WO2017179714A1 - 密閉型二段圧縮機 - Google Patents

密閉型二段圧縮機 Download PDF

Info

Publication number
WO2017179714A1
WO2017179714A1 PCT/JP2017/015333 JP2017015333W WO2017179714A1 WO 2017179714 A1 WO2017179714 A1 WO 2017179714A1 JP 2017015333 W JP2017015333 W JP 2017015333W WO 2017179714 A1 WO2017179714 A1 WO 2017179714A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
oil
axis
bearing
stage
Prior art date
Application number
PCT/JP2017/015333
Other languages
English (en)
French (fr)
Inventor
陽平 堀田
央幸 木全
創 佐藤
後藤 利行
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201780010683.0A priority Critical patent/CN108700076B/zh
Priority to AU2017251203A priority patent/AU2017251203B2/en
Priority to EP17782527.0A priority patent/EP3409948B1/en
Priority to KR1020187025155A priority patent/KR102061440B1/ko
Publication of WO2017179714A1 publication Critical patent/WO2017179714A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow

Definitions

  • the present invention relates to a sealed two-stage compressor.
  • Priority is claimed on Japanese Patent Application No. 2016-081000, filed Apr. 14, 2016, the content of which is incorporated herein by reference.
  • a rotary compressor is disposed as the low stage side compression unit
  • a scroll compressor is disposed as the high stage side compression unit
  • the gas supplied into the housing is used as the rotary compressor. After compression, it is further compressed by the scroll compressor and discharged from the housing.
  • the closed type two-stage compressor is operated in a state in which the lubricating oil for the low-stage compression section and the high-stage compression section is held in the housing.
  • bearing brackets are provided at divided portions of the upper and lower division type housings, and gas in the outer peripheral region inside the housing containing a large amount of oil flows into the scroll compressor
  • the central region gas having a small oil content flows into the scroll compressor while avoiding the above problem.
  • the present invention provides a closed type two-stage compressor that can be easily manufactured and can effectively separate oil in gas.
  • a sealed type two-stage compressor includes a housing having an oil reservoir inside, a rotation shaft disposed in the housing, and a rotation shaft disposed in the housing and rotating the rotation shaft.
  • a motor having a stator provided radially outward and a rotor provided radially inward, and disposed on one side (first end side) in a direction of an axis of the rotation shaft with respect to the motor in the housing
  • a low-stage compression unit connected to the rotation shaft to compress gas, and the housing disposed on the other side (second end side) of the motor in the direction of the axis with respect to the motor and supporting the rotation shaft
  • a bearing device having a bearing casing for supporting the bearing body in the housing, and the bearing device disposed on the other side (second end side) in the direction of the axis with respect to the bearing device, the low-stage side From the compression section And a high-stage-side compression section for further compressing the discharged gas, the bearing casing being provided to suck gas into the high-stage
  • the gas is compressed together with the oil in the oil reservoir in the lower stage compression unit. Therefore, the gas discharged from the low pressure side compression unit contains oil. A part of the gas containing oil flows toward the high-stage compression section through the gap between the stator and the rotor or the through hole provided in the rotor after flowing out toward the motor. When the gas passes through the motor, the oil in the gas contacts the rotor and an oil separation plate provided at the top of the rotor to reduce the oil content in the gas. On the other hand, the gas that has passed between the stator and the housing flows directly toward the high-stage compression section without contacting the rotor. For this reason, the oil content in the gas flows toward the high stage side compression section while being high.
  • the amount of oil in the gas discharged from the low-stage compression section is small at the radially inner side in the housing and is large at the radial outer side.
  • the inflow of the gas to the suction opening can be restricted on the radially outer side by a simple method of providing the bearing casing with the restriction surface. For this reason, it is possible to limit the gas with a large oil content on the radially outer side from flowing directly into the suction passage through the suction opening, and the gas on the radially inner side with a small oil content is drawn through the suction opening. It is possible to flow into the road.
  • a gas with a small oil content can be supplied to the high stage side compression unit, and the amount of oil in the gas compressed and discharged in the high stage side compression unit can be reduced. Therefore, it is possible to reduce the amount of oil circulation (OC%) in the system including the closed type two-stage compressor. Furthermore, when the radially outer gas comes in contact with the restriction surface, the oil in the gas adheres to the restriction surface, and the gas with reduced oil content is guided radially inward by the restriction surface to the suction passage from the suction opening To flow. Thus, the amount of oil in the gas is reduced by the restriction surface and supplied from the suction passage to the high stage side compression unit, so the amount of oil in the gas compressed and discharged in the high stage side compression unit is reduced. It is possible to reduce the oil circulation (OC%) in the system.
  • a sealed type two-stage compressor according to a second aspect of the present invention is fixed to the bearing casing in the first aspect and has a plate shape, and is provided on one side (first end side) of the axis. It may further comprise an inflow restriction plate having the restriction surface.
  • the restriction surface can be provided in the bearing casing, so it is very easy to provide a restriction surface by attaching a member corresponding to the inflow restriction plate to the housing.
  • a limiting surface can be provided on the bearing housing.
  • the existing bearing casing can be easily provided with a limiting surface.
  • the restriction surface in the first or second aspect is provided at a radially outer end portion which is an inner surface side of the housing,
  • the axis is inclined toward one side (first end side) in the direction of the axis as the ring-shaped plane is formed orthogonal to the axis and centered on the axis and radially inward from the plane. It may have an inclined surface which makes a truncated cone shape centering.
  • an annular opening centered on the axis is formed so as to extend from the suction opening to one side (first end side) in the direction of the axis. be able to.
  • the opening extending from the suction opening can be formed annularly, the opening area can be secured, and the flow rate of the gas flowing from the inside of the housing into the suction passage can be secured.
  • the oil-rich gas in the radially outer region can be made to adhere to the inclined surface by flowing radially inward along the plane of the limiting surface and then colliding with the inclined surface.
  • the gas in a state where the oil content in the gas is further reduced, the gas can be made to flow into the suction passage to reduce the amount of oil in the gas supplied to the high stage side compression unit, and compressed by the high stage side compression unit The amount of oil in the discharged gas can be reduced. Therefore, it is possible to further reduce the oil circulation amount (OC%) in the system.
  • the radially inner end portion of the restriction surface in the first to third aspects is located radially inward of the stator.
  • the restriction surface may be disposed so as to close a part of the suction opening so as to secure a suction amount of gas required in the high stage side compression unit.
  • the inner surface of the limiting surface is located radially inward of the stator, whereby the limiting surface extends to the position of the rotor. Therefore, the gas in contact with the rotor and having a sufficiently reduced amount of oil can be made to flow from the suction opening into the suction passage. Therefore, the amount of oil in the gas compressed and discharged in the high stage side compression unit can be further reduced, and the oil circulation amount (OC%) in the system can be further reduced. At this time, since it is possible to secure the amount of gas suction required in the high stage side compression unit, it is possible to avoid a reduction in compression efficiency in the high stage side compression unit.
  • a sealed type two-stage compressor according to a fifth aspect of the present invention is provided in a gap between the radially outer outer edge of the restriction surface and the inner surface of the housing in the first to fourth aspects. It may further comprise a sealed member.
  • the gas having a large oil content which has passed between the housing and the stator, directly flows from between the restriction surface and the housing into the high stage compression portion You can avoid doing it. Therefore, the amount of oil in the gas that is compressed and discharged in the high stage side compression unit can be further reduced, and the oil circulation amount (OC%) in the system can be further reduced.
  • the high stage side compression portion is provided at the radial outer end of the bearing casing in the first to fifth aspects.
  • the bearing casing in the housing communicate with one side (first end side) in the direction of the axis rather than the bearing casing, and there is further provided an oil drop portion through which oil from the high-stage compression portion can flow Good.
  • the oil used for lubrication in the high stage side compression portion is returned into the housing through the oil drain portion. Therefore, it is possible to further reduce the amount of oil in the gas that is compressed and discharged in the high stage side compression unit, and it is possible to further reduce the oil circulation amount (OC%) in the system.
  • the oil drainage portion is provided at the radial outer end of the bearing casing, the oil drainage portion is provided at a position apart from the suction opening that opens inward in the radial direction. Therefore, it is possible to prevent the oil returned from the oil return portion to the housing from flowing directly into the suction flow path from the suction opening. Therefore, the amount of oil in the gas compressed and discharged in the high stage side compression unit can be further reduced, and the oil circulation amount (OC%) in the system can be further reduced.
