WO2017181815A1 - 用于费托合成反应的负载型铁基催化剂及其制备方法 - Google Patents

用于费托合成反应的负载型铁基催化剂及其制备方法 Download PDF

Info

Publication number
WO2017181815A1
WO2017181815A1 PCT/CN2017/078018 CN2017078018W WO2017181815A1 WO 2017181815 A1 WO2017181815 A1 WO 2017181815A1 CN 2017078018 W CN2017078018 W CN 2017078018W WO 2017181815 A1 WO2017181815 A1 WO 2017181815A1
Authority
WO
WIPO (PCT)
Prior art keywords
fischer
tropsch synthesis
based catalyst
synthesis reaction
reaction according
Prior art date
Application number
PCT/CN2017/078018
Other languages
English (en)
French (fr)
Inventor
李程根
李昌元
宋德臣
饶莎莎
詹晓东
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2017181815A1 publication Critical patent/WO2017181815A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy

Definitions

  • the invention relates to Fischer-Tropsch synthesis technology, in particular to a supported iron-based catalyst for Fischer-Tropsch synthesis reaction and a preparation method thereof.
  • Fischer-Tropsch synthesis is a reaction in which synthesis gas (CO and H 2 ) raw materials are converted into organic hydrocarbons by the action of a catalyst, and the reaction products are further processed to obtain liquid fuels and other chemicals such as high-quality gasoline, diesel, aviation kerosene and the like.
  • Fischer-Tropsch synthesis technology is an effective way to obtain alternative fuels and bulk chemical raw materials.
  • the development of Fischer-Tropsch synthesis catalyst with high activity, high selectivity and excellent engineering properties is the core of the research on Fischer-Tropsch synthesis technology. One.
  • Fe and Co are industrially proven and ideal Fischer-Tropsch synthesis catalysts, which have been successfully applied in the industry.
  • Fe-based catalysts have a wide range of applications in coal-based syngas and biomass-based syngas conversion due to their low cost and high water-steam conversion activity.
  • Fe-based catalysts are classified into precipitated and supported types.
  • precipitated iron-based catalysts supported Fe-based catalysts have strong physical wear resistance, high specific surface area and good sintering resistance, thus reflecting better industrialization. Application prospects.
  • the supported iron-based catalyst containing no adjuvant is not satisfactory in the catalytic activity, stability and selectivity in the Fischer-Tropsch synthesis reaction.
  • the conventional supported Fe-based catalyst has the following problems in the Fischer-Tropsch synthesis reaction: 1) Cu is easily segregated on the surface of the catalyst particles, covering the active site, and the modulation effect on the active component is weakened, and the reaction is lowered. Activity and stability; 2) The additive K is easily combined with the defect of the carrier, resulting in uneven distribution of K on the surface of the catalyst, the electron donating effect on the active component is reduced, and the C 5+ selectivity in the product is decreased; 3) The CH 4 selectivity of the supported iron-based catalyst is obviously high; 4) The preparation of the conventional supported Fe-based catalyst usually requires multiple impregnation and calcination, and the operation steps are complicated and time-consuming. These shortcomings greatly limit the application of supported iron-based catalysts in the field of industrial Fischer-Tropsch synthesis.
  • the object of the present invention is to provide a supported iron-based catalyst for Fischer-Tropsch synthesis reaction and a preparation method thereof, which improve the modulation effect of Cu, K promoter on the active component Fe, thereby improving the catalyst Activity and stability extend the life of the catalyst.
  • the technical scheme adopted by the present invention is: a supported iron-based catalyst for Fischer-Tropsch synthesis reaction, comprising a carrier, an active component Fe, a promoter Cu and an auxiliary agent K, the active component Fe
  • the mass ratio of the carrier to the carrier is 20 to 60%, and the mass ratio of the active component Fe to the auxiliary agent Cu and the auxiliary agent K is 100:5 to 10:4 to 12;
  • the agent Cu and the auxiliary agent K are uniformly distributed on the surface of the catalyst.
  • the mass ratio of the active component Fe to the auxiliary agent Cu and the auxiliary agent K is from 100:6 to 10:8 to 12.
  • the mass ratio of the active component Fe to the carrier is 30 to 40%.
  • a method for preparing a supported iron-based catalyst for use in a Fischer-Tropsch synthesis reaction comprising the steps of:
  • the immersion time is 8 to 48 h
  • the ultrasonic vibration or microwave treatment time is 0.5 to 1.0 h during the immersion process
  • the vacuum drying temperature is 100 to 180 ° C
  • the vacuum drying time is 8 to 36 h.
  • the immersion time is 11-20 h
  • the ultrasonic or microwave vibration treatment time is 0.8-1.0 h during the immersion process
  • the vacuum drying temperature is 120-130 ° C
  • the vacuum drying time is 12-24 h.
  • the baking temperature is 300 to 600 ° C, and the baking time is 2 to 8 hours.
  • the baking temperature is 400 to 500 ° C, and the baking time is 4 to 6 hours.
  • a soluble nonionic surfactant is added to the mixed solution at a mass concentration of 60 to 90 g/L.
  • the temperature is raised to 30 to 50 ° C, and the treatment is performed by microwave or ultrasonic vibration, and the treatment time is 10 to 30 min.
  • the heating is further heated to 30 to 50 ° C, and the treatment is performed by microwave or ultrasonic vibration, and the treatment time is 10 to 30 min.
  • the soluble Cu salt is a mixture of one or both of copper nitrate hydrate or copper acetate hydrate.
  • the soluble K salt is a mixture of one or two of potassium nitrate or potassium acetate.
  • the alcohol is a mixture of one or more of methanol, ethanol, or butanol.
  • the nonionic surfactant is one of polyacrylic acid PAA, polyvinyl alcohol PVA, polyethylene glycol PEG, polyethylene oxide PEO, or Tween-80. Or a variety of mixes.
  • the soluble Fe salt is one or both of iron nitrate hydrate or iron acetate hydrate.
  • the carrier is weighed in such a manner that the loading amount of Fe is 30 to 40% of the mass of the carrier.
  • the carrier is a mixture of one or more of silica, alumina, activated carbon, or ZSM-5.
  • the present invention has the following advantages:
  • the present invention introduces one or more nonionic surfactants, and miscible the nonionic surfactant with the inorganic salt providing the active component of the catalyst, and introduces ultrasonic or microwave during the impregnation process.
  • the method improves the drying condition and the roasting condition, improves the modulation effect of the auxiliary agent Cu and the auxiliary agent K on the active component, thereby improving the activity and stability of the catalyst and prolonging the service life of the catalyst.
  • the reason for the excellent performance of the catalyst prepared by the invention is that the catalytic adjustment of the catalytic activity and the product selectivity of the catalyst are improved by optimizing the preparation conditions, adjusting the strong modulation effect of the Cu and K components on the Fe component in the catalyst particles.
  • the carbon deposit on the active particles of the catalyst is effectively eliminated, the growth of the carbon nanotubes is prevented, the stability of the supported structure of the catalyst is maintained, and the sintering of the active species is slowed down, so that the auxiliary Cu and the auxiliary K are in the catalyst.
  • the surface energy is evenly distributed.
  • the catalyst Cu of the present invention has a low content of Cu and auxiliary K, but the modulation effect on the active component is significantly stronger than the existing supported iron-based catalyst.
  • the ultrasonic treatment was carried out for 30 min, and the immersion treatment time was After 12 h, it was dried under vacuum at 130 ° C for 12 h, and then calcined at 500 ° C for 4 h under a nitrogen atmosphere, and the obtained catalyst was recorded as 40% Fe 100 Cu 6.0 K 8.0 /AC.
  • the immersion treatment time was 15 h, dried under vacuum at 125 ° C for 16 h, and then calcined in air at 400 ° C for 6 h.
  • the obtained catalyst was recorded as 35% Fe 100 Cu 6.0 K 4.0 /SiO 2 .
  • the immersion treatment time was 18 h, dried under vacuum at 120 ° C for 24 h, and then calcined in air at 450 ° C for 5 h, and the obtained catalyst was recorded as 32% Fe 100 Cu 10.0 K 12.0 /ZSM-5.
  • the immersion treatment time was 10 h, dried under vacuum at 120 ° C for 24 h, and then calcined in air at 450 ° C for 5 h, and the obtained catalyst was recorded as 35% Fe 100 Cu 5.0 K 12.0 /ZSM-5.
  • the obtained catalyst is recorded as 37% Fe 100 Cu 7.0 K 9.0 / Al 2 O 3 .
  • the obtained catalyst is recorded as 40% Fe 100 Cu 10.0 K 4.0 /Al 2 O 3 .
  • the catalysts prepared in Examples 1 to 7 and Comparative Example 1 were activated to carry out a Fischer-Tropsch synthesis reaction, wherein the activation conditions were as follows: activation temperature: 450 ° C, reducing atmosphere: H 2 , reduction time: 16 h; Fischer-Tropsch synthesis reaction
  • the reaction conditions were as follows: reactor fixed bed reactor reaction temperature: 280 ° C, reaction pressure: 3.0 MPa, H 2 /CO: 1.7, reactor space velocity (GHSV): 3.0 SL / g ⁇ h.
  • Example 1 85.4 4.9 15.9 79.2
  • Example 2 87.9 4.7 13.4 81.9
  • Example 3 89.6 4.5 12.4 83.1
  • Example 4 93.5 4.4 16.9 78.7
  • Example 5 84.7 7.1 13.8 79.1
  • Example 6 91.4 5.2 13.4 81.4
  • Example 7 95.4 4.8 15.6 79.6 Comparative example 1 70.2 7.6 37.3 55.1
  • Example 1 60.4 5.9 16.9 77.2
  • Example 2 61.9 6.0 15.1 78.9
  • Example 3 63.6 5.5 16.4 78.1
  • Example 4 62.5 6.4 17.9 75.7
  • Example 5 58.7 6.3 20.6 73.1
  • Example 6 61.4 6.4 19.2 74.4
  • Example 7 60.4 6.4 20.0 73.6 Comparative example 1 40.7 8.6 44.3 47.1
  • the supported Fe-based catalyst prepared by the method of the invention obviously enhances the strong modulation effect of the Cu and K components on the Fe component, thereby improving the activity and selectivity of the catalyst, prolonging its service life and reducing the unit.
  • the cost of synthetic oils is significant for the development of new and efficient Fe-based catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

一种用于费托合成反应的负载型铁基催化剂及其制备方法,催化剂包括载体,活性组分Fe,和助剂Cu、K,Fe与载体的质量比为20~60%,Fe与Cu、K的质量比为100∶5~10∶4~12;助剂Cu、K在催化剂的表面均匀分布。制备过程中,通过引进一种或多种非离子型表面活性剂,将其与提供活性成分Fe的无机盐一并混溶,并在浸渍过程中引入超声或微波的方法,改善干燥和焙烧条件,从而提高了催化剂的活性和稳定性。

Description

用于费托合成反应的负载型铁基催化剂及其制备方法 技术领域
本发明涉及费托合成技术,具体地指一种用于费托合成反应的负载型铁基催化剂及其制备方法。
背景技术
费托合成是将合成气(CO和H2)原料在催化剂的作用下转化为有机烃类的反应,反应产物经进一步加工可获得高品质汽油、柴油、航空煤油等液态燃料及其它化学品。费托合成技术是一种获得可替代燃料和大宗化工原料的有效途径,开发高活性、高选择性、且具有优良的工程特性的费托合成催化剂是费托合成技术研究中最为核心的内容之一。
Fe、Co是经过工业验证的较为理想的费托合成催化剂,目前在工业中均已成功应用。与Co基催化剂相比,Fe基催化剂因成本低廉、具有较高的水煤汽变换活性等特点,在煤基合成气和生物质基合成气转化中有着广泛的应用。Fe基催化剂分为沉淀型和负载型,与沉淀型铁基催化剂相比,负载型Fe基催化剂抗物理磨损性能强,具有高比表面积、抗烧结性能良好的特点,因此体现出更好的工业化应用前景。但是,不含助剂的负载型铁基催化剂在费托合成反应中的催化活性、稳定性及选择性均不理想。因此,在铁基催化剂的制备过程中,需要添加Cu、K等助剂来调节催化剂的各项性能指标。安霞等人的研究表明,因催化剂制备条件的不同,Cu对催化剂活性和稳定性的影响也不尽相同(Journal of Fuel Chemistry and Technology,Vol39,2011,212);Zhao等人的研究结果表明催化剂中K与载体的“空穴”或孔道中的酸性位结合,直接削弱了Fe与K的接触,抑制了催化剂中K的促进作用(Journal of Molecular Catalysis A:Chemical,Vol286,2008,137);中国专利文献CN102649079A中报道了一种活性炭负载的Fe基催化剂,该催化剂的甲烷选择性大于20%,明显偏高。
综上所述,传统负载型Fe基催化剂在费托合成反应中存在如下问题:1)助剂Cu容易在催化剂粒子表面偏析,覆盖活性位,对活性组分的调变作用变弱,降低反应活性和稳定性;2)助剂K易与载体的缺陷位结合,导致K在催化剂表面的分布不均,对活 性组分的供电子效应减小,产物中C5+选择性下降;3)负载型铁基催化剂的CH4选择性明显偏高;4)制备传统负载型Fe基催化剂通常需采用多次浸渍及焙烧,其操作步骤复杂,耗时长。以上这些缺点极大地限制了负载型铁基催化剂在工业费托合成领域的应用。
发明内容
本发明的目的就是要提供一种用于费托合成反应的负载型铁基催化剂及其制备方法,该催化剂提高了Cu、K助剂对活性组分Fe的调变作用,从而提高了催化剂的活性和稳定性,延长了催化剂的使用寿命。
为实现上述目的,本发明采用的技术方案是:一种用于费托合成反应的负载型铁基催化剂,包括载体,活性组分Fe,助剂Cu及助剂K,所述活性组分Fe与所述载体的质量比为20~60%,所述活性组分Fe与所述助剂Cu及所述助剂K的质量比为:100∶5~10∶4~12;且所述助剂Cu和所述助剂K在催化剂的表面均匀分布。
进一步地,所述活性组分Fe与所述助剂Cu及所述助剂K的质量比为:100∶6~10∶8~12。
进一步地,所述活性组分Fe与所述载体的质量比为30~40%。
一种上述用于费托合成反应的负载型铁基催化剂的制备方法,包括以下步骤:
1)将水与醇按体积比为1~3∶1的比例配制成混合液,然后按Cu∶K的质量比为5∶2~12的比例称取可溶性Cu盐和可溶性K盐搅拌溶于所述混合液中,配得混合溶液;
2)按质量浓度为20~100g/L的比例向所述混合溶液中加入可溶的非离子型表面活性剂,配得前驱体母液;
3)按Fe∶Cu∶K的质量比为100∶5~10∶4~12的比例向所述前驱体母液中加入可溶性Fe盐,配得浸渍母液,所述浸渍母液中Fe的浓度为25~100g/L;
4)按Fe的负载量为所述载体质量的20~60%的比例称取所述载体,将所述母液完全浸渍到所述载体上,在浸渍过程中采用超声振动或微波处理,然后进行真空干燥处理,得到样品;
5)将所述样品进行焙烧处理,即可得到所述催化剂。
进一步地,所述步骤4)中,浸渍时间为8~48h,在浸渍过程中超声振动或微波处理时间为0.5~1.0h;真空干燥温度为100~180℃,真空干燥时间为8~36h。
进一步地,所述步骤4)中,浸渍时间为11~20h,在浸渍过程中超声或微波振动处理时间为0.8~1.0h;真空干燥温度为120~130℃,真空干燥时间为12~24h。
进一步地,所述步骤5)中,焙烧温度为300~600℃,焙烧时间为2~8h。
进一步地,所述步骤5)中,焙烧温度为400~500℃,焙烧时间为4~6h。
进一步地,所述步骤2)中,按质量浓度为60~90g/L的比例向所述混合溶液中加入可溶的非离子型表面活性剂。
进一步地,所述步骤2)中,加热升温至30~50℃、并采用微波或是超声振动处理,处理时间为10~30min。
进一步地,所述步骤3)中,继续加热升温至30~50℃,并采用微波或超声振动处理,处理时间为10~30min。
进一步地,所述步骤1)中,所述可溶性Cu盐为硝酸铜水合物或醋酸铜水合物中的一种或两种的混合。
进一步地,所述步骤1)中,所述可溶性K盐为硝酸钾或醋酸钾中一种或两种的混合。
进一步地,所述步骤1)中,所述醇为甲醇、乙醇、或丁醇中的一种或多种的混合。
进一步地,所述步骤2)中,所述非离子型表面活性剂为聚丙烯酸PAA、聚乙烯醇PVA、聚乙二醇PEG、聚环氧乙烷PEO、或吐温-80中的一种或多种的混合。
进一步地,所述步骤3)中,所述可溶性Fe盐为硝酸铁水合物或醋酸铁水合物中的一种或两种。
进一步地,所述步骤4)中,按Fe的负载量为所述载体质量的30~40%的比例称取所述载体。
更进一步地,所述步骤4)中,所述载体为二氧化硅、氧化铝、活性炭、或ZSM-5中一种或多种的混合。
与现有技术相比,本发明具有以下优点:
其一,本发明通过引进一种或多种非离子型表面活性剂,并将非离子型表面活性剂与提供催化剂活性成分的无机盐一并混溶,并在浸渍过程中引入超声或微波的方法,改善干燥条件和焙烧条件,提高助剂Cu、助剂K对活性组分的调变作用,从而提高催化剂的活性和稳定性,延长催化剂的使用寿命。
其二,本发明制备的催化剂性能优良的原因在于,通过优化制备条件,调节了催化剂粒子中Cu、K组分对Fe组分的强烈调变作用,提高了催化剂的反应活性和产物选择性,有效消除了反应过程中催化剂活性颗粒上的积炭,阻止了碳纳米管的生长,保持了催化剂负载结构的稳定性,并减缓了活性物种的烧结,使得助剂Cu和助剂K在催化剂的表面能均匀分布。
其三,本发明催化剂的助剂Cu和助剂K含量低,但是对于活性组分的调变作用明显强于现有的负载型铁基催化剂。
其四,为提高助剂效率和助剂调变作用,传统负载型铁基催化剂制备工艺中通常需采用多次浸渍等复杂方法,而本发明的制备过程中只需浸渍一次,工序简单,操作便利。
具体实施方式
下面结合具体实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
实施例1
称取0.68g三水硝酸铜、0.50g硝酸钾,用30ml甲醇与30ml水的混合液将三水硝酸铜和硝酸钾溶解,加入5.4g的聚乙二醇,在30℃超声处理30min,加入17.31g九水硝酸铁后,在50℃继续超声15min,制得浸渍母液,接着称取6g的活性炭,将浸渍母液逐滴加入到活性炭载体上,滴加完毕后,超声处理30min,浸渍处理时间12h,在130℃真空条件下干燥12h,然后在氮气气氛保护下500℃焙烧4h,所得的催化剂记为40%Fe100Cu6.0K8.0/AC。
实施例2
称取0.26g一水醋酸铜、0.19g硝酸钾,用20ml甲醇与40ml水的混合液将一水醋酸铜和硝酸钾溶解,加入4.8g的聚乙烯醇PVA,在50℃超声处理10min,加入7.49g醋酸铁后,在40℃继续超声15min,制得浸渍母液,接着称取6g的二氧化硅,将浸渍母液逐滴加入到二氧化硅载体上,滴加完毕后,微波处理30min,浸渍处理时间15h,在125℃真空条件下干燥16h,然后在空气中,400℃下焙烧6h,所得的催化剂记为30%Fe100Cu5.0K4.0/SiO2
实施例3
称取0.36g一水醋酸铜、0.22g硝酸钾,用20ml乙醇与50ml水的混合液将一水醋酸铜和硝酸钾溶解,加入4.8g的聚丙烯酸PAA,在40℃超声处理15min,加入15.15g九水硝酸铁后,在50℃继续超声15min,制得浸渍母液,接着称取6g的二氧化硅,将浸渍母液逐滴加入到二氧化硅载体上,滴加完毕后,超声处理45min,浸渍处理时间15h,在125℃真空条件下干燥16h,然后在空气中,400℃下焙烧6h,所得的催化剂记为35%Fe100Cu6.0K4.0/SiO2
实施例4
称取0.92g三水硝酸铜、0.60g硝酸钾,用30ml丁醇与30ml水的混合液将三水硝酸铜和硝酸钾溶解,加入3.6g的聚乙烯醇PVA,在40℃超声处理20min,加入8.00g醋酸铁后,在45℃继续超声15min,制得浸渍母液,接着称取6g的ZSM-5,将浸渍母液逐滴加入到ZSM-5载体上,滴加完毕后,微波处理45min,浸渍处理时间18h,在120℃真空条件下干燥24h,然后在空气中,450℃下焙烧5h,所得的催化剂记为32%Fe100Cu10.0K12.0/ZSM-5。
实施例5
称取0.30g一水醋酸铜、0.65g硝酸钾,用20ml丁醇与40ml水的混合液将一水醋酸铜和硝酸钾溶解,加入3.6g的聚丙烯酸PAA,在35℃超声处理15min,加入15.15g九水硝酸铁后,在50℃继续超声20min,制得浸渍母液,接着称取6g的ZSM-5,将浸渍母液逐滴加入到ZSM-5载体上,滴加完毕后,超声处理60min,浸渍处理时间10h,在120℃真空条件下干燥24h,然后在空气中,450℃下焙烧5h,所得的催化剂记为35%Fe100Cu5.0K12.0/ZSM-5。
实施例6
称取0.74g三水硝酸铜、0.52g硝酸钾,用20ml乙醇与30ml水的混合液将三水硝酸铜和硝酸钾溶解,加入2.1g的聚乙烯醇与2.1g的聚乙二醇,在40℃超声处理15min,加入16.02g九水硝酸铁后,在50℃继续超声15min,制得浸渍母液,接着称取6g的Al2O3,将浸渍母液逐滴加入到Al2O3载体上,滴加完毕后,微波处理60min,浸渍处理时间20h,在125℃真空条件下干燥20h,然后在空气中,450℃下焙烧5h,所得的催化剂记为37%Fe100Cu7.0K9.0/Al2O3
实施例7
称取0.69g一水醋酸铜、0.25g硝酸钾,用30ml甲醇与30ml水的混合液将一水醋酸铜和硝酸钾溶解,加入2.1g的聚乙烯醇与2.1g的聚乙二醇,在30℃超声处理15min,加入9.99g醋酸铁后,在50℃继续超声25min,制得浸渍母液,接着称取6g的Al2O3,将浸渍母液逐滴加入到Al2O3载体上,滴加完毕后,超声处理30min,微波处理30min,浸渍处理时间20h,在125℃真空条件下干燥20h,然后在空气中,450℃下焙烧5h,所得的催化剂记为40%Fe100Cu10.0K4.0/Al2O3
对比例1
称取9.99g醋酸铁、0.69g一水醋酸铜、0.93g硝酸钾,用30ml甲醇与30ml水的混合物将其溶解,在50℃恒温30min,接着称取6g的活性炭,将浸渍母液逐滴加入到载体上,浸渍处理时间12h,在130℃真空条件下干燥12h,然后在氮气气氛保护下500℃焙烧4h,所得的催化剂记为40%Fe100Cu10.0K15.0/AC-IWI。
将实施例1~7及对比例1制得的催化剂活化后进行费托合成反应,其中,活化条件如下:活化温度:450℃,还原气氛:H2,还原时间:16h;费托合成反应的反应条件如下:反应器固定床反应器反应温度为:280℃,反应压力为:3.0MPa,H2/CO为:1.7,反应器空速(GHSV):3.0SL/g·h。
实施例1~7及对比例1制得的催化剂运行100h的活性评价结果见下表1:
表1
催化剂 CO转化率 CH4选择性 C2~C4选择性 C5+选择性
实施例1 85.4 4.9 15.9 79.2
实施例2 87.9 4.7 13.4 81.9
实施例3 89.6 4.5 12.4 83.1
实施例4 93.5 4.4 16.9 78.7
实施例5 84.7 7.1 13.8 79.1
实施例6 91.4 5.2 13.4 81.4
实施例7 95.4 4.8 15.6 79.6
对比例1 70.2 7.6 37.3 55.1
实施例1~7及对比例1制得的催化剂运行500h的活性评价结果见下表2:
表2
催化剂 CO转化率 CH4选择性 C2~C4选择性 C5+选择性
实施例1 60.4 5.9 16.9 77.2
实施例2 61.9 6.0 15.1 78.9
实施例3 63.6 5.5 16.4 78.1
实施例4 62.5 6.4 17.9 75.7
实施例5 58.7 6.3 20.6 73.1
实施例6 61.4 6.4 19.2 74.4
实施例7 60.4 6.4 20.0 73.6
对比例1 40.7 8.6 44.3 47.1
将实施例1~7制得的催化剂性能与对比例1的催化剂性能进行比较,从表1中数据可以看出本发明方法制备的催化剂活性明显提高,且产物中甲烷的选择性明显降低,C5+产物的选择性得到大幅提高。另外,比较实施例1~7和对比例1制得的催化剂运行100h与500h的评价结果,从表1和表2数据可以看出采用本发明方法制备的催化剂的稳定性得到明显改善,运行500h后仍保持较好的反应活性和产物选择性,而对比例1的CO转化率则已降至40.7%,C5+产物的选择性降至47.1。因此,采用本发明方法制备的负载型Fe基催化剂,明显增强了Cu、K组分对Fe组分的强烈调变作用,从而提高了催化剂的活性和选择性,延长其使用寿命,降低了单位合成油品的成本,这对于开发新型高效的Fe基催化剂意义重大。

Claims (18)

  1. 一种用于费托合成反应的负载型铁基催化剂,包括载体,活性组分Fe,助剂Cu及助剂K,其特征在于:所述活性组分Fe与所述载体的质量比为20~60%,所述活性组分Fe与所述助剂Cu及所述助剂K的质量比为:100∶5~10∶4~12;且所述助剂Cu和所述助剂K在催化剂的表面均匀分布。
  2. 根据权利要求1所述用于费托合成反应的负载型铁基催化剂,其特征在于:所述活性组分Fe与所述助剂Cu及所述助剂K的质量比为:100∶6~10∶8~12。
  3. 根据权利要求1所述用于费托合成反应的负载型铁基催化剂,其特征在于:所述活性组分Fe与所述载体的质量比为30~40%。
  4. 一种权利要求1所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:包括以下步骤:
    1)将水与醇按体积比为1~3∶1的比例配制成混合液,然后按Cu∶K的质量比为5∶2~12的比例称取可溶性Cu盐和可溶性K盐搅拌溶于所述混合液中,配得混合溶液;
    2)按质量浓度为20~100g/L的比例向所述混合溶液中加入可溶的非离子型表面活性剂,配得前驱体母液;
    3)按Fe∶Cu∶K的质量比为100∶5~10∶4~12的比例向所述前驱体母液中加入可溶性Fe盐,配得浸渍母液,所述浸渍母液中Fe的浓度为25~100g/L;
    4)按Fe的负载量为所述载体质量的20~60%的比例称取所述载体,将所述母液完全浸渍到所述载体上,在浸渍过程中采用超声振动或微波处理,然后进行真空干燥处理,得到样品;
    5)将所述样品进行焙烧处理,即可得到所述催化剂。
  5. 根据权利要求4所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤4)中,浸渍时间为8~48h,在浸渍过程中超声振动或微波处理时间为 0.5~1.0h;真空干燥温度为100~180℃,真空干燥时间为8~36h。
  6. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤4)中,浸渍时间为11~20h,在浸渍过程中超声或微波振动处理时间为0.8~1.0h;真空干燥温度为120~130℃,真空干燥时间为12~24h。
  7. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤5)中,焙烧温度为300~600℃,焙烧时间为2~8h。
  8. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤5)中,焙烧温度为400~500℃,焙烧时间为4~6h。
  9. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤2)中,按质量浓度为60~90g/L的比例向所述混合溶液中加入可溶的非离子型表面活性剂。
  10. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤2)中,加热升温至30~50℃、并采用微波或是超声振动处理,处理时间为10~30min。
  11. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤3)中,继续加热升温至30~50℃,并采用微波或超声振动处理,处理时间为10~30min。
  12. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤1)中,所述可溶性Cu盐为硝酸铜水合物或醋酸铜水合物中的一种或两种的混合。
  13. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤1)中,所述可溶性K盐为硝酸钾或醋酸钾中一种或两种的混合。
  14. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤1)中,所述醇为甲醇、乙醇、或丁醇中的一种或多种的混合。
  15. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤2)中,所述非离子型表面活性剂为聚丙烯酸PAA、聚乙烯醇PVA、聚乙二醇PEG、聚环氧乙烷PEO、或吐温-80中的一种或多种的混合。
  16. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤3)中,所述可溶性Fe盐为硝酸铁水合物或醋酸铁水合物中的一种或两种。
  17. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤4)中,按Fe的负载量为所述载体质量的30~40%的比例称取所述载体。
  18. 根据权利要求4或5所述用于费托合成反应的负载型铁基催化剂的制备方法,其特征在于:所述步骤4)中,所述载体为二氧化硅、氧化铝、活性炭、或ZSM-5中一种或多种的混合。
PCT/CN2017/078018 2016-04-21 2017-03-24 用于费托合成反应的负载型铁基催化剂及其制备方法 WO2017181815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610252332.8 2016-04-21
CN201610252332.8A CN105879875A (zh) 2016-04-21 2016-04-21 用于费托合成反应的负载型铁基催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2017181815A1 true WO2017181815A1 (zh) 2017-10-26

Family

ID=56704975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078018 WO2017181815A1 (zh) 2016-04-21 2017-03-24 用于费托合成反应的负载型铁基催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN105879875A (zh)
WO (1) WO2017181815A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138660A (zh) * 2020-10-15 2020-12-29 中国石油大学(华东) 一种铜铝加氢催化剂用途及其制备方法
CN112915999A (zh) * 2021-01-26 2021-06-08 北京石油化工学院 一种降解苯系物和乙酸乙酯的催化剂及其制备方法和应用
CN113750953A (zh) * 2021-09-27 2021-12-07 山东大学 热解烟气中SO2、H2S和Hg0协同脱除吸附剂及其制备方法
CN116116426A (zh) * 2023-02-15 2023-05-16 宁夏大学 一种用于费托合成的铁基催化剂及其制备方法、应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879875A (zh) * 2016-04-21 2016-08-24 武汉凯迪工程技术研究总院有限公司 用于费托合成反应的负载型铁基催化剂及其制备方法
CN113856721A (zh) * 2020-06-30 2021-12-31 中国石油化工股份有限公司 合成气直接制备低碳烃的铁碳骨架催化剂及其制备方法以及合成气制备低碳烃的方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605639A (en) * 1985-07-17 1986-08-12 Air Products And Chemicals, Inc. Methods for making a supported iron-copper catalyst
US20040106517A1 (en) * 2000-05-23 2004-06-03 Dlamini Thulani Humphrey Chemicals from synthesis gas
CN102688761A (zh) * 2012-06-05 2012-09-26 神华集团有限责任公司 用于催化费托合成反应的沉淀铁催化剂及其制备方法
CN103071543A (zh) * 2013-02-04 2013-05-01 中科合成油技术有限公司 一种固定床费托合成铁基催化剂的还原方法
CN105214667A (zh) * 2014-05-27 2016-01-06 中国石油化工股份有限公司 一种壳层分布催化剂及其制备方法和应用
CN105879875A (zh) * 2016-04-21 2016-08-24 武汉凯迪工程技术研究总院有限公司 用于费托合成反应的负载型铁基催化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260007C (zh) * 2004-06-11 2006-06-21 中国科学院山西煤炭化学研究所 一种微球状费托合成铁基催化剂及制法和应用
CN101385974B (zh) * 2008-10-10 2014-04-16 北京大学 一种进行低温费托合成反应的方法及其专用催化剂体系
EP2318131B1 (en) * 2009-09-04 2015-08-12 Korea Research Institute of Chemical Technology Catalyst for direct production of light olefins and preparation method thereof
CN102649079B (zh) * 2011-02-25 2015-09-09 中国石油化工股份有限公司 用铁锰基催化剂将合成气转化为低碳烯烃的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605639A (en) * 1985-07-17 1986-08-12 Air Products And Chemicals, Inc. Methods for making a supported iron-copper catalyst
US20040106517A1 (en) * 2000-05-23 2004-06-03 Dlamini Thulani Humphrey Chemicals from synthesis gas
CN102688761A (zh) * 2012-06-05 2012-09-26 神华集团有限责任公司 用于催化费托合成反应的沉淀铁催化剂及其制备方法
CN103071543A (zh) * 2013-02-04 2013-05-01 中科合成油技术有限公司 一种固定床费托合成铁基催化剂的还原方法
CN105214667A (zh) * 2014-05-27 2016-01-06 中国石油化工股份有限公司 一种壳层分布催化剂及其制备方法和应用
CN105879875A (zh) * 2016-04-21 2016-08-24 武汉凯迪工程技术研究总院有限公司 用于费托合成反应的负载型铁基催化剂及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138660A (zh) * 2020-10-15 2020-12-29 中国石油大学(华东) 一种铜铝加氢催化剂用途及其制备方法
CN112138660B (zh) * 2020-10-15 2023-12-08 中国石油大学(华东) 一种铜铝加氢催化剂用途及其制备方法
CN112915999A (zh) * 2021-01-26 2021-06-08 北京石油化工学院 一种降解苯系物和乙酸乙酯的催化剂及其制备方法和应用
CN112915999B (zh) * 2021-01-26 2023-06-16 北京石油化工学院 一种降解苯系物和乙酸乙酯的催化剂及其制备方法和应用
CN113750953A (zh) * 2021-09-27 2021-12-07 山东大学 热解烟气中SO2、H2S和Hg0协同脱除吸附剂及其制备方法
CN116116426A (zh) * 2023-02-15 2023-05-16 宁夏大学 一种用于费托合成的铁基催化剂及其制备方法、应用
CN116116426B (zh) * 2023-02-15 2024-04-09 宁夏大学 一种用于费托合成的铁基催化剂及其制备方法、应用

Also Published As

Publication number Publication date
CN105879875A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2017181815A1 (zh) 用于费托合成反应的负载型铁基催化剂及其制备方法
CN103586030B (zh) 介孔限域的镍基甲烷干重整催化剂的制备方法
WO2017197980A1 (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
Fu et al. Enhancing syngas-to-aromatics performance of ZnO&H-ZSM-5 composite catalyst via Mn modulation
CN107537560A (zh) 脱氢催化剂、制备方法及其使用方法
CN103551180A (zh) 一种c10+双环重芳烃选择性加氢裂解催化剂的制备方法
CN103406140A (zh) 一种醇醚转化为芳烃的催化剂、其制备方法及使用方法
CN104148107A (zh) 一种由合成气一步转化制柴油馏分的催化剂及其制备方法
CN112570031A (zh) 适用于二氧化碳加氢制高碳烃的催化剂及其制备和应用
CN111359672B (zh) 一种UiO-67负载的Rh基催化剂以及制备方法和应用
CN107008255B (zh) 用于正丁烷直接脱氢制丁烯的纳米金刚石载铂催化剂及其制备方法和应用
CN110756196A (zh) 一种植物油加氢脱氧催化剂的制备方法
CN106975486A (zh) 一种co加氢制低碳混合醇的催化剂及其制备方法
CN105944730A (zh) 介孔限域的镍基甲烷重整催化剂的制备方法
CN107185542B (zh) 一种负载型Fe-Zn/CNTs催化剂及其制备方法
CN108067227B (zh) 一种高分散于载体三氧化二铝的铂基催化剂及其制备方法和应用
CN106807439A (zh) 一种钴基催化剂及其制备方法
CN113117689B (zh) 一种催化剂在费托合成反应中的应用
CN108671947A (zh) 用于生物油加氢脱氧反应的Ni2P/还原氧化石墨烯催化剂及其制备方法
CN110961109A (zh) 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用
CN114749199B (zh) 一种NiFe2O4-MCS复合微波催化剂的制备方法及应用
CN111036291A (zh) 一种单原子钌基费托合成催化剂及其制备方法
CN111434382A (zh) 一种载体负载型氧化钒促进的Rh基催化剂及其制备方法和应用
CN106215943B (zh) 酯加氢催化剂及其制备方法和应用
CN111569872B (zh) 一种活性炭-钯镓锡液态合金复合催化剂及其制备方法和应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785300

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785300

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.04.2019)