CN110961109A - 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用 - Google Patents

一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用 Download PDF

Info

Publication number
CN110961109A
CN110961109A CN201911256679.XA CN201911256679A CN110961109A CN 110961109 A CN110961109 A CN 110961109A CN 201911256679 A CN201911256679 A CN 201911256679A CN 110961109 A CN110961109 A CN 110961109A
Authority
CN
China
Prior art keywords
catalyst
preparation
ultrasonic
microwave
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911256679.XA
Other languages
English (en)
Inventor
宋夫交
曹燕
刘阳庆
杨百忍
陈天明
严金龙
许琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN201911256679.XA priority Critical patent/CN110961109A/zh
Publication of CN110961109A publication Critical patent/CN110961109A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超声‑微波协同辅助制备Ni‑Al2O3催化剂的方法及其在CO2加氢中的应用。该方法将Ni(NO3)2·6H2O、γ‑Al2O3和PVP混合加入60mL去离子水并搅拌均匀,然后转移至100 mL反应釜,将釜置于微波超声组合反应器中,设定微波功率为400‑600 W,超声波功率为800‑1000W,温度为120‑150℃,在自生压力下恒温反应15‑30 min;冷却后,再进行离心、干燥,煅烧后,H2气氛中还原,得到Ni‑Al2O3催化剂;本发明解决了浸渍法制备催化剂时反应时间长和活性组分分散不均的问题,能够有效提高催化剂的分散性及其在CO2加氢反应中的活性。