  • the bearing casing in the first to sixth aspects is accommodated in the direction of the axis and capable of inserting the wiring of the motor.
  • a part may be provided, and it may further be provided with the seal member provided in the crevice between the restriction surface and the wiring of the motor.
  • FIG. 2 shows a closed type two-stage compressor according to a first embodiment of the present invention, and is a longitudinal sectional view at a cross sectional position different from FIG. 1 in the circumferential direction.
  • FIG. 2 is a view showing a bearing casing and an inflow restriction plate of the sealed two-stage compressor according to the first embodiment of the present invention, and shows an II cross section of FIG. 1; It is a longitudinal cross-sectional view which shows the airtight type two-stage compressor which concerns on 2nd embodiment of this invention.
  • FIG. 2 shows a closed type two-stage compressor according to a first embodiment of the present invention, and is a longitudinal sectional view at a cross sectional position different from FIG. 1 in the circumferential direction.
  • FIG. 2 is a view showing a bearing casing and an inflow restriction plate of the sealed two-stage compressor according to the first embodiment of the present invention, and shows an II cross section of FIG. 1;
  • It is a longitudinal cross-sectional view which shows the airtight type two-stage compressor
  • FIG. 5 is a view showing a bearing casing and an inflow restriction plate of a sealed two-stage compressor according to a second embodiment of the present invention, and shows an IV-IV cross section of FIG. 4; It is a figure showing a bearing casing and an inflow restriction plate of a sealed type two-stage compressor concerning a modification of an embodiment of the present invention.
  • the enclosed type two-stage compressor 1 (hereinafter, referred to as the two-stage compressor 1) according to the first embodiment of the present invention will be described.
  • the two-stage compressor 1 compresses a refrigerant R which is a gas such as carbon dioxide.
  • the two-stage compressor 1 includes a housing 11, a rotary compressor (low stage side compression unit) 12 provided inside the housing 11, a scroll compressor (high stage side compression unit) 13, an electric motor 14, a rotating shaft 15, And a bearing device 30 and an inflow restriction plate 61 fixed to the bearing device 30.
  • the housing 11 includes a cylindrical main body 21 and an upper lid 22 and a lower lid 23 that close the upper and lower openings of the main body 21.
  • the housing 11 seals the internal space.
  • the rotating shaft 15 is disposed to extend vertically inside the housing 11.
  • the electric motor 14 is disposed on the outer peripheral side of the rotating shaft 15 to rotate the rotating shaft 15 around the axis X. That is, the electric motor 14 faces the rotor 38 in the radial direction with a gap between the rotor 38 fixed to the outer peripheral surface of the rotary shaft 15 and the outer peripheral surface of the rotor 38 and fixed to the inner surface of the main body 21 of the housing 11 And the stator 39, which
  • the electric motor 14 is connected to a power supply (not shown) by a wire 14a, and the rotating shaft 15 is rotated by the power from the power supply.
  • the stator 39 is fixed to the inner surface of the housing 11 at a part in the circumferential direction, and the inner surface of the housing 11 and the stator 39 have a gap S in the radial direction at portions other than the parts fixed to the inner surface of the housing 11 It is arranged.
  • the rotary compressor 12 is disposed in the housing 11 at a position adjacent to the lower lid portion 23 below and in the direction of the axis X of the electric motor 14.
  • the rotary compressor 12 includes an eccentric shaft portion 41 provided on the rotary shaft 15 and a piston rotor 42 fixed to the eccentric shaft portion 41 and rotating eccentrically with respect to the axis X with rotation of the rotary shaft 15;
  • a compression chamber C1 accommodating the rotor 42 is provided with a cylinder 44 formed therein.
  • the cylinder 44 is formed with a suction hole 44 a which allows the refrigerant R to flow into the inside.
  • a suction pipe 33 provided through the main body 21 of the housing 11 is connected to the suction hole 44 a, and the refrigerant R is supplied from the outside of the housing 11 through the suction pipe 33.
  • a discharge hole (not shown) is formed in the cylinder 44, and the refrigerant R compressed by the rotary compressor 12 is discharged from the discharge hole to the area in the housing 11 where the electric motor 14 is provided. It has become.
  • oil A is stored at the bottom of the housing 11, and an oil reservoir O1 is provided.
  • the liquid level of the oil reservoir O 1 at the time of the initial sealing of the oil A is located above the rotary compressor 12. The rotary compressor 12 is thereby driven in the oil reservoir O1.
  • the scroll compressor 13 is disposed inside the housing 11 above the electric motor 14.
  • the scroll compressor 13 includes a fixed scroll 51 fixed to the upper bearing 31 and a orbiting scroll 57 disposed below the fixed scroll 51 and opposed to the fixed scroll 51.
  • the fixed scroll 51 has an end plate 52 fixed to the upper surface of the upper bearing 31 and a fixed wrap 53 projecting downward from the end plate 52.
  • a discharge hole 52a penetrating vertically is formed in the central portion (near the axis X) of the end plate 52.
  • the orbiting scroll 57 is disposed so as to be sandwiched in the direction of the axis X by the bearing device 30 (upper bearing 31 described later) and the end plate 52 of the fixed scroll 51 and is fixed to the rotation shaft 15; And a pivot wrap 59 projecting upward from the end plate 58.
  • the end plate 58 is fixed to an eccentric shaft portion 56 provided at the upper end of the rotation shaft 15 and rotates eccentrically with respect to the axis X as the rotation shaft 15 rotates.
  • the turning wrap 59 engages with the fixed wrap 53 to form a compression chamber C2 for compressing the refrigerant R with the fixed wrap 53.
  • the fixed scroll 51 is formed with a suction hole (not shown) that can suck the refrigerant R compressed by the rotary compressor 12 and discharged into the housing 11 into the compression chamber C2 via the bearing device 30. ing.
  • the refrigerant R compressed in the compression chamber C2 is fixed to the upper portion of the fixed scroll 51 in the housing 11 through the discharge hole 52a of the fixed scroll 51 and opens in a space surrounded by the fixed scroll 51 and the discharge cover 50.
  • the discharge pipe 34 provided through the housing 11 and extending to the outside is discharged to the outside of the housing 11.
  • an upper bearing 31 provided in the upper part inside the housing 11 and lower bearings 32A and 32B provided in the lower part inside the housing 11 are provided.
  • the lower bearings 32A, 32B rotatably support the rotating shaft 15 with respect to the housing 11 at the lower part of the housing 11.
  • the lower bearings 32A and 32B are disposed so as to sandwich the rotary compressor 12 from above and below in the direction of the axis X, and are fixed to the cylinder 44 by bolts 48.
  • the upper bearing 31 supports a bearing main body 31a rotatably supporting the rotary shaft 15 with respect to the housing 11 about the axis X of the rotary shaft 15, and a bearing casing 31b supporting the bearing main body 31a integrally with the bearing main body 31a. And.
  • the bearing casing 31b is provided with a plurality of suction flow paths FC extending in parallel with the axis X across the entire area of the bearing casing 31b in the direction of the axis X at intervals in the circumferential direction.
  • the suction passage FC is a recessed groove having a rectangular cross-section which is recessed inward in the radial direction from the outer peripheral surface of the bearing casing 31b.
  • the bearing casing 31b extends radially inward from the lower end of the suction passage FC continuously downward to be one side (first end side) of the axis X, and when looking at the bearing casing 31b A suction opening FCa opening in a fan shape is provided.
  • the bearing casing 31b is provided with a recessed portion (accommodating portion) 31c which is recessed from the outer peripheral surface radially inward over the entire region in the direction of the axis X at a position not interfering with the suction opening FCa.
  • the wiring 14a of the electric motor 14 is disposed inside the recess.
  • a seal member 65 is provided in the gap between the recess 31 c, the wire 14 a and the inner surface of the housing 11.
  • a sealing material such as resin can be used for the sealing member 65.
  • bearing flow passage 31d (see FIG. 2) opened inside the housing 11 at a position in the direction of the axis X in which the orbiting scroll 57 is fixed to the eccentric shaft 56 penetrating in the radial direction. It is formed.
  • the bearing casing 31b communicates with the bearing flow passage 31d at a position not interfering with the suction opening FCa and the recess 31c and at the radially outer end and faces the electric motor 14 toward the bearing casing 31b.
  • An oil drain pipe (oil drain portion) 72 extending along the inner surface of the housing 11 and projecting downward from the bearing casing 31 b is provided.
  • the inflow restriction plate 61 is fixed to the bearing casing 31b from below by a bolt 60 as shown in FIG.
  • the inflow restriction plate 61 has an annular shape about the axis X.
  • the inflow restriction plate 61 has a plurality of notches 63 which are notched radially inward from the radially inner end, at a position corresponding to the suction opening FCa.
  • the lower surface of the inflow restriction plate 61 is a restriction surface 62, and the bottom of the notch 63 forms an inner edge 62 a of the restriction surface 62.
  • the inner edge 62a has a curved shape formed along the circumferential direction.
  • the inner edge portion 62a is located at a midway position in the radial direction of the suction opening FCa, and as a result, only the radially inner position of the suction opening FCa is opened toward the electric motor 14 by the inflow restriction plate 61. There is. As a result, the flow of the refrigerant R to the suction opening FCa on the radially outer side is restricted by the restriction surface 62.
  • the inflow restriction plate 61 is provided with a notch 61a which is recessed inward in the radial direction from the outer edge 62b at a position corresponding to the position of the wire 14a so as not to interfere with the wire 14a.
  • the restriction surface 62 is provided so as to project radially inward from the inner surface of the housing 11 when viewed from a cross section including the axis X as shown in FIG.
  • a seal member 66 is provided in the gap between the inner surface of the housing 11 and the outer edge 62 b of the restriction surface 62 (the end edge radially outward along the inner surface of the housing 11).
  • a seal member of resin or the like, an O-ring or the like can be used as the seal member 66.
  • the refrigerant R is compressed together with the oil A of the oil reservoir O1 in the rotary compressor 12.
  • the refrigerant R discharged from the rotary compressor 12 contains the oil A.
  • a part of the refrigerant R including the oil A flows toward the electric motor 14 and then flows toward the scroll compressor 13 through the gap between the stator 39 and the rotor 38 or the through hole 37 provided in the rotor 38.
  • the oil A in the refrigerant R contacts the rotor 38 and the oil separation plate 38 a provided on the upper portion of the rotor 38 and extending in the radial direction, whereby the oil R in the refrigerant R is The content of oil A is reduced.
  • the refrigerant R which has passed through the gap S between the stator 39 and the housing 11 flows toward the scroll compressor 13 without being in contact with the rotor 38. Therefore, the refrigerant R flows toward the scroll compressor 13 while the content of the oil A in the refrigerant R is large. That is, the amount of oil A in the refrigerant R discharged from the rotary compressor 12 is small at the radially inner side in the housing 11 and is large at the radial outer side.
  • the inflow restriction plate 61 having the restriction surface 62 in the bearing casing 31b by providing the inflow restriction plate 61 having the restriction surface 62 in the bearing casing 31b, it is possible to restrict the flow of the refrigerant R to the suction opening FCa at the radially outer side. For this reason, it can be restricted that the refrigerant R having a large content of the oil A on the radially outer side flows into the suction flow path FC through the suction opening FCa as it is. Further, the radially inner refrigerant R having a small content of oil A can be made to flow into the suction passage FC through the suction opening FCa.
  • the refrigerant R with a small content of oil A can be supplied to the scroll compressor 13, and the amount of oil A in the refrigerant R compressed and discharged by the scroll compressor 13 can be reduced. It becomes possible to reduce the amount of oil circulation (OC%) in the system including the two-stage compressor 1.
  • the oil A in the refrigerant R adheres to the restriction surface 62, and the refrigerant R whose content of the oil A decreases is guided radially inward by the restriction surface 62 And flows into the suction passage FC from the suction opening FCa.
  • the amount of oil A in the refrigerant R is reduced by the restriction surface 62 and is supplied from the suction passage FC to the scroll compressor 13. Therefore, the amount of oil A in the refrigerant R compressed by the scroll compressor 13 and discharged from the discharge pipe 34 to the outside of the housing 11 can be reduced, and the oil circulation amount (OC%) in the system is reduced. It is possible to
  • the restriction surface 62 can be provided on the bearing casing 31b. For this reason, compared with the case where the member equivalent to the inflow restriction
  • the oil drain pipe 72 the oil used for lubrication in the high stage side compression unit is returned to the inside of the housing 11 through the oil drain pipe 72. Therefore, the amount of oil A in the refrigerant R compressed and discharged by the scroll compressor 13 can be further reduced. Further, by providing the oil drainage pipe 72 at the radial outer end of the bearing casing 31b, the oil drainage pipe 72 is provided at a position away from the radially inner opening of the suction opening FCa on the radially inner side. . Therefore, it is possible to prevent the oil A returned from the oil return pipe 72 to the housing 11 from flowing directly into the suction flow path FC from the suction opening FCa. Therefore, the amount of oil A in the refrigerant R to be compressed and discharged by the scroll compressor 13 can be further reduced.
  • the refrigerant R having a large content of oil A which has passed through the gap S between the housing 11 and the stator 39 in the radially outer region inside the housing 11 by the seal member 66 is the restriction surface 62 and the housing as it is. It can avoid flowing into the scroll compressor 13 from between it and the inner surface of 11. Therefore, the amount of oil A in the refrigerant R compressed and discharged by the scroll compressor 13 can be further reduced.
  • the sealing member 65 can seal the gap between the recess 31c and the wire 14a and the inner surface of the housing 11. . Therefore, it is possible to suppress the refrigerant R including the oil A being supplied to the scroll compressor 13 as it is through the gap.
  • a two-stage compressor 80 according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • the wiring 14 a of the electric motor 14 and the oil drain pipe 72 are not shown.
  • symbol is attached
  • the two-stage compressor 80 of this embodiment differs from the inflow restriction plate 61 of the first embodiment in the inflow restriction plate 81 having a restriction surface 82.
  • the inflow restriction plate 81 is disposed radially outward along the inner surface of the housing 11 and has an annular portion 83 having an annular shape centered on the axis X, and an annular portion 83 continuously provided radially inward of the annular portion 83. And a conical portion 84 integrally provided.
  • the lower surface of the annular portion 83 is a flat surface 86 forming an annular shape centered on the axis X.
  • the outer surface of the conical portion 84 is a sloped surface 87 having a truncated cone shape with the axis X as a center.
  • the inclined surface 87 is inclined downward as it goes radially inward from the plane 86.
  • the limiting surface 82 of the present embodiment has the flat surface 86 and the inclined surface 87.
  • An inner edge portion 87 a which is a radially inner end edge of the inclined surface 87 is located radially inward of the stator 39 and radially outward of the bearing casing 31 b and the rotation shaft 15.
  • the inner edge portion 87a of the inflow restriction plate 81 is disposed at a position where the suction amount of the refrigerant R required for the scroll compressor 13 can be secured, that is, the opening area of the suction opening FCa can be secured. It is done.
  • the limiting surface 82 has the inclined surface 87, thereby forming an annular shape centered on the axis X so as to extend downward from the suction opening FCa in the direction of the axis X.
  • the opening OP can be formed. Therefore, the area in which the suction opening FCa opens toward the electric motor 14 can be made larger than in the first embodiment. Therefore, the flow rate of the refrigerant R flowing into the suction passage FC from the inside of the housing 11 can be secured.
  • the refrigerant R having a large content of oil A in the radially outer region of the housing 11 flows radially inward along the flat surface 86 and then collides with the inclined surface 87, thereby causing the oil to be inclined to the inclined surface 87 as well. A can be attached. Therefore, the refrigerant R can be made to flow into the suction passage FC and be supplied to the scroll compressor 13 in a state where the content of the oil A in the refrigerant R is further reduced. As a result, the amount of oil A in the refrigerant R compressed by the scroll compressor 13 and discharged to the outside of the housing 11 can be further reduced, and the amount of oil circulation in the system including the two-stage compressor 80 (OC %) Can be further reduced.
  • the limiting surface 82 extends to the position of the rotor 38. Therefore, the refrigerant R flowing radially inward in the housing 11 and the oil A in the refrigerant R are brought into contact with the rotor 38, and the refrigerant R whose amount of oil A is sufficiently reduced by the rotor 38 is suctioned from the suction opening FCa It can be made to flow into the channel FC.
  • the inner edge 62 a of the limiting surface 62 may be disposed radially inward of the stator 39. Furthermore, in this case, it is preferable to determine the position of the inner edge portion 62 a so that the suction amount of the refrigerant R required for the scroll compressor 13 can be secured.
  • a through hole penetrating in the direction of the axis X may be formed in the bearing casing 31b, and the wiring 14a may be inserted through this through hole.
  • the limiting surface 62 ⁇ / b> A may be provided with an annular recess 90 which is recessed upward and has an annular shape around the axis X.
  • an annular recess 90 With such an annular recess, the refrigerant R on the radially outer side comes into contact with the restriction surface 62A, so that the oil A attached to the restriction surface 62A flows radially inward and is not sucked into the suction opening FCa be able to.
  • Such an annular recess 90 can be provided on any of the restriction surface 62 of the first embodiment and the restriction surface 82 of the second embodiment.
  • the rotary compressor 12 was provided in the housing 11 as a low stage side compressor and the scroll compressor 13 was provided as a high stage side compressor, it is not limited to this.
  • the scroll compressor 13 may be provided as the low-stage compressor, and the rotary compressor 12 may be used as the high-stage compressor.
  • the scroll compressor 13 may be provided on both the low stage side and the high stage side, and the rotary compressor 12 may be provided on the low stage side and the high stage side.
  • compressors other than the scroll compressor 13 and the rotary compressor 12 may be provided.
  • restriction surfaces 62 and 82 may be provided also in a two-stage compressor that is used in a horizontal position such that the axis of the rotation axis extends in the horizontal direction.

Abstract

内部に油溜まり(O1)を有するハウジング(11)内の上部で回転軸(15)を支持する軸受本体(31a)、及び軸受本体(31a)をハウジング(11)に支持する軸受ケーシング(31b)を有する上部軸受(31)に対して上方に配置され、ロータリ圧縮機(12)から吐出された冷媒(R)をさらに圧縮するスクロール圧縮機(13)を備え、軸受ケーシング(31b)には、スクロール圧縮機(13)へ冷媒(R)を吸入するように設けられて下方に向かって開口する吸入開口(FCa)が設けられた吸入流路(FC)と、吸入開口(FCa)と電動モータ(14)との間に配置されて、径方向外側での吸入開口(FCa)への冷媒(R)の流れを制限するように、ハウジング(11)の内面から径方向内側に向かって設けられた制限面(62)と、が設けられている。

Description

密閉型二段圧縮機
 本発明は、密閉型二段圧縮機に関する。
 本願は、2016年4月14日に出願された特願2016-081000号に基づき優先権を主張し、その内容をここに援用する。
 従来から、例えば冷凍空調用に用いられ、ハウジング内に密閉された低段側圧縮部、及び、高段側圧縮部を備える密閉型二段圧縮機が知られている。そして、このような密閉型二段圧縮機の一例が特許文献1に開示されている。
 特許文献1の密閉型二段圧縮機では、低段側圧縮部としてロータリ圧縮機を配置し、高段側圧縮部としてスクロール圧縮機を配置し、ハウジング内に供給されたガスをロータリ圧縮機で圧縮した後、さらにスクロール圧縮機で圧縮してハウジングから吐出する。ハウジング内には低段側圧縮部、及び高段側圧縮部の潤滑用の油が保持された状態で密閉型二段圧縮機が運転される。
 ここで、特許文献1の密閉型二段圧縮機では、上下分割タイプのハウジングの分割部分にベアリングブラケットを設け、油を多く含むハウジング内部の外周側領域のガスがスクロール圧縮機へ流入してしまうことを回避する一方で、油の含有量が小さい中心側領域のガスがスクロール圧縮機へ流入するようにして、冷凍サイクルでの油循環量(OC%)の低減を図っている。
特開2009-180107号公報
 しかしながら特許文献1のベアリングブラケットのように、冷凍サイクルでの油循環量(OC%)の低減を目的とする部材をハウジングに溶接で設ける場合、ハウジングへの歪が生じる可能性がある。従って、精度よく密閉型二段圧縮機を製造することが難しく、製造に手間を要する。また特許文献1の密閉型二段圧縮機のベアリングブラケットは、ベアリングケースから荷重を受けるため、剛性確保のため肉厚を大きくする必要がある。この結果、ハウジングの内容積が小さくなってしまい、ガス中の油を分離する際に不利となる。
 そこで本発明は、容易に製造可能であるとともに、ガス中の油を効果的に分離することができる密閉型二段圧縮機を提供する。
 本発明の第一の態様に係る密閉型二段圧縮機は、内部に油溜まりを有するハウジングと、前記ハウジング内に配置された回転軸と、前記ハウジング内に配置されて前記回転軸を回転させる径方向外側に設けられたステータ及び径方向内側に設けられたロータを有するモータと、前記ハウジング内で前記モータに対して前記回転軸の軸線の方向の一方側(第一端側)に配置され、前記回転軸に接続されてガスを圧縮する低段側圧縮部と、前記ハウジング内で前記モータに対して前記軸線の方向の他方側(第二端側)に配置され、前記回転軸を支持する軸受本体、及び該軸受本体を前記ハウジングに支持する軸受ケーシングを有する軸受装置と、前記軸受装置に対して、前記軸線の方向の他方側(第二端側)に配置され、前記低段側圧縮部から吐出されたガスをさらに圧縮する高段側圧縮部と、を備え、前記軸受ケーシングには、前記高段側圧縮部へガスを吸入するように設けられて前記軸線の方向の一方側(第一端側)に向かって開口する吸入開口が設けられた吸入流路と、前記吸入開口と前記モータとの間に配置されて、径方向外側での前記吸入開口へのガスの流れを制限するように、前記ハウジングの内面から径方向内側に向かって設けられた制限面と、が設けられている。
 このような密閉型二段圧縮機では、低段側圧縮部では油溜まりの油とともにガスが圧縮される。このため低段側圧縮部から吐出されたガスには油が含まれている。油を含むガスの一部は、モータに向かって流出した後にステータとロータとの隙間、あるいはロータに設けられた貫通孔を通じて高段側圧縮部に向かって流通する。そしてガスがモータを通過する際にはガス中の油はロータや、ロータの上部に設けられた油分離プレートに接触することでガス中の油含有量が低減される。一方で、ステータとハウジングとの間を通過したガスはロータに接触することなくそのまま高段側圧縮部に向かって流通する。このため、ガス中の油含有量は多いまま高段側圧縮部に向かって流通する。即ち、低段側圧縮部から吐出されたガス中の油量は、ハウジング内の径方向内側で少なく、径方向外側で多くなっている。
 ここで、本態様では軸受ケーシングに制限面を設けるといった簡易な手法により、径方向外側で吸入開口へのガスの流入を制限できる。このため、径方向外側の油含有量の多いガスがそのまま吸入開口を通じて吸入流路に流入してしまうことを制限でき、かつ、油含有量の少ない径方向内側のガスを、吸入開口を通じて吸入流路へ流入させることが可能となる。この結果、高段側圧縮部へ油含有量の少ないガスを供給することができ、高段側圧縮部で圧縮されて吐出されるガス中の油量を低減することができる。よって密閉型二段圧縮機を含むシステム内の油循環量(OC%)を低減することが可能となる。
 さらに、径方向外側のガスが制限面に接触すると、ガス中の油が制限面に付着し、油含有量が減ったガスが制限面によって径方向内側に案内されて吸入開口から吸入流路へ流入する。このように制限面によってガス中の油量が低減されて吸入流路から高段側圧縮部へ供給されるため、高段側圧縮部で圧縮されて吐出されるガス中の油量を低減することができ、システム内の油循環量(OC%)を低減することが可能となる。
 また、本発明の第二の態様に係る密閉型二段圧縮機は、上記第一の態様における前記軸受ケーシングに固定されるとともに板状をなし、前記軸線の一方側(第一端側)に前記制限面を有する流入制限プレートをさらに備えていてもよい。
 このように軸受ケーシングに流入制限プレートを設けることで、軸受ケーシングに制限面を設けることができるため、ハウジングに流入制限プレートに相当する部材を取り付けて制限面を設ける場合に比べ、非常に容易に制限面を軸受ケーシングに設けることができる。また、既存の軸受ケーシングにも容易に制限面を設けることができる。
 また、本発明の第三の態様に係る密閉型二段圧縮機では、上記第一又は第二の態様における前記制限面は、前記ハウジングの内面側となる径方向外側の端部に設けられ、前記軸線に直交して該軸線を中心とした環状をなす平面と、前記平面から径方向内側に向かうに従って、前記軸線の方向の一方側(第一端側)へ向かって傾斜して前記軸線を中心とした円錐台状をなす傾斜面と、を有していてもよい。
 このように制限面として円錐台状をなす傾斜面を設けることで、吸入開口から軸線の方向の一方側(第一端側)に延びるように軸線を中心とした環状をなす開口部を形成することができる。このように吸入開口から延びる開口部を環状に形成できるため、開口面積を確保することができ、ハウジング内から吸入流路へ流入するガスの流量を確保することができる。さらに、径方向外側領域の油含有量の多いガスは制限面の平面に沿って径方向内側に流通した後に傾斜面に衝突することで、傾斜面にも油を付着させることができる。よって、さらにガス中の油含有量を低減した状態で、ガスを吸入流路に流入させ、高段側圧縮部へ供給するガス中の油量を低減でき、高段側圧縮部で圧縮されて吐出されるガス中の油量を低減することができる。よってシステム内の油循環量(OC%)をさらに低減することが可能となる。
 また、本発明の第四の態様に係る密閉型二段圧縮機では、上記第一から第三の態様における前記制限面の径方向内側の内縁部は、前記ステータよりも径方向内側の位置に配置され、かつ、前記制限面は、前記高段側圧縮部で必要となるガスの吸入量を確保可能に、前記吸入開口の一部を閉塞していてもよい。
 このように、制限面の内縁部がステータよりも径方向内側に位置することで、制限面がロータの位置まで延びていることになる。従って、ロータに接触して油量を十分に低減したガスを吸入開口から吸入流路に流入させることができる。よって、高段側圧縮部で圧縮されて吐出されるガス中の油量をさらに低減することができ、システム内の油循環量(OC%)をさらに低減することが可能となる。またこの際、高段側圧縮部で必要となるガスの吸入量を確保可能となっているため、高段側圧縮部での圧縮効率低下を回避できる。
 また、本発明の第五の態様に係る密閉型二段圧縮機は、上記第一から第四の態様における前記制限面の径方向外側の外縁部と前記ハウジングの内面との間の隙間に設けられたシール部材をさらに備えていてもよい。
 このようなシール部材によって、ハウジング内の径方向外側の領域で、ハウジングとステータとの間を通過した油含有量が多いガスが、そのまま制限面とハウジングとの間から高段側圧縮部に流入してしまうことを回避できる。従って、高段側圧縮部で圧縮されて吐出されるガス中の油量をさらに低減することができ、システム内の油循環量(OC%)をさらに低減することが可能となる。
 また、本発明の第六の態様に係る密閉型二段圧縮機では、上記第一から第五の態様における前記軸受ケーシングには、径方向外側の端部の位置で、前記高段側圧縮部と前記ハウジング内の軸受ケーシングよりも前記軸線の方向の一方側(第一端側)とを連通し、前記高段側圧縮部からの油が流通可能な油落し部がさらに設けられていてもよい。
 このような油落し部を設けることで、高段側圧縮部で潤滑に使用された油が油落し部を通じてハウジング内に戻される。従って高段側圧縮部で圧縮されて吐出されるガス中の油量をさらに低減することができ、システム内の油循環量(OC%)をさらに低減することが可能となる。
 また、油落し部を軸受ケーシングの径方向外側の端部に設けることで、径方向内側に開口する吸入開口から離れた位置に油落し部を設けることになる。従って、油戻し部からハウジングへ戻される油が、吸入開口からそのまま吸入流路に流入してしまうことを回避できる。よって高段側圧縮部で圧縮されて吐出されるガス中の油量をさらに低減することができ、システム内の油循環量(OC%)をさらに低減することが可能となる。
 また、本発明の第七の態様に係る密閉型二段圧縮機では、上記第一から第六の態様における前記軸受ケーシングには、前記軸線の方向に延びるとともに前記モータの配線を挿通可能な収容部が設けられ、前記制限面と前記モータの配線との間の隙間に設けられたシール部材をさらに備えていてもよい。
 このようなシール部材によって、モータの配線が挿通される収容部を軸受ケーシングに形成したとしても、制限面とモータの配線との間の隙間をシールすることができる。よって、この隙間を通じて油を含むガスがそのまま高段側圧縮部に供給されてしまうことを抑制することができる。
 上記の密閉型二段圧縮機によれば、制限面を軸受ケーシングに設けるといった手法を用いることで、容易に製造可能であるとともに、制限面によってガス中の油を効果的に分離することができる。
本発明の第一実施形態に係る密閉型二段圧縮機を示す縦断面図である。 本発明の第一実施形態に係る密閉型二段圧縮機を示し、図1とは周方向の異なる断面位置での縦断面図である。 本発明の第一実施形態に係る密閉型二段圧縮機の軸受ケーシング及び流入制限プレートを示す図であって、図1のI-I断面を示す。 本発明の第二実施形態に係る密閉型二段圧縮機を示す縦断面図である。 本発明の第二実施形態に係る密閉型二段圧縮機の軸受ケーシング及び流入制限プレートを示す図であって、図4のIV-IV断面を示す。 本発明の実施形態の変形例に係る密閉型二段圧縮機の軸受ケーシング及び流入制限プレートを示す図である。
〔第一実施形態〕
 以下、本発明の第一実施形態における密閉型二段圧縮機1(以下、二段圧縮機1とする)について説明する。
 図1及び図2に示すように、二段圧縮機1は、例えば二酸化炭素等のガスである冷媒Rを圧縮する。二段圧縮機1はハウジング11と、ハウジング11の内部に設けられたロータリ圧縮機(低段側圧縮部)12、スクロール圧縮機(高段側圧縮部)13、電動モータ14、回転軸15、及び軸受装置30と、軸受装置30に固定された流入制限プレート61とを備えている。
 ハウジング11は、円筒状をなす本体部21と、本体部21の上下の開口を閉塞する上部蓋部22及び下部蓋部23とを備えている。そしてハウジング11は内部の空間を密閉している。
 回転軸15は、ハウジング11の内部で上下に延びるように配置されている。
 電動モータ14は、回転軸15の外周側に配置されて回転軸15を軸線X回りに回転させる。即ち、電動モータ14は、回転軸15の外周面に固定されたロータ38と、ロータ38の外周面と隙間を空けてロータ38と径方向に対向し、ハウジング11の本体部21の内面に固定されたステータ39とを有している。
 電動モータ14は不図示の電源に配線14aによって接続されて、この電源からの電力によって回転軸15を回転させる。ステータ39は、周方向の一部でハウジング11の内面に固定されており、ハウジング11の内面に固定された以外の部分では、ハウジング11の内面とステータ39とは径方向に隙間Sを空けて配置されている。
 ロータリ圧縮機12は、ハウジング11の内部で、電動モータ14の軸線Xの方向の一方となる下方で、下部蓋部23に隣接した位置に配置されている。ロータリ圧縮機12は、回転軸15に設けられた偏心軸部41と、偏心軸部41に固定され、回転軸15の回転に伴って軸線Xに対して偏心して回転するピストンロータ42と、ピストンロータ42を収容する圧縮室C1が内部に形成されたシリンダ44とを備えている。
 シリンダ44には冷媒Rを内部に流入可能とする吸入孔44aが形成されている。吸入孔44aにはハウジング11の本体部21を貫通して設けられた吸入管33が接続されており、吸入管33を通じてハウジング11の外部から冷媒Rが供給される。また、シリンダ44には不図示の吐出孔が形成されており、この吐出孔からハウジング11内の電動モータ14が設けられた領域にロータリ圧縮機12で圧縮された冷媒Rが吐出されるようになっている。
 また、ハウジング11の底部には油Aが貯留されており、油溜まりO1が設けられている。油Aの初期封入時における油溜まりO1の液面は、ロータリ圧縮機12の上方に位置している。これによりロータリ圧縮機12は、油溜まりO1の中で駆動される。
 スクロール圧縮機13は、ハウジング11の内部で電動モータ14の上方に配置されている。スクロール圧縮機13は、上部軸受31に固定された固定スクロール51と、固定スクロール51の下方で固定スクロール51に対向して配置された旋回スクロール57とを備えている。
 固定スクロール51は、上部軸受31の上面に固定された端板52と、端板52から下方に突出する固定ラップ53とを有している。端板52の中央部(軸線X近傍)には、上下に貫通する吐出孔52aが形成されている。
 旋回スクロール57は、軸受装置30(後述する上部軸受31)と固定スクロール51の端板52とで軸線Xの方向に挟まれるようにして配置されて回転軸15に固定された端板58と、端板58から上方に突出する旋回ラップ59とを有している。
 端板58は、回転軸15の上端に設けられた偏心軸部56に固定されて、回転軸15の回転に伴って軸線Xに対して偏心して回転する。
 旋回ラップ59は、固定ラップ53と噛み合うことで固定ラップ53との間に冷媒Rを圧縮する圧縮室C2を形成している。
 ここで固定スクロール51には、ロータリ圧縮機12で圧縮されてハウジング11内に吐出された冷媒Rを、軸受装置30を介して圧縮室C2内に吸入可能とする不図示の吸入孔が形成されている。圧縮室C2で圧縮された冷媒Rは、固定スクロール51の吐出孔52aを通じて、ハウジング11内で固定スクロール51の上部に固定されて固定スクロール51とディスチャージカバー50とで囲まれた空間に開口するとともにハウジング11を貫通して外部に延びて設けられた吐出管34からハウジング11の外部へ吐出される。
 軸受装置30としては、ハウジング11の内部で上部に設けられた上部軸受31と、ハウジング11の内部で下部に設けられた下部軸受32A、32Bとが設けられている。
 下部軸受32A、32Bは、ハウジング11の下部で回転軸15をハウジング11に対して回転可能に支持している。具体的には下部軸受32A、32Bは、ロータリ圧縮機12を軸線Xの方向に上下から挟むようにして配置されて、シリンダ44にボルト48で固定されている。
 上部軸受31は、回転軸15をハウジング11に対して回転軸15の軸線X回りに回転可能に支持する軸受本体31aと、軸受本体31aと一体に軸受本体31aをハウジング11に支持する軸受ケーシング31bとを有している。
 図1から図3に示すように軸受ケーシング31bには、周方向に互いに間隔をあけて、軸受ケーシング31bの軸線Xの方向の全域にわたって軸線Xと平行に延びる複数の吸入流路FCが設けられている。本実施形態では、吸入流路FCは軸受ケーシング31bの外周面から径方向内側に凹む断面矩形状の凹状溝となっている。
 また軸受ケーシング31bには、軸線Xの一方側(第一端側)となる下方に連続して吸入流路FCの下端から径方向内側に延び、軸受ケーシング31bを見た際に下方に向かって扇形形状に開口する吸入開口FCaが設けられている。
 さらに軸受ケーシング31bには、吸入開口FCaに干渉しない位置で、外周面から径方向内側に向かって軸線Xの方向の全域にわたって凹む凹部(収容部)31cが設けられている。この凹部の内部には電動モータ14の配線14aが配置されている。凹部31cと配線14aとハウジング11の内面との間の隙間にはシール部材65が設けられている。シール部材65には例えば樹脂等のシール材を用いることができる。
 さらに軸受ケーシング31bには、径方向に貫通して旋回スクロール57が偏心軸部56に固定された軸線Xの方向の位置で、ハウジング11の内部に開口する軸受流路31d(図2参照)が形成されている。
 さらに、そして軸受ケーシング31bには、吸入開口FCa及び凹部31cに干渉しない位置で、かつ、径方向外側の端部の位置で、軸受流路31dに連通するとともに電動モータ14に向かって軸受ケーシング31bを貫通してハウジング11の内面に沿って延び、軸受ケーシング31bから下方に突出しする油落し管(油落し部)72が設けられている。
 流入制限プレート61は、図3に示すように、軸受ケーシング31bに下方からボルト60によって固定されている。流入制限プレート61は軸線Xを中心とした環状をなしている。流入制限プレート61は、径方向内側の端部から径方向内側に向かって切り欠かれた複数の切欠部63を、吸入開口FCaに対応する位置に有している。流入制限プレート61の下面は制限面62となっており、切欠部63の底部が制限面62の内縁部62aを形成している。この内縁部62aは、周方向に沿って形成された曲線状をなしている。内縁部62aは吸入開口FCaの径方向の中途位置に位置されており、この結果、流入制限プレート61によって吸入開口FCaの径方向内側の位置のみが電動モータ14に向かって開口した状態となっている。これにより、制限面62によって径方向外側での吸入開口FCaへの冷媒Rの流れが制限されるようになっている。
 また、流入制限プレート61には、配線14aに干渉しないように、配線14aの位置に対応する位置で外縁部62bから径方向内側に向かって凹む切欠部61aが設けられている。
 制限面62は図1に示すように軸線Xを含む断面から見て、ハウジング11の内面から径方向内側に向かって突出するように設けられている。
 さらに本実施形態では、ハウジング11の内面と、制限面62の外縁部62b(ハウジング11の内面に沿う径方向外側の端縁)との間の隙間にはシール部材66が設けられている。このシール部材66には樹脂等のシール部材や、Oリング等を用いることができる。
 以上説明した本実施形態の二段圧縮機1では、ロータリ圧縮機12では油溜まりO1の油Aとともに冷媒Rが圧縮される。このためロータリ圧縮機12から吐出された冷媒Rには油Aが含まれている。油Aを含む冷媒Rの一部は、電動モータ14に向かって流出した後にステータ39とロータ38との隙間、あるいはロータ38に設けられた貫通孔37を通じてスクロール圧縮機13に向かって流通する。そして冷媒Rが電動モータ14を通過する際には、冷媒R中の油Aはロータ38や、ロータ38の上部に設けられて径方向に延びる油分離プレート38aに接触することで冷媒R中の油Aの含有量が低減される。
 一方で、ステータ39とハウジング11との間の隙間Sを通過した冷媒Rはロータ38に接触することなくそのままスクロール圧縮機13に向かって流通する。このため、冷媒R中の油Aの含有量は多いまま、冷媒Rがスクロール圧縮機13に向かって流通する。即ち、ロータリ圧縮機12から吐出された冷媒R中の油Aの量は、ハウジング11内の径方向内側で少なく、径方向外側で多くなっている。
 ここで、本実施形態では、軸受ケーシング31bに制限面62を有する流入制限プレート61を設けることで、径方向外側で吸入開口FCaへの冷媒Rの流れを制限できる。このため、径方向外側の油Aの含有量の多い冷媒Rがそのまま吸入開口FCaを通じて吸入流路FCに流入してしまうことを制限できる。さらに、油Aの含有量の少ない径方向内側の冷媒Rを、吸入開口FCaを通じて吸入流路FCへ流入させることが可能となる。
 この結果、スクロール圧縮機13へ油Aの含有量の少ない冷媒Rを供給することができ、スクロール圧縮機13で圧縮されて吐出される冷媒R中の油Aの量を低減することができる。二段圧縮機1を含むシステム内の油循環量(OC%)を低減することが可能となる。
 さらに、径方向外側の冷媒Rが制限面62に接触すると、冷媒R中の油Aが制限面62に付着し、油Aの含有量が減った冷媒Rが制限面62によって径方向内側に案内され、吸入開口FCaから吸入流路FCへ流入する。このように制限面62によって冷媒R中の油Aの量が低減されて、吸入流路FCからスクロール圧縮機13へ供給される。このため、スクロール圧縮機13で圧縮されて吐出管34からハウジング11の外部へ吐出される冷媒R中の油Aの量を低減することができ、システム内の油循環量(OC%)を低減することが可能となる。
 また、軸受ケーシング31bに流入制限プレート61を設けることで、軸受ケーシング31bに制限面62を設けることができる。このため、ハウジング11に流入制限プレート61に相当する部材を取り付けて設ける場合に比べ、ハウジング11への溶接作業等が不要となり、非常に容易に制限面62を軸受ケーシング31bに設けることができる。よって、制限面62を有する二段圧縮機1を容易に製造しつつ、冷媒R中の油Aを効果的に冷媒Rから分離することができる。
 また、油落し管72を設けることで、高段側圧縮部で潤滑に使用された油が油落し管72を通じてハウジング11内に戻される。従って、スクロール圧縮機13で圧縮されて吐出される冷媒R中の油Aの量をさらに低減することができる。また、油落し管72を軸受ケーシング31bの径方向外側の端部に設けることで、径方向内側の吸入開口FCaにおける径方向内側の開口部分から離れた位置に油落し管72を設けることになる。従って、油戻し管72からハウジング11へ戻される油Aが吸入開口FCaからそのまま吸入流路FCに流入してしまうことを回避できる。従ってスクロール圧縮機13で圧縮されて吐出される冷媒R中の油Aの量をさらに低減することができる。
 さらに、シール部材66によって、ハウジング11の内部の径方向外側の領域で、ハウジング11とステータ39との間の隙間Sを通過した油Aの含有量が多い冷媒Rが、そのまま制限面62とハウジング11の内面との間からスクロール圧縮機13に流入してしまうことを回避できる。従って、スクロール圧縮機13で圧縮されて吐出される冷媒R中の油Aの量をさらに低減することができる。
 また、電動モータ14の配線14aが挿通される凹部31cを軸受ケーシング31bに形成したとしても、シール部材65によって、凹部31cと配線14aとハウジング11の内面との間の隙間をシールすることができる。よって、この隙間を通じて油Aを含む冷媒Rがそのままスクロール圧縮機13に供給されてしまうことを抑制することができる。
〔第二実施形態〕
 次に、図4及び図5を参照して、本発明の第二実施形態における二段圧縮機80について説明する。図4では説明の便宜上、電動モータ14の配線14a、及び油落し管72は図示を省略している。
 第二実施形態と同様の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態の二段圧縮機80は、制限面82を有する流入制限プレート81が第一実施形態の流入制限プレート61とは異なっている。
 流入制限プレート81は、ハウジング11の内面に沿うように径方向外側に配置されて軸線Xを中心とした円環状をなす環状部83と、環状部83の径方向内側に連続して環状部83と一体に設けられた円錐部84とを有している。
 環状部83の下面は、軸線Xを中心とした円環状をなす平面86となっている。また円錐部84の外面は、軸線Xを中心とした円錐台状をなす傾斜面87となっている。傾斜面87は、平面86から径方向内側に向かうに従って、下方に向かって傾斜している。
 このように本実施形態の制限面82は、平面86と傾斜面87とを有している。傾斜面87の径方向内側の端縁である内縁部87aはステータ39よりも径方向内側で、かつ、軸受ケーシング31b及び回転軸15よりも径方向外側に位置している。
 また本実施形態では、この流入制限プレート81の内縁部87aは、スクロール圧縮機13で必要となる冷媒Rの吸入量を確保可能に、即ち、吸入開口FCaの開口面積を確保可能な位置に配置されている。
 以上説明した本実施形態の二段圧縮機80では、制限面82が傾斜面87を有することで、吸入開口FCaから軸線Xの方向に下方に延びるように、軸線Xを中心とした環状をなす開口部OPを形成することができる。従って、第一実施形態よりも吸入開口FCaが電動モータ14に向かって開口する面積を大きくすることができる。従ってハウジング11の内部から吸入流路FCへ流入する冷媒Rの流量を確保することができる。
 さらに、ハウジング11内の径方向外側の領域の油Aの含有量の多い冷媒Rは、平面86に沿って径方向内側に流通した後に傾斜面87に衝突することで、傾斜面87にも油Aを付着させることができる。よって、さらに冷媒R中の油Aの含有量を低減した状態で冷媒Rを吸入流路FCに流入させ、スクロール圧縮機13へ供給することができる。この結果、スクロール圧縮機13で圧縮されてハウジング11の外部へ吐出される冷媒R中の油Aの量をさらに低減することができ、二段圧縮機80を含むシステム内の油循環量(OC%)をさらに低減することが可能となる。
 また、本実施形態では、傾斜面87の径方向内側の内縁部87aはステータ39よりも径方向内側に位置しているため、制限面82がロータ38の位置まで延びていることになる。従って、ハウジング11内で径方向内側を流通する冷媒R、及び冷媒R中の油Aをロータ38に接触させ、ロータ38で油Aの量を十分に低減した冷媒Rを、吸入開口FCaから吸入流路FCに流入させることができる。
 また、流入制限プレート81の内縁部87aを、スクロール圧縮機13で必要となる冷媒Rの吸入量を確保可能となる位置に配置することで、スクロール圧縮機13での圧縮効率低下を回避できる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 例えば、軸受ケーシング31bと流入制限プレート61、81とは一体となっていてもよい。即ち、制限面62、82を軸受ケーシング31bに直接設けてもよい。
 さらに、第一実施形態でも第二実施形態と同様に、制限面62の内縁部62aをステータ39よりも径方向内側に配置してもよい。さらに、この場合、スクロール圧縮機13で必要となる冷媒Rの吸入量を確保可能なように内縁部62aの位置を決定するとよい。
 また、軸受ケーシング31bには凹部31cに代えて、軸線Xの方向に貫通する貫通孔を形成し、この貫通孔に配線14aを挿通して配置してもよい。
 また、図6に示すように、制限面62Aには上方に凹み、軸線Xを中心として環状をなす環状凹部90を設けてもよい。このような環状凹部によって、径方向外側の冷媒Rが制限面62Aに接触することで制限面62Aに付着した油Aが径方向内側に向かって流れて、吸入開口FCaに吸い込まれないようにすることができる。このような環状凹部90は、第一実施形態の制限面62、及び、第二実施形態の制限面82のいずれにも設けることができる。
 また、ハウジング11内には低段側の圧縮機としてロータリ圧縮機12を設け、高段側の圧縮機としてスクロール圧縮機13を設けたが、これに限定されない。例えば、低段側の圧縮機としてスクロール圧縮機13を設け、高段側の圧縮機としてロータリ圧縮機12を用いてもよい。また低段側、高段側ともにスクロール圧縮機13を設けてもよいし、低段側、高段側ともにロータリ圧縮機12を設けてもよい。さらに、スクロール圧縮機13及びロータリ圧縮機12以外の圧縮機を設けてもよい。
 また回転軸の軸線が水平方向に延びるように横置きで使用する二段圧縮機にも、上記の制限面62、82を設けてもよい。
 上記の密閉型二段圧縮機によれば、容易に製造可能であるとともに、ガス中の油を効果的に分離することができる。
1、80  密閉型二段圧縮機
11  ハウジング
12  ロータリ圧縮機(低段側圧縮部)
13  スクロール圧縮機(高段側圧縮部)
14  電動モータ
14a  配線
15  回転軸
21  本体部
22  上部蓋部
23  下部蓋部
30  軸受装置
31  上部軸受
31a  軸受本体
31b  軸受ケーシング
31c  凹部(収容部)
31d  軸受流路
32A、32B  下部軸受
33  吸入管
34  吐出管
37  貫通孔
38  ロータ
38a  油分離プレート
39  ステータ
41  偏心軸部
42  ピストンロータ
44  シリンダ
44a  吸入孔
48  ボルト
50  ディスチャージカバー
51  固定スクロール
52  端板
52a  吐出孔
53  固定ラップ
56  偏心軸部
57  旋回スクロール
58  端板
59  旋回ラップ
60  ボルト
61  流入制限プレート
61a  切欠部
62、62A  制限面
62a  内縁部
62b  外縁部
63  切欠部
65  シール部材
66  シール部材
72  油落し管(油落し部)
81  流入制限プレート
82  制限面
83  環状部
84  円錐部
86  平面
87  傾斜面
87a  内縁部
90  環状凹部
C1  圧縮室
C2  圧縮室
O1  油溜まり
R  冷媒
X  軸線
A  油
S  隙間
FC  吸入流路
FCa  吸入開口
OP  開口部

Claims (6)

  1.  内部に油溜まりを有するハウジングと、
    前記ハウジング内に配置された回転軸と、
    前記ハウジング内に配置されて前記回転軸を回転させる径方向外側に設けられたステータ及び径方向内側に設けられたロータを有するモータと、
    前記ハウジング内で前記モータに対して前記回転軸の軸線の方向の一方側に配置され、前記回転軸に接続されてガスを圧縮する低段側圧縮部と、
    前記ハウジング内で前記モータに対して前記軸線の方向の他方側に配置され、前記回転軸を支持する軸受本体、及び該軸受本体を前記ハウジングに支持する軸受ケーシングを有する軸受装置と、
     前記軸受装置に対して、前記軸線の方向の他方側に配置され、前記低段側圧縮部から吐出されたガスをさらに圧縮する高段側圧縮部と、
    を備え、
     前記軸受ケーシングには、
     前記高段側圧縮部へガスを吸入するように設けられて前記軸線の方向の一方側に向かって開口する吸入開口が設けられた吸入流路と、
     前記吸入開口と前記モータとの間に配置されて、径方向外側での前記吸入開口へのガスの流れを制限するように、前記ハウジングの内面から径方向内側に向かって設けられた制限面と、
     が設けられている密閉型二段圧縮機。
  2.  前記軸受ケーシングに固定されるとともに板状をなし、前記軸線の一方側に前記制限面を有する流入制限プレートをさらに備える請求項1に記載の密閉型二段圧縮機。
  3.  前記制限面は、
     前記ハウジングの内面側となる径方向外側の端部に設けられ、前記軸線に直交して該軸線を中心とした環状をなす平面と、
     前記平面から径方向内側に向かうに従って、前記軸線の方向の一方側へ向かって傾斜して前記軸線を中心とした円錐台状をなす傾斜面と、
     を有する請求項1又は2に記載の密閉型二段圧縮機。
  4.  前記制限面の径方向内側の内縁部は、前記ステータよりも径方向内側の位置に配置され、
     かつ、前記制限面は、前記高段側圧縮部で必要となるガスの吸入量を確保可能に、前記吸入開口の一部を閉塞する請求項1から3のいずれか一項に記載の密閉型二段圧縮機。
  5.  前記制限面の径方向外側の外縁部と前記ハウジングの内面との間の隙間に設けられたシール部材をさらに備える請求項1から4のいずれか一項に記載の密閉型二段圧縮機。
  6.  前記軸受ケーシングには、径方向外側の端部の位置で、前記高段側圧縮部と前記ハウジング内の軸受ケーシングよりも前記軸線の方向の一方側とを連通し、前記高段側圧縮部からの油が流通可能な油落し部がさらに設けられている請求項1から5のいずれか一項に記載の密閉型二段圧縮機。
PCT/JP2017/015333 2016-04-14 2017-04-14 密閉型二段圧縮機 WO2017179714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780010683.0A CN108700076B (zh) 2016-04-14 2017-04-14 密封式二级压缩机
AU2017251203A AU2017251203B2 (en) 2016-04-14 2017-04-14 Hermetic two-stage compressor
EP17782527.0A EP3409948B1 (en) 2016-04-14 2017-04-14 Hermetic two-stage compressor
KR1020187025155A KR102061440B1 (ko) 2016-04-14 2017-04-14 밀폐형 2단 압축기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081000 2016-04-14
JP2016081000A JP6755114B2 (ja) 2016-04-14 2016-04-14 密閉型二段圧縮機

Publications (1)

Publication Number Publication Date
WO2017179714A1 true WO2017179714A1 (ja) 2017-10-19

Family

ID=60041837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015333 WO2017179714A1 (ja) 2016-04-14 2017-04-14 密閉型二段圧縮機

Country Status (6)

Country Link
EP (1) EP3409948B1 (ja)
JP (1) JP6755114B2 (ja)
KR (1) KR102061440B1 (ja)
CN (1) CN108700076B (ja)
AU (1) AU2017251203B2 (ja)
WO (1) WO2017179714A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023076187A (ja) 2021-11-22 2023-06-01 三菱重工サーマルシステムズ株式会社 圧縮機
JP2023076188A (ja) 2021-11-22 2023-06-01 三菱重工サーマルシステムズ株式会社 圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132353A (ja) * 2002-06-11 2004-04-30 Tecumseh Products Co 密閉二酸化炭素圧縮機の潤滑剤
JP2009047039A (ja) * 2007-08-17 2009-03-05 Mitsubishi Heavy Ind Ltd 多段圧縮機
US20090148328A1 (en) * 2007-12-06 2009-06-11 Chung-Hung Yeh Lubricant backflow structure of compressor
JP2012149544A (ja) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2012202252A (ja) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd スクロール圧縮装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444850B2 (ja) * 2009-05-27 2014-03-19 ダイキン工業株式会社 圧縮機
WO2013015215A1 (ja) * 2011-07-22 2013-01-31 三菱重工業株式会社 流体機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132353A (ja) * 2002-06-11 2004-04-30 Tecumseh Products Co 密閉二酸化炭素圧縮機の潤滑剤
JP2009047039A (ja) * 2007-08-17 2009-03-05 Mitsubishi Heavy Ind Ltd 多段圧縮機
US20090148328A1 (en) * 2007-12-06 2009-06-11 Chung-Hung Yeh Lubricant backflow structure of compressor
JP2012149544A (ja) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2012202252A (ja) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd スクロール圧縮装置

Also Published As

Publication number Publication date
KR102061440B1 (ko) 2019-12-31
JP2017190732A (ja) 2017-10-19
EP3409948A1 (en) 2018-12-05
CN108700076A (zh) 2018-10-23
JP6755114B2 (ja) 2020-09-16
EP3409948A4 (en) 2019-03-06
CN108700076B (zh) 2020-07-14
AU2017251203B2 (en) 2019-06-20
KR20180107215A (ko) 2018-10-01
AU2017251203A1 (en) 2018-08-30
EP3409948B1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
KR100419591B1 (ko) 밀폐형 전동 압축기
JP2009047039A (ja) 多段圧縮機
WO2017190651A1 (zh) 泵油机构及具有该泵油机构的卧式压缩机
EP2864635B1 (en) Scroll compressor with slider block
US8945265B2 (en) Compressor
US20240052832A1 (en) Hermetic compressor
WO2017179714A1 (ja) 密閉型二段圧縮機
US10436199B2 (en) Rotary compressor
US9885359B2 (en) Motor-driven compressor
JP5112090B2 (ja) スクロール圧縮機
JP6048044B2 (ja) 回転式圧縮機
KR20150076074A (ko) 밀폐형 압축기
JP2009114943A (ja) スクロール型流体機械
US20050214138A1 (en) Multistage rotary compressor
JP2014080875A (ja) 圧縮機
EP2253849A1 (en) Hermetic compressor
JP4359164B2 (ja) 2段回転圧縮機
EP3992461B1 (en) Scroll compressor
JPWO2017098556A1 (ja) 車室組み立て体及び回転機械
JP2023076187A (ja) 圧縮機
JP2021038680A (ja) スクロール圧縮機
JP2009235948A (ja) 圧縮機
JPH0633888A (ja) 横型ロータリ式圧縮機
JPH0681789A (ja) 横型ロータリ式圧縮機
JP2017089448A (ja) スクロール流体機械

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017251203

Country of ref document: AU

Date of ref document: 20170414

Kind code of ref document: A

Ref document number: 20187025155

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017782527

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782527

Country of ref document: EP

Effective date: 20180831

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782527

Country of ref document: EP

Kind code of ref document: A1