a can be recovered with high efficiency.
  • the air conditioning side refrigerant circuit 30a further includes a third expansion device 9 that changes the flow rate of the refrigerant flowing through the exhaust heat recovery heat exchanger 6, and the third expansion device 9 and the suction side of the first compressor 1 are connected to the exhaust heat. You may connect via piping so that the collection
  • the control device 50a can adjust the flow of the refrigerant to the exhaust heat recovery heat exchanger 6, and can perform control giving priority to the single operation when exhaust heat recovery is unnecessary.
  • the control device 50a includes a capability determination means 53 that determines whether or not a capability condition in which the condensation capability of the air conditioning side refrigerant circuit 30a exceeds the required evaporation capability is satisfied during the cooling operation in which the indoor heat exchanger 5 functions as an evaporator. And when it is determined that the capacity condition is satisfied, the second flow path switching device 3 is controlled to connect the outdoor heat exchanger 2 and the discharge side of the first compressor 1 to the second flow path switching device.
  • the indoor heat exchanger 5 and the suction side of the first compressor 1 are connected, the third expansion device 9 is opened, and if it is determined that the capacity condition is not satisfied, the first flow path switching device 3 is connected to the outdoor heat exchanger 2 and the discharge side of the first compressor 1, and the second flow path switching device 4 is controlled to control the indoor heat exchanger 5 and the suction side of the first compressor 1.
  • the third expansion device 9 may be fully closed to stop the refrigerant circulation in the exhaust heat recovery heat exchanger 6. .
  • the low-pressure refrigerant can be caused to flow through the exhaust heat recovery heat exchanger 6 even during the cooling operation by the combination of the two flow path switching devices.
  • capacitance determination means 53 and the operation control means 51 form the path
  • FIG. 9 is a schematic circuit diagram showing the exhaust heat recovery type air conditioner according to the second embodiment. Based on FIG. 9, the equipment configuration of the exhaust heat recovery type air conditioner 100b will be described.
  • the exhaust heat recovery type air conditioner 100b includes an air conditioning side refrigerant circuit 30b and a refrigeration side refrigerant circuit 40b.
  • the second compressor 10, the exhaust heat recovery heat exchanger 6, the refrigeration side expansion device 13, and the cooler 12 are sequentially connected to the refrigeration side refrigerant circuit 40 b via a refrigerant pipe.
  • Each component device of the refrigerant circuit is mounted on, for example, the outdoor unit 14b, the air conditioning indoor unit 15b, or the refrigeration apparatus 16b.
  • the outdoor unit 14b includes the first compressor 1, the first flow path switching device 3, the outdoor heat exchanger 2, and the second expansion device 8.
  • the indoor heat exchanger 5, the 1st expansion device 7, and the 2nd flow-path switching apparatus 4 are mounted in the air-conditioning indoor unit 15b.
  • the refrigeration device 16b is equipped with an exhaust heat recovery device 17 including the exhaust heat recovery heat exchanger 6 and the third expansion device 9, a second compressor 10, a freezing-side expansion device 13, and a cooler 12.
  • the refrigeration apparatus 16b of the exhaust heat recovery type air conditioner 100b does not have a dedicated condenser. Therefore, it is not necessary to arrange an outdoor unit of the refrigeration apparatus 16b, that is, an outdoor heat exhaust apparatus.
  • the refrigeration apparatus can be configured as a single unit as a single cooling unit, and the refrigeration apparatus 16b can be downsized.
  • the condenser of the refrigeration apparatus 16b is replaced with the exhaust heat recovery heat exchanger 6. Since the exhaust heat recovery heat exchanger 6 is provided with an evaporator equivalent position of the air conditioning side refrigerant circuit 30b and a condenser equivalent position of the refrigeration side refrigerant circuit 40b, the exhaust heat of the refrigeration apparatus 16b is recovered by the air conditioner.
  • FIG. 10 is a flowchart showing a flow during operation of the exhaust heat recovery type air conditioner 100b according to the second embodiment.
  • the control device 50b of the exhaust heat recovery type air conditioner 100b determines whether or not both units of the air conditioner and the refrigeration device 16b are in an operation stop state (step ST202).
  • the control device 50b returns to the initial state (step ST201) when both the air conditioner and the refrigeration device 16b of the exhaust heat recovery type air conditioner 100b are in the operation stop state (step ST202; Yes).
  • both units are in an operating state (step ST203; Yes)
  • it is determined whether or not the operation mode of the air conditioner is a heating operation step ST204).
  • FIG. 11 is an explanatory diagram illustrating an example of a refrigerant flow in the normal heating mode of FIG. 10 according to the second embodiment.
  • FIG. 12 is an explanatory diagram showing an example of a refrigerant flow in the hot gas defrost mode of FIG. 10 according to the second embodiment.
  • FIG. 13 is an explanatory diagram showing an example of a refrigerant flow in the off-cycle defrost mode of FIG. 10 according to the second embodiment.
  • step ST204 When the heating control is performed by the operation control means 51 (step ST204; Yes), the frost determination means 52 determines whether or not the outdoor heat exchanger 2 is frosted (step ST205). When the condition of step ST205 is not satisfied (step ST205; No), the capacity determination unit 53 determines whether or not the condensing capacity of the air conditioner is below the required evaporation capacity of the refrigeration apparatus 16b (step ST206).
  • step ST205 when the frosting condition in step ST205 is satisfied (step ST205; Yes), the capacity determination means 53 further determines whether or not the condensation capacity of the air conditioner has reached the upper limit (step ST208). Also, when the capability condition of step ST206 is satisfied (step ST206; Yes), the capability determination means 53 similarly proceeds to the determination of step ST208. If neither of the capacity condition and the frosting condition is satisfied (step ST206; No), the operation control means 51 controls the first flow path switching device and the second flow path switching device 4 as shown in FIG. Then, normal heating mode is implemented (step ST207). Specifically, the first flow path switching device 3 communicates the refrigerant suction side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is the refrigerant discharge side of the first compressor 1.
  • the outdoor heat exchanger 2 functions as an evaporator
  • the indoor heat exchanger 5 functions as a condenser.
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30b. That is, during the heating operation, the control device 50b realizes exhaust heat recovery from the refrigeration device 16b by flowing the low-pressure refrigerant of the air-conditioning side refrigerant circuit 30b and the high-pressure refrigerant of the refrigeration side refrigerant circuit 40b to the exhaust heat recovery heat exchanger 6. is doing.
  • step ST206 when the condensing capacity in the air conditioner is lower than the required evaporation capacity of the refrigeration apparatus 16b (step ST206; Yes), the capacity determining means 53 determines whether or not the air conditioner is operated exceeding the upper limit of the condensing capacity. (Step ST208). Moreover, also when the outdoor heat exchanger 2 is frosting (step ST205; Yes), the control apparatus 50b moves to step ST208.
  • step ST208 When it is determined in step ST208 that the condensing capacity is below the upper limit of the condensing capacity, that is, the air conditioner has sufficient power (step ST208; No), the operation control unit 51 switches the first flow path as shown in FIG.
  • the hot gas defrost mode is performed by controlling the device 3 and the second flow path switching device 4. That is, the first flow path switching device 3 connects the refrigerant discharge side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant discharge side of the first compressor 1 and the indoor heat.
  • the exchanger 5 is communicated (step ST209).
  • both the outdoor heat exchanger 2 and the indoor heat exchanger 5 become condensers, the indoor heating is maintained, and high-temperature refrigerant flows through the outdoor heat exchanger 2 to defrost.
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30b and recovers exhaust heat from the refrigeration apparatus 16b.
  • the operation control means 51 As illustrated in FIG. 13, the first flow path switching device 3, the second flow path switching device 4, and the second expansion device 8 are controlled to perform the off-cycle defrost mode. That is, the first flow path switching device 3 connects the refrigerant suction side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant discharge side of the first compressor 1 and the indoor heat.
  • the second expansion device 8 is fully closed by communicating with the exchanger 5 (step ST210).
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30b, and the air conditioner recovers exhaust heat from the refrigeration apparatus 16b.
  • FIG. 14 is an explanatory diagram showing an example of a refrigerant flow in the normal cooling mode of FIG. 10 according to the second embodiment.
  • the flow of the refrigerant is indicated by an arrow, and an X mark is added to the expansion device that is instructed to be fully closed.
  • the operation control means 51 controls the first flow path switching device 3 and the second flow path switching device 4 to perform normal cooling.
  • the first flow path switching device 3 communicates the refrigerant discharge side of the first compressor 1 and the outdoor heat exchanger 2
  • the second flow path switching device 4 is the refrigerant suction side of the first compressor 1 and the indoor heat exchanger. Is switched to communicate with the communication terminal 5 (step ST211).
  • the outdoor heat exchanger 2 functions as a condenser
  • the indoor heat exchanger 5 functions as an evaporator
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator
  • the air conditioner recovers exhaust heat from the refrigeration apparatus 16b.
  • the efficiency of the refrigeration apparatus 16b can be increased by the dual operation of the air conditioning side refrigerant circuit 30b and the refrigeration side refrigerant circuit 40b.
  • running state is selected, and the load of the refrigerating apparatus 16b is simultaneously operated by the cooling of the air conditioner and the cooling of the refrigerating apparatus 16b.
  • a condensing capacity for supplementing can be provided on the air conditioner side.
  • FIG. 15 is an explanatory diagram illustrating an example of a refrigerant flow in the cooling assist mode of FIG. 10 according to the second embodiment.
  • the operation control means 51 controls the first flow path switching device 3, the second flow path switching device 4, and the first expansion device 7 as shown in FIG. Then, the cooling assist mode is performed.
  • the first flow path switching device 3 connects the refrigerant discharge side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant suction side of the first compressor 1 and the indoor heat.
  • the exchanger 5 is made to communicate with each other, and the first expansion device 7 is fully closed (step ST213).
  • the outdoor heat exchanger 2 functions as a condenser in the air conditioning side refrigerant circuit 30b, while the refrigerant does not circulate in the indoor heat exchanger 5.
  • the exhaust heat recovery heat exchanger 6 functions as an evaporator of the air conditioning side refrigerant circuit 30b, and recovers the exhaust heat of the refrigeration apparatus 16b.
  • the air conditioner stops the air conditioning, but the control device 50b operates the first compressor 1 in accordance with the operation of the refrigeration apparatus 16b and performs the two-way operation. Therefore, the efficiency of the refrigeration apparatus 16b can be increased.
  • FIG. 16 is an explanatory diagram showing an example of a refrigerant flow in the single heating mode of FIG. 10 according to the second embodiment.
  • the operation control means 51 As shown in FIG. 16, the first flow path switching device 3, the second flow path switching device 4, and the third expansion device 9 are controlled to perform the single heating mode. That is, the first flow path switching device 3 connects the refrigerant suction side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant discharge side of the first compressor 1 and the indoor heat.
  • the exchanger 5 is communicated with and the third expansion device 9 is fully closed (step ST215).
  • the outdoor heat exchanger 2 functions as an evaporator
  • the indoor heat exchanger 5 functions as a condenser.
  • the third expansion device 9 since the third expansion device 9 is closed, the refrigerant does not circulate in the exhaust heat recovery heat exchanger 6.
  • the refrigeration apparatus 16b In the single heating mode, the refrigeration apparatus 16b is stopped and no exhaust heat recovery is required, so that the configuration is made in this way. Therefore, the control device 50b can secure the refrigerant flow rate in the indoor heat exchanger 5.
  • FIG. 17 is an explanatory diagram showing an example of a refrigerant flow in the single cooling mode of FIG. 10 according to the second embodiment.
  • the operation control means 51 is configured to display the first flow path switching device 3, as shown in FIG.
  • the second air flow switching device 4 and the third expansion device 9 are controlled to execute the single cooling mode. That is, the first flow path switching device 3 connects the refrigerant discharge side of the first compressor 1 and the outdoor heat exchanger 2, and the second flow path switching device 4 is connected to the refrigerant suction side of the first compressor 1 and the indoor heat.
  • the third expansion device 9 is fully closed by communicating with the exchanger 5 (step ST216).
  • the outdoor heat exchanger 2 is a condenser
  • the indoor heat exchanger 5 is an evaporator.
  • the exhaust heat recovery heat exchanger 6 is configured such that no refrigerant flows.
  • control device 50b After each control such as step ST207, ST209, ST210, ST211, ST213, ST215, or ST216 is performed in the simultaneous operation or single operation of the air conditioner and the refrigerating device 16b, the control device 50b returns to step ST202 and performs the subsequent steps. Repeat.
  • the operation control means 51 adjusts the throttle opening of the first throttling device 7, the second throttling device 8, and the third throttling device 9 so that the refrigerant pipe becomes an intermediate pressure of the two-stage throttling to which the throttling device is connected.
  • the refrigerant is controlled so that the refrigerant becomes a preset supercooled liquid refrigerant.
  • the expansion device is fully closed according to the instruction.
  • control device 50b adjusts the condensation capacity in the refrigeration device 16b so that the inlet of the refrigeration side expansion device 13 has a predetermined degree of supercooling.
  • the control device 50b can perform cooperative control of the air conditioning side refrigerant circuit 30b and the refrigeration side refrigerant circuit 40b, for example, by detecting the degree of superheat at the outlet of the exhaust heat recovery heat exchanger 6 in the air conditioning side refrigerant circuit 30b. It is.
  • the condensed exhaust heat from the refrigeration apparatus 16b is recovered as an evaporator of the air conditioner by the exhaust heat recovery heat exchanger 6 and used as a heat source for air conditioning heating and defrosting.
  • the surplus capacity of the condenser to increase the condensing capacity of the refrigeration system, energy-saving operation is possible.
  • the second flow path switching device 4 is provided in the vicinity of the indoor heat exchanger 5, but it may be arranged in the outdoor unit 14b instead of the air conditioning indoor unit 15b. Furthermore, a plurality of air-conditioning indoor units 15b may be arranged in the subsequent stage of the second flow path switching device 4.
  • the second flow path switching device 4, the indoor heat exchanger 5, and the first expansion device 7 may be regarded as an air conditioning indoor unit 15b as a set, and a plurality of air conditioning indoor units 15b connected in parallel may be applied.
  • the second flow path switching device 4 is arranged indoors, an effect that the air-conditioner side pipe can be installed short indoors as an integrated structure of the exhaust heat recovery heat exchanger 6 and the refrigeration device 16b is obtained. .
  • control device 50b controls the first flow path switching device 3 to connect the outdoor heat exchanger 2 and the discharge side of the first compressor 1 during the cooling operation in which the indoor heat exchanger 5 functions as an evaporator. Then, the second flow path switching device 4 may be controlled to connect the indoor heat exchanger 5 and the suction side of the first compressor 1.
  • the refrigeration apparatus 16b can obtain the cooling capacity by heat exchange with the air conditioner side even when the dedicated condenser is not provided.
  • the control device 50b controls the first flow switching device 3 to control the outdoor heat exchanger 2 and the first compressor during the cooling operation in which the indoor heat exchanger 5 functions as an evaporator. 1 may be connected to the discharge side, and the second flow switching device 4 may be controlled to connect the indoor heat exchanger 5 and the suction side of the first compressor 1.
  • the condenser of the refrigeration apparatus 16b is replaced by the exhaust heat recovery heat exchanger 6, and since the dedicated condenser is not provided, the outdoor unit 14b can be downsized.
  • the low-pressure refrigerant of the air-conditioning side refrigerant circuit 30b is caused to flow into the exhaust heat recovery heat exchanger 6 when the refrigeration apparatus is operated alone to increase the refrigeration efficiency. be able to.
  • control device 50b controls the first flow path switching device 3 to control the outdoor heat exchanger 2 and the first compressor when the refrigeration side refrigerant circuit 40b in which the refrigerant circulation of the indoor heat exchanger 5 is stopped is operated alone. 1 is connected, the second flow path switching device 4 is controlled to connect the indoor heat exchanger 5 and the suction side of the first compressor 1, and the first expansion device 7 is fully closed. Good. Thus, even if the refrigeration apparatus 16b does not have a dedicated condenser, when the air conditioner is not performing air conditioning, the air conditioning side refrigerant circuit 30b can be operated to increase the cooling efficiency by heat exchange. .
  • the air conditioning side refrigerant circuit 30b further includes a third expansion device 9 that changes the flow rate of the refrigerant flowing through the exhaust heat recovery heat exchanger 6, and the third expansion device 9 and the suction side of the first compressor 1 are connected to the exhaust heat. It may be connected via piping so as to sandwich the recovered heat exchanger 6.
  • the control device 50b can control the third expansion device 9 to adjust the flow of the refrigerant to the exhaust heat recovery heat exchanger 6.
  • the control device 50b fully closes the third expansion device 9 and stops the refrigerant circulation of the exhaust heat recovery heat exchanger 6. Good. Accordingly, when the refrigeration apparatus 16b is stopped and the exhaust heat cannot be recovered, the refrigerant does not flow into the exhaust heat recovery heat exchanger 6 and heat exchange between the refrigerants is not performed. Equivalent air conditioning capacity can be secured. Further, unlike the conventional exhaust heat recovery type air conditioner, it does not pass through an unnecessary path, so that unstable heat transfer does not occur. Therefore, it is not necessary to design the size of the outdoor heat exchanger 2 with a safety factor, and the outdoor heat exchanger 2 can be downsized.
  • the exhaust heat recovery heat exchanger 6 has been described as dedicated to an air conditioning evaporator, but is not limited thereto.
  • the exhaust heat recovery heat exchanger 6 according to the present embodiment may be applied to a heat exchanger exclusively used for a condenser such as a hot water supply, or an evaporative condensation switching heat exchanger.
  • the number of units of the outdoor units 14a and 14b, the air conditioning indoor units 15a and 15b, and the refrigeration apparatuses 16a and 16b, the number of component devices mounted, and the like are not limited to those described in the present embodiment.
  • the unit which mounts a component apparatus may be determined according to the use of an air conditioner and freezing apparatus 16a, 16b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

排熱回収式空気調和装置は、第1圧縮機(1)と、第1流路切替装置(3)と、第2流路切替装置(4)と、室外熱交換器(2)及び室内熱交換器(5)の双方に並列接続された排熱回収熱交換器(6)とを有する空調側冷媒回路(30a)、及び、第2圧縮機(10)と前記排熱回収熱交換器(6)とを有する冷凍側冷媒回路(40a)を備える。排熱回収熱交換器(6)は第1圧縮機(1)の吸入側に配管を介して接続される。第1流路切替装置(3)は、室外熱交換器(2)を第1圧縮機(1)の吐出側及び吸入側のいずれか一方に配管を介して接続し、第2流路切替装置(4)は、室内熱交換器(5)を第1圧縮機(1)の吐出側及び吸入側のいずれか一方に配管を介して接続する。このような構成により、どのような運転モードでも排熱利用ができる。

Description

排熱回収式空気調和装置
 本発明は、冷凍装置と空調装置とを組み合わせて排熱回収する排熱回収式空気調和装置に関する。
 従来の排熱回収式空気調和装置には、例えば冷凍装置と空調装置とを組合せた2元冷媒回路を採用するものがある(例えば、特許文献1参照)。このような排熱回収式空気調和装置では、空調装置の蒸発器と冷凍装置の凝縮器とが並列配置されて成る排熱回収熱交換器が、空調装置の冷媒と冷凍装置の冷媒とを熱交換することで冷凍装置からの排熱回収がなされる。
特開2000-179961号公報
 特許文献1の排熱回収式空気調和装置において、排熱回収熱交換器は空調装置の室外熱交換器に直列接続される。そのため、排熱回収熱交換器は、空調装置の暖房運転時には冷凍装置の排熱を回収できるものの、冷房運転時には互いに高圧冷媒同士を通過させるため熱回収ができない。また、暖房運転中にデフロスト運転が発生した場合、一般には冷媒循環方向が逆サイクルになるよう運転を制御するため、空調装置の室外熱交換器と熱回収熱交換器とがともに高圧側となり、冷凍装置の排熱をデフロスト運転に有効活用できないという課題がある。
 本発明は、上記のような課題を解決するためになされたもので、運転モードに制限されることなく排熱を有効利用できる排熱回収式空気調和装置を提供することを目的とする。
 本発明に係る排熱回収式空気調和装置は、第1圧縮機と、第1流路切替装置と、室外熱交換器と、第1絞り装置と、室内熱交換器と、第2流路切替装置とが配管を介して接続され、前記室外熱交換器及び前記室内熱交換器の双方に排熱回収熱交換器が配管を介して並列接続された空調側冷媒回路と、第2圧縮機と、前記排熱回収熱交換器と、冷凍側絞り装置と、冷却器とが配管を介して接続された冷凍側冷媒回路と、を備え、前記第1流路切替装置は、前記室外熱交換器と前記排熱回収熱交換器との間に設けられ、前記室外熱交換器を前記第1圧縮機の吐出側及び吸入側のいずれか一方に配管を介して接続し、前記第2流路切替装置は、前記室内熱交換器と前記排熱回収熱交換器との間に設けられ、前記室内熱交換器を前記第1圧縮機の吐出側及び吸入側のいずれか一方に配管を介して接続し、前記排熱回収熱交換器は、前記空調側冷媒回路において配管を介して前記第1圧縮機の吸入側に接続され、前記空調側冷媒回路の冷媒と前記冷凍側冷媒回路の冷媒とを熱交換させる。
 本発明の排熱回収熱交換器によれば、どのような運転モードであっても空調側冷媒回路の低圧冷媒と冷凍側冷媒回路の高圧冷媒とを排熱回収熱交換器で熱交換させることができる。そのため、冷凍装置と空調装置との複合システムとして、排熱回収式空気調和装置のCOP(成績係数)を向上させることができる。
実施の形態1に係る排熱回収式空気調和装置を示す概略回路図である。 実施の形態1及び2に係る制御装置の機能ブロック図である。 実施の形態1に係る排熱回収式空気調和装置の動作時の流れを示すフローチャートである。 実施の形態1に係る図3の通常暖房モード時における冷媒の流れの一例を示す説明図である。 実施の形態1に係る図3のホットガスデフロストモード時における冷媒の流れの一例を示す説明図である。 実施の形態1に係る図3のオフサイクルデフロストモード時における冷媒の流れの一例を示す説明図である。 実施の形態1に係る図3の優先冷房モード時における冷媒の流れの一例を示す説明図である。 実施の形態1に係る図3の共有冷房モード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る排熱回収式空気調和装置を示す概略回路図である。 実施の形態2に係る排熱回収式空気調和装置の動作時の流れを示すフローチャートである。 実施の形態2に係る図10の通常暖房モード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る図10のホットガスデフロストモード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る図10のオフサイクルデフロストモード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る図10の通常冷房モード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る図10の冷却補助モード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る図10の単独暖房モード時における冷媒の流れの一例を示す説明図である。 実施の形態2に係る図10の単独冷房モード時における冷媒の流れの一例を示す説明図である。
実施の形態1.
 図1は、実施の形態1に係る排熱回収式空気調和装置を示す概略回路図である。図1に基づいて、排熱回収式空気調和装置100aの機器構成について説明する。
(機器構成)
 実施の形態1に係る排熱回収式空気調和装置100aは、空調側冷媒回路30aと冷凍側冷媒回路40aとを有する。空調側冷媒回路30aには、第1圧縮機1と、第1流路切替装置3と、室外熱交換器2と、第1絞り装置7と、室内熱交換器5と、第2流路切替装置4とが順次、冷媒配管を介して接続されている。また、空調側冷媒回路30aには、室外熱交換器2と室内熱交換器5との間の配管から分岐した冷媒配管により、排熱回収熱交換器6が室外熱交換器2及び室内熱交換器5の双方に並列接続されている。分岐した冷媒配管は、排熱回収熱交換器6を介して、第1圧縮機1の吸入側に接続された配管に合流する。以降、排熱回収熱交換器6が配置される分岐した冷媒配管を排熱回収経路31と称する。
 冷凍側冷媒回路40aには、第2圧縮機10と、凝縮器11と、排熱回収熱交換器6と、冷凍側絞り装置13と、冷却器12とが順次、冷媒配管を介して接続されている。排熱回収熱交換器6は、二元回路構成の二つの冷媒回路を結ぶ熱交換器であって、高温側サイクルの蒸発器としての機能と、低温側サイクルの凝縮器としての機能とを兼ねたカスケード凝縮器である。図1に示されるように、排熱回収熱交換器6には、空調側冷媒回路30aの蒸発器相当位置と冷凍側冷媒回路40aの凝縮器相当位置とが配置されるので、冷媒間で熱交換が行われ、冷凍側冷媒回路40aから空調側冷媒回路30aへ排熱回収がなされる。
 第1圧縮機1及び第2圧縮機10は例えばスクロール型の圧縮機であり冷媒蒸気を圧縮するものである。第1圧縮機1は、第1流路切替装置3と第2流路切替装置4とを冷媒配管により環状につなぐ経路上の2点を冷媒配管で接続して形成される圧縮機経路32に配置される。つまり、第1圧縮機1は、第1流路切替装置3及び第2流路切替装置4の双方に冷媒配管を介して並列接続されている。
 室外熱交換器2、室内熱交換器5、凝縮器11、及び冷却器12は例えばフィンチューブ型の熱交換器で構成され、周辺空気と熱交換を行うものである。室内熱交換器5は、空調対象空間である室内の空気と熱交換する。室内熱交換器5は、空調装置に暖房運転が設定されているときは凝縮器として機能し、冷房運転が設定されているときには蒸発器として機能する。冷却器12は冷却対象空間である庫内の空気と熱交換する。
 第1流路切替装置3は室外熱交換器2と排熱回収熱交換器6との間に設けられており、第2流路切替装置4は室内熱交換器5と排熱回収熱交換器6との間に設けられている。第1流路切替装置3及び第2流路切替装置4は例えば4方弁又は3方弁で構成され、第1流路切替装置3の3つのポートには、第1圧縮機1の吐出側及び吸入側、並びに室外熱交換器2がそれぞれ冷媒配管を介して接続されている。また第2流路切替装置4の3つのポートには、第1圧縮機1の吐出側及び吸入側、並びに室内熱交換器5がそれぞれ冷媒配管を介して接続されている。このような回路構成により、第1流路切替装置3は室外熱交換器2を第1圧縮機1の吐出側及び吸入側のいずれか一方に連通させ、第2流路切替装置4は室内熱交換器5を第1圧縮機1の吐出側及び吸入側のいずれか一方に連通させる構成となっている。
 第1絞り装置7及び冷凍側絞り装置13は、冷媒を減圧する減圧手段であり、例えば電子膨張弁で形成される。また、空調側冷媒回路30aにおいて並列接続された室外熱交換器2、室内熱交換器5、及び排熱回収熱交換器6のそれぞれに、中間圧側に個別に絞り装置が設けられてもよい。具体的には、室内熱交換器5に対して第1絞り装置7が設けられ、室内熱交換器5に流れる冷媒流量を変化させ、室外熱交換器2に対して第2絞り装置8が設けられ、室外熱交換器2に流れる冷媒流量を変化させる。また排熱回収熱交換器6が設置される排熱回収経路31上に第3絞り装置9が設けられ、排熱回収熱交換器6に流れる冷媒流量を変化させる。
 冷媒回路の各構成機器は、例えば室外機14a、空調室内機15a、又は冷凍装置16aに搭載される。本実施の形態において、室外機14aは第1圧縮機1、第1流路切替装置3、室外熱交換器2、第2絞り装置8、第2流路切替装置4、排熱回収熱交換器6、及び第3絞り装置9を備える。また、空調室内機15aは室内熱交換器5、及び第1絞り装置7を備え、冷凍装置16aは第2圧縮機10、凝縮器11、排熱回収熱交換器6、冷凍側絞り装置13、及び冷却器12を備える。図1の実線で示すように、各構成機器は冷媒配管で接続されている。
 また、排熱回収式空気調和装置100aは、さらに制御装置50aを備える。制御装置50aは例えば制御基板やマイコン等から構成され、信号線等を介して各構成機器に接続されている。制御装置50aは、設定された運転モードに応じて空調側冷媒回路30a及び冷凍側冷媒回路40aを制御する。排熱回収式空気調和装置100aは、複数の運転モードを備えている。複数の運転モードは、例えば第1流路切替装置3及び第2流路切替装置4のポート接続、並びに第1絞り装置7、第2絞り装置8、及び第3絞り装置9の開閉を組み合せることによって予め制御装置50aに区別され記憶されている。また制御装置50aは、第1絞り装置7、第2絞り装置8、及び第3絞り装置の絞り開度を調整して、絞り装置が接続される二段絞りの中間圧となる冷媒配管部において冷媒が予め設定された過冷却液冷媒となるよう制御する。ただし、制御装置50aにより絞り装置が全閉を指示されている場合には指示に従って全閉する。
 また排熱回収式空気調和装置100aには、例えば温度センサ又は圧力センサ等のセンサ61,62,63,64が設置され、配管及び室内の温度等が測定されるよう構成されている。制御装置50aはまた、センサ61,62,63,64からの情報を取得し、環境条件及び負荷等に応じて制御を行う。本実施の形態では、室内熱交換器5にセンサ61、室外熱交換器2にセンサ62、第1圧縮機1の吸入側にセンサ63、及び第1圧縮機1の吐出側にセンサ64が設置され、制御装置50aは温度、過熱度及び過冷却度等の情報を得られるよう構成されている。
 図2は、実施の形態1及び2に係る制御装置の機能ブロック図である。制御装置50aは、運転制御手段51と着霜判定手段52と能力判定手段53とを備える。運転制御手段51は、空調側冷媒回路30a及び冷凍側冷媒回路40aの主な運転制御を行う。また、運転制御手段は、空調装置及び冷凍装置16aの運転状況を管理する。運転状況とは、例えば空調装置の暖房運転、冷房運転、又は空調停止、及び冷凍装置16aの冷却運転、又は冷却停止などを示す情報である。
 着霜判定手段52は、暖房運転中にセンサ62等から情報を取得し、室外熱交換器2が着霜しているか否かを判定する。判定方法は、室外熱交換器2の着霜状態を検知できる方法であればどのような方法を採用してもよい。例えば着霜判定手段52は、冷媒の蒸発温度に基づいて着霜判定を行ってもよいし、センサ62が測定した温度と設定閾値とを比較して着霜が有ると判定してもよい。着霜判定の方法については公知技術を用いることができる。
 能力判定手段53は、センサ61,62,63,64から情報を取得して能力条件及び能力限界条件が満たされるか否かを判定する。暖房運転時において能力条件とは、空調側冷媒回路30aの凝縮能力が冷凍側冷媒回路40aの必要蒸発能力を下回ることを示す。また、冷房運転時において能力条件とは、空調側冷媒回路30aの凝縮能力が必要蒸発能力を上回ることを示す。空調側冷媒回路30aの凝縮能力とは、例えば室内熱交換器5における過冷却度であって、公知技術を用いて求めればよい。例えば暖房運転時の過冷却度は、室内熱交換器5の冷媒が通過する出口及び入口に温度センサを設置し、入口温度と出口温度との差より求められる。また、冷凍側冷媒回路40aの必要蒸発能力とは、例えば冷凍装置16aが設置される庫内の温度を設定温度に維持するために必要な、冷却器12の出口における目標の過熱度である。目標の過熱度は、例えば冷却対象空間に対し実験等により求めた固定値を採用してもよいし、冷却対象空間の温度に基づく負荷の変化に応じて演算により求めてもよい。
 また能力判定手段53は、暖房運転時に、凝縮能力が設定閾値に達する能力限界条件が満たされるか否かを判定する。設定閾値とは凝縮能力上限であって、例えば第1圧縮機1の容量等を含む空調装置の能力に応じて予め設定された閾値である。したがって、能力判定手段53は、例えば室内熱交換器5の過冷却度と設定閾値とを比較することで判定を行うことができる。
(動作)
 図3は実施の形態1に係る排熱回収式空気調和装置100aの動作時の流れを示すフローチャートである。各運転モードについて制御装置50aが実施する制御を説明する。空気装置及び冷凍装置16aの両ユニットに電源が投入されているとき(ステップST101)、排熱回収制御が開始される。排熱回収制御が開始すると、制御装置50aは、空調装置の運転モードが暖房運転であるか否かの判断を行う(ステップST102)。
(暖房運転時の動作)
 図3~図6に基づいて、運転モードが暖房運転の場合の動作について説明する。図4は、実施の形態1に係る図3の通常暖房モード時における冷媒の流れの一例を示す説明図である。図5は、実施の形態1に係る図3のホットガスデフロストモード時における冷媒の流れの一例を示す説明図である。図6は、実施の形態1に係る図3のオフサイクルデフロストモード時における冷媒の流れの一例を示す説明図である。図中の矢印は冷媒の流れを示し、全閉を指示されている絞り装置には×印が付記されている。
 運転制御手段51によって暖房運転が実施されている場合(ステップST102;Yes)、着霜判定手段52は、室外熱交換器2が着霜しているか否かを判定する(ステップST103)。ステップST103の条件を満たさない場合、すなわち着霜していない場合(ステップST103;No)、能力判定手段53は、空調装置の凝縮能力が冷凍装置16aの必要蒸発能力を下回っているか否かを判定する(ステップST104)。
 次に、ステップST103の着霜条件が満たされる場合(ステップST103;Yes)、能力判定手段53は、空調装置の凝縮能力が上限に達しているか否かを判定する(ステップST106)。また、ステップST104の能力条件が満たされる場合にも(ステップST104;Yes)、制御装置50aは同様にステップST106に進む。能力条件及び着霜条件の、どちらの条件も満たさない場合(ステップST104;No)、運転制御手段51は、図4に示すように第1流路切替え装置及び第2流路切替装置4を制御して通常暖房モードを実施する。具体的には、第1流路切替装置3は第1圧縮機1の冷媒吸入側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させる(ステップST105)。これより室外熱交換器2は蒸発器として機能し、室内熱交換器5は凝縮器として機能する。また排熱回収熱交換器6は空調側冷媒回路30aの蒸発器として機能する。つまり、制御装置50aは暖房運転時には、空調側冷媒回路30aの低圧冷媒と冷凍側冷媒回路40aの高圧冷媒とを排熱回収熱交換器6に流すことによって冷凍装置16aからの排熱回収を実現している。
 一方、空調装置における凝縮能力が冷凍装置16aの必要蒸発能力を下回っている場合(ステップST104;Yes)、能力判定手段53は、さらに空調装置が凝縮能力上限に達して運転されているか否かを判定する(ステップST106)。また室外熱交換器2が着霜している場合にも(ステップST103;Yes)、ステップST106の判定が行われる。ステップST106において能力判定手段53が、凝縮能力が凝縮能力上限を下回っている、つまり空調装置側に余力があると判断された場合(ステップST106;No)、運転制御手段51は、図5に示すとおり第1流路切替装置3、第2流路切替装置4を制御してホットガスデフロストモードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吐出側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させる(ステップST107)。これより、室外熱交換器2及び室内熱交換器5ともに凝縮器となり、室内の暖房は維持され、また室外熱交換器2に高温の冷媒が流れて除霜される。また排熱回収熱交換器6は空調側冷媒回路30aの蒸発器として機能し、冷凍装置16aから排熱回収を行う。
 一方、空調装置の凝縮能力上限に達した状態で運転されている場合(ステップST106;Yes)、すなわち、空調負荷が空調装置の能力に対して大きく凝縮能力に余力がない場合、運転制御手段51は、図6に示すとおり第1流路切替装置3、第2流路切替装置4、及び第2絞り装置8を制御してオフサイクルデフロストモードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吸入側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させ、第2絞り装置8は全閉される(ステップST108)。これより、室内熱交換器5は凝縮器となり暖房運転が継続され、室外熱交換器2には低温の冷媒が流れない。また、排熱回収熱交換器6は空調側冷媒回路30aの蒸発器として機能し、冷凍装置16aから排熱回収する。
(冷房運転時の動作)
 図3及び図7~図8に基づいて、空調装置が冷房運転の場合の動作について説明する。図7は、実施の形態1に係る図3の優先冷房モード時における冷媒の流れの一例を示す説明図である。図8は、実施の形態1に係る図3の共有冷房モード時における冷媒の流れの一例を示す説明図である。
 空調装置の運転モードが冷房運転の場合(ステップST102;No)、運転制御手段51は、第1流路切替装置3及び第2流路切替装置4を制御する。第1流路切替装置3は第1圧縮機1の冷媒吐出側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吸入側と室内熱交換器5とを連通させるよう制御される(ステップST109)。次に能力判定手段53は、空調装置の凝縮能力が必要蒸発能力を上回る能力条件が満たされるか否かを判定する(ステップST110)。空調装置の凝縮能力が必要蒸発能力を上回っていないと判定された場合(ステップST110;No)、すなわち空調装置には冷凍装置16aの排熱を回収する余力が無い場合、運転制御手段51は、図7に示すように第3絞り装置9を全閉して優先冷房モードを実施する(ステップST111)。これより、空調側冷媒回路30aでは室外熱交換器2が凝縮器として機能し、また室内熱交換器5が蒸発器として機能する。また排熱回収熱交換器6には空調側冷媒回路30aの冷媒が流れず、冷凍側冷媒回路40aの冷媒のみが循環する状態となる。
 一方、能力判定手段53により空調装置の凝縮能力が必要蒸発能力を上回っていると判定された場合(ステップST110;Yes)、空調側冷媒回路30aの接続状態は、図8に示すようにステップST109で制御された状態となっている。第3絞り装置9は全閉指示されていないので開度調整される。このとき運転制御手段51は、空調装置の凝縮能力と必要蒸発能力との差が大きいほど第3絞り装置9の開度が大きくなるよう制御してもよい。ステップST110でYesと判定された場合は、室外熱交換器2は凝縮器として機能し、室内熱交換器5は蒸発器として機能する。排熱回収熱交換器6もまた空調装置の蒸発器として機能し、冷凍装置16aから排熱回収する。
 制御装置50aは、ステップST105、ステップST107、ステップST108、ステップST111、又はステップST110;Yes等の各制御を行った後、両ユニットの運転状態を確認する(ステップST112)。両ユニットが引き続き運転中であれば(ステップST112;Yes)、空調装置のステップST102の運転判定に戻り、排熱回収制御を続行する。一方、両ユニットの同時運転が終了していれば、図3に示す排熱回収制御を終了する(ステップST112;No)。
 なお、本実施の形態において、空調装置及び冷凍装置16aはそれぞれ専用の熱交換器を2台備えているため、空調装置もしくは冷凍装置16aのどちらか一方が運転停止した場合においても空調装置及び冷凍装置16aは独立して運転することができる。冷凍装置16aが運転停止している場合には、第3絞り装置9が全閉となるよう制御される。
 また制御装置50aは、冷凍装置16aにおいて、排熱回収熱交換器6での熱交換も加味して、冷凍側絞り装置13の入口が所定の過冷却度(サブクール)となるよう凝縮器11の凝縮能力を調整する。排熱回収熱交換器6が作用していない場合であっても、冷凍装置16aからの排熱が回収されないだけであり、冷凍装置16aの冷却機能は維持される。
 なお、本実施の形態では第2流路切替装置4が室外機14aに配置される場合について説明したが、室内熱交換器5の近傍に配置されてもよい。また、第2流路切替装置4の後段に空調室内機15aが複数台配置される構成としてもよい。この場合、第2流路切替装置4と室内熱交換器5と第1絞り装置7とのセットが空調室内機15aとみなされ、空調室内機15aが複数並列接続されればよい。
 以上のように本実施の形態において排熱回収式空気調和装置100aは、第1圧縮機1と、第1流路切替装置3と、室外熱交換器2と、第1絞り装置7と、室内熱交換器5と、第2流路切替装置4とが配管を介して接続され、室外熱交換器2及び室内熱交換器5の双方に排熱回収熱交換器6が配管を介して並列接続された空調側冷媒回路30aと、第2圧縮機10と、排熱回収熱交換器6と、冷凍側絞り装置13と、冷却器12とが配管を介して接続された冷凍側冷媒回路40aと、を備え、第1流路切替装置3は、室外熱交換器2と排熱回収熱交換器6との間に設けられ、室外熱交換器2を第1圧縮機1の吐出側及び吸入側のいずれか一方に配管を介して接続し、第2流路切替装置4は、室内熱交換器5と排熱回収熱交換器6との間に設けられ、室内熱交換器5を第1圧縮機1の吐出側及び吸入側のいずれか一方に配管を介して接続し、排熱回収熱交換器6は、空調側冷媒回路30aにおいて配管を介して第1圧縮機1の吸入側に接続され、空調側冷媒回路30aの冷媒と冷凍側冷媒回路40aの冷媒とを熱交換させるものである。
 これより、空調側冷媒回路30aでは、2つの流路切替装置と排熱回収熱交換器6が設けられた排熱回収経路31とによって冷媒が流れる経路を多様に形成できるため、冷房運転又は除霜運転の運転モードを実施している場合であっても低圧冷媒と高圧冷媒とを熱交換させることができる。そのため排熱が有効活用され装置全体として省エネ運転が実現できる。
 また、排熱回収式空気調和装置100aは、運転モードに応じて空調側冷媒回路30a及び冷凍側冷媒回路40aを制御する制御装置50aをさらに備えてもよい。これより、空調側冷媒回路30a及び冷凍側冷媒回路40aは自動制御され、また2つの冷媒回路を連携制御させて高効率に排熱回収できる。
 また、冷凍側冷媒回路40aはさらに、第2圧縮機10の吐出側と冷却器12との間に凝縮器11を備えるものであってもよい。これより、冷凍装置16aは排熱回収熱交換器6の他に凝縮器を備えるため、空調装置が運転停止されていても独立運転が可能である。
 また、制御装置50aは、室内熱交換器5が凝縮器として機能する暖房運転時に、室外熱交換器2に着霜が検出される着霜条件が満たされるか否かを判定する着霜判定手段52と、暖房運転時に、空調側冷媒回路30aの凝縮能力が冷凍側冷媒回路40aの必要蒸発能力を下回る能力条件が満たされるか否かを判定する能力判定手段53と、を備え、着霜条件が満たされないと判定され、かつ前記能力条件が満たされないと判定された場合に、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吸入側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吐出側とを接続させてもよい。これより、暖房運転時に冷凍装置16aの排熱を回収して暖房運転に利用でき、また冷凍装置側の冷凍効率を向上させることができる。
 また、能力判定手段53はさらに、暖房運転時に、凝縮能力が設定閾値に達する能力限界条件が満たされるか否かを判定するものであって、制御装置50aは、着霜条件及び能力条件のうち少なくとも一つが満たされると判定され、かつ能力限界条件が満たされないと判定された場合に、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吐出側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吐出側とを接続させてもよい。
 これより、暖房運転中に着霜が検出されたとき、空調装置が余力を有している場合には暖房運転を維持しながら除霜運転を実施する。除霜判定に加え能力判定が行われるので、着霜の検出に関わらず、暖房能力が低く冷凍能力が高いタイミングで随時除霜運転を実施でき、暖房運転を維持した状態で着霜を未然に防ぐことができる。また排熱回収熱交換器6には空調側冷媒回路30aの低圧冷媒が流れるため、空調装置は冷凍装置16aから熱回収でき、回収した熱を暖房及び除霜に活用できる。また、排熱回収熱交換器6には室内熱交換器5及び室外熱交換器2を通過した冷媒が合流して流入するため、冷媒流量が多く、高効率な排熱回収が実施される。
 また、空調側冷媒回路30aはさらに、室外熱交換器2に流れる冷媒流量を変化させる第2絞り装置8を備え、第2絞り装置8と第1流路切替装置3とは室外熱交換器2を挟むように配管を介して接続されるものであってもよい。これより、制御装置50aは第2絞り装置8への冷媒の流れを調整でき、空調装置の多様な運転を実施できる。
 また、制御装置50aは、着霜条件及び能力条件のうち少なくとも一つが満たされると判定され、かつ能力限界条件が満たされると判定された場合に、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吸入側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吐出側とを接続させ、第2絞り装置8を全閉して室外熱交換器2の冷媒循環を停止させる。
 これより、暖房運転中、快適性を損なわずにオフサイクルデフロストを実施できる。また排熱回収熱交換器6には室内熱交換器5を通過した低圧冷媒が分岐されずに流入するため、冷凍装置16aからの排熱を高効率で回収できる。
 また、空調側冷媒回路30aはさらに、排熱回収熱交換器6に流れる冷媒流量を変化させる第3絞り装置9を備え、第3絞り装置9と第1圧縮機1の吸入側とは排熱回収熱交換器6を挟むように配管を介して接続されてもよい。これより、制御装置50aは排熱回収熱交換器6への冷媒の流れを調整でき、排熱回収の不要な場合には単独運転を優先する制御ができる。
 制御装置50aは、室内熱交換器5が蒸発器として機能する冷房運転時に、空調側冷媒回路30aの凝縮能力が必要蒸発能力を上回る能力条件が満たされるか否かを判定する能力判定手段53を備え、能力条件が満たされると判定された場合は、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吐出側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吸入側とを接続させ、第3絞り装置9を開き、能力条件が満たされないと判定された場合は、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吐出側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吸入側とを接続させ、第3絞り装置9を全閉して排熱回収熱交換器6の冷媒循環を停止させてもよい。
 これより、2つの流路切替装置の組み合せにより冷房運転時にも排熱回収熱交換器6に低圧冷媒を流すことができる。また、能力判定手段53及び運転制御手段51により、冷凍装置16a及び空調装置の負荷と能力に応じた経路が形成されるので、空調装置に余力がある場合に冷凍装置16aの冷却機能を高め、余力がない場合には冷媒回路が分離される。したがって不安定な熱交換がないので空調装置は独立した装置と同等に機能し、必要な冷房能力を維持できる。
実施の形態2.
 次に、実施の形態1の排熱回収式空気調和装置100aから凝縮器11を省いた排熱回収式空気調和装置100bについて説明する。図9は、実施の形態2に係る排熱回収式空気調和装置を示す概略回路図である。図9に基づいて、排熱回収式空気調和装置100bの機器構成について説明する。
(機器構成)
 本実施の形態に係る排熱回収式空気調和装置100bは、空調側冷媒回路30bと冷凍側冷媒回路40bとを有する。冷凍側冷媒回路40bには、第2圧縮機10と、排熱回収熱交換器6と、冷凍側絞り装置13と、冷却器12とが順次、冷媒配管を介して接続されている。冷媒回路の各構成機器は、例えば室外機14b、空調室内機15b、又は冷凍装置16bに搭載される。本実施の形態において、室外機14bは第1圧縮機1、第1流路切替装置3、室外熱交換器2、及び第2絞り装置8が搭載されている。また、空調室内機15bには室内熱交換器5、及び第1絞り装置7、及び第2流路切替装置4が搭載されている。冷凍装置16bには、排熱回収熱交換器6と第3絞り装置9とからなる排熱回収装置17、第2圧縮機10、冷凍側絞り装置13、及び冷却器12が搭載されている。
 本実施の形態において、排熱回収式空気調和装置100bの冷凍装置16bは専用の凝縮器を有していない。そのため、冷凍装置16bの室外ユニットすなわち屋外排熱装置を配置する必要がない。例えば冷凍装置に関して冷却ユニット単体とする一体型で構成でき、冷凍装置16bの小型化が実現できる。なお、冷凍装置16bの凝縮器は、排熱回収熱交換器6で代用される。排熱回収熱交換器6には、空調側冷媒回路30bの蒸発器相当位置と冷凍側冷媒回路40bの凝縮器相当位置とが配置されるので、冷凍装置16bの排熱は空調装置によって回収される。
(動作)
 図10は実施の形態2に係る排熱回収式空気調和装置100bの動作時の流れを示すフローチャートである。まず排熱回収式空気調和装置100bの制御装置50bは、空調装置及び冷凍装置16bの両ユニットが運転停止状態であるか否か判断を行う(ステップST202)。制御装置50bは、排熱回収式空気調和装置100bの空調装置及び冷凍装置16bが両ユニットとも運転停止状態の場合(ステップST202;Yes)、初期状態(ステップST201)に戻る。両ユニットともに運転状態の場合(ステップST203;Yes)、空調装置の運転モードが暖房運転であるか否かの判断を行う(ステップST204)。
(暖房運転時の動作)
 図10~図13に基づいて、空調装置が暖房運転の場合の動作について説明する。図11は、実施の形態2に係る図10の通常暖房モード時における冷媒の流れの一例を示す説明図である。図12は、実施の形態2に係る図10のホットガスデフロストモード時における冷媒の流れの一例を示す説明図である。図13は、実施の形態2に係る図10のオフサイクルデフロストモード時における冷媒の流れの一例を示す説明図である。
 運転制御手段51によって暖房運転が実施されている場合(ステップST204;Yes)、着霜判定手段52は、室外熱交換器2が着霜しているか否かを判定する(ステップST205)。ステップST205の条件を満たさない場合(ステップST205;No)、能力判定手段53は、空調装置の凝縮能力が冷凍装置16bの必要蒸発能力を下回っているか否かを判定する(ステップST206)。
 次に、ステップST205の着霜条件が満たされる場合(ステップST205;Yes)、能力判定手段53は、さらに空調装置の凝縮能力が上限に達しているか否かを判定する(ステップST208)。また、ステップST206の能力条件が満たされる場合にも(ステップST206;Yes)、能力判定手段53は同様にステップST208の判定に移る。能力条件及び着霜条件の、どちらの条件も満たさない場合(ステップST206;No)、運転制御手段51は、図11に示すように第1流路切替え装置及び第2流路切替装置4を制御して通常暖房モードを実施する(ステップST207)。具体的には、第1流路切替装置3は第1圧縮機1の冷媒吸入側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させる。これより室外熱交換器2は蒸発器として機能し、室内熱交換器5は凝縮器として機能する。また排熱回収熱交換器6は空調側冷媒回路30bの蒸発器として機能する。つまり、制御装置50bは暖房運転時には、空調側冷媒回路30bの低圧冷媒と冷凍側冷媒回路40bの高圧冷媒とを排熱回収熱交換器6に流すことによって冷凍装置16bからの排熱回収を実現している。
 一方、空調装置における凝縮能力が冷凍装置16bの必要蒸発能力を下回っている場合(ステップST206;Yes)、能力判定手段53は、空調装置が凝縮能力上限を超えて運転されているか否かを判定する(ステップST208)。また室外熱交換器2が着霜している場合にも(ステップST205;Yes)、制御装置50bはステップST208に移る。
 ステップST208で凝縮能力が凝縮能力上限を下回っている、つまり空気調和装置に余力があると判断された場合(ステップST208;No)、運転制御手段51は、図12に示すとおり第1流路切替装置3、第2流路切替装置4を制御してホットガスデフロストモードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吐出側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させる(ステップST209)。これより、室外熱交換器2及び室内熱交換器5ともに凝縮器となり、室内の暖房は維持され、また室外熱交換器2に高温の冷媒が流れて除霜される。また排熱回収熱交換器6は空調側冷媒回路30bの蒸発器として機能し、冷凍装置16bから排熱回収を行う。
 一方、空調装置の凝縮能力上限を超えて運転されている場合(ステップST208;Yes)、すなわち、空調負荷が空調装置の能力に対して大きく凝縮能力に余力がない場合、運転制御手段51は、図13に示すとおり第1流路切替装置3、第2流路切替装置4、及び第2絞り装置8を制御してオフサイクルデフロストモードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吸入側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させ、第2絞り装置8は全閉される(ステップST210)。これより、室内熱交換器5は凝縮器となり暖房運転が継続され、室外熱交換器2には低温の冷媒が流れない。また、排熱回収熱交換器6は空調側冷媒回路30bの蒸発器として機能し、空調装置は冷凍装置16bから排熱回収する。
(冷房運転時の動作)
 図10及び図14に基づいて、空調装置が冷房運転中の場合の動作について説明する。図14は、実施の形態2に係る図10の通常冷房モード時における冷媒の流れの一例を示す説明図である。図14には冷媒の流れが矢印で示され、全閉を指示されている絞り装置には×印が付記されている。
 空調装置の運転モードが冷房運転の場合(ステップST204;No)、図14に示すように運転制御手段51は、第1流路切替装置3及び第2流路切替装置4を制御して通常冷房モードを実施する。第1流路切替装置3は第1圧縮機1の冷媒吐出側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吸入側と室内熱交換器5とを連通させるよう切替えられる(ステップST211)。
 これより、空調側冷媒回路30bにおいて室外熱交換器2が凝縮器として機能し、室内熱交換器5が蒸発器として機能する。また、排熱回収熱交換器6は蒸発器として機能し、空調装置は冷凍装置16bから排熱回収する。この場合は、空調側冷媒回路30bと冷凍側冷媒回路40bとの2元運転による冷凍装置16bの高効率化が図れる。なお、この運転状態を考慮した第1圧縮機1および室外熱交換器2の容量選定をしておくことで、空調装置の冷房と冷凍装置16bの冷却との同時運転において冷凍装置16bの負荷を補うための凝縮能力を空調装置側に備えさせておくことができる。
(単独運転時の動作)
 図15~図17に基づいて、冷凍装置16b及び空調装置の同時運転中でない場合(ステップST203;No)、すなわち冷凍装置16bによる冷却及び空調装置による空調のうちいずれか一方のみ運転が実施されている単独運転の動作について説明する。図15は、実施の形態2に係る図10の冷却補助モード時における冷媒の流れの一例を示す説明図である。冷凍装置16bのみの運転時(ステップST212;Yes)、運転制御手段51は、図15に示すように第1流路切替装置3、第2流路切替装置4、及び第1絞り装置7を制御して冷却補助モードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吐出側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吸入側と室内熱交換器5とを連通させ、第1絞り装置7は全閉とされる(ステップST213)。
 これより、空調側冷媒回路30bにおいて室外熱交換器2は凝縮器として機能し、一方、室内熱交換器5には冷媒が循環しない。また排熱回収熱交換器6は、空調側冷媒回路30bの蒸発器として機能し、冷凍装置16bの排熱回収を行う。なお、このとき空調装置は空調を停止しているが、制御装置50bは冷凍装置16bの運転に合わせて第1圧縮機1を稼動し、2元運転を実施する。したがって、冷凍装置16bの高効率化を図ることができる。
 図16は、実施の形態2に係る図10の単独暖房モード時における冷媒の流れの一例を示す説明図である。空調装置のみの運転時(ステップST212;No)すなわち冷凍装置16bによる冷却が実施されていない場合であって、暖房運転が実施されている場合(ステップST214;Yes)、運転制御手段51は、図16に示されるように第1流路切替装置3、第2流路切替装置4、及び第3絞り装置9を制御して単独暖房モードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吸入側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吐出側と室内熱交換器5とを連通させ、第3絞り装置9を全閉とする(ステップST215)。
 これより、空調側冷媒回路30bにおいて室外熱交換器2は蒸発器として機能し、室内熱交換器5は凝縮器として機能する。一方、第3絞り装置9が閉じられているため排熱回収熱交換器6に冷媒は循環しない。単独暖房モードでは冷凍装置16bが運転停止中であり排熱回収が不要であるためこのように構成される。したがって、制御装置50bは室内熱交換器5での冷媒流量を確保できる。
 図17は、実施の形態2に係る図10の単独冷房モード時における冷媒の流れの一例を示す説明図である。空調装置のみの運転時(ステップST212;No)において、冷房運転が実施されている場合(ステップST214;No)、運転制御手段51は、図17に示されるように第1流路切替装置3、第2流路切替装置4、及び第3絞り装置9を制御して単独冷房モードを実施する。つまり、第1流路切替装置3は第1圧縮機1の冷媒吐出側と室外熱交換器2とを連通させ、第2流路切替装置4は第1圧縮機1の冷媒吸入側と室内熱交換器5とを連通させ、第3絞り装置9は全閉とされる(ステップST216)。
 これより、空調側冷媒回路30bにおいて室外熱交換器2が凝縮器、室内熱交換器5が蒸発器となる。この場合、冷凍装置16bが運転停止中であって排熱回収が不要なため、排熱回収熱交換器6には冷媒が流れない構成となっている。
 空調装置及び冷凍装置16bの同時運転又は単独運転においてステップST207、ST209、ST210、ST211、ST213、ST215、又はST216等の各制御が行われた後、制御装置50bはステップST202に戻り以降のステップを繰返す。
 なお、運転制御手段51は第1絞り装置7、第2絞り装置8、及び第3絞り装置9の絞り開度を調整して、絞り装置が接続される二段絞りの中間圧となる冷媒配管部において冷媒が予め設定された過冷却液冷媒となるよう制御する。ただし、絞り装置が全閉を指示されている場合は、絞り装置は指示に従って全閉する。
 また制御装置50bは、冷凍装置16bにおいて、冷凍側絞り装置13の入口が所定の過冷却度となるよう凝縮能力を調整する。なお、冷凍側絞り装置13の開度が所定開度の全開にされた場合でも所定の過冷却度が得られない場合は、空調装置との熱交換が要求される。制御装置50bは、例えば空調側冷媒回路30bにおいて排熱回収熱交換器6の出口過熱度(スーパーヒート)等を検知することによって、空調側冷媒回路30b及び冷凍側冷媒回路40bの連携制御が可能である。このように制御することで、冷凍装置16bからの凝縮排熱を排熱回収熱交換器6で空調装置の蒸発器として回収し、空調の暖房や霜取の熱源として活用するとともに、空調装置の凝縮器の余剰能力を冷凍装置の凝縮能力の増強に使うことで、省エネ運転を可能とする。
 また、本実施の形態では、第2流路切替装置4を室内熱交換器5の近傍に設けたが、空調室内機15bではなく室外機14bに配置してもよい。さらに、第2流路切替装置4の後段に空調室内機15bを複数配置してもよい。また、第2流路切替装置4、室内熱交換器5、及び第1絞り装置7をセットとして空調室内機15bとみなし、複数並列接続させた空調室内機15bを適用させてもよい。第2流路切替装置4を室内側に配置した場合は特に、排熱回収熱交換器6および冷凍装置16bの一体型構造として空調装置側の配管を屋内のみで短く設置できるという効果が得られる。
 また、制御装置50bは、室内熱交換器5が蒸発器として機能する冷房運転時に、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吐出側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吸入側とを接続させてもよい。これより、冷凍装置16bは、専用凝縮器を有さない場合でも空調装置側との熱交換により冷却能力を得ることができる。
 以上のように本実施の形態において制御装置50bは、室内熱交換器5が蒸発器として機能する冷房運転時に、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吐出側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吸入側とを接続させるものであってもよい。本実施の形態の構成においては、冷凍装置16bの凝縮器は排熱回収熱交換器6で代用され、専用の凝縮器を設けないので室外機14bを小型化できる。これより、専用の凝縮器を備えていない冷凍装置16bであっても、冷凍装置の単独運転時に、排熱回収熱交換器6に空調側冷媒回路30bの低圧冷媒を流入させて冷凍効率を高めることができる。
 また、制御装置50bは、室内熱交換器5の冷媒循環が停止される冷凍側冷媒回路40bの単独運転時には、第1流路切替装置3を制御して室外熱交換器2と第1圧縮機1の吐出側とを接続させ、第2流路切替装置4を制御して室内熱交換器5と第1圧縮機1の吸入側とを接続させ、第1絞り装置7を全閉してもよい。これより、専用の凝縮器を有さない冷凍装置16bであっても、空調装置で空調が行われていない場合には、空調側冷媒回路30bを運転し熱交換により冷却効率を高めることができる。
 また、空調側冷媒回路30bはさらに、排熱回収熱交換器6に流れる冷媒流量を変化させる第3絞り装置9を備え、第3絞り装置9と第1圧縮機1の吸入側とは排熱回収熱交換器6を挟むように配管を介して接続されるものであってもよい。これより、制御装置50bは第3絞り装置9を制御して排熱回収熱交換器6への冷媒の流れを調整できる。
 制御装置50bは、冷却器12の冷媒循環が停止される空調側冷媒回路30bの単独運転時には、第3絞り装置9を全閉して排熱回収熱交換器6の冷媒循環を停止させてもよい。これより、冷凍装置16bが停止中であり排熱回収できない場合には排熱回収熱交換器6に冷媒が流れず、冷媒同士の熱交換が行われないため、空調装置は独立した空調装置と同等の空調能力が確保できる。また、従来の排熱回収式空気調和装置とは異なり不要な経路を通過しないので、不安定な熱移動が生じない。したがって、室外熱交換器2に安全率をもたせてサイズを設計する必要がなく、室外熱交換器2は小型化できる。
 本実施の形態において、排熱回収熱交換器6を空調蒸発器専用のものとして説明したが、これに限定されない。例えば給湯用途などの凝縮器専用、又は蒸発凝縮切替の熱交換器に本実施の形態の排熱回収熱交換器6を適用してもよい。また、室外機14a,14b、空調室内機15a,15b、及び冷凍装置16a,16bのユニット台数、並びに搭載される構成機器の個数などは、本実施の形態に記載されるものに限定されない。また、空調装置及び冷凍装置16a,16bの用途に応じて、構成機器を搭載するユニットが決定されてもよい。
 1 第1圧縮機、2 室外熱交換器、3 第1流路切替装置、4 第2流路切替装置、5 室内熱交換器、6 排熱回収熱交換器、7 第1絞り装置、8 第2絞り装置、9 第3絞り装置、10 第2圧縮機、11 凝縮器、12 冷却器、13 冷凍側絞り装置、14a,14b 室外機、15a,15b 空調室内機、16a,16b 冷凍装置、17 排熱回収装置、30a,30b 空調側冷媒回路、31 排熱回収経路、32 圧縮機経路、40a,40b 冷凍側冷媒回路、50a,50b 制御装置、51 運転制御手段、52 着霜判定手段、53 能力判定手段、61~64 センサ、100a,b 排熱回収式空気調和装置。

Claims (13)

  1.  第1圧縮機と、第1流路切替装置と、室外熱交換器と、第1絞り装置と、室内熱交換器と、第2流路切替装置とが配管を介して接続され、前記室外熱交換器及び前記室内熱交換器の双方に排熱回収熱交換器が配管を介して並列接続された空調側冷媒回路と、
     第2圧縮機と、前記排熱回収熱交換器と、冷凍側絞り装置と、冷却器とが配管を介して接続された冷凍側冷媒回路と、を備え、
     前記第1流路切替装置は、前記室外熱交換器と前記排熱回収熱交換器との間に設けられ、前記室外熱交換器を前記第1圧縮機の吐出側及び吸入側のいずれか一方に配管を介して接続し、
     前記第2流路切替装置は、前記室内熱交換器と前記排熱回収熱交換器との間に設けられ、前記室内熱交換器を前記第1圧縮機の吐出側及び吸入側のいずれか一方に配管を介して接続し、
     前記排熱回収熱交換器は、前記空調側冷媒回路において配管を介して前記第1圧縮機の吸入側に接続され、前記空調側冷媒回路の冷媒と前記冷凍側冷媒回路の冷媒とを熱交換させる、
     排熱回収式空気調和装置。
  2.  運転モードに応じて前記空調側冷媒回路及び前記冷凍側冷媒回路を制御する制御装置をさらに備える請求項1に記載の排熱回収式空気調和装置。
  3.  前記制御装置は、前記室内熱交換器が蒸発器として機能する冷房運転時に、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吐出側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吸入側とを接続させる請求項2に記載の排熱回収式空気調和装置。
  4.  前記制御装置は、前記室内熱交換器の冷媒循環が停止される前記冷凍側冷媒回路の単独運転時には、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吐出側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吸入側とを接続させ、前記第1絞り装置を全閉する請求項2に記載の排熱回収式空気調和装置。
  5.  前記空調側冷媒回路はさらに、前記排熱回収熱交換器に流れる冷媒流量を変化させる第3絞り装置を備え、前記第3絞り装置と前記第1圧縮機の吸入側とは排熱回収熱交換器を挟むように配管を介して接続される請求項2~4のいずれか一項に記載の排熱回収式空気調和装置。
  6.  前記制御装置は、前記冷却器の冷媒循環が停止される前記空調側冷媒回路の単独運転時には、前記第3絞り装置を全閉して前記排熱回収熱交換器の冷媒循環を停止させる請求項5に記載の排熱回収式空気調和装置。
  7.  前記冷凍側冷媒回路はさらに、前記第2圧縮機の吐出側と前記冷却器との間に凝縮器を備える請求項2又は4に記載の排熱回収式空気調和装置。
  8.  前記制御装置は、
     前記室内熱交換器が凝縮器として機能する暖房運転時に、前記室外熱交換器に着霜が検出される着霜条件が満たされるか否かを判定する着霜判定手段と、
     前記暖房運転時に、前記空調側冷媒回路の凝縮能力が前記冷凍側冷媒回路の必要蒸発能力を下回る能力条件が満たされるか否かを判定する能力判定手段と、を備え、
     前記着霜条件が満たされないと判定され、かつ前記能力条件が満たされないと判定された場合に、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吸入側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吐出側とを接続させる請求項2又は7に記載の排熱回収式空気調和装置。
  9.  前記能力判定手段はさらに、前記暖房運転時に、前記凝縮能力が設定閾値に達する能力限界条件が満たされるか否かを判定するものであって、
     前記制御装置は、前記着霜条件及び前記能力条件のうち少なくとも一つが満たされると判定され、かつ前記能力限界条件が満たされないと判定された場合に、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吐出側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吐出側とを接続させる請求項8に記載の排熱回収式空気調和装置。
  10.  前記空調側冷媒回路はさらに、前記室外熱交換器に流れる冷媒流量を変化させる第2絞り装置を備え、前記第2絞り装置と前記第1流路切替装置とは前記室外熱交換器を挟むように配管を介して接続される請求項9に記載の排熱回収式空気調和装置。
  11.  前記制御装置は、前記着霜条件及び前記能力条件のうち少なくとも一つが満たされると判定され、かつ前記能力限界条件が満たされると判定された場合に、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吸入側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吐出側とを接続させ、前記第2絞り装置を全閉して前記室外熱交換器の冷媒循環を停止させる請求項10に記載の排熱回収式空気調和装置。
  12.  前記空調側冷媒回路はさらに、前記排熱回収熱交換器に流れる冷媒流量を変化させる第3絞り装置を備え、前記第3絞り装置と前記第1圧縮機の吸入側とは前記排熱回収熱交換器を挟むように配管を介して接続される請求項7に記載の排熱回収式空気調和装置。
  13.  前記制御装置は、
     前記室内熱交換器が蒸発器として機能する冷房運転時に、前記空調側冷媒回路の凝縮能力が必要蒸発能力を上回る能力条件が満たされるか否かを判定する能力判定手段を備え、
     前記能力条件が満たされると判定された場合は、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吐出側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吸入側とを接続させ、前記第3絞り装置を開き、
     前記能力条件が満たされないと判定された場合は、前記第1流路切替装置を制御して前記室外熱交換器と前記第1圧縮機の吐出側とを接続させ、前記第2流路切替装置を制御して前記室内熱交換器と前記第1圧縮機の吸入側とを接続させ、前記第3絞り装置を全閉して前記排熱回収熱交換器の冷媒循環を停止させる請求項12に記載の排熱回収式空気調和装置。
PCT/JP2016/062665 2016-04-21 2016-04-21 排熱回収式空気調和装置 WO2017183160A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/062665 WO2017183160A1 (ja) 2016-04-21 2016-04-21 排熱回収式空気調和装置
US16/076,056 US10724776B2 (en) 2016-04-21 2016-04-21 Exhaust heat recovery type of air-conditioning apparatus
JP2018512724A JP6529663B2 (ja) 2016-04-21 2016-04-21 排熱回収式空気調和装置
CN201680084505.8A CN108885031B (zh) 2016-04-21 2016-04-21 排热回收式空气调和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062665 WO2017183160A1 (ja) 2016-04-21 2016-04-21 排熱回収式空気調和装置

Publications (1)

Publication Number Publication Date
WO2017183160A1 true WO2017183160A1 (ja) 2017-10-26

Family

ID=60116723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062665 WO2017183160A1 (ja) 2016-04-21 2016-04-21 排熱回収式空気調和装置

Country Status (4)

Country Link
US (1) US10724776B2 (ja)
JP (1) JP6529663B2 (ja)
CN (1) CN108885031B (ja)
WO (1) WO2017183160A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341138A (zh) * 2018-09-27 2019-02-15 克莱门特捷联制冷设备(上海)有限公司 机房和热水系统的组合空调系统及其控制方法
CN109340960A (zh) * 2018-09-27 2019-02-15 克莱门特捷联制冷设备(上海)有限公司 机房和房间的组合空调系统及其控制方法
CN109357426A (zh) * 2018-09-27 2019-02-19 克莱门特捷联制冷设备(上海)有限公司 用于机房和房间的组合式空调系统及其控制方法
CN109357427A (zh) * 2018-09-27 2019-02-19 克莱门特捷联制冷设备(上海)有限公司 用于机房和热水系统的组合式空调系统及其控制方法
WO2020161834A1 (ja) * 2019-02-06 2020-08-13 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579356B (zh) * 2018-12-21 2020-10-27 广东志高暖通设备股份有限公司 一种带有热回收功能的温控多联机热泵系统及控制方法
CN109579357B (zh) * 2018-12-21 2020-10-27 广东志高暖通设备股份有限公司 一种具有高效热回收的多联机热泵系统及控制方法
CN114508786A (zh) * 2022-02-17 2022-05-17 珠海格力电器股份有限公司 空调系统、空调系统的控制方法及控制装置
CN115289549A (zh) * 2022-07-12 2022-11-04 珠海格力电器股份有限公司 空调外机热能回收利用系统、方法及空调

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028576A (ja) * 2003-06-27 2004-01-29 Sanyo Electric Co Ltd 空調冷凍装置
JP2004170001A (ja) * 2002-11-20 2004-06-17 Sanyo Electric Co Ltd 冷凍システム
JP2006057869A (ja) * 2004-08-17 2006-03-02 Daikin Ind Ltd 冷凍装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179961A (ja) 1998-12-15 2000-06-30 Matsushita Refrig Co Ltd 店舗用冷凍空調装置
JP2001280729A (ja) 2000-03-31 2001-10-10 Daikin Ind Ltd 冷凍装置
JP2002277098A (ja) 2001-03-21 2002-09-25 Daikin Ind Ltd 冷凍装置
KR100803144B1 (ko) * 2007-03-28 2008-02-14 엘지전자 주식회사 공기조화기
US20090120117A1 (en) * 2007-11-13 2009-05-14 Dover Systems, Inc. Refrigeration system
JP5709978B2 (ja) * 2011-03-28 2015-04-30 三菱電機株式会社 空気調和装置
US20130080297A1 (en) * 2011-09-22 2013-03-28 Robert Germain, JR. Method and system for transforming sales data into an electronic sales tracking display
WO2013080297A1 (ja) * 2011-11-29 2013-06-06 株式会社日立製作所 空調給湯システム
KR101873595B1 (ko) * 2012-01-10 2018-07-02 엘지전자 주식회사 캐스케이드 히트펌프 장치 및 그 구동 방법
KR101973203B1 (ko) * 2012-09-24 2019-04-26 엘지전자 주식회사 공조 냉각 일체형 시스템
CN104344601A (zh) * 2013-08-02 2015-02-11 O.Y.L.研究及发展中心公司 用于多功能热泵和多功能空调器的热回收装置
FR3016206B1 (fr) * 2014-01-08 2016-02-05 Alstom Transport Sa Dispositif de climatisation d'un compartiment, notamment pour un vehicule ferroviaire
CN104359247A (zh) * 2014-11-08 2015-02-18 合肥天鹅制冷科技有限公司 一种热泵装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170001A (ja) * 2002-11-20 2004-06-17 Sanyo Electric Co Ltd 冷凍システム
JP2004028576A (ja) * 2003-06-27 2004-01-29 Sanyo Electric Co Ltd 空調冷凍装置
JP2006057869A (ja) * 2004-08-17 2006-03-02 Daikin Ind Ltd 冷凍装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341138A (zh) * 2018-09-27 2019-02-15 克莱门特捷联制冷设备(上海)有限公司 机房和热水系统的组合空调系统及其控制方法
CN109340960A (zh) * 2018-09-27 2019-02-15 克莱门特捷联制冷设备(上海)有限公司 机房和房间的组合空调系统及其控制方法
CN109357426A (zh) * 2018-09-27 2019-02-19 克莱门特捷联制冷设备(上海)有限公司 用于机房和房间的组合式空调系统及其控制方法
CN109357427A (zh) * 2018-09-27 2019-02-19 克莱门特捷联制冷设备(上海)有限公司 用于机房和热水系统的组合式空调系统及其控制方法
CN109357426B (zh) * 2018-09-27 2020-11-03 克莱门特捷联制冷设备(上海)有限公司 用于机房和房间的组合式空调系统及其控制方法
CN109357427B (zh) * 2018-09-27 2020-11-03 克莱门特捷联制冷设备(上海)有限公司 用于机房和热水系统的组合式空调系统及其控制方法
CN109340960B (zh) * 2018-09-27 2020-11-03 克莱门特捷联制冷设备(上海)有限公司 机房和房间的组合空调系统及其控制方法
CN109341138B (zh) * 2018-09-27 2020-11-03 克莱门特捷联制冷设备(上海)有限公司 机房和热水系统的组合空调系统及其控制方法
WO2020161834A1 (ja) * 2019-02-06 2020-08-13 三菱電機株式会社 冷凍サイクル装置
JPWO2020161834A1 (ja) * 2019-02-06 2021-10-28 三菱電機株式会社 冷凍サイクル装置
JP7331021B2 (ja) 2019-02-06 2023-08-22 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP6529663B2 (ja) 2019-06-12
CN108885031B (zh) 2020-06-19
US20190154320A1 (en) 2019-05-23
CN108885031A (zh) 2018-11-23
US10724776B2 (en) 2020-07-28
JPWO2017183160A1 (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6529663B2 (ja) 排熱回収式空気調和装置
JP4001171B2 (ja) 冷凍装置
WO2011048695A1 (ja) 空気調和装置
WO2005019742A1 (ja) 冷凍装置
JP5963971B2 (ja) 空気調和装置
CN113959010A (zh) 一拖多制冷制热空调机
JP4659521B2 (ja) 冷凍空調装置、冷凍空調装置の運転方法、冷凍空調装置の製造方法、冷凍装置、冷凍装置の製造方法
KR102082881B1 (ko) 냉난방 동시형 멀티 공기조화기
KR20190041091A (ko) 공기조화기
JP2001296068A (ja) 蓄熱式冷凍装置
JP2021055876A (ja) 熱源ユニット及び冷凍装置
JP5473581B2 (ja) 空気調和装置
JP6042037B2 (ja) 冷凍サイクル装置
JPH10176869A (ja) 冷凍サイクル装置
JP4375393B2 (ja) 冷凍装置
JPH04324075A (ja) 空気調和装置
JP6932551B2 (ja) 熱交換システム及びその制御方法
JP2002277066A (ja) 車両用空調装置
JP2009115336A (ja) 冷凍装置
JP4284823B2 (ja) 冷凍装置
JP3991654B2 (ja) 空気調和機
JP2007298188A (ja) 冷凍装置
JPH0252964A (ja) 多室形冷凍回路
JP2002174465A (ja) 冷凍装置
KR20110074069A (ko) 냉매시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899432

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899432

Country of ref document: EP

Kind code of ref document: A1