Description

一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在 CO2加氢中的应用
技术领域
本发明属于CO2催化技术领域,特别涉及一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用。
背景技术
近几十年来,CO2排放引起的全球变暖引起广泛的关注,CO2催化加氢制甲烷能同时实现碳减排和燃料转化,成为研究热点,开发高效、廉价的催化剂是实现其工业化的关键。在众多催化剂中,贵金属催化剂积碳少、活性高,然而高成本限制了其应用。Ni-Al2O3催化剂作为典型的非贵金属催化剂,具有强度高、成本低和和活性好等优点,在CO2甲烷化反应中表现出良好的前景。浸渍法制备的Ni-Al2O3催化剂通常存在活性组分分散性较差的问题,严重影响其催化性能。借助辅助技术改进催化剂制备方法可以有效地实现活性组分的高分散负载。
研究表明,超声波和微波技术可以提高活性组分在载体表面的分散效果,从而提高催化剂的活性。在催化剂制备过程中,超声产生的微环境能够促进界面间的反应、传质和传热过程,微波产生的高频变换能量场可以是分子由无需运动变为有序的高频运动,通过将分子动能转换成热能来实现加热,其特殊的加热方式可极大地缩短反应时间,同时也能改善活性组分的分散性。超声-微波组合技术将两者无干扰结合,实现了两者的协同处理,被广泛用于萃取以及纳米材料合成领域,在催化剂制备和活性组分负载中的研究报道较少。
申请号201810111083.X 公开了一种负载型臭氧高级氧化催化剂的制备方法,包括以下步骤:S1.选取γ-Al2O3球体为载体;S2.将硝酸镍与去离子水混合搅拌得到稳定硝酸镍溶液,将硝酸铜与去离子水混合搅拌得到稳定硝酸铜溶液,所述硝酸镍与硝酸铜的质量比为1-9:1;S3.将步骤S2配制好的硝酸镍溶液和硝酸铜溶液与步骤S1选取的载体混合,并持续摇晃震荡4-8h;S4.滤去步骤S3浸渍后的浸渍液后干燥;S5.将步骤S4制备得到的γ-Al2O3球体以恒定的升温速率恒温焙烧,得到以γ-Al2O3球体为载体,NiO和CuO为活性组分的负载型臭氧高级氧化催化剂。本发明的臭氧高级氧化催化剂同时具有吸附和活化协同作用,既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,取得很好的催化臭氧氧化效果。
申请号201610953960.9公开了一种CeO2 ,NiO-ZSM-5/γ- Al2O3催化剂制备,硝酸镍,硝酸铈,异丙醇铝,氢氧化钠 ,无水乙醇,硅溶胶,三乙胺等主要原料来合成,并通过,磁力,氦气氛围,等特殊操作改性制得CeO2 ,NiO-ZSM-5/γ-Al2O3脱硫脱硝催化剂。制得的催化剂脱硫脱硝效果好,且再生效果好。
虽然上述两件现有技术,在催化剂成分相似,制备方法不同,均存在反应时间长,活性组分分布不均匀的问题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用,以解决现有浸渍法存在的反应时间长和活性组分分散不均匀的问题,是一种高效的制备方法,能够有效提高催化剂的分散性及其在CO2加氢反应中的活性。
为实现上述目的,本发明采用的技术方案为:
一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法,包括以下步骤:
步骤1,将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照加入60mL去离子水,搅拌均匀后,转移至100 mL聚四氟乙烯反应釜中;
步骤2,将步骤1中的反应釜转移至微波超声组合反应器中,设定微波功率为400-600W,超声波功率为800-1000W,温度为120-150℃,在自生压力下恒温反应15-30 min;
步骤3,将步骤2的反应产物冷却至室温后,对产物进行离心、干燥,400-500℃煅烧4 h,得到前驱体NiO-Al2O3
步骤4,将前驱体NiO-Al2O3在H2/N2混合气体的气氛中400℃还原,得到高分散的Ni-Al2O3催化剂。
作为改进的是,所述步骤1中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 10%-30 wt%进行混合,倒入内部设置压力传感器的聚四氟乙烯反应釜中,加入60 mL、0.1 mol/L的PVP溶液,然后磁力搅拌5 min。
作为改进的是,所述步骤3中煅烧时升温速率设置为2℃/min,避免温度飙升引起活性组分团聚。
所述步骤4中对催化剂前驱体NiO-Al2O3进行还原时,需采用H2/N2混合气体在400℃进行处理,还原时间为30-60 min,所述H2/N2混合气体中体积比为20/30。
上述方法制备的Ni-Al2O3催化剂在CO2加氢中的应用。
有益效果:
与现有技术相比,本发明一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用,该催化剂通过采用超声-微波反应器和添加PVP分散剂进行制备,通过两者的协同作用,减少浸渍法中Ni的负载时间。采用表面活性剂聚乙烯吡咯烷酮(PVP)来提高活性组分Ni在载体表面的分散性,选择具有高的介电损耗因子(δ)的蒸馏水作为溶剂,以便于微波加热。与浸渍法相比,大大缩短了时间,同时有效提高了Ni-Al2O3催化剂表面活性组分Ni的分散性及其在CO2加氢反应中的催化活性。
附图说明
图1为不同方法制备的Ni-Al2O3催化剂的SEM形貌图,其中,(a)为20%Ni/Al2O3-CW,(b)为20%Ni/Al2O3-JZ。
具体实施方式
下面结合附图和具体实施例对本发明作进一步描述。
实施例1
一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法,包括以下步骤:
(1)将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照一定比例加入60mL去离子水中,其中,Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 10% wt%进行混合,PVP的浓度为0.1 mol/L,然后磁力搅拌5 min,将溶液转移至100 mL设置压力传感器的聚四氟乙烯反应釜;
(2)将步骤(1)中反应釜转移至微波超声组合反应器中,在此之前检查反应釜内部垫片的完整性,设定微波功率为500 W,超声波功率为800W,温度为130℃,在自生压力下恒温反应20min;
(3)步骤(2)反应结束后,待釜内温度冷却至室温方可从微波超声组合反应器取出,将产物从反应釜内取出,进行离心、干燥,450 °C煅烧4 h,得到催化剂的前驱体NiO-Al2O3
(4)将步骤(3)得到的催化剂前驱体NiO-Al2O3在H2/N2 (20/30, v/v)混合气氛中和400℃下还原30-60 min,得到高分散的Ni-Al2O3催化剂,标记为10%Ni/Al2O3-CW,其中“10%”代表Ni的负载量,“CW”代表采用的制备方法为超声-微波协同辅助法。
实施例2
(1)将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照一定比例加入60mL去离子水中,其中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 20% wt%进行混合,PVP的浓度为0.1 mol/L,然后磁力搅拌5 min,将溶液转移至100 mL设置压力传感器的聚四氟乙烯反应釜;
(2)将步骤(1)中反应釜转移至微波超声组合反应器中,在此之前检查反应釜内部垫片的完整性,设定微波功率为400-600 W,超声波功率为1000W,温度为120℃,在自生压力下恒温反应30 min;
(3)步骤(2)反应结束后,待釜内温度冷却至室温方可从微波超声组合反应器取出,将产物从反应釜内取出,进行离心、干燥,450℃煅烧4h,得到催化剂的前驱体NiO-Al2O3
(4)将步骤(3)得到的催化剂前驱体NiO-Al2O3在H2/N2 (20/30, v/v)混合气氛中和400℃下还原30-60 min,得到高分散的Ni-Al2O3催化剂,标记为20%Ni/Al2O3-CW,其中“20%”代表Ni的负载量,“CW”代表采用的制备方法为超声-微波协同辅助法。
实施例3
(1)将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照一定比例加入60mL去离子水中,其中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 30% wt%进行混合,PVP的浓度为0.1 mol/L,然后磁力搅拌5 min,将溶液转移至100 mL设置压力传感器的聚四氟乙烯反应釜;
(2)将步骤(1)中反应釜转移至微波超声组合反应器中,在此之前检查反应釜内部垫片的完整性,设定微波功率为600W,超声波功率为1000W,温度为120℃,在自生压力下恒温反应30 min;
(3)步骤(2)反应结束后,待釜内温度冷却450℃煅烧4 h,得到催化剂的前驱体NiO-Al2O3
(4)将步骤(3)得到的催化剂前驱体NiO-Al2O3在H2/N2 (20/30, v/v)混合气氛中和400℃下还原30-60 min,得到高分散的Ni-Al2O3催化剂,标记为30%Ni/Al2O3-CW,其中“30%”代表Ni的负载量,“CW”代表采用的制备方法为超声-微波协同辅助法。
对比例1
(1)将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照一定比例加入60mL去离子水中,其中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 10% wt%进行混合,将混合物转移至坩埚中,然后磁力搅拌5 min;
(2)将步骤(1)中的坩埚转移至水浴锅中,在60℃恒温条件下磁力搅拌作用6 h;
(3)步骤(2)反应结束后,将坩埚从水浴锅转移至干燥箱中干燥,然后在450℃煅烧4 h,得到催化剂的前驱体NiO-Al2O3
(4)将步骤(3)得到的催化剂前驱体NiO-Al2O3在H2/N2 (20/30, v/v)混合气氛中和400℃下还原30-60 min,得到Ni-Al2O3催化剂,标记为10%Ni/Al2O3-JZ,其中“10%”代表Ni的负载量,“JZ”代表采用的制备方法为浸渍法。
对比例2
(1)将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照一定比例加入60mL去离子水中,其中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 20% wt%进行混合,将混合物转移至坩埚中,然后磁力搅拌5 min;
(2)将步骤(1)中的坩埚转移至水浴锅中,在60℃恒温条件下磁力搅拌作用6 h;
(3)步骤(2)反应结束后,将坩埚从水浴锅转移至干燥箱中干燥,然后在450℃煅烧4 h,得到催化剂的前驱体NiO-Al2O3
(4)将步骤(3)得到的催化剂前驱体NiO-Al2O3在H2/N2 (20/30, v/v)混合气氛中和400℃下还原30-60 min,得到Ni-Al2O3催化剂,标记为20%Ni/Al2O3-JZ,其中“20%”代表Ni的负载量,“JZ”代表采用的制备方法为浸渍法。
对比例3
(1)将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照一定比例加入60mL去离子水中,其中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 30% wt%进行混合,将混合物转移至坩埚中,然后磁力搅拌5 min;
(2)将步骤(1)中的坩埚转移至水浴锅中,在60℃恒温条件下磁力搅拌作用6 h;
(3)步骤(2)反应结束后,将坩埚从水浴锅转移至干燥箱中干燥,然后在400-500℃煅烧4 h,得到催化剂的前驱体NiO-Al2O3
(4)将步骤(3)得到的催化剂前驱体NiO-Al2O3在H2/N2 (20/30, v/v)混合气氛中和400℃下还原30-60 min,得到Ni-Al2O3催化剂,标记为30%Ni/Al2O3-JZ,其中“30%”代表Ni的负载量,“JZ”代表采用的制备方法为浸渍法。
上述催化剂选取20%Ni/Al2O3-JZ和20%Ni/Al2O3-CW进行测试。采用FEI Quanta250F型扫描电子显微镜测试催化剂的SEM形貌;催化剂的Ni颗粒平均粒径是通过对透射电镜图片中的Ni颗粒粒径进行统计而获得;活性组分Ni的分散性是由H2-TPD测试的H2吸附量、催化剂样品中Ni的质量百分数以及H2-TPR测得的催化剂样品中Ni组分的还原度等进行计算得到的;催化剂的CO2加氢制甲烷的催化性能在固定床反应器上进行评价,管式反应器的内径为5 mm,催化剂装填量1.0 g,反应气为H2 : CO2 : N2 = 4 : 1 : 4的90 mL/min混合气体,空速(GHSV)为4200 mL/h·gcat
上述实施例制备催化剂的Ni颗粒平均粒径、分散性及其在CO2加氢反应中转化率达到50%时所对应的温度如表1所示:
表1 催化剂的Ni颗粒平均粒径、分散性及其在CO2加氢反应中转化率达到50%时所对应的温度
Figure DEST_PATH_IMAGE001
a转化率达到50%时所对应的温度
由表1可见,20%Ni/Al2O3-JZ和20%Ni/Al2O3-CW的Ni颗粒平均粒径分别为15.3 nm和9.6nm,活性组分Ni的分散性分别为14.8%和27.3%。由此可见,与浸渍法相比,超声-微波辅助制备的Ni-Al2O3催化剂具有更小的Ni颗粒和更高的Ni分散性。因此两种催化剂在CO2加氢反应中转化率达到50%时所对应的温度分别为261℃和223℃,后者在较低温度下的催化性能优于前者。

Claims (5)

1.一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法,其特征在于,包括以下步骤:
步骤1,将Ni(NO3)2·6H2O、γ-Al2O3和PVP按照加入60mL去离子水,搅拌均匀后,转移至100 mL聚四氟乙烯反应釜中;
步骤2,将步骤1中的反应釜转移至微波超声组合反应器中,设定微波功率为400-600W,超声波功率为800-1000W,温度为120-150℃,在自生压力下恒温反应15-30 min;
步骤3,将步骤2的反应产物冷却至室温后,对产物进行离心、干燥,400-500℃煅烧4 h,得到前驱体NiO-Al2O3
步骤4,将前驱体NiO-Al2O3在H2/N2混合气体的气氛中400 ℃还原,得到高分散的Ni-Al2O3催化剂。
2.根据权利要求1所述的一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法,其特征在于:
所述步骤1中Ni(NO3)2·6H2O、γ-Al2O3按照Ni: γ-Al2O3 = 10%-30 wt%进行混合,倒入内部设置压力传感器的聚四氟乙烯反应釜中,加入60 mL、0.1 mol/L的PVP溶液,然后磁力搅拌5 min。
3.根据权利要求1所述的一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法,其特征在于:步骤3中煅烧时升温速率设置为2℃/min。
4.根据权利要求1所述的一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法,其特征在于:
所述步骤4中对催化剂前驱体NiO-Al2O3进行还原时,需采用H2/N2混合气体在400℃进行处理,还原时间为30-60 min,所述H2/N2混合气体中体积比为20/30。
5.基于权利要求1-4中任一种方法制备得到的一种超声-微波协同辅助制备Ni-Al2O3催化剂在CO2加氢中的应用。
CN201911256679.XA 2019-12-10 2019-12-10 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用 Pending CN110961109A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911256679.XA CN110961109A (zh) 2019-12-10 2019-12-10 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911256679.XA CN110961109A (zh) 2019-12-10 2019-12-10 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用

Publications (1)

Publication Number Publication Date
CN110961109A true CN110961109A (zh) 2020-04-07

Family

ID=70033530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911256679.XA Pending CN110961109A (zh) 2019-12-10 2019-12-10 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用

Country Status (1)

Country Link
CN (1) CN110961109A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856699A (zh) * 2021-10-11 2021-12-31 盐城市兰丰环境工程科技有限公司 一种同时用于scr烟气脱硝和co2加氢中和的催化剂及其制备方法
CN117414818A (zh) * 2023-12-12 2024-01-19 淄博恒亿化工科技有限公司 一种改性活性氧化铝及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551149A (zh) * 2013-09-25 2014-02-05 中国科学院广州能源研究所 交替微波快速制备二甲醚水蒸汽重整制氢催化剂的方法
CN105032428A (zh) * 2015-07-10 2015-11-11 湖北大学 一种微波加热合成催化剂的制备方法及基于该制备方法制得催化剂一步法合成环己胺的方法
CN109759068A (zh) * 2019-03-01 2019-05-17 上海电力学院 一种超声波辅助浸渍法制备Ni基催化剂的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551149A (zh) * 2013-09-25 2014-02-05 中国科学院广州能源研究所 交替微波快速制备二甲醚水蒸汽重整制氢催化剂的方法
CN105032428A (zh) * 2015-07-10 2015-11-11 湖北大学 一种微波加热合成催化剂的制备方法及基于该制备方法制得催化剂一步法合成环己胺的方法
CN109759068A (zh) * 2019-03-01 2019-05-17 上海电力学院 一种超声波辅助浸渍法制备Ni基催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJIAO SONG,ET AL: "Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856699A (zh) * 2021-10-11 2021-12-31 盐城市兰丰环境工程科技有限公司 一种同时用于scr烟气脱硝和co2加氢中和的催化剂及其制备方法
CN117414818A (zh) * 2023-12-12 2024-01-19 淄博恒亿化工科技有限公司 一种改性活性氧化铝及其制备方法
CN117414818B (zh) * 2023-12-12 2024-02-23 淄博恒亿化工科技有限公司 一种改性活性氧化铝及其制备方法

Similar Documents

Publication Publication Date Title
CN109304201B (zh) 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN111229215B (zh) 一种基于碳量子点诱导的金属高分散负载型催化剂及其制备方法和应用
CN113231070B (zh) 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用
CN114308042B (zh) 一种凹凸棒石基有序微孔沸石催化剂及其制备方法与应用
CN111229235A (zh) NiO/MgAl2O4催化剂及其制备方法和应用
CN110961109A (zh) 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用
CN113262781A (zh) 一种金属铂催化剂及其制备方法和应用
CN110694666A (zh) 一种C3N4@CeO2负载低含量金催化剂及其制备方法和应用
CN113000059A (zh) 一种用于甲烷二氧化碳干重整的镍基催化剂及其制备方法和应用
CN114192180A (zh) 一种改性氮化硼负载的镍基甲烷干重整催化剂、其制备方法及其应用
Wang et al. Enhanced catalytic activity over palladium supported on ZrO 2@ C with NaOH-assisted reduction for decomposition of formic acid
CN102443454A (zh) 一种化学链燃烧的载氧体及其制备方法和应用
Fu et al. Highly dispersed rhodium atoms supported on defect-rich Co (OH) 2 for the chemoselective hydrogenation of nitroarenes
CN113522331A (zh) 一种碳基钴钯双金属纳米催化剂及其制备与应用
CN113457722B (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
CN111450832A (zh) 一种微波辅助共沉淀制备CaO改性Ni-Al2O3催化剂的方法及应用
CN111111676B (zh) 一种包裹型镍基催化剂及其制备方法
CN113318737A (zh) 一种铜/多孔炭催化剂及其制备方法和应用
KR101636005B1 (ko) 알루미나 담체에 화학적으로 고정화된 니켈 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소 가스 제조 방법
CN107185525B (zh) 八面体Pt纳米粒子负载γ-Al2O3型催化剂的制备方法
CN111001433A (zh) 负载钯铜合金纳米颗粒的介孔沸石及其制备方法及应用
CN114308063B (zh) 一种PtCo/Co3O4-x-Al2O3多界面结构催化剂及其制备方法与应用
CN114433073B (zh) 锰基催化剂及其制备方法和应用
CN115155647A (zh) 一种负载双金属单原子的bcn气凝胶催化剂的制备方法及其应用
Zhang et al. High-performance CoCe catalyst constructed by the glucose-assisted in-situ reduction for CH4/CO2 dry reforming

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination