WO2017181669A1 - 一种高取向度烧结钕铁硼永磁材料的制备方法 - Google Patents

一种高取向度烧结钕铁硼永磁材料的制备方法 Download PDF

Info

Publication number
WO2017181669A1
WO2017181669A1 PCT/CN2016/106583 CN2016106583W WO2017181669A1 WO 2017181669 A1 WO2017181669 A1 WO 2017181669A1 CN 2016106583 W CN2016106583 W CN 2016106583W WO 2017181669 A1 WO2017181669 A1 WO 2017181669A1
Authority
WO
WIPO (PCT)
Prior art keywords
orientation
organic solvent
slurry
permanent magnet
sintered
Prior art date
Application number
PCT/CN2016/106583
Other languages
English (en)
French (fr)
Inventor
高学绪
曹帅
包小倩
汤明辉
卢克超
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2017181669A1 publication Critical patent/WO2017181669A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the invention belongs to the field of rare earth permanent magnet materials, and particularly relates to a preparation method of high orientation sintered NdFeB permanent magnet materials.
  • the sintered NdFeB permanent magnet material known as the "Magnetic King" has become a core functional material in the fields of power, telecommunications, automotive, computer, biomedicine and household appliances. It is being used to manufacture electric motors (or hybrid electric) of several hundred kilowatts. Automotive generators, electric motors, and wind turbine permanent magnet motors that produce megawatts.
  • A is the normal phase domain volume fraction
  • is the volume fraction of the nonmagnetic phase
  • (1– ⁇ ) is the volume fraction of the Nd 2 Fe 14 B main phase
  • d is the actual density of the magnet
  • d o is the theoretical density of the magnet
  • It is the degree of orientation of the c-axis of the Nd 2 Fe 14 B grain along the orientation axis direction
  • J S is the single crystal saturation magnetic polarization of the Nd 2 Fe 14 B compound. It is not difficult to see from the formula that the residual magnetization of the sintered NdFeB permanent magnet material is proportional to the degree of orientation.
  • powder particles having a size of 3 to 5 ⁇ m are close to a single crystal but multidomain, and the c-axis of each powder particle is chaotically oriented;
  • the powder particles are rotated such that the c-axis is gradually aligned in the direction of the orientation magnetic field. Since the powder particles will encounter resistance during the rotation, the resistance mainly comes from the magnetostatic interaction between the powder particles, that is, the agglomeration force, the friction generated when the powder particles contact each other, and the mechanical resistance caused by the irregular shape of the powder.
  • the former resistance, agglomeration, is always present and its size is related to the surface field of the Nd 2 Fe 14 B powder particles.
  • the surface field of the single domain particles can reach 1.5T or more.
  • the orientation field should be greater than 1.5T without other resistance effects.
  • the magnitude of the latter two resistances is related to the bulk density of the powder, the shape of the particles, and the fluidity of the powder. When the lubrication effect between the particles is good, the mechanical resistance will be small. The loading of the powder into the mold and the density of the powder before magnetic field orientation will have an important effect on the orientation of the magnetic field.
  • the magnetostatic moment of the interaction between the external magnetic field and the powder particles is the driving force for pushing the c-axis of the powder particles to the direction of the external magnetic field, and the magnetostatic between the powder particles.
  • the agglomerating force, the mechanical resistance between the irregular shaped powders, and the frictional force of the powder particles in contact with each other are resistances that hinder the c-axis of the powder particles from turning to the external magnetic field.
  • the orientation type is carried out simultaneously, and at the same time, two effects are obtained: first, obtaining a high degree of magnetic field orientation; second, pressing the powder into a compact having a certain density, shape and size. .
  • the molding used is due to the alignment of the orientation type, which has a problem.
  • the easy magnetization axis of the grain rotates to the direction of the orientation field, and is also affected by the applied pressure.
  • the crystal grains are sufficiently freely oriented, and there is an overall unevenness of the green compact density, which further affects the density unevenness during the sintering process, thereby causing cracks and falling corners.
  • the object of the present invention is to solve the problem of insufficient free orientation of the crystal grains existing in the prior art, and there is an overall unevenness of the density of the green compact, which further affects the density unevenness during the sintering process, thereby causing cracks and falling corners.
  • the problem of the phenomenon is to solve the problem of insufficient free orientation of the crystal grains existing in the prior art, and there is an overall unevenness of the density of the green compact, which further affects the density unevenness during the sintering process, thereby causing cracks and falling corners.
  • a preparation method of high-orientation sintered NdFeB permanent magnet material characterized in that: NdFeB powder particles are mixed with an organic solvent to form a slurry and cast into a mold, and then subjected to pressureless orientation in a magnetic field to obtain high The degree of orientation is further obtained by cold isostatic pressing to obtain a body of a certain density, and finally sintered and densified and tempered to obtain a magnet.
  • the mold containing the slurry is sufficiently oriented in a magnetic field of 1.5-2.0 T;
  • the initial blank is vacuum-packed with a plastic film, and then placed in a hydraulic device for cold isostatic pressing (pressing force 100-300 MPa) to obtain a compact;
  • the sintered magnets were tempered at 850-950 ° C and 450-600 ° C for 2-4 h under high vacuum, respectively, to obtain a final magnet.
  • the flowability of the slurry formed by mixing the neodymium iron boron powder with the organic solvent is greatly improved, and the pressing pressure is not applied during the orientation, so that the magnetic powder orientation is more sufficient, and it is advantageous to obtain a high degree of orientation.
  • the oriented slurry has a low density after removal of the organic solvent, so that it is necessary to obtain a suitable density of the body by cold isostatic pressing.
  • the reason why cold isostatic pressing is selected is that the pressure from all directions is equal, so that the high degree of orientation which has been obtained is not destroyed, and the density distribution of the compact is relatively uniform, thereby greatly improving the uneven shrinkage due to uneven sintering density. Cracks and falling edges are generated.
  • the invention has the advantages that the neodymium iron boron powder is mixed with the organic solvent, and the fluidity of the particles is increased, which is favorable for the magnetic field orientation process, and is different from the conventional orientation molding process, and the magnetic field orientation process is not subjected to the pressing pressure, thereby ensuring the orientation.
  • the cold isostatic pressure is used to ensure that the orientation is not destroyed, and the green body can be properly densified and the overall density distribution is uniform, which can achieve sintering densification and avoid the loss due to density unevenness during sintering.
  • a sintered NdFeB permanent magnet material having a high degree of orientation is finally obtained.
  • NdFeB powder particles with a particle size of 3.5 ⁇ m and a composition of Nd 29.5 Fe 69.1 Ga 0.2 Nb 0.2 B 1.0 in a low oxygen environment with an organic solvent (80% absolute ethanol + 15% dichloromethane + 3% sodium alginate) +2% polyvinyl alcohol) is uniformly mixed to obtain a slurry (the volume ratio of NdFeB powder to organic solvent is 2:1); the slurry is poured into a mold and oriented in a 1.8T magnetic field; The organic solvent is dryly removed to obtain a preform; the preform is vacuum-packed with a plastic film, and then placed in a hydraulic device for cold isostatic pressing at a pressing force of 200 MPa; the plastic film on the blank is peeled off, and the blank is at 1060 ° C.
  • the NdFeB powder particles having a particle size of 3.0 ⁇ m and having a composition of (NdPr) 30.0 Fe 68.9 Cu 0.2 Zr 0.2 B 1.0 were uniformly mixed with an organic solvent (80% absolute ethanol + 20% dichloromethane) in a low oxygen atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种高取向度烧结钕铁硼永磁材料的制备方法,将钕铁硼粉末颗粒与有机溶剂混合制成浆料并浇注到模具中,而后在磁场中进行无压取向获得高取向度,再通过冷等静压得到一定致密度的坯体,最后烧结致密化并回火热处理得到磁体。钕铁硼粉与有机溶剂形成的浆料流动性高,且在磁场取向过程中不受压制压力,可以保证取向充分且不被破坏,之后通过冷等静压可以使坯体达到一定的致密度且密度分布均匀,既可实现烧结致密化,又可避免烧结过程中由于密度不均等导致的裂纹和掉边掉角,最终获得具有高取向度的烧结钕铁硼永磁材料。

Description

一种高取向度烧结钕铁硼永磁材料的制备方法 技术领域
本发明属于稀土永磁材料领域,特别涉及一种高取向度烧结钕铁硼永磁材料的制备方法。
技术背景
被誉为“磁王”的烧结钕铁硼永磁材料已成为电力、电讯、汽车、计算机、生物医学及家用电器等领域的核心功能材料,正在应用于制造几百千瓦的电动(或混合电动)汽车的发电机、电动机,以及制造兆瓦量级的风力发电永磁电机。
根据铁磁学的理论,多晶取向复相永磁材料的剩磁由下式决定:
Figure PCTCN2016106583-appb-000001
式中A为正相畴体积分数;β为非磁性相的体积分数;(1–β)为Nd2Fe14B主相的体积分数;d为磁体的实际密度;do为磁体的理论密度;
Figure PCTCN2016106583-appb-000002
为Nd2Fe14B晶粒c轴沿取向轴方向的取向度;JS为Nd2Fe14B化合物单晶体饱和磁极化强度。从式中不难看出,烧结钕铁硼永磁材料的剩磁与取向度成正比。
制造烧结Nd-Fe-B永磁材料过程中,未施加取向场的情况下,尺寸为3~5μm的粉末颗粒接近单晶体但是多畴体,并且各个粉末颗粒的c轴是混乱取向的;施加取向磁场的情况下,粉末颗粒转动使c轴逐步沿取向磁场方向排列。由于粉末颗粒在转动过程中将遇到阻力,这种阻力主要来自粉末颗粒之间的静磁相互作用即团聚力、粉末颗粒相互接触时产生的摩擦力以及粉末形状不规则造成的机械阻力等。前一种阻力即团聚力总是存在的,它的大小与Nd2Fe14B粉末颗粒的表面场有关。而单畴颗粒表面场可达1.5T以上,为打破粉末颗粒的团聚,使其沿磁场方向取向,在无其他阻力作用的情况下,取向场应大于1.5T。后两项阻力的大小与粉末松装密度、颗粒形状和粉末的流动性有关。当颗粒之间润滑效果好时,机械阻力就会很小。粉末装入模具,进行磁场取向之前的粉末松装密度将对磁场取向有重要影响。所以,Nd-Fe-B磁性粉末在磁场取向的过程中,外磁场与粉末颗粒相互作用的静磁力矩是推动粉末颗粒的c轴转向外磁场方向的推动力,而粉 末颗粒之间的静磁团聚力、外形不规则粉末之间的机械阻力和粉末颗粒相互接触的摩擦力是阻碍粉末颗粒的c轴转向外磁场的阻力。
目前的烧结钕铁硼制造工艺中取向压型是同期进行的,同时获得两方面效果:其一,获得高的磁场取向度;其二,将粉末压制成一定的密度、形状与尺寸的压坯。目前采用的模压,由于取向压型同期完成,这就存在一个问题,在取向磁场作用下,晶粒的易磁化轴转动到取向场方向的过程中,由于同时还受到外加压力的作用,从而影响晶粒的充分自由取向,而且会存在压坯密度整体不均匀性,进一步影响烧结过程中的密度不均匀性从而产生裂纹和掉边掉角等现象。
发明内容
本发明目的是为了解决现有技术当中存在的影响晶粒的充分自由取向,而且会存在压坯密度整体不均匀性,进一步影响烧结过程中的密度不均匀性从而产生裂纹和掉边掉角等现象的问题。
一种高取向度烧结钕铁硼永磁材料的制备方法,其特征在于:将钕铁硼粉末颗粒与有机溶剂混合制成浆料并浇注到模具中,而后在磁场中进行无压取向获得高取向度,再通过冷等静压得到一定致密度的坯体,最后烧结致密化并回火热处理得到磁体。
具体工艺步骤为:
1).将粒径为3-5微米的钕铁硼粉末颗粒与有机溶剂混合均匀得到浆料并浇注到模具中;
2).将装有浆料的模具在1.5-2.0T的磁场中充分取向;
3).在低氧环境下搁置一段时间,或真空烘干,以去除有机溶剂,得到初坯;
4).将初坯用塑料膜真空封装,随后放入液压装置中进行冷等静压(压制力100-300MPa),得到压坯;
5).低氧环境下剥去坯体上的塑料膜,在1020-1120℃高真空烧结2-5h;
6).将烧结后的磁体在850-950℃和450-600℃分别高真空回火2-4h,得到最终磁体。
本发明中钕铁硼粉与有机溶剂混合形成的浆料流动性大大提高,且取向过程中不受压制压力,因此磁粉取向更充分,有利于获得高的取向度。经过取向的浆料去除有机溶剂后的致密度低,因此需要经过冷等静压获得合适致密度的坯体, 之所以选择冷等静压,是由于来自于各个方向的压力相等,因此不会破坏已经取得的高取向度,同时压坯密度分布相对均匀,从而大大改善因烧结密度不均匀导致收缩不均匀而产生的裂纹和掉边掉角问题。
本发明的优点在于:钕铁硼粉与有机溶剂混合,颗粒的流动性增加,有利于磁场取向过程,同时不同于传统的取向压型过程,该磁场取向过程中不受压制压力,从而保证取向充分,之后通过冷等静压保证取向不被破坏,并可使坯体达到合适的致密度且密度整体分布均匀,既可实现烧结致密化,又可避免烧结过程中由于密度不均等导致的掉边掉角,最终获得具有高取向度的烧结钕铁硼永磁材料。
具体实施方式
实施例1:
将粒径为3.5μm成分为Nd29.5Fe69.1Ga0.2Nb0.2B1.0的钕铁硼粉末颗粒在低氧环境与有机溶剂(80%无水乙醇+15%二氯甲烷+3%藻肮酸钠+2%聚乙烯醇)混合均匀,得到浆料(钕铁硼粉与有机溶剂的体积比为2:1);将浆料浇注到模具中,并在1.8T磁场中取向;再通过真空烘干去除有机溶剂,得到初坯;将初坯用塑料膜真空封装,随后放入液压装置中进行冷等静压,压制力200MPa;剥去坯体上的塑料膜,并将坯体在1060℃下高真空烧结3h;将烧结磁体在880℃和500℃分别高真空回火2h;得到高取向度烧结钕铁硼永磁材料,磁性能为Br=1.46T(14.6kGs),Hci=1100kA·m-1(13.8kOe),(BH)max=422kJ·m-3(53.0MGOe)
实施例2:
将粒径为3.0μm成分为(NdPr)30.0Fe68.9Cu0.2Zr0.2B1.0的钕铁硼粉末颗粒在低氧环境与有机溶剂(80%无水乙醇+20%二氯甲烷)混合均匀,得到浆料(钕铁硼粉与有机溶剂的体积比为3:2);将浆料浇注到模具中,并在1.8T磁场中取向;再通过真空烘干去除有机溶剂,得到初坯;将初坯用塑料膜真空封装,随后放入液压装置中进行冷等静压,压制力200MPa;剥去坯体上的塑料膜,并将坯体在1080℃下高真空烧结3h;将烧结磁体在900℃和500℃分别高真空回火2h;得到高取向度烧结钕铁硼永磁材料,磁性能为Br=1.458T,Hci=1150kA·m-1(14.4kOe),(BH)max=414kJ·m-3(52.0MGOe)

Claims (5)

  1. 一种高取向度烧结钕铁硼永磁材料的制备方法,其特征在于:将钕铁硼粉末颗粒与有机溶剂混合制成浆料并浇注到模具中,而后在磁场中进行无压取向获得高取向度,再通过冷等静压得到一定致密度的坯体,最后烧结致密化并回火热处理得到磁体;
    具体工艺步骤为:
    1).将粒径为3-5微米的钕铁硼粉末颗粒与有机溶剂混合均匀得到浆料并浇注到模具中;
    2).将装有浆料的模具在1.5-2.0T的磁场中充分取向;
    3).在低氧环境下搁置一段时间,或真空烘干,以去除有机溶剂,得到初坯;
    4).将初坯用塑料膜真空封装,随后放入液压装置中进行冷等静压,压制力100-300MPa,得到压坯;
    5).低氧环境下剥去坯体上的塑料膜,在1020-1120℃下高真空烧结2-5h;
    6).烧结后的磁体在850-950℃和450-600℃分别高真空回火2-4h,得到最终磁体。
  2. 如权利要求1所述一种高取向度烧结钕铁硼永磁材料的制备方法,其特征在于:步骤1)中所述的有机溶剂为乙醇和二氯甲烷的混合溶剂。
  3. 如权利要求1所述一种高取向度烧结钕铁硼永磁材料的制备方法,其特征在于:步骤1)中所述的浆料中钕铁硼粉末颗粒与有机溶剂的体积比为(0.5-5):1
  4. 根据权利要求1所述的一种高取向度烧结钕铁硼永磁材料的制备方法,其特征在于:钕铁硼粉与有机溶剂混合制成的浆料流动性高,且在磁场取向过程中不受压力,不仅有利于取向且保证取向不被破坏,从而有利于获得高取向度烧结钕铁硼永磁材料。
  5. 根据权利要求1所述的一种高取向度烧结钕铁硼永磁材料的制备方法,其特征在于:无压取向后再冷等静压,使坯体达到一定的致密度且整体密度均匀,避免烧结不致密或由于收缩不均匀等导致的裂纹及掉边掉角。
PCT/CN2016/106583 2016-04-20 2016-11-21 一种高取向度烧结钕铁硼永磁材料的制备方法 WO2017181669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610249000.4A CN105931833B (zh) 2016-04-20 2016-04-20 一种高取向度烧结钕铁硼永磁材料的制备方法
CN201610249000.4 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017181669A1 true WO2017181669A1 (zh) 2017-10-26

Family

ID=56839383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106583 WO2017181669A1 (zh) 2016-04-20 2016-11-21 一种高取向度烧结钕铁硼永磁材料的制备方法

Country Status (2)

Country Link
CN (1) CN105931833B (zh)
WO (1) WO2017181669A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466643A (zh) * 2020-10-28 2021-03-09 杭州永磁集团有限公司 一种烧结钕铁硼材料的制备方法
CN114192776A (zh) * 2021-12-07 2022-03-18 葛安娜 一种钕铁硼磁性材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931833B (zh) * 2016-04-20 2017-11-17 北京科技大学 一种高取向度烧结钕铁硼永磁材料的制备方法
CN106847457A (zh) * 2017-01-09 2017-06-13 浙江大学 一种稀土永磁体及制备稀土永磁体的方法
CN107393709B (zh) * 2017-07-02 2019-02-01 北京科技大学 一种冷等静压制备高取向度各向异性粘结磁体的方法
CN115050564B (zh) * 2022-06-23 2023-04-07 宁波耐力誉磁业科技有限公司 一种高取向度钕铁硼磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130289A (zh) * 1994-10-07 1996-09-04 住友特殊金属株式会社 R-Fe-B系永磁体的制造方法
JPH0920953A (ja) * 1995-06-30 1997-01-21 Sumitomo Special Metals Co Ltd 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法
US6010983A (en) * 1997-07-07 2000-01-04 Topchiashvili; M. I. Method of conveyor production of high temperature superconductor (HTS) wire, coil, and other bulk-shaped products using compositions of HTS ceramics, silver, and silicone
CN101740190A (zh) * 2008-11-26 2010-06-16 绵阳西磁磁电有限公司 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法
CN102403118A (zh) * 2011-11-23 2012-04-04 北京航空航天大学 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN105931833A (zh) * 2016-04-20 2016-09-07 北京科技大学 一种高取向度烧结钕铁硼永磁材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431062C (zh) * 2002-10-08 2008-11-05 日立金属株会社 烧结型R-Fe-B系永磁体及其制造方法
JP5417632B2 (ja) * 2008-03-18 2014-02-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
CN103056370B (zh) * 2012-12-31 2015-04-29 宁波中杭磁材有限公司 一种提高烧结钕铁硼磁材料矫顽力的方法
JP2014160729A (ja) * 2013-02-19 2014-09-04 Sumitomo Electric Ind Ltd 磁性部材の製造方法、及び磁性部材
CN103219117B (zh) * 2013-05-05 2016-04-06 沈阳中北真空磁电科技有限公司 一种双合金钕铁硼稀土永磁材料及制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130289A (zh) * 1994-10-07 1996-09-04 住友特殊金属株式会社 R-Fe-B系永磁体的制造方法
JPH0920953A (ja) * 1995-06-30 1997-01-21 Sumitomo Special Metals Co Ltd 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法
US6010983A (en) * 1997-07-07 2000-01-04 Topchiashvili; M. I. Method of conveyor production of high temperature superconductor (HTS) wire, coil, and other bulk-shaped products using compositions of HTS ceramics, silver, and silicone
CN101740190A (zh) * 2008-11-26 2010-06-16 绵阳西磁磁电有限公司 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法
CN102403118A (zh) * 2011-11-23 2012-04-04 北京航空航天大学 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN105931833A (zh) * 2016-04-20 2016-09-07 北京科技大学 一种高取向度烧结钕铁硼永磁材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466643A (zh) * 2020-10-28 2021-03-09 杭州永磁集团有限公司 一种烧结钕铁硼材料的制备方法
CN112466643B (zh) * 2020-10-28 2023-02-28 杭州永磁集团振泽磁业有限公司 一种烧结钕铁硼材料的制备方法
CN114192776A (zh) * 2021-12-07 2022-03-18 葛安娜 一种钕铁硼磁性材料的制备方法

Also Published As

Publication number Publication date
CN105931833A (zh) 2016-09-07
CN105931833B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2017181669A1 (zh) 一种高取向度烧结钕铁硼永磁材料的制备方法
CN106409497B (zh) 一种钕铁硼磁体晶界扩散的方法
JP5815655B2 (ja) R−t−b−m−c系焼結磁石の製造方法、及びその製造装置
JP4923152B2 (ja) 永久磁石及び永久磁石の製造方法
WO2016201944A1 (zh) 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN105489334B (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN109616310B (zh) 一种高矫顽力烧结钕铁硼永磁材料及其制造方法
WO2015046732A1 (ko) 열간가압성형 공정을 이용한 이방성 열간가압성형 자석의 제조방법 및 이 방법으로 제조된 열간가압성형 자석
JP2017523586A (ja) 熱的安定性が向上したマンガンビスマス系焼結磁石及びそれらの製造方法
CN104841927A (zh) 高耐蚀性、高耐候性稀土永磁材料的制备方法
JP2018505540A (ja) 非磁性合金を含む熱間加圧変形磁石及びその製造方法
TW201826292A (zh) 稀土類燒結磁石形成用燒結體及其製造方法
JP2012124496A (ja) 永久磁石及び永久磁石の製造方法
JP2022094920A (ja) 焼結磁性体の製造方法
KR102215818B1 (ko) 비자성 합금을 포함하는 열간가압변형 자석 및 이의 제조방법
WO2019095921A1 (zh) 一种湿压成形制备高取向度结钕铁硼永磁材料的方法
CN103680919A (zh) 一种高矫顽力高强韧高耐蚀烧结钕铁硼永磁体的制备方法
CN103559972A (zh) 一种烧结钕铁硼永磁材料的制备方法
WO2018126738A1 (zh) 一种mn-ga合金及其磁硬化方法
CN108899150B (zh) 一种Nd-Fe-B/Sm-Co复合粘结磁体及其制备方法
CN104464997A (zh) 一种高矫顽力钕铁硼永磁材料及其制备方法
CN102360920B (zh) 一种钕铁硼永磁的制备方法
CN103805827A (zh) 纳米非晶低钕复相钕铁硼的制作方法
WO2011125593A1 (ja) 永久磁石及び永久磁石の製造方法
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899251

Country of ref document: EP

Kind code of ref document: A